Lecture 21 (11/5/25)

TODAY

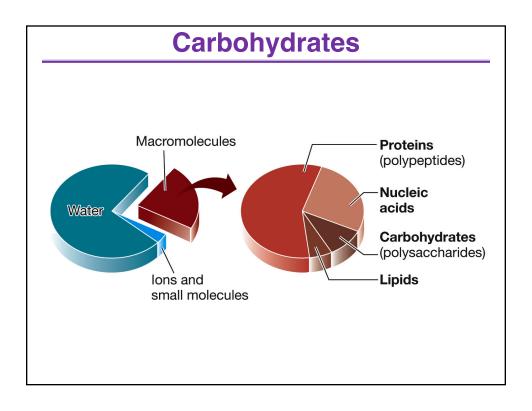
•Reading: Ch7; 229-235

NEXT

Ch7; 236-241 •Reading:

Carbohydrates

- A. Definition
- B. Roles
- C. Monosaccharides-Chemistry
 - 1. Chirality
 - a. One or more asymmetric carbons
 - b. Linear and ring forms
 - 2. Derivatives: the chemistry of


carbohydrates

- a. Oxidation

 - Reduction

 - C1/C2 Other carbons
- Ester formation
- Amino sugars
- 3. Polymerization
 - a. The Glycosidic Bond b. Non-covalent bonds in macro-molecular structure
- D. Oligosaccharides
 - 1. Glycoproteins & glycolipids
 - 2. O-linked
 - 3. N-linked
 - 4. Sequence determination-ABO
- E. Polysaccharides
 - 1. Polymers of glucose
 - 2. Polymers of disaccharides

Carbohydrates

Definition

- Carbo-Hydrate: have formula $C_n(H_2O)_n$ (for $n \ge 3$)
- The precursor-macromolecule relationship is:
 - Monosaccharide—polysaccharide (or oligosaccharide)
- Carbohydrates are everywhere (ubiquitous) and versatile in function; fulfill a variety of functions.
 - Can be covalently linked with proteins and lipids; are intimately involved in nucleic acids

	ROLES	Monosaccharide	Polysaccharide
1.	Energy source/storage	glucose, fructose, etc.	Starch, glycogen
2.	Structure	glucose, glycerol	Cellulose, chitin, lipids & membranes
3.	Information	ribose (nucleotides)	Nucleic acids
4.	Recognition	many	Glycolipids & glycoproteins
1			

The 4 S's

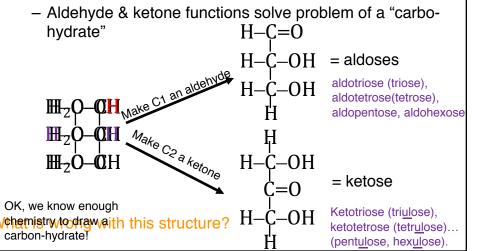
Size Shape Solubility Stability

Range from as small as glyceraldehyde ($M_w = 90$ g/mol) to as large as amylopectin ($M_w > 200,000,000$ g/mol)

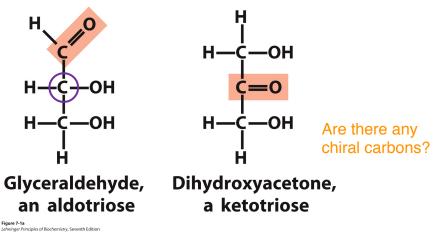
Depends on size and glycosidic bond

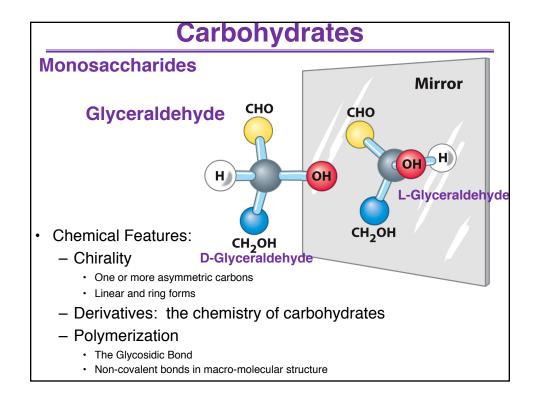
Very polar, very soluble, until large polymers

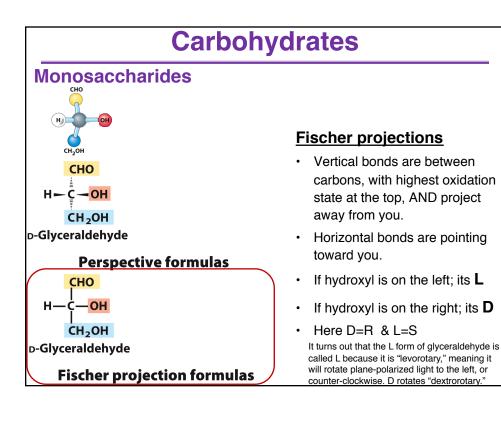
Stable due to glycosidic bond

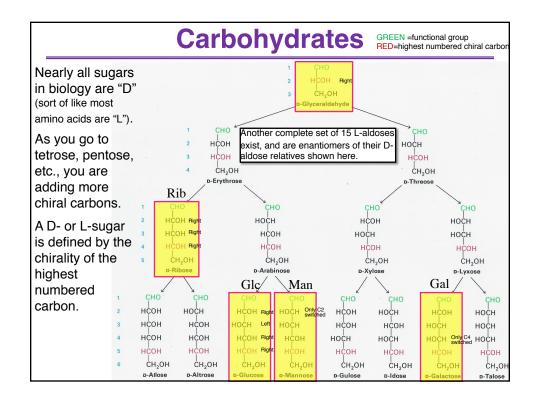

Carbohydrates

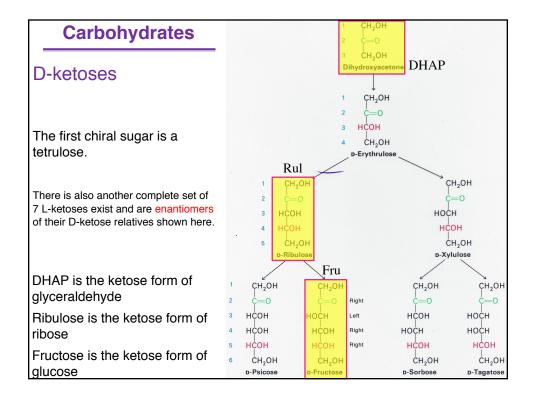
Monosaccharides


 $C_3(H_2O)_3$

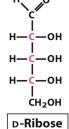

- Basic nomenclature:
 - Use the suffix "-ose"

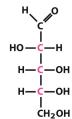

triose, tetrose, pentose, hexose



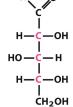

Carbohydrates Monosaccharides • An aldose is a carbohydrate with aldehyde functionality. • A ketose is a carbohydrate with ketone functionality.

Monosaccharides: Stereoisomer Nomenclature


- Enantiomers
 - stereoisomers that are nonsuperimposable **complete** mirror images
 - Example: D-sugars & L-sugars

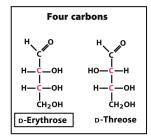

Diastereomers

- stereoisomers that are not complete mirror images
- Diastereomers have different physical properties (e.g., water


solubility)

– Example:

D-Arabinose

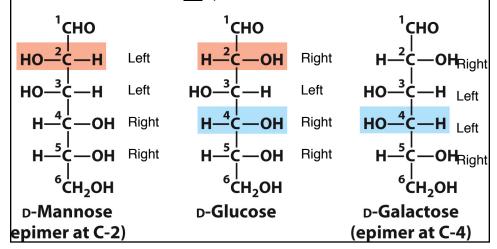

CH₂OH D-**Lyxose**

D-**Xylose**

6

Monosaccharides: Stereoisomer Nomenclature

- Epimers
 - Epimers are stereoisomers that differ at only one chiral center
 - Epimers are diastereomers; diastereomers have different physical properties (i.e., water solubility, melting temp)
 - Example:


- Glc & Man (2 epimer); Glc & Gal (4 epimer); Rib & Ara (2 epimer);
- Anomers
 - Anomers have different chirality at carbon involved in ring formation

Rib & Xyl (3 epimer)

Carbohydrates

Monosaccharides: Stereoisomer Nomenclature

- D-Mannose and D-galactose are both epimers of D-glucose.
- D-Mannose and D-galactose vary at more than one chiral center and are diastereomers, but <u>not</u> epimers.

Monosaccharides: The most important sugars

- Glyceraldehyde and dihydroxyacetone are the simplest (3 carbon) aldose and ketose, respectively.
- Ribose (Rib) is the standard five-carbon sugar.
- Glucose (Glc) is the standard six-carbon sugar.
- Galactose (Gal) is an C4-epimer of glucose.
- Mannose (Man) is an C2-epimer of glucose.
- Fructose (Fru) is the ketose form of glucose.
- Ribulose (Rul) is the ketose form of ribose.

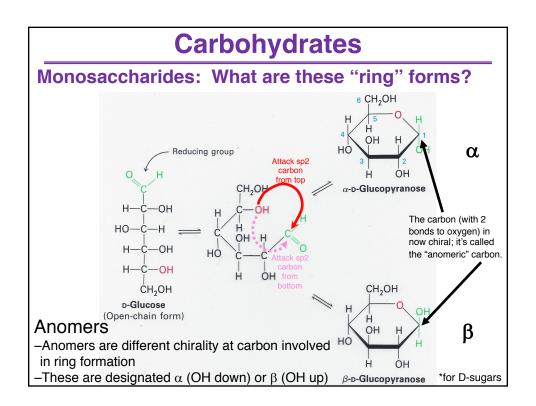
Need to know, recognize, draw Fisher Projection, name, abbreviate

Carbohydrates Monosaccharides: **Stereoisomer Nomenclature** Enantiomers

- - stereoisomers that are nonsuperimposable complete mirror images
 - Example: D-sugars & L-sugars
- **Diastereomers**
 - stereoisomers that are not complete mirror images
 - Diastereomers have different physical properties (e.g., water solubility)
 - Example: ribose & lyxose
- **Epimers**
 - Epimers are stereoisomers that differ at only one chiral center
 - Epimers are diastereomers; diastereomers have different physical properties (i.e., water solubility, melting temp)
 - Example:
 - Glc & Man (2 epimer); Glc & Gal (4 epimer)
- **Anomers**
 - Anomers have different chirality at carbon involved in ring formation

Monosaccharides: What are these "ring" forms?

• SUGARS WITH ≥5 CARBONS RAPIDLY AND STABLY FORM **RINGS** THROUGH HEMIACETAL (ALDOSES) AND HEMIKETAL (KETOSES) BONDS.


Hemiacetals

$$R^{\frac{1}{2}} = C + \frac{1}{2} + \frac{1}{2$$

Not chiral

Chiral

- **IF** the aldehyde (R¹) and the alcohol (R²) are on the same molecule, you have a RING!
- · Due to the oxygen, the ring is heterocyclic

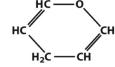
Monosaccharides: What are these "ring" forms?

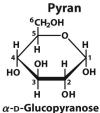
$$R^{1} - C = O + HO - R^{3} \Longrightarrow R^{1} - C - OR^{3}$$

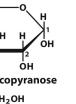
Ketone Alcohol

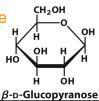
$$\begin{array}{c} \mathsf{CH_2OH} \\ \mathsf{C=O} \\ \mathsf{HO-C-H} \\ \mathsf{H-C-OH} \\ \mathsf{C-OH} \\ \mathsf{CH_2OH} \\ \mathsf{D-Fructose} \end{array} \longrightarrow \begin{array}{c} \mathsf{HOH_2C} \\ \mathsf{OH} \\ \mathsf{CH_2OH} \\ \mathsf{OH} \\ \mathsf{OH}$$

 α (OH down) or β (OH up)

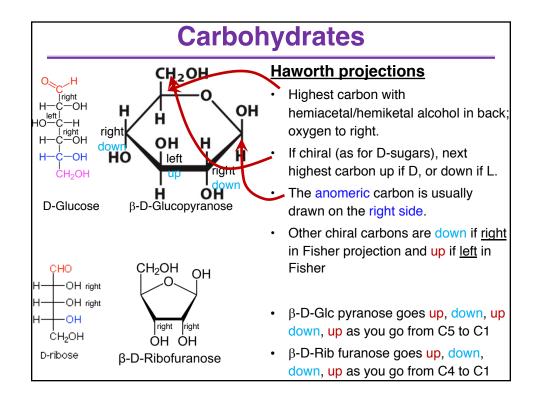

Besides the α & β , what is this pyran and furan? Its all about which alcohols are used in these reactions

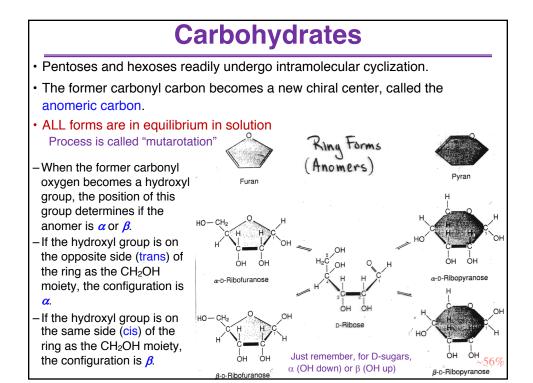

Carbohydrates


Monosaccharides: What are these "ring" forms?


- Six-membered oxygencontaining rings are called pyranoses after the pyran ring structure.
- Five-membered oxygencontaining rings are called furanoses after the furan ring structure.

The way we are drawing these sugars is called a Haworth projection.....





Furan

¹ÇH₂OH α -D-Fructofuranose

β (OH up) ОН β -D-Fructofuranose

