# Lecture 1 (9/5/25)

• Reading for "last" lecture: Ch1, 1-3, 10-12

• Reading for today: Ch1, 6-9, 13-14, 19-25 of ORGO

Review of Ch13, 466-469

BIOLOGY Ch2, 43

Review of THERMO

• Homework #1: Due Sunday midnight on *Achieve*.

#### **NEXT**

• Reading: Ch2, 43-53; 53-64

• Homework #2:

• Homework #3:

# Lecture 1 (9/5/25)

### **OUTLINE**

What is Biochemistry?

Themes throughout the Course

#### **Molecular Components of Life**

Thermodynamics review

#### **WATER**

YouTubeShort that ushers many of the themes of biochemistry:
Animals, quantitative accuracy, teamwork, energy

# **Biochemistry Definition**



Albert L. Lehninger, 1917–1986

[Source: Alan Mason Chesney]

"A living cell is a self-assembling, self-adjusting, self-perpetuating isothermal open system. This system consists of many consecutive, linked organic reactions that are promoted by organic catalysts produced by the cell; it operates on the principle of maximum economy of parts and processes."

# **Biochemistry Definition**

evolution

**Complementary** macromolecules

dynamic

"A living cell is a self-assembling, self-adjusting, elf-replicating isothermal open system. This system consists of many consecution energetics metabolism ons that are promoted by organic catalysts produced by the cell; enzymes the principle of maximum economy of parts and processes."

Molecular biology

Source: Alan Mason Chesney

[Source: Alan Mason Chesney Medical Archives of the Johns Hopkins Madical Institutions 3

# Biochemistry Is the Chemistry of Living Matter

#### Living matter is characterized by:

- a high degree of complexity and organization
- the extraction, transformation, and systematic use of energy to create and maintain structures and to do work
- the interactions of individual components being dynamic and coordinated
- the ability to sense and respond to changes in surroundings
- a capacity for fairly precise self-replication while allowing enough change for evolution

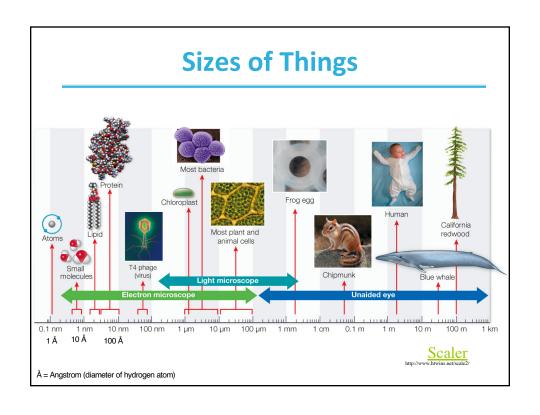
In order to understand these processes, biochemists have tended to isolate individual components and study them: reductionists

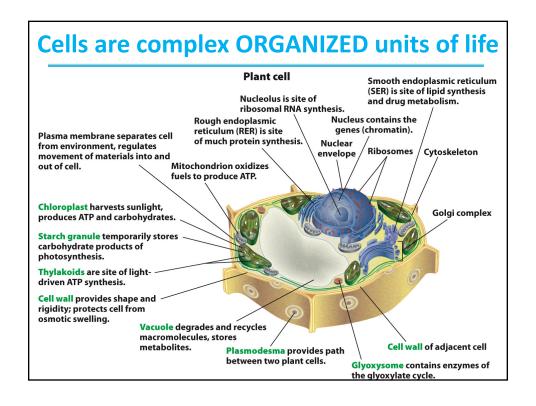
# **Central Themes of Biochemistry I**

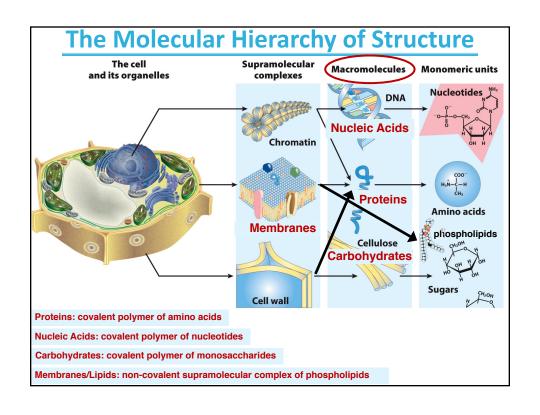
There are THREE repetitive themes:

- 1. Chemical Basis: try to explain life in terms of equilibria, kinetics, reactivity, and thermodynamic quantities
- 2. Complementarity: Form & Function.
- 3. The 4 S's:

Size


Shape


Solubility


Stability

For each of the biological components of life, we will describe them in these terms.







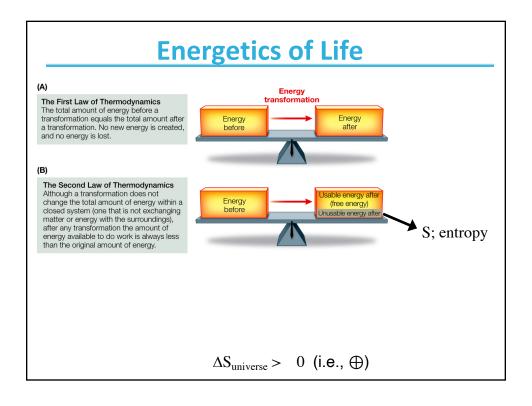


### **Components of Life**

Data from the bacteria Escherichia coli:

| Component      | % by weight | Complexity* |
|----------------|-------------|-------------|
| Water          | 70          | 1           |
| Protein        | 15          | 3000        |
| Nucleic Acids  | 7           | 1001        |
| Carbohydrate   | 3           | 50          |
| Lipids         | 2           | 40          |
| Small organics | 2           | 500         |
| Inorganics     | 1           | 12          |

\*number of types


Before we discuss each component, lets review thermodynamics that makes these possible


## **Energetics of Life**

The **laws of thermodynamics** (thermo, "energy"; dynamics, "change") apply to all matter and all energy transformations in the universe.

1st & 2nd Laws of Thermodynamics:

- 1) Energy can never be created or destroyed, but can be interconverted.
- 2) The universe tends toward more disorder (randomness) [When energy is converted from one form to another, some of that energy becomes unavailable to do work.]





# Organisms Use the First Law Big-Time (perform energy transformations) to Stay Alive

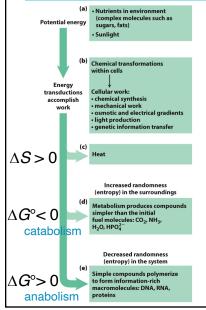
- Creating and maintaining order requires work and energy. The entropy\* of the universe must increase (2<sup>nd</sup> Law)
- Living organisms exist in a dynamic steady state and are never at equilibrium with their surroundings.
- Energy coupling allows living organisms to transform energy.

\*Entropy is a measure of the disorder in a system.

It takes energy to impose order on a system. Unless energy is applied to a system, it will be arranged randomly or "disordered."

# Equilibrium and $\Delta G^{\circ}$ Measure Favorability of a Reaction

Not all biochemical reactions are favorable in the direction that the cell needs.


Recall from gen-chem, for a given reaction:

$$aA + bB \rightleftharpoons cC + dD$$

$$K_{eq} = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

$$\Delta G^{\circ} = -RTlnK_{eq}$$

# Organisms Use the First Law Big-Time (perform energy transformations) to Stay Alive



#### **Favorable and Unfavorable Reactions**

- The breakdown of some metabolites releases a significant amount of energy (exergonic).
  - Their cellular concentration is far higher than their equilibrium concentration.
  - Metabolites, such as ATP, NADH, NADPH, can be synthesized using the energy from sunlight and fuels.....
- Synthesis of complex molecules and many other metabolic reactions requires energy (endergonic).
  - A reaction might be thermodynamically unfavorable ( $\triangle G^{\circ} > 0$ ).
    - · Creating order requires work and energy.

# **Quantifying Thermodynamics**

In any system:

Total energy = usable energy + unusable energy

enthalpy 
$$(H)^*$$
 = free energy  $(G)$  + entropy  $(S)$ 

or 
$$H = G + TS$$
 (T = absolute temperature)

$$G = H - TS$$

\*equal to the system's internal energy plus the product of its pressure and volume. In a closed system at constant pressure, the heat absorbed or released equals the change in enthalpy.

Now consider the differences in energy states between substrates and products in a reaction:

S⇌P

Change in energy can be measured in calories or joules.

Change in free energy ( $\Delta G$ ) in a reaction is the difference in free energy of the products and the reactants:  $\Delta G = \Delta H - T \Delta S$ 

# **Quantifying Thermodynamics**

S⇌P

For Total Energy (Enthalpy), what is magnitude of  $\Lambda H$ ? Look at each side of the reaction:

If bonds here are to be broken, its at a lower energy state, H is less

If bonds are being broken to make P, need to add energy, H is more

 $H_{\text{product}}$  (more heat, less bonds)  $-H_{\text{reactant}}$  (less heat, more bonds)  $=+\Delta H$ 

Heat energy is added or adsorbed

at  $T > 0^{\circ} C$ **≟** Water More bonds Less bonds

If the other way around, with product having more bonds, its at a lower energy state, then  $-\Delta H$  (energy is released):

# **Quantifying Thermodynamics**

For Entropy, what is magnitude of  $\Delta S$ ?

Look at each side of the reaction:

If more organized, 229 2i 2

If more disordered, S is more.

 $S_{\text{product}} \text{ (more)} - S_{\text{reactant}} \text{ (less)} = +\Delta S$ 

at  $T > 0^{\circ} C$ 

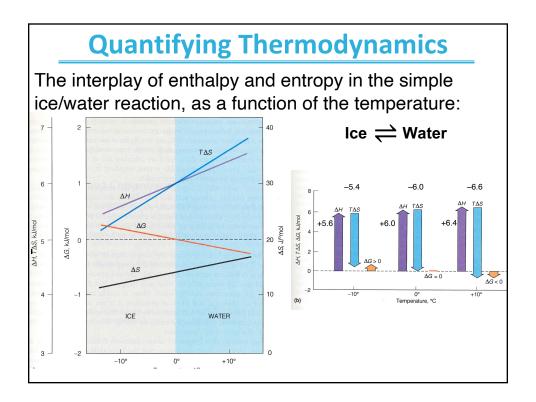
Less disorder. more organized More disorder  $+\Delta S$  adds to favorability

Don't forget that a  $+\Delta S$ will contribute to a favorable reaction due to the -T\Delta S term being Amino acids a negative value.

More disorder

Protein Less disorder

–∆S makes less favorable


# **Quantifying Thermodynamics**

For Free Energy, ∆G:

Magnitude of  $\Delta G$  depends on:

$$\Delta G = \Delta H - T \Delta S$$

- ∆H—total energy added (∆H > 0) or released (∆H < 0)</li>
- ΔS—change in entropy, more randomness (ΔS > 0) or more order (ΔS < 0); Positive changes in entropy make ΔG more negative. Negative changes in entropy make ΔG more positive.</li>

