		Carbohydrates
Lecture	30 (12/6/21)	A. Definition
	× ,	B. Roles
ΤΟΠΑΥ		C. Monosaccharides-Chemistry
IODAI		1. Chirality
 Reading: 	Ch7; 236-241, 251-254, 2	58-260a. One or more asymmetric carbonsb. Linear and ring forms
	Ch7; 241-250	2. Derivatives: the chemistry of
•Problems:	Ch7; 4,6,7,8,13,14,15,18 Ch7; 16,17,25,27	carbohydrates a. Oxidation i. C1 ii. C6 b. Reduction i. C1//C2
NEXT		ii. Other carbons c. Ester formation d. Amino sugars
•Reading:	Ch4; 188-199 Ch6; 178 Ch8: 295	 Polymerization The Glycosidic Bond Non-covalent bonds in macro-molecular
	Ch10: 356-359	Structure D. Oligosaccharides
	Ch14: 530-531 534-535	1 Glycoproteins & glycolipids
	Ch16: 576, 590	2. O-linked
	Ch17: 613-615	3. N-linked
	Ch18; 629, 641-643	 Sequence determination-ABO E. Polysaccharides
		1. Polymers of glucose
		2. Polymers of disaccharides

Carbohydrates			
Monosaccharides: Chemistry			
 Chemical Features: 			
– Chirality			
One or more asymmetric carbonsLinear and ring forms			
 Derivatives: the chemistry of carbohydrates 			
① • Oxidation - C1 - onic - C6 - uronic			
 Reduction C1/C2 Other carbons deoxy- 			
③ · Ester formation			
(4) • Amino sugars			
 Polymerization 			
The Glycosidic Bond			
 Non-covalent bonds in macro-molecular structure 			

How are these sugars attached?

		Carbohydrates
Lecture	30 (12/6/21)	A. Definition
	× ,	B. Roles
		C. Monosaccharides-Chemistry
IUDAI		1. Chirality
•Reading:	Ch7; 236-241, 251-254, 2	a. One or more asymmetric carbons b. Linear and ring forms
	Ch7; 241-250	2. Derivatives: the chemistry of
•Problems:	Ch7; 4,6,7,8,13,14,15,18 Ch7; 16,17,25,27	carbohydrates a. Oxidation i. C1 ii. C6 b. Reduction i. C1/C2
NEXT		ii. Other carbons c. Ester formation d. Amino sugars
•Reading:	Ch4; 188-199	3. Polymerization
Ŭ	Ch6: 178	a. The Glycosidic Bond
	Ch8; 295	 b. Non-covalent bonds in macro-molecular structure
	Ch10; 356-359	D. Oligosaccharides
	Ch14; 530-531,534-535	1. Glycoproteins & glycolipids
	Ch16; 576, 590	2. O-linked
	Ch17; 613-615	3. N-linked
	Ch18; 629, 641-643	4. Sequence determination-ABO
		1 Polymers of glucose
		2. Polymers of disaccharides

Oligosaccharides: Determination of Sequence

- Whole different problem compared to proteins and nucleic acids.... Its branched!!
- Moreover, a given residue can have several (and stereo-specific) ways of attaching to a neighboring residue.
- Need to use a combination of methods:
 - Chemical
 - Hydrolysis & chromatography to identify sugars
 - Exhaustive methylation & hydrolysis, then chromatography to identify what positions were not methylated
 - Biochemical
 - Use of enzymes that stereo-specifically hydrolyze glyosidic bonds (from the non-reducing end)

EXAMPLE: First, just like protein sequencing, you need to purify glyco-protein or lipid. Lets say we isolate the glycolipid from a person's RBC's who is O-positive. Treat it with a ceramidase to hydrolyze the lipid from the sugar.

Second, take an aliquot and just hydrolyze (like what was done for amino acid analysis). This gets the composition and stoichiometry.

Carbohydrates

Oligosaccharides: Determination of Sequence

- Whole different problem compared to proteins and nucleic acids.... Its branched!!
- Moreover, a given residue can have several (and stereo-specific) ways of attaching to a neighboring residue.
- Need to use a combination of methods:
 - Chemical
 - Hydrolysis & chromatography to identify sugars
 - Exhaustive methylation & hydrolysis, then chromatography to identify what positions were not methylated
 - Biochemical
 - Use of enzymes that stereo-specifically hydrolyze glyosidic bonds (from the non-reducing end)

EXAMPLE: First, just like protein sequencing, you need to purify glyco-protein or lipid. Lets say we isolate the glycolipid from a person's RBC's who is O-positive. Treat it with a ceramidase to hydrolyze the lipid from the sugar.

Second, take an aliquot and just hydrolyze (like what was done for amino acid analysis). This gets the composition and stoichiometry.

Polysaccharides

- The majority of natural carbohydrates are usually found as large polymers.
- These polysaccharides can be:
 - homopolysaccharides (one monomer unit)
 - heteropolysaccharides (multiple monomer units)
 - linear (one type of glycosidic bond)
 - branched (multiple types of glycosidic bonds)
- · Polysaccharides do not have a defined molecular weight.
 - This is in contrast to proteins because, unlike proteins, no template is used to make polysaccharides.
 - Polysaccharides are often in a state of flux; monomer units are added and removed as needed by the organism.

Polysaccharides: Polymers of Disaccharides First, need to describe the Extracellular Matrix (ECM)

- Material outside the cell
- · Strength, elasticity, and physical barrier in tissues (varies tremendously)
- Main components

 proteoglycans
 collagen & elastin fibers

 Proteoglycans

 Different glycosaminoglycans are O-linked to the "core protein."
 Linkage from anomeric carbon of xylose to serine hydroxyl
 Our tissues have many different core proteins; aggrecan is the best studied.

Polysaccharides: Polymers of Disaccharides Glycosaminoglycans

(the carbohydrate part of proteoglycans)

- Linear polymers of repeating disaccharide units (sugarX-sugarY)_n
- One monomer (sugarX) is either sugar acid or Gal
 - uronic acids (C6 oxidation)
 - Most have sulfate esters
- One monomer (sugarY) is either:
 - N-acetyl-glucosamine (GlcNAc) or N-acetyl-galactosamine (GalNAc)
 - Also sulfate esters
- Extended hydrated molecule
 - Negatively charged
 - minimizes charge repulsion
- Forms meshwork with fibrous proteins to form extracellular matrix

 connective tissue
 - lubrication of joints
- Form huge (M_r > 2 10⁸) noncovalent aggregates (Hyaluronan and Aggrecan).
 - They hold a lot of water (1000× its weight) and provide lubrication.
 - Very low friction material
 - Covers joint surfaces: articular cartilage
 - reduced friction & load balancing