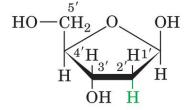
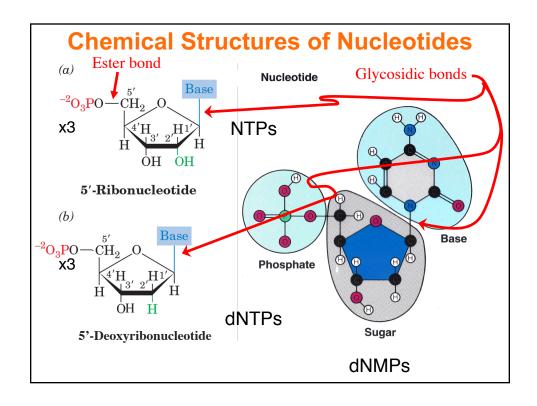
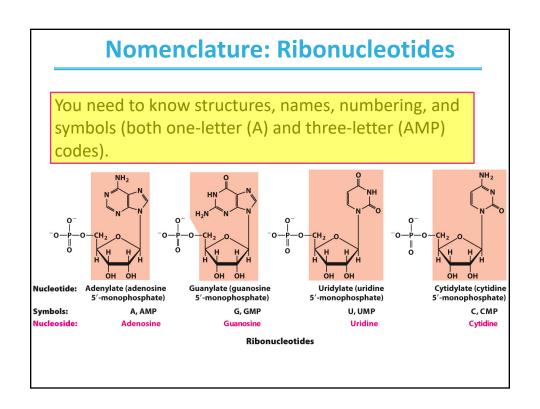

Lecture 24 (11/12/25) **TODAY** · Reading: Ch8; 294-296, 263-269; Ch24; 885-890 • Homework: #23 **NEXT** Ch8; 269-274; Ch24; 881-894 Reading: • Homework: #24 **Nucleic Acids** A. Nucleotides 1. Parts-structure 2. Nomenclature 3. Numbering Properties B. Nucleic Acids 1. Polymer: phospho-diester bond 2. H-bonds D. Oligosaccharides 3. Roles 1. Glycoproteins & glycolipids a. Nucleotides 2. O-linked b. Nucleic acids C. The 4 S's 3. N-linked 1. Size 4. Sequence determination-ABO a. genomes b. RNAs E. Polysaccharides 2. Solubility 1. Polymers of glucose 2. Polymers of disaccharides Shape

Nucleotides & Nucleic Acids Nucleic Acids Nucleic acids Nucleic acids Nucleic acids Nucleic acids Lipids


Definition of Nucleotides

Chemical Structures of Nucleotide Bases

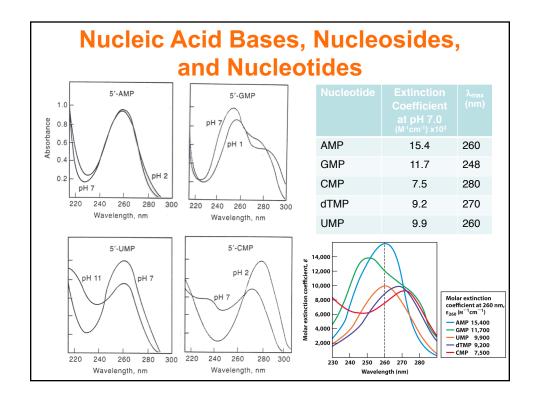

Sugars of Nucleotides are Either Ribose & Deoxyribose



Ribose

Deoxyribose

Nomenclature: Deoxyribonucleotides

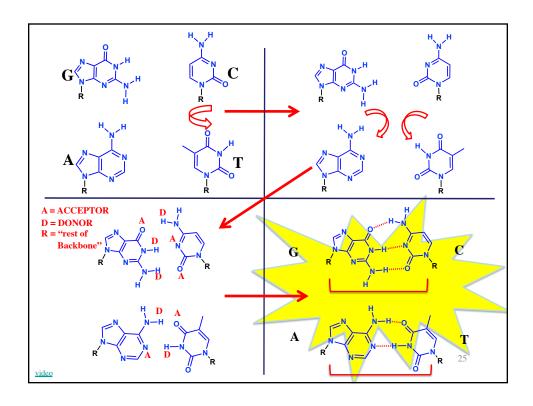

You need to know structures, names, numbering, and symbols (both two-letter (dA) and four-letter (dAMP) codes).

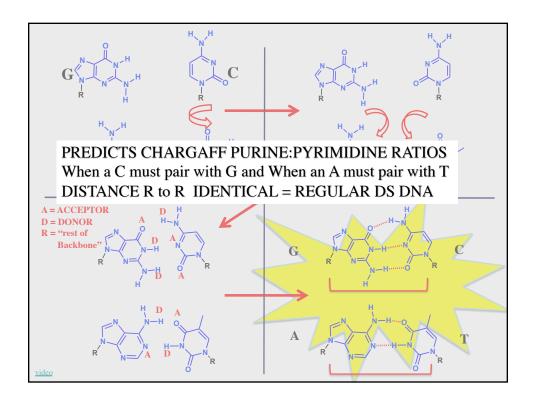
Nucleotides:

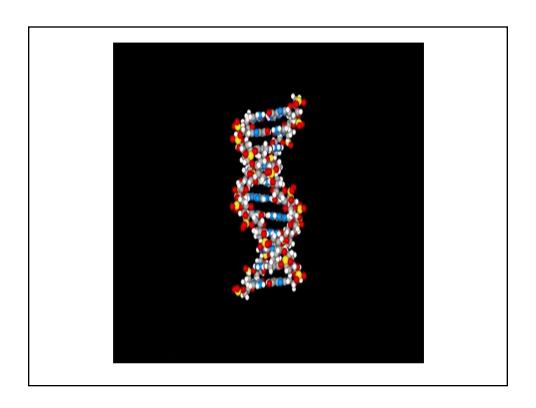
Nomenclature

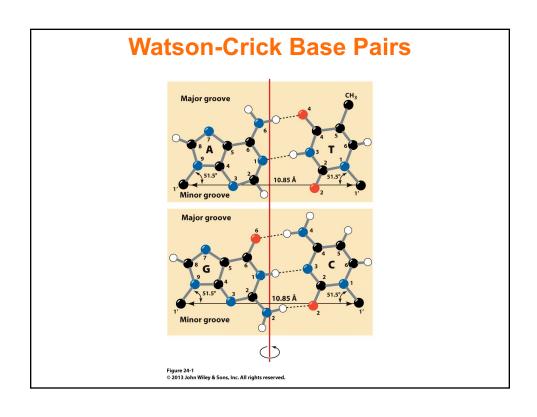
	Nucleotide and nucleic acid nomenclature			
Base	Nucleoside*	Nucleotide*	Nucleic acid	
Purines -ine	- <u>os</u> ine	- <u>ylate</u>		
Adenine	Adenosine Deoxyadenosine	Adenylate Deoxyadenylate	RNA DNA	
Guan ine	Guanosine Deoxyguanosine	Guanylate Deoxyguanylate	RNA DNA	
Pyrim <u>id</u> ines	-idine	-idylate		
Cytosine Cytos	Cytidine Deoxycytidine	Cytidylate Deoxycytidylate	RNA DNA	
Thym ine	Thymidine or deoxythymidine	Thymidylate or deoxythymidylate	DNA	
Uracil ·	Uridine	Uridylate	RNA	

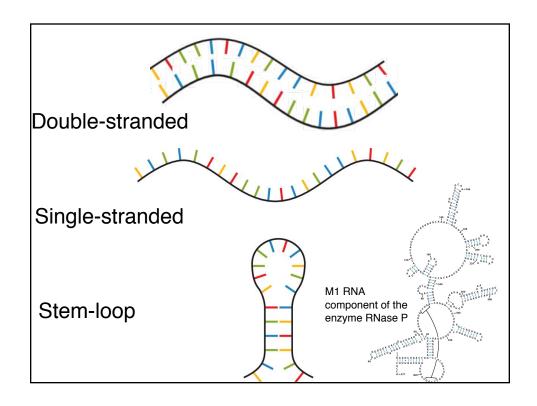
^{*}Nucleoside and nucleotide are generic terms that include both ribo- and deoxyribo- forms. Note that here ribonucleosides and ribonucleotides are designated simply as nucleosides and nucleotides (e.g., riboadenosine as adenosine) and deoxyribonucleosides and deoxyribonucleotides as deoxynucleosides and deoxynucleotides (e.g., deoxyriboadenosine as deoxyadenosine). Both forms of naming are acceptable, but the shortened names are more commonly used.

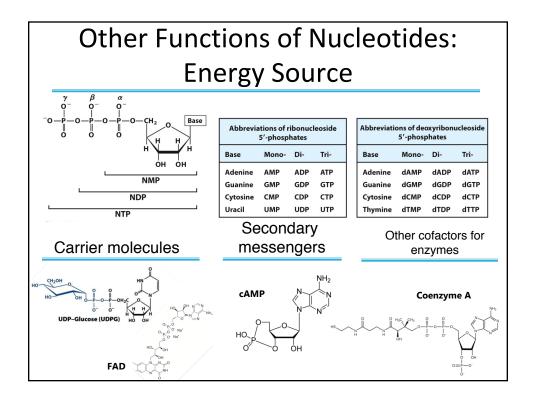

Definition of Nucleic Acids




All they knew were Chargaff's rules: G=C & A=T


By the early 1950s, the greatest unsolved mystery in science was the secret of life itself-the process by which all living things have reproduced themselves, generation upon generation, since the very beginnings of life on earth.


Although the mystery had a name, the "gene," no one knew what it was or how it worked.



Roles of Nucleotides

The most well known is ATP:

Important roles of other nucleotides:

- Energy rich (high energies of hydrolysis, but kinetically stable) besides ATP, includes: GTP, CTP, UTP
- Carrier molecule (key intermediates in metabolism)
 UDP-sugars, CDP-lipids, NADH, FAD
- Secondary messengers (cAMP, cGMP)
- · Other cofactors for enzymes

Roles of Nucleic Acids

- Information storage
- Information retrieval
- Information translation
- Information processing
- Information preservation

Key experiments by Griffiths, Avery, and Hershey & Chase

The 4 S's
Size
Solubility
Shape
Stability

The 4 S's
Size
Solubility
Shape
Stability

Nucleic Acids: Size

Genome Sizes

TABLE 28-2. Sizes of Some DNA Molecules

Organism	Number of base pairs (kb) ^a	Contour length (µm)
	Viruses	
Polyoma, SV40	. 5.1	1.7
λ Bacteriophage	48.6	17
T2, T4, T6 bacteriophage	166	55
Fowlpox	280	193
•	Bacteria	
Mycoplasma hominis	760	260
Eschericia coli	4,700	1,600
	Eukaryotes	
Yeast (in 17 haploid chromosomes)	13,500	4,600
Drosophila (in 4 haploid chromosomes)	165,000	56,000
Human (in 23 haploid chromosomes)	2,900,000	990,000
Lungfish (in 19 haploid chromosomes)	102,000,000	34,700,000

Source: Kornberg, A. and Baker, T.A., DNA Replication (2nd ed.), p. 20, Freeman (1992).

Organism	Genome Size (kb)	Number of Chromosomes	
Mycoplasma genitalium (human parasite)	580		
Rickettsia prowazekii (putative relative of mitochondria)	1,112	1	
Haemophilus influenza (human pathogen)	1,830	1	
Escherichia coli (human symbiont)	4,639	1	
Saccharomyces cerevisiae (baker's yeast)	12,070	16	
Plasmodium falciparum (protozoan that causes malaria)	23,000	14	
Caenorhabditis elegans (nematode)	97,000	6	
Arabidopsis thaliana (dicotyledonous plant)	119,200	5	
Drosophila melanogaster (fruit fly)	180,000	4	
Oryza sativa (rice)	389,000	12	
Danio rerio (zebra fish)	1,700,000	25	
Gallus gallus (chicken)	1,200,000	40	
Mus musculus (mouse)	2,500,000	20	

Nucleic Acids: Size

Homo sapiens

Genome Sizes (from DNA sequence)

TABLE 24-2 DNA, Gene, and Chromosome Content in Some Genomes					
	Total DNA (bp)	Number of chromosomes ^a	Approximate number of genes		
Escherichia coli K12 (bacterium)	4,641,652	1	4,494b		
Saccharomyces cerevisiae (yeast)	12,157,105	16°	6,340 ^b		
Caenorhabditis elegans (nematode)	90,269,800	12 ^d	23,000		
Arabidopsis thaliana (plant)	119,186,200	10	33,000		
Drosophila melanogaster (fruit fly)	120,367,260	18	20,000		
Oryza sativa (rice)	480,000,000	24	57,000		
Mus musculus (mouse)	2,634,266,500	40	27,000		
Homo sapiens (human)	3,070,128,600	46	20,000		

Note: This information is constantly being refined. For the most current information, consult the websites for the individual genome projects.

aThe diploid chromosomes number is given for all eukaryotes except yeast.

bIncludes known RNA-coding genes.

cHaploid chromosomes number. Wild yeast strains generally have eight (octoploid) or more sets of these chromosomes.

dNumber for females, with two X chromosomes. Males have an X but no Y, thus 11 chromosomes in all.

Nucleic Acids: Size RNA Sizes

Table 5-1 RNA molecules in *E. coli*

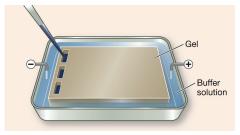
Туре	Relative amount (%)	Sedimentation coefficient (S)	Mass (kd)	Number of nucleotides
Ribosomal RNA (rRNA)	80	23	1.2 × 10 ³	3700
		16	0.55×10^{3}	1700
		5	3.6×10^{1}	120
Transfer RNA (tRNA)	15	4	2.5×10^{1}	75
Messenger RNA (mRNA)	5	Heterogeneous		

The 4 S's Size Solubility Shape Stability

Nucleic Acids: Solubility

The polymer is a <u>poly-anion</u>
The p K_a of the phosphodiester is ~2.0

Consequences:


1) A counter ion:

required for solubility and stability.
usually Na+, K+, and/or Mg+2
in cell, also use of polyamines; spermine &
spermidine.

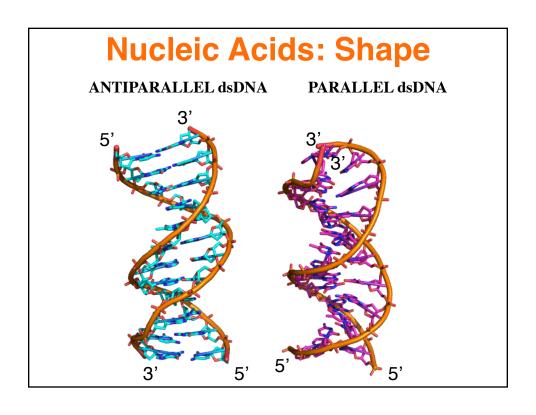
2) Easily separated by electrophoresis:

Every nucleotide has one (1) negative charge. so charge/mass ratio is constant. so can separate by size (similar in concept to SDS-PAGE).

Nucleic Acids: Solubility

Nucleic acids can be separated by gel electrophoresis.

Polymers can be placed in a well in a semisolid gel and an electric field is applied across the gel.


Negatively charged Nucleic acids move towards positive end.

For polymers of the same shape, smaller polymers travel faster than larger polymers.

For polymers of the same size, more compact topolgies travel faster than less compact ones.

The 4 S's Size Solubility Shape Stability

