

ntrol by Allostery: Allosteric constants for some proteins					$L = [T_0]/[F$ $c = K_R / K_R$ $(K_R << K_T)$	
Hemoglobin	0,	4	2.8	3×10^{5}	0.01	1
Pyruvate kinase (yeast)	Phosphoenol- pyruvate	4	2.8	9×10^{3} "	0.01"	2
Glyceraldehyde 3-pnosphate .dehydrogenase (yeast)	NAD+	4	2.3	60	0.04	3
 ^e Estimated by the au 1 S. J. Edelstein, N 2 R. Haeckel, B. He <i>Chem.</i> 349, 699 (19 <i>Physiol. Chem.</i> 35 3 K. Kirschner, F. G. 	athor. <i>ature, Lond.</i> 230, . ess, W. Lauterhor 968); H. Bischofb ⁵ (2, 1139 (1971). Gallego, I. Schuste	224 (1971). n, and KF , B. F.e er, and D. C	I. Würster, ss, and P. F Goodall, J. J	Hoppe-Seyle Röschlau, Hop Molec, Biol, 1	r's Z. P. ppe-Seyl 58, 29 (1)	hysiol. er's Z. 971).

Enzyme Regulation

Key Concepts for Control of Enzyme Activity

•Allosteric effectors bind to multisubunit enzymes, such as aspartate transcarbamoylase, thereby inducing cooperative conformational changes that alter the enzyme's catalytic activity (T and R states).

•Phosphorylation and dephosphorylation of an enzyme such as glycogen phosphorylase by protein kinases can control its activity by shifting the equilibrium between more active and less active conformations (T and R states).

You should be able to:

• Compare and contrast the actions of an allosteric effector, a competitive enzyme inhibitor, and a noncompetitive inhibitor.

• Explain the structural basis for cooperative substrate binding and allosteric control in ATCase.

• Why are such allosteric enzymes composed of more than one catalytic subunit?

• Distinguish between KNF and MWC models for cooperativity and how homotropic and heterotropic effectors act

· Understand what can be derived from a Hill Plot