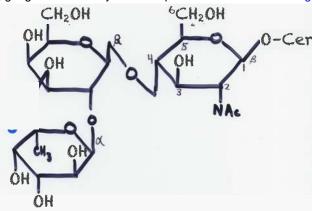
- A. Definition
- - - d. Amino sugars
 - 3. Polymerization
 - a. The Glycosidic Bond
 - b. Non-covalent bonds in macro-molecular structure
- D. Oligosaccharides
 - 1. Glycoproteins & glycolipids
 - 2. O-linked
 - 3. N-linked
 - 4. Sequence determination-ABO

Lecture 23 (11/10/23)

- Reading: Ch7; 241-250
- Homework #22


NEXT

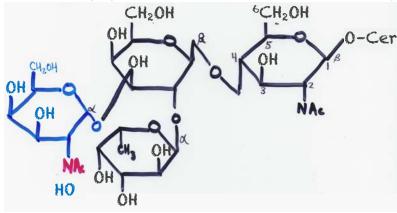
- Reading: Ch8; 294-296
 - 263-269
 - Ch24; 885-890
- Homework #23*
- E. Polysaccharides
 - 1. Polymers of glucose
 - a. Alpha polymersb. Beta polymers
 - 2. Polymers of disaccharides
 - a. Extracellular matrix
 - b. Glycosaminoglycans
 - Hyaluronic acid
 - Chondroitin/Dermatan sulfate
 - iii. Heparin sulfate
 - iv. Keratan sulfate
 - Proteoglycans

Carbohydrates

Oligosaccharides: Determination of Sequence

In vertebrates, ganglioside carbohydrate composition determines blood groups.

L-Fuc $\alpha(1\rightarrow 2)$ -D-Gal $\beta(1\rightarrow 4)$ D-GlcNAc β -Ceramide O blood group


D-Gal $\alpha(1\rightarrow 3)$ D-GalNAc $\alpha(1\rightarrow 3)$

B blood group A blood group

1

Oligosaccharides: Determination of Sequence

In vertebrates, ganglioside carbohydrate composition determines blood groups.

L-Fuc $\alpha(1\rightarrow 2)$ -D-Gal $\beta(1\rightarrow 4)$ D-GlcNAc β -Ceramide O blood group

D-Gal $\alpha(1\rightarrow 3)$ D-GalNAc $\alpha(1\rightarrow 3)$

B blood group

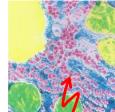
A blood group

Carbohydrates

Polysaccharides

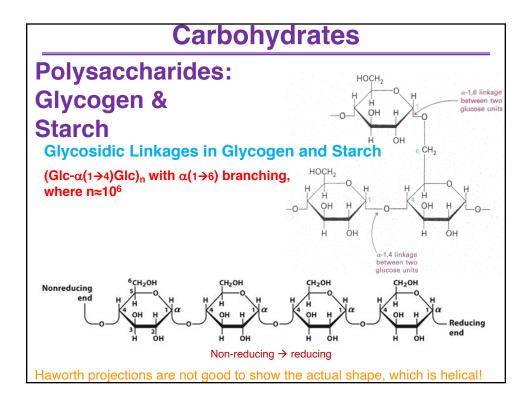
Polysaccharides

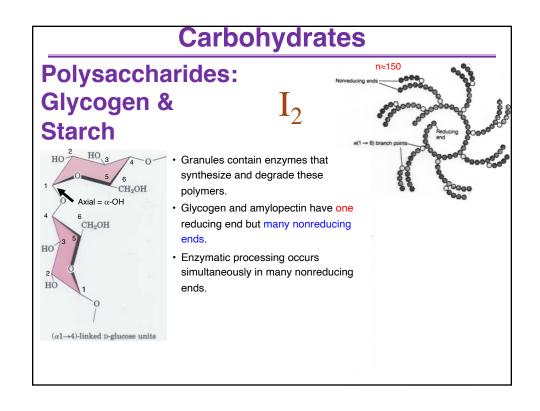
- The majority of natural carbohydrates are usually found as large polymers.
- These polysaccharides can be:
 - homopolysaccharides (one type of monomer unit*)
 - heteropolysaccharides (multiple types of monomer units)
 - linear (one type of glycosidic bond)
 - branched (multiple types of glycosidic bonds)
- Polysaccharides do not have a defined molecular weight.
 - This is in contrast to proteins because, unlike proteins, no template is used to make polysaccharides.
 - Polysaccharides are often in a state of flux; monomer units are added and removed as needed by the organism.

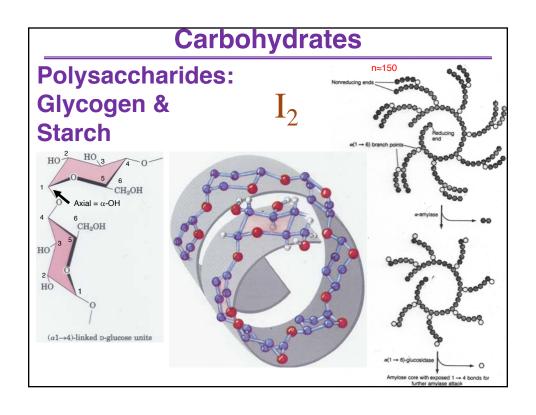

*monomer unit=monosaccharide

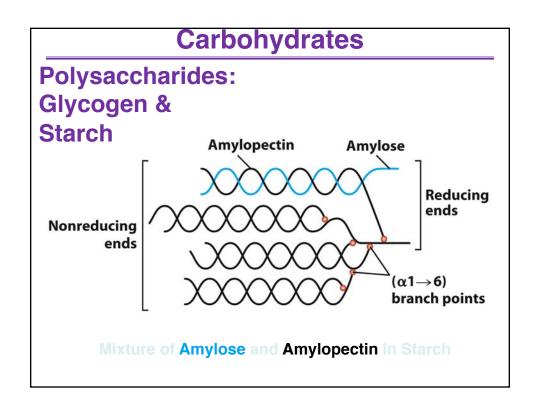
Carbohydrates

Polysaccharides: Polymers of Glucose

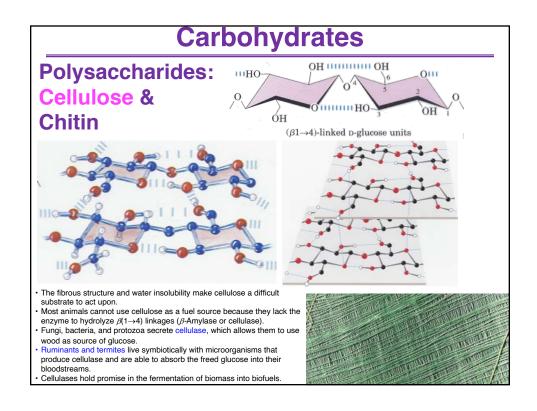

Homopolymers of Glucose:

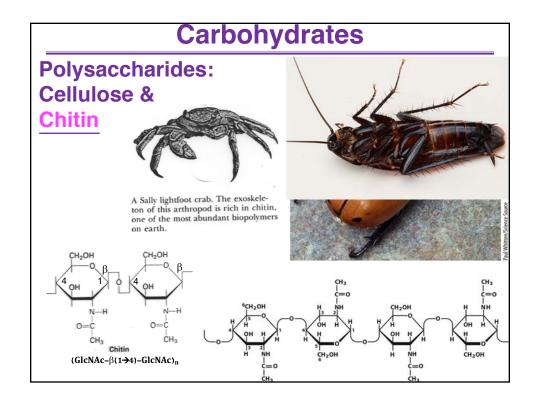

- Starch
- Glycogen
- Cellulose
- Chitin




- Glycogen and Starch are the main storage polysaccharides for energy.
 - Glycogen and starch are insoluble due to their high molecular weight and often form granules in cells.
 - Molecular weight reaches several millions (~200 x 10⁶)(can see in microscope).
- Glycogen is a branched homopolysaccharide of glucose.
 - Glucose monomers form $\alpha(1 \rightarrow 4)$ linked chains.
 - There are branch points with $\alpha(1 \rightarrow 6)$ linkers every 8–12 residues.
- Starch is a mixture of two homopolysaccharides of glucose.
 - Amylopectin is like glycogen, but the branch points ($\alpha(1 \rightarrow 6)$ linkages) occur every 24–30 residues.
 - Amylose is an unbranched polymer of α(1 → 4) linked residues.

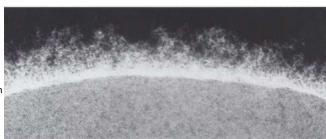
Polysaccharides:

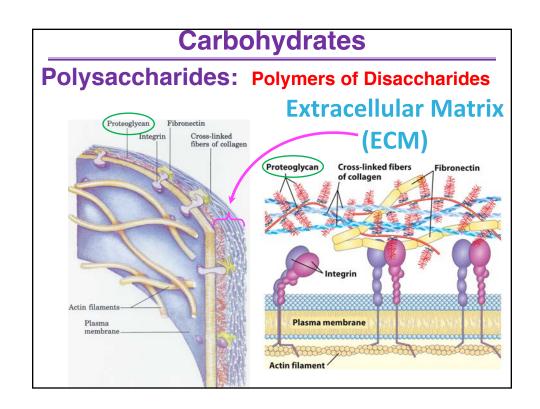

Homopolymers of Glucose:


- Starch
- Glycogen
- Cellulose
- Chitin

- · Cellulose is a linear homopolysaccharide of glucose.
 - Glucose monomers form $\beta(1 \rightarrow 4)$ linked chains.
 - Hydrogen bonds form between adjacent monomers.
 - There are additional H-bonds between chains.
 - Structure is now tough and water insoluble.
 - It makes up almost 50% of plant mass; in cell walls.
 - Cotton is nearly pure fibrous cellulose.
- Chitin is a linear homopolysaccharide of Nacetylglucosamine (GlcNAc).
 - *N*-acetylglucosamine monomers form $\beta(1 \rightarrow 4)$ -linked chains.
 - forms extended fibers that are similar to those of cellulose
 - hard, insoluble, cannot be digested by vertebrates
 - structure is tough but flexible, and water insoluble
 - found in cell walls in mushrooms and in exoskeletons of insects, spiders, crabs, and other arthropods

Carbohydrates Polysaccharides: Cellulose & Chitin Glycosidic Linkages in Cellulose & Chitin (Glc- $\beta(1\rightarrow 4)$ Glc)_n with NO branching, $n\approx 10^4$ Notice that each chair is alternatively flipped THE most abundant biological molecule in the world: ~300 trillion kg



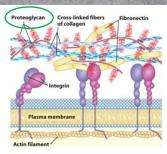


Polysaccharides: Polymers of Disaccharides

First, need to describe the **Extracellular Matrix (ECM)**

- Material outside the cell
- Strength, elasticity, and physical barrier in tissues (varies tremendously)
- Main components
- -proteoglycans
- -collagen & elastin fibers
- Proteoglycans
- -Different glycosaminoglycans are O-linked to the "core
- -Linkage from anomeric carbon of xylose to serine hydroxyl
- -Our tissues have many different core proteins;
- aggrecan is the best studied.

Polysaccharides: Polymers of Disaccharides


Extracellular Matrix (ECM)

- · Main components
- -proteoglycans
- -collagen & elastin fibers
- Proteoglycans
 - Different glycosaminoglycans are O-linked to the "core protein."
- ECM is a barrier for tumor cells seeking to invade new tissues
 - Some tumor cells secrete heparinase that degrades ECM.
- Cosmetics

Carbohydrates

Polysaccharides: Polymers of Disaccharides Glycosaminoglycans

(the carbohydrate part of proteoglycans)

- Linear polymers of repeating disaccharide units (sugarX-sugarY)_n
- · One monomer (sugarX) is either sugar acid or Gal
 - uronic acids (C6 oxidation)
 - Most have sulfate esters
- One monomer (sugarY) is either:
 - N-acetyl-glucosamine (GlcNAc) or N-acetyl-galactosamine (GalNAc)
 - Also sulfate esters
- Extended hydrated molecule
 - Negatively charged
 - minimizes charge repulsion
- Forms meshwork with fibrous proteins to form extracellular matrix
 - connective tissue
 - lubrication of joints
- Form huge $(M_r > 2 \cdot 10^8)$ noncovalent aggregates (Hyaluronan and Aggrecan).
 - They hold a lot of water (1000× its weight) and provide lubrication.
 - Very low friction material
 - Covers joint surfaces: articular cartilage
 - o reduced friction & load balancing

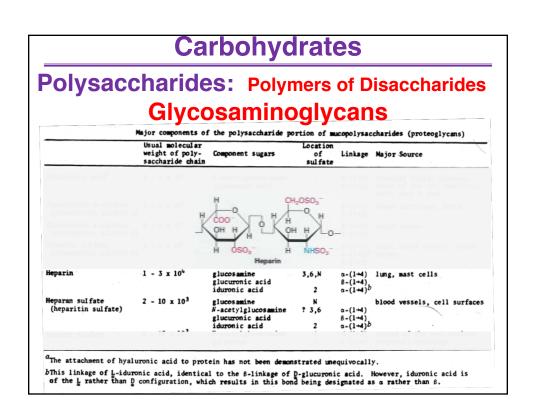
Polysaccharides: Polymers of Disaccharides Glycosaminoglycans

	Usual molecular weight of poly- saccharide chain	Component sugars	Location of sulfate	Linkage	Major Source
Hyaluronic acid ²	1 - 3 x 10 ⁶	N-acetylglucosamine glucuronic acid	•	β-(1+4) β-(1+3)	synovial fluid. vitreous humor of the eye, umbilical cord, cock's comb
	н/	COO CH	OH -O-		
		OH H HO	# H		
		Ĥ OH Ĥ Hyaluronate	NHCOCH ₃		

aThe attachment of hyaluronic acid to protein has not been demonstrated unequivocally.

bThis linkage of L-iduronic acid, identical to the β -linkage of D-glucuronic acid. However, iduronic acid is of the L rather than D configuration, which results in this bond being designated as α rather than β .

Carbohydrates

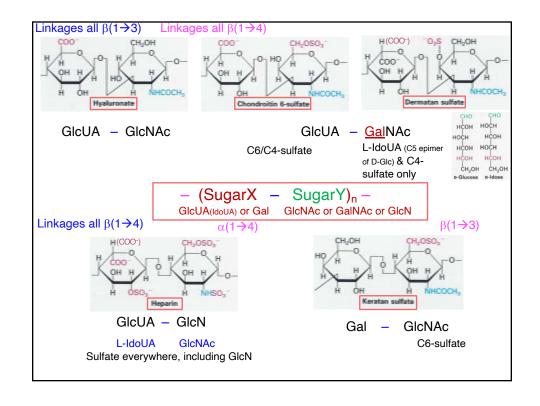

Polysaccharides: Polymers of Disaccharides

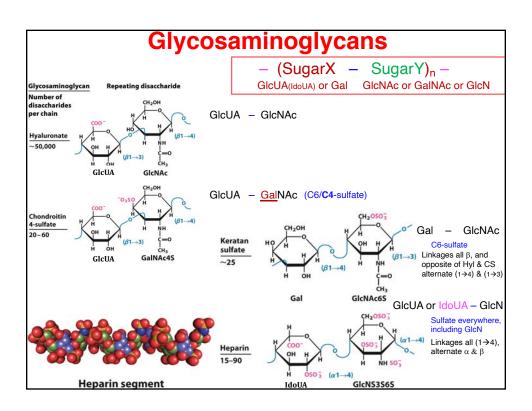
Glycosaminoglycans

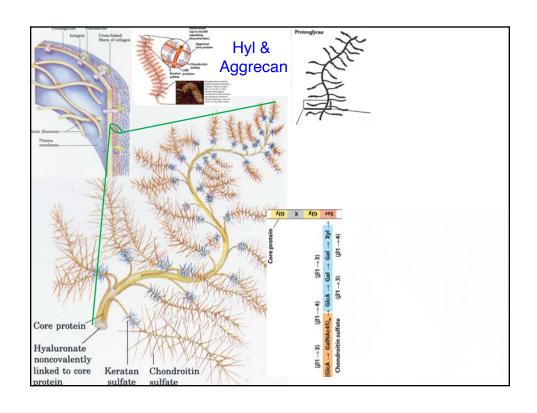
 $a_{
m The}$ attachment of hyaluronic acid to protein has not been demonstrated unequivocally.

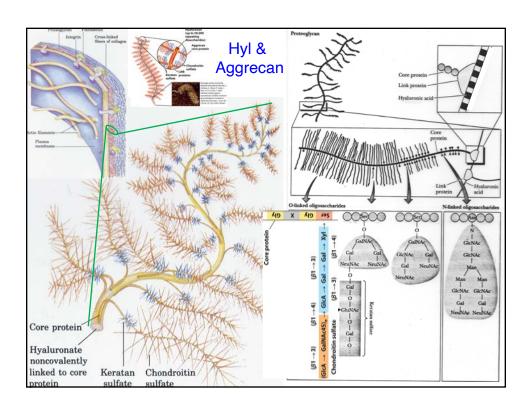
bThis linkage of L-iduronic acid, identical to the β -linkage of D-glucuronic acid. However, iduronic acid is of the L rather than D configuration, which results in this bond being designated as α rather than β .

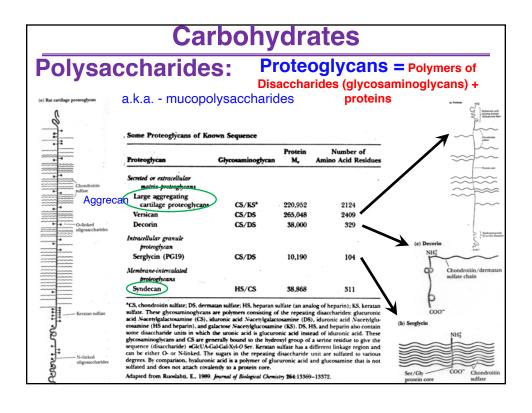
Carbohydrates Polysaccharides: Polymers of Disaccharides Glycosaminoglycans Major components of the polysaccharide portion of mucopolysaccharides (proteoglycans) | Usual molecular weight of polysaccharide portion of mucopolysaccharides (proteoglycans) | Usual molecular weight of polysaccharide portion of mucopolysaccharides (proteoglycans) | Usual molecular weight of polysaccharide portion of mucopolysaccharides (proteoglycans) | Usual molecular weight of polysaccharide portion of mucopolysaccharides (proteoglycans) | Usual molecular weight of polysaccharide portion of mucopolysaccharides (proteoglycans) | Usual molecular weight of polysaccharides (proteo

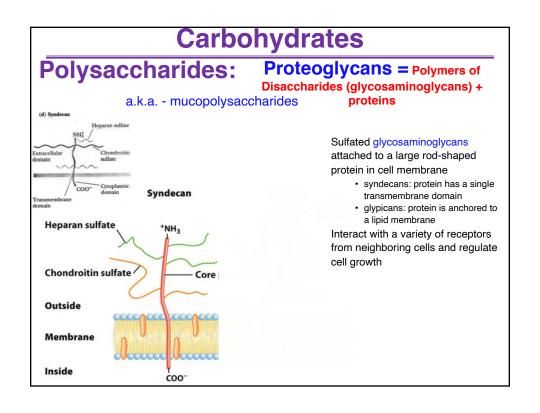

Carbohydrates

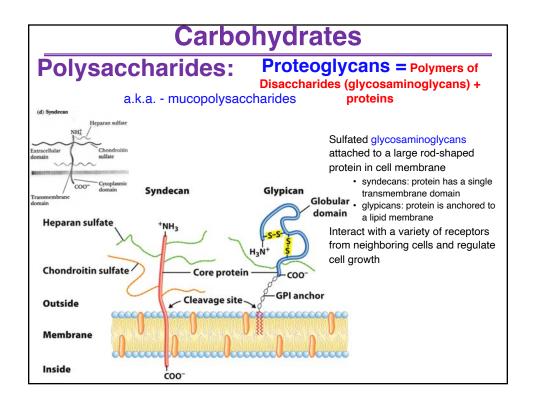

Polysaccharides: Polymers of Disaccharides Glycosaminoglycans


	Usual molecular weight of poly- saccharide chain	Component sugars	Location of sulfate	Linkage	Major Source
Hyaluronic acid ²	1 - 3 x 10 ⁶	N-acetylglucosamine glucuronic acid	•	β-(1-4) β-(1-3)	synovial fluid, vitreous humor of the eye, umbilical cord, cock's comb
Chondroitin 4-sulfate (chondroitin sulfate A)	2 - 5 x 104	W-acetylgalactosamine glucuronic acid	4	β-(1-4) β-(1-3)	human cartilage, aorta
Chondroitin 6-sulfate (chondroitin sulfate C)	2 - 5 x 104	W-acetylgalactosamine glucuronic acid	. 6	β-(1+4) β-(1+3)	heart valves
Dermatan sulfate (chondroitin sulfate B)	2 - 5 x 10 ⁴	N-acetylgalactosamine iduronic acid glucuronic acid	4	β-(1+4) α-(1+3) ^b β-(1+3)	skin, blood vessels, heart valves
leparin .	1 - 3 x 10 ⁴	glucuronic acid iduronic acid	3,6,N 2	α-(1+4) β-(1+4) α-(1+4) ^b	lung, mast cells
Heparan sulfate (heparitin sulfate)	2 - 10 x 10 ³	glucosamine N-acetylglucosamine glucuronic acid iduronic acid	N ? 3,6	α-(1-4) β-(1-4) α-(1-4)b	blood vessels, cell surfaces
Meratan sulfate	5 - 20 x 10 ³	N-acetylglucosamine galactose	6	β-(1→3) β-(1→4)	cornea of the eye, nucleus pulposus, cartilage


bThis linkage of L-iduronic acid, identical to the 8-linkage of D-glucuronic acid. However, iduronic acid is of the L rather than D configuration, which results in this bond being designated as α rather than 8.


12





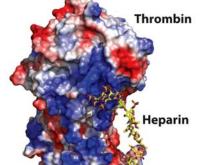
Polysaccharides:

Proteoglycans = Polymers of

Disaccharides (glycosaminoglycans) + proteins

a.k.a. - mucopolysaccharides

- Some integral membrane proteins are proteoglycans.
- Other integral membrane proteins are receptors for extracellular proteoglycans.
 - Integrins (which then interact with Actin)
- These proteins link cellular cytoskeleton to the ECM and transmit signals into the cell to regulate:
 - cell growth cell mobility


 - apoptosis
 - wound healing
- In chondrocytes, huge amounts of cartilage proteoglycans are produced (Aggrecan)
 - Resilience
 - Plasticity
 - Cushionina
- Due to reversible hydration
- Heparin is linear polymer, 3-40 kDa.
 - Heparan sulfate is heparin-like polysaccharide but attached to proteins
 - Highest density of negative-charge of any biomolecule Prevent blood clotting by activating protease inhibitor antithrombin III
 - Binding to various cells regulates development and formation of blood vessels.
 - Modulates growth and development by binding growth-factor receptors
 - Important role in cancer metastasis
 - Can also bind to viruses and bacteria and decrease their virulence

Polysaccharides:

Proteoglycans = Polymers of Disaccharides (glycosaminoglycans) +

a.k.a. - mucopolysaccharides

proteins

Thrombin activates the blood-clotting cascade by proteolysis

Anti-thrombin keeps thrombin inactive, preventing proteolysis

Prevent blood clotting by activating protease inhibitor anti-thrombin III

Role of Heparin

Antithrombin

 $K_{\rm a}$ is 1000 larger in presence of Heparin

Primer	Type ^a	Repeating unit ^b	Size (number of monosaccharide units)	Roles/significance
Starch				Energy storage: in plants
Amylose Amylopectin	Homo- Homo-	$(\alpha 1 \rightarrow S4)$ Glc, linear $(\alpha 1 \rightarrow S4)$ Glc, with $(\alpha 1 \rightarrow S6)$ Glc branches every 24–30 residues	50-5,000 Up to 10 ⁶	
Glycogen	Homo-	(\alpha 1 → S4) Glc, with (\alpha 1 → S6) Glc branches every 8–12 residues	Up to 50,000	Energy storage: in bacteria and animal cells
Cellulose	Homo-	(β1 → S4) Glc	Up to 15,000	Structural: in plants, gives rigidity and strength to cell walls
Chitin	Homo-	(β1 → S4) GlcNAc	Very large	Structural: in insects, spiders, crustaceans, gives rigidity and strength to exoskeletons
Peptidoglycan	Hetero-; peptides attached	4)Mur2Ac(β1→S4) GlcNAc(β1	Very large	Structural: in bacteria, gives rigidity and strength to cell envelope
Hyaluronan (a glycosaminoglycan)	Hetero-; acidic	4)GlcA (β1→S3) GlcNAc(β1	Up to 100,000	Structural: in vertebrates, extracellular matri of skin and connective tissue; viscosity and lubrication in joints

