

Nucleic Acids

Transcription
Translation

Genetic Code

tRNA

Protein Biosynthesis

TODAY

- Reading: Ch10; 341-348
- Homework: #31

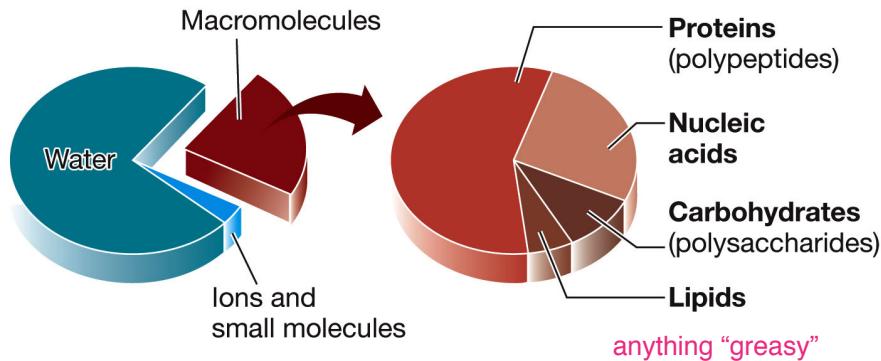
NEXT

- Reading: Ch10, 352-354, 356; 367-369

Lipids & Membranes

A. Lipids

1. Roles
2. Classes
 - a. Fatty Acids
 - b. Fats
 - c. Waxes
 - d. Membrane lipids
 - e. Terpenes


B. Membranes

1. Introduction
2. The 4 S's
 - a. Size
 - b. Solubility
 - c. Shape
 - d. Stability
3. Models for Membrane structure
 - a. Old Model
 - b. Data
 - c. Fluid Mosaic Model
 - d. Testing the model
4. The Red-Blood Cell Membrane
5. Membrane Asymmetry
 - a. transverse
 - b. lateral
 - c. anchoring
6. Membrane Fluidity

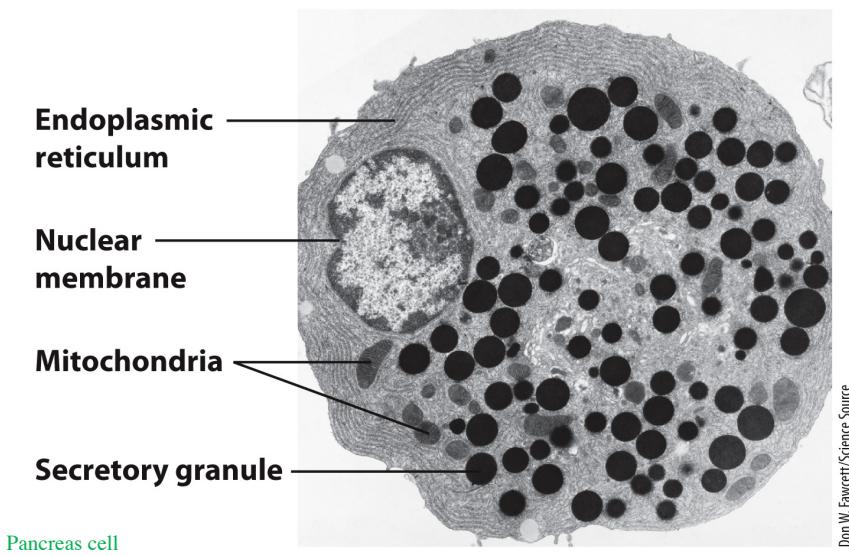
Lecture 29 (12/3/25)

Lipids & Membranes

Lipids

Lipids: Roles

- **Membrane structure**
 - main structure of cell membranes
- **Storage of energy**
 - reduced compounds: lots of available energy
 - hydrophobic nature: good packing
- **Signaling molecules**
 - paracrine signals (act locally)
 - steroid hormones (act body-wide)
 - growth factors
 - vitamins A and D (hormone precursors)
- **Vitamins, Cofactors, and secondary products**
 - Vitamins E & K: antioxidant & blood clot formation, resp.
 - coenzyme Q: ATP synthesis in mitochondria
 - Pigments, e.g., tomatoes, carrots, pumpkins, some birds
 - Water repellent in feathers and hides
 - Insulation & buoyancy control in marine mammals (blubber)


Lipids: Roles

Functions of Membranes

- Define the boundaries of the cell
- Allow import and export
 - Selective import of nutrients (e.g. lactose)
 - Selective export of waste and toxins (e.g. antibiotics)
- Retain metabolites and ions within the cell
- Sense external signals and transmit information into the cell
- Provide compartmentalization within the cell
 - separate energy-producing reactions from energy-consuming ones
 - keep proteolytic enzymes away from important cellular proteins
- Produce and transmit nerve signals
- Store energy by allowing for chemical gradients across membrane
- In the case of pH, this supports synthesis of ATP

Lipids: Roles

Electron Micrograph of Biological Membranes

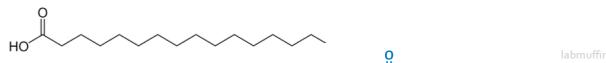
Lipids: Classes

Biological molecules that are characterized by low solubility in water, that is, are relatively hydrophobic.

They have a high hydrocarbon content

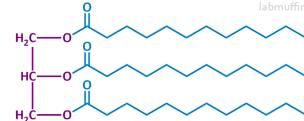
TABLE 10-2 Eight Major Categories of Biological Lipids

Category	Category code	Examples
Fatty acids	①	FA Oleate, stearoyl-CoA, palmitoylcarnitine
Glycerolipids	②	GL Di- and triacylglycerols
Glycerophospholipids	④	GP Phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine
Sphingolipids	SP	Sphingomyelin, ganglioside GM2
Sterol lipids	⑤	ST Cholesterol, progesterone, bile acids
Prenol lipids	PR	Farnesol, geraniol, retinol, ubiquinone
Saccharolipids	SL	Lipopolysaccharide
Polyketides	PK	Tetracycline, erythromycin, aflatoxin B ₁
Waxes	③	

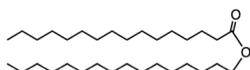

Lipids: Classes

Biological molecules that are characterized by low solubility in water, that is, are relatively hydrophobic.

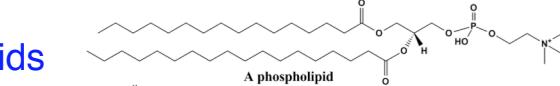
Classes of Lipids


They have a high hydrocarbon content

1. Fatty acids

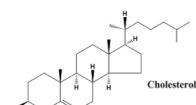

labmuffin

2. Fats (triglycerides)



Structure of a fat

3. Waxes



4. Membrane Lipids

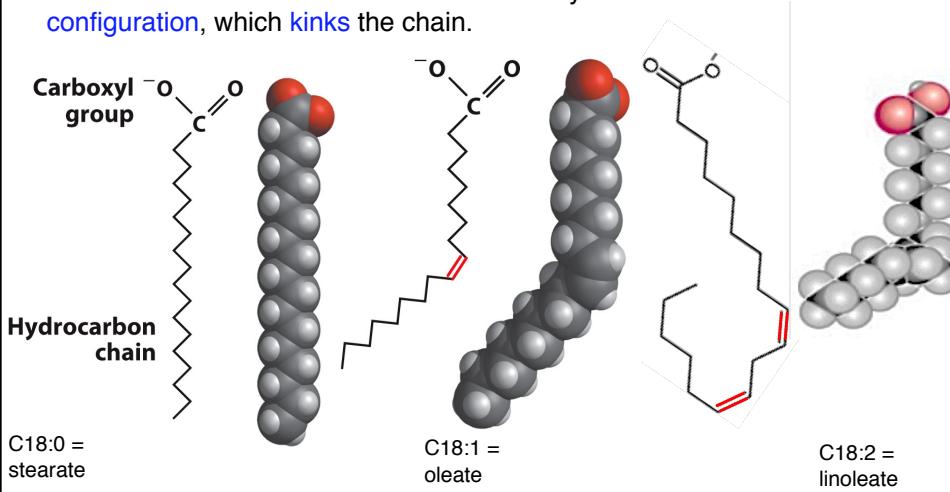
A phospholipid

5. Isoprenes

Cholesterol

Lipids: Fatty Acids

- Carboxylic acids with hydrocarbon chains containing between 4 to 36 carbons
 - Almost all natural fatty acids have an even number of carbons.
 - Most natural fatty acids are unbranched.
- Biologically, most are found in ester linkages as the pK_a is ~ 3.0 , and would otherwise be very acidic.
- TWO CLASSES
 - Saturated: no double bonds between carbons in the chain
 - Unsaturated: ≥ 1 cis-double bonds between carbons in the chain


m.p. $> 37^\circ\text{C}$ • Monounsaturated: one double bond between carbons in the alkyl chain

m.p. $< 20^\circ\text{C}$ • Polysaturated: more than one double bond in the alkyl chain – never conjugated

Lipids: Fatty Acids

Conformation of Fatty Acids

- The saturated chain tends to adopt extended conformations.
- The double bonds in natural unsaturated fatty acids are in a cis configuration, which kinks the chain.

Lipids: Fatty Acids

Fatty Acid Compositions of Some Dietary Lipids*

Source	Lauric and Myristic	Palmitic	Stearic	Oleic	Linoleic
Beef	5	24-32	20-25	37-43	2-3
Milk		25	12	33	3
Turkey	1	18-20	12-14	18-20	25-30
Coconut	74	10	2	7	—
Corn		8-12	3-4	19-49	34-62
Olive		9	2	84	4
Palm		39	4	40	8
Safflower		6	3	13	78
Soybean		9	6	20	52
Sunflower		6	1	21	66

Data from *Merck Index*, 10th ed. Rahway, NJ: Merck and Co., and Wilson et al., 1967, *Principles of Nutrition*, 2nd ed. New York: Wiley.

Saturated FA

Unsaturated FA

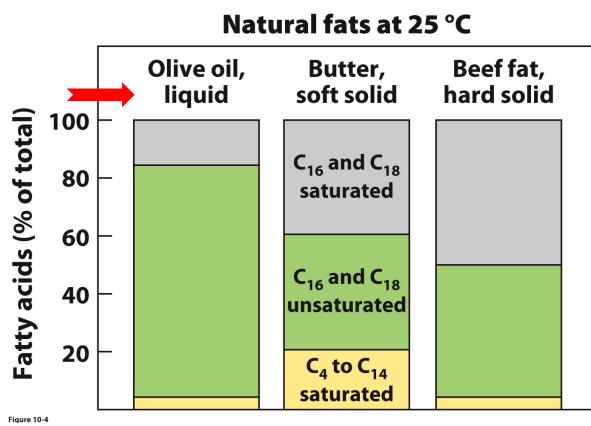
Lipids: Fatty Acids

Common Biological Fatty Acids

Number of Carbons	Common Name	Systematic Name	Symbol	Structure
Saturated fatty acids				
12	Lauric acid	Dodecanoic acid	12:0	$\text{CH}_3(\text{CH}_2)_{10}\text{COOH}$
14	Myristic acid	Tetradecanoic acid	14:0	$\text{CH}_3(\text{CH}_2)_{12}\text{COOH}$
16	Palmitic acid	Hexadecanoic acid	16:0	$\text{CH}_3(\text{CH}_2)_{14}\text{COOH}$
18	Stearic acid	Octadecanoic acid	18:0	$\text{CH}_3(\text{CH}_2)_{16}\text{COOH}$
20	Arachidic acid	Eicosanoic acid	20:0	$\text{CH}_3(\text{CH}_2)_{18}\text{COOH}$
22	Behenic acid	Docosanoic acid	22:0	$\text{CH}_3(\text{CH}_2)_{20}\text{COOH}$
24	Lignoceric acid	Tetracosanoic acid	24:0	$\text{CH}_3(\text{CH}_2)_{22}\text{COOH}$
Unsaturated fatty acids (all double bonds are cis)				
16	Palmitoleic acid	9-Hexadecenoic acid	16:1 (Δ^9)	$\text{CH}_3(\text{CH}_2)_5\text{CH}=\text{CH}(\text{CH}_2)_7\text{COOH}$
18	Oleic acid	9-Octadecenoic acid	18:1 (Δ^9)	$\text{CH}_3(\text{CH}_2)_7\text{CH}=\text{CH}(\text{CH}_2)_7\text{COOH}$
18	Linoleic acid	9,12-Octadecadienoic acid	18:2 ($\Delta^{9,12}$)	$\text{CH}_3(\text{CH}_2)_4(\text{CH}=\text{CHCH}_2)_2(\text{CH}_2)_6\text{COOH}$
18	α -Linolenic acid	9,12,15-Octadecatrienoic acid	18:3 ($\Delta^{9,12,15}$)	$\text{CH}_3\text{CH}_2(\text{CH}=\text{CHCH}_2)_3(\text{CH}_2)_3\text{COOH}$
18	γ -Linolenic acid	6,9,12-Octadecatrienoic acid	18:3 ($\Delta^{6,9,12}$)	$\text{CH}_3(\text{CH}_2)_4(\text{CH}=\text{CHCH}_2)_3(\text{CH}_2)_3\text{COOH}$
20	Arachidonic acid	5,8,11,14-Eicosatetraenoic acid	20:4 ($\Delta^{5,8,11,14}$)	$\text{CH}_3(\text{CH}_2)_4(\text{CH}=\text{CHCH}_2)_4(\text{CH}_2)_2\text{COOH}$
24	Nervonic acid	15-Tetracosenoic acid	24:1 (Δ^{15})	$\text{CH}_3(\text{CH}_2)_7\text{CH}=\text{CH}(\text{CH}_2)_{13}\text{COOH}$

Need to Know: Common names, structure, symbol

Lipids: Fatty Acids


Nomenclature

- Fatty acids can be described by:
 - systematic name: *cis*-9-octadecanoic acid
 - common name: *oleic acid*
 - delta numbering of carbon skeleton: $18:1\Delta^9$
 - describes location of the first carbon of the alkene in relationship to the carbonyl carbon
 - omega numbering of carbon skeleton: $18:1\omega^9$
 - describes location of the first carbon of the alkene in relationship to the terminal methyl
- Omega-3 fatty acids are essential nutrients.
 - Humans need them; cannot synthesize them.
 - They include α -linolenic acid (ALA) ($18:3\Delta^9,12,15$) ($18:3\omega^3,6,9$), Eicosapentaenoic acid (EPA), and Docosahexaenoic Acid (DHA).
 - although DHA (22:6) and EPA (20:5) can be synthesized from ALA

Lipids: Fatty Acids

Solubility and Melting Point of Fatty Acids

- Solubility
 - decreases as the chain length increases
- Melting Point
 - decreases as the chain length decreases
 - decreases as the number of double bonds increases

Lipids: Fatty Acids

Melting Point and Double Bonds

- Saturated fatty acids pack in a fairly orderly way.
 - extensive favorable interactions What kind of interaction?
- Unsaturated cis fatty acids pack less orderly due to the kink.
 - less-extensive favorable interactions van der Waals
- It takes less thermal energy to disrupt disordered packing of unsaturated fatty acids.
 - Explains the lower melting point of unsaturated cis fatty acids.

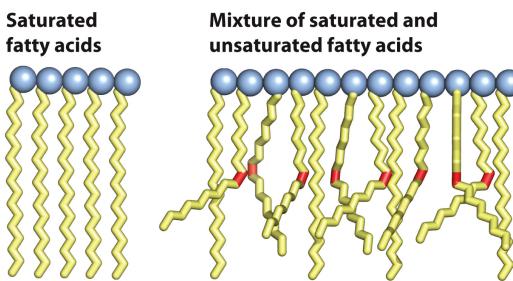
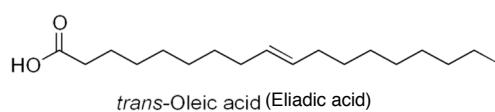



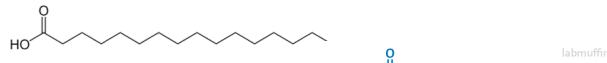
Figure 10.14d
Lipidic Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Lipids: Fatty Acids

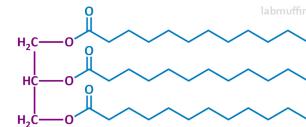
Trans Fatty Acids

- Trans fatty acids form by partial hydrogenation (reduction) of unsaturated fatty acids.
 - done to increase shelf life or stability at high temperature of oils used in cooking (especially deep frying)
 - Or to convert plant oils to margarine, a solid fat (partially hydrogenated polyunsaturated oils).
- A **trans double bond** allows a given fatty acid to adopt an extended conformation.
- Trans fatty acids can pack more regularly and show **higher melting points** than cis forms.
- Consuming trans fats increases risk of cardiovascular disease.
 - Avoid deep frying partially hydrogenated vegetable oils.
 - Current trend: reduce trans fats in foods (Wendy's, KFC).

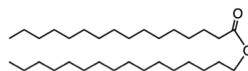
trans-Oleic acid (Eliadic acid)


Lipids: Classes

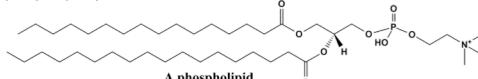
Biological molecules that are characterized by low solubility in water, that is, are relatively hydrophobic.


Classes of Lipids

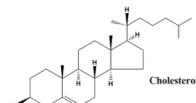
They have a high hydrocarbon content


1. Fatty acids

2. Fats (triglycerides)



3. Waxes

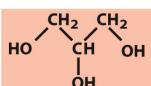


Structure of a fat

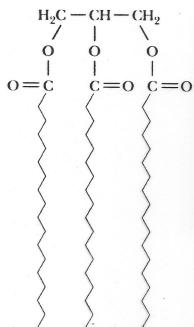
4. Membrane Lipids

5. Isoprenes

Cholesterol

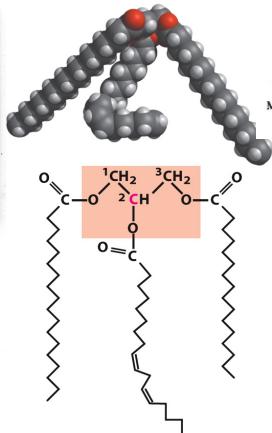

Lipids: Fat

Triacylglycerols (Nonpolar)

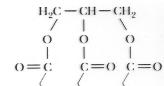

- The majority of fatty acids in biological systems are found in the form of triacylglycerols.
 - Solid ones are called **fats**.
 - Liquid ones are called **oils**.
- The primary storage form of lipids (**body fat**)
- Less soluble in water than fatty acids due to the esterification of the carboxylate group
- Less dense than water: **fats and oils float**.

Lipids: Fat

Triacylglycerols



Glycerol



Tristearin
(a simple triacylglycerol)

Tristearoyl glycerol

1-Stearoyl, 2-linoleoyl, 3-palmitoyl glycerol,
a mixed triacylglycerol

Myristic Palmitoleic

Stearic

Name?

1-Myristoyl-2-stearoyl-3-palmitoleoyl glycerol

Lipids: Fat

Fats Provide Efficient Fuel Storage

- The advantage of fats over polysaccharides:
 - Fats and oils carry more energy per carbon because they are more reduced.
 - Fats and oils carry less water per gram because they are nonpolar.
- Glucose and glycogen are for short-term energy needs and quick delivery.
- Fats are for long-term (months) energy needs, good storage, and slow delivery.
- Fats can be treated with alkaline (NaOH), which will hydrolyze the ester bonds, leading to glycerol and salts of the fatty acids.....soap! Process is called saponification.

Lipids: Fat

Fats Provide Efficient Fuel Storage

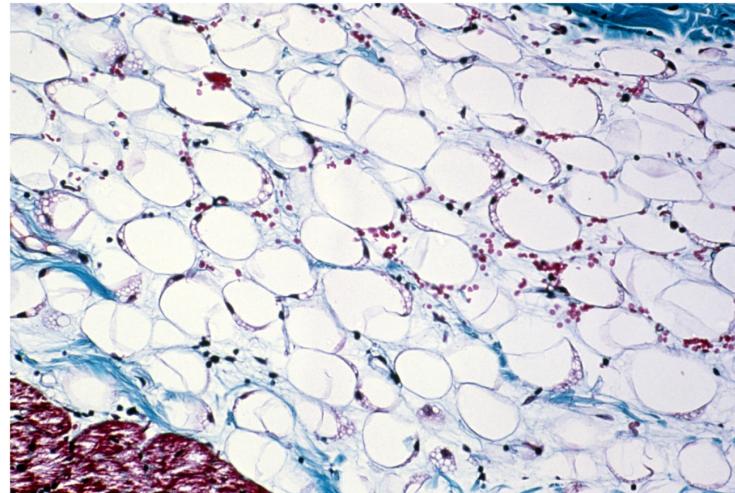
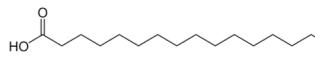


Figure 10-3a

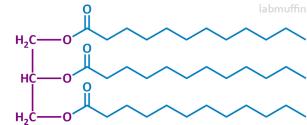
Adipose Tissue

125 μ m

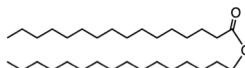

Lipids: Classes

Biological molecules that are characterized by low solubility in water, that is, are relatively hydrophobic.

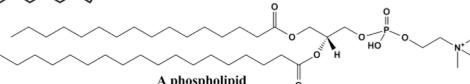
Classes of Lipids


They have a high hydrocarbon content

1. Fatty acids

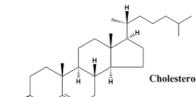

labmuffin

2. Fats (triglycerides)



Structure of a fat

3. Waxes



4. Membrane Lipids

A phospholipid

5. Isoprenes

Cholesterol

Lipids: Waxes

- Waxes are esters of long-chain saturated fatty acids with and saturated or unsaturated long-chain alcohols.
- Insoluble and have high melting points
- Variety of functions:
 - waterproofing of feathers in birds
 - protection from evaporation in tropical plants and ivy
 - protection and pliability for hair and skin in vertebrates
 - storage of metabolic fuel in plankton
 - used by people in lotions, ointments, and polishes

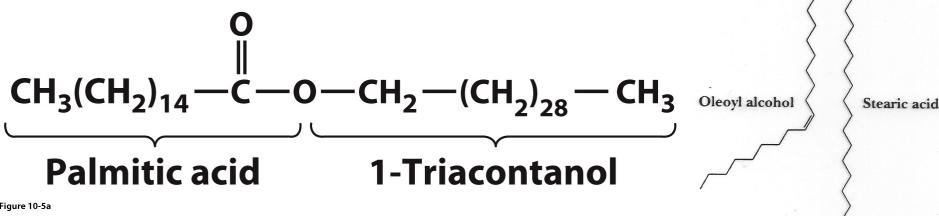
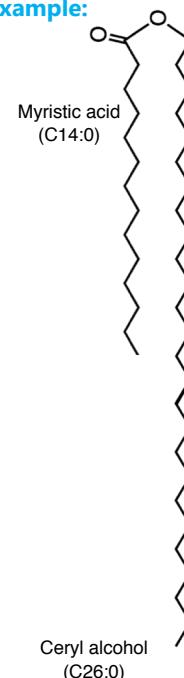


Figure 10-5a


Lipids: Waxes

Wax: The Material of the Honeycomb

Beeswax is a mixture of a large number of lipids, including esters of triacontanol (C30:0) and ceryl alcohol (C26:0).

Example:

Myristic acid (C14:0)

Ceryl alcohol (C26:0)

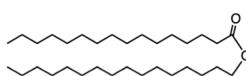

Lipids: Classes

Biological molecules that are characterized by low solubility in water, that is, are relatively hydrophobic.

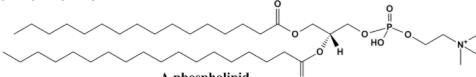

Classes of Lipids

They have a high hydrocarbon content

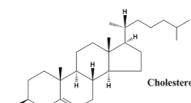
1. Fatty acids



2. Fats (triglycerides)


labmuffin

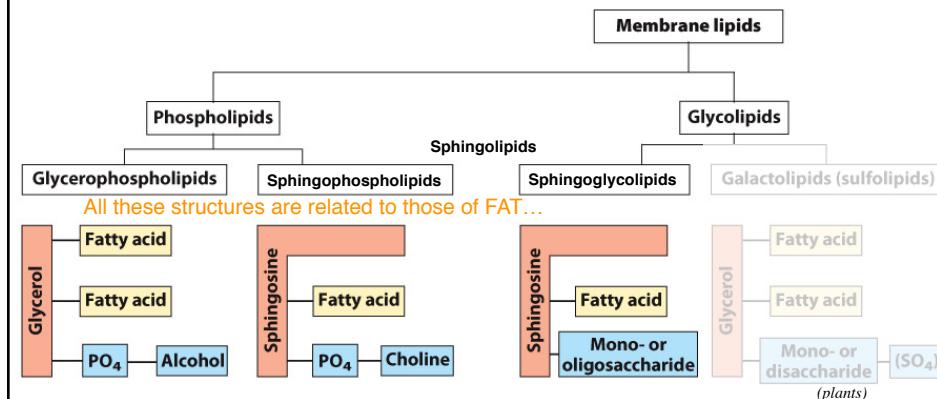
3. Waxes



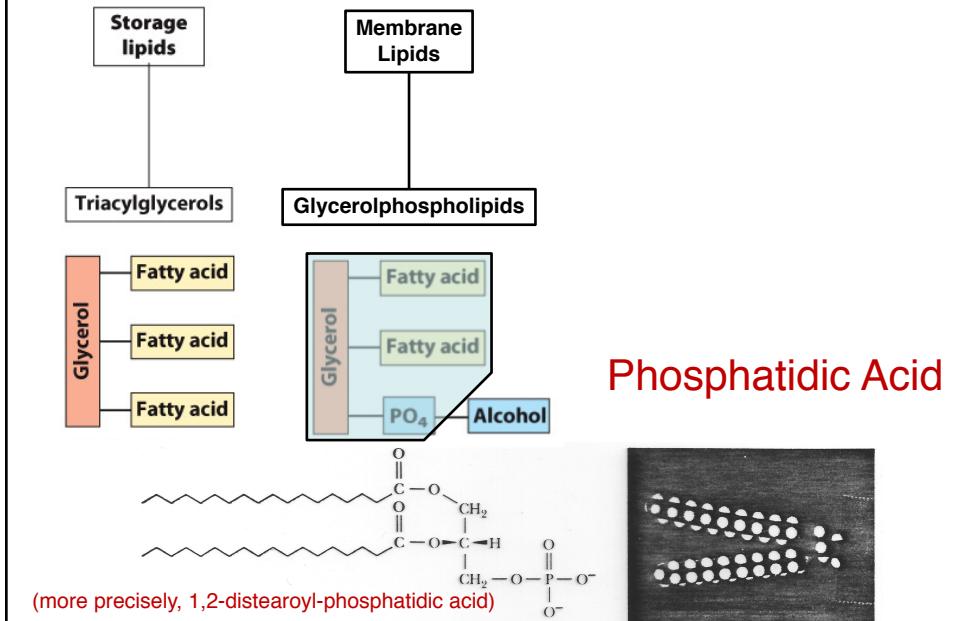
Structure of a fat

4. Membrane Lipids

5. Isoprenes


Cholesterol

Lipids: Membrane Lipids


Classification of Membrane Lipids

Two major categories based on the structure and function:

1. Lipids that contain phosphate
2. Lipids that do not contain phosphate
 - each can be further separated into:
 - Glycerol-based and sphingosine-based

Lipids: Membrane Lipids

Lipids: Membrane Lipids

General Structure of Glycerophospholipids

