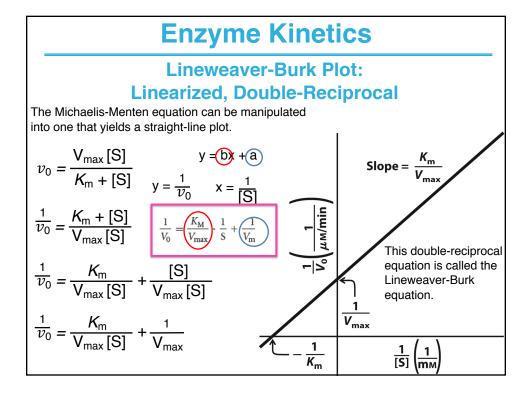
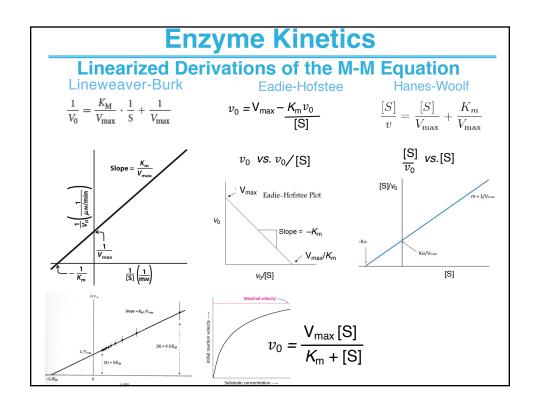

#### **ENZYMES: Binding & Catalysis** Lecture 15 (10/17/25) A. Binding B. Catalysis Reading: Ch6; 191, 197-200 Nomenclature Homework #15 Transition State Theory Catalytic strategies (What) **NEXT** • Reading: Ch6; 181-186, 195-196 a. Position, Polarization, Strain, desolvation Ch6; 203-208 Mechanistic strategies (How) E. Quantifying the Catalytic Power: Kinetics Homework #16, 17 2. Enzyme Kinetics e. Inhibition Rate vs. [S] for enzyme catalyzed reaction i. initial rate (w) ES complex i. Irreversible: protein modification ii. Reversible a) Competitive; like substrate; $K_m$ affected by $(1 + [I]/KI) = \alpha$ Uncompetitive; binds only ES; both $K_{\text{m}}$ and $V_{\text{max}}$ affected in opposite Binding reaction Noncompetitive; binds both E & ES (mixed, non-equal binding); V<sub>max</sub> affected Catalytic reaction Meaning of rate curve: hyperbolic curve iii. Rate expression; Michaelis-Menten Kinetics d) Mixed inhibition if I binds E differently than it binds ES Meaning of rate expression (M-M equation) iii. [S] << Km d. Collection and manipulation of data i. Lineweaver-Burk; double reciprocal; 1/10 vs. 1/[S] ii. Eadie-Hofstee; $v_0$ vs. $v_0$ /[S]; Similar to Scatchard Plot for binding; (Y vs. Y/[S]) iii. Hanes-Woolf; [S]/ vo vs. 1/[S]


# **Enzyme Kinetics**


#### **Determination of Kinetic Parameters**



A nonlinear Michaelis-Menten plot could be used to calculate parameters  $K_{\rm m}$  and  $V_{\rm max}$ .

Lineweaver-Burk derived a linear form of the M-M equation by taking the reciprocal of both sides. This is called the linearized double-reciprocal plot. Its good for analysis of enzyme kinetic data to get these kinetic parameters.





# ENZYME INHIBITION

# **Enzyme Kinetics**

# What is Enzyme Inhibition?

This is usually the action of a small molecule that results in loss of enzyme activity

This is **not** regulation by the action of another enzyme or protein

This is **not** loss of enzyme activity due to denaturation/unfolding of the enzyme.

Two major kinds of inhibition

- 1) Irreversible
- 2) Reversible

Reversible Enzyme Inhibition:

There are THREE-to-FOUR types of reversible inhibition:

- 1) Competitive
- 2) Un-Competitive
- 3) Non-Competitive
- 4) Mixed

These are closely related

### **Enzyme Kinetics**

Reversible Enzyme Inhibition:

$$E + S \underset{k_1}{\overset{K_m \text{ (Binding)}}{\rightleftharpoons}} E + P$$

No Inhibition

## Reversible Enzyme Inhibition:

$$E + S \underset{k_1}{\overset{K_m \text{ (Binding)}}{\rightleftharpoons}} E + P$$

$$+ I$$

$$1$$

$$1$$

$$E \cdot I$$

Competitive

## **Enzyme Kinetics**

#### Reversible Enzyme Inhibition:

$$E + S \underset{k_{-1}}{\overset{K_{m} \text{ (Binding)}}{\rightleftharpoons}} \underset{k_{2}}{\overset{V_{max} \text{ (Catalysis)}}{\rightleftharpoons}}$$

$$I$$

$$I$$

$$ES \cdot I$$

**Un-Competitive** 

## Reversible Enzyme Inhibition:

$$E + S \underset{k_1}{\overset{K_m \text{ (Binding)}}{\rightleftharpoons}} \underbrace{ES \overset{k_2}{\rightarrow}} E + P$$

$$+ I I$$

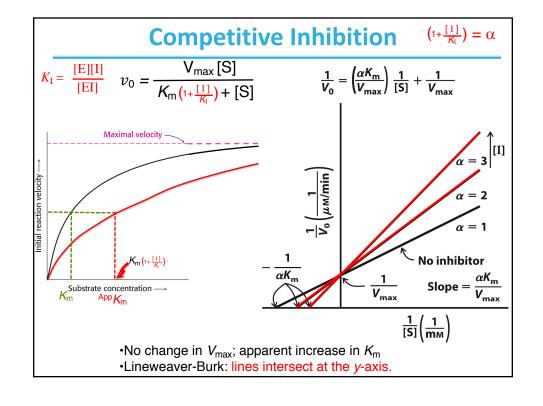
$$1 \downarrow I$$

$$E \cdot I ES \cdot I$$

Non-Competitive

### **Enzyme Kinetics**

#### Reversible Enzyme Inhibition:


$$E + S \underset{k_{-1}}{\overset{K_{m} \text{ (Binding)}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{3}}{\overset{k_{4}}{\overset{k_{5}}{\overset{k_{1}}{\overset{k_{4}}{\overset{k_{5}}{\overset{k_{4}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}}{\overset{k_{5}}{\overset{k_{5}}}{\overset{k_{5}}{\overset{k_{5}}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k_{5}}{\overset{k$$

Mixed

#### **Competitive Inhibition** Competes with substrate for binding -easiest to remember -binds active site -does not affect catalysis (e.g., once ES is formed, catalysis occurs) **Competitive inhibition** How does this inhibition affect the rate expression? It pulls on the binding reaction (competing with $\Rightarrow$ ES $\longrightarrow$ E+P S for free E) Which kinetic constant will be affected? $K_m$ becomes an "Apparent" $K_m$ (in the presence of inhibitor): App Km

ı

| K,



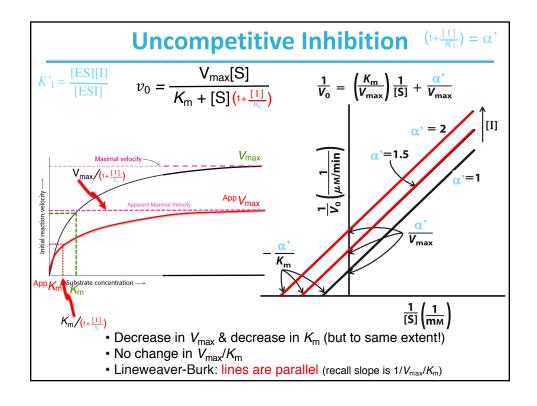
#### **Uncompetitive Inhibition**

- Only binds to ES complex; AFTER S
  - The binding of S causes a conformational change and creates the site for inhibitor
  - affects substrate binding by pulling binding equilibrium (makes it look better!)
  - affects catalytic function by pulling catalysis equilibrium (depleting [ES])

#### **Uncompetitive inhibition**

**ESI** 

How does this inhibition affect the rate expression?


Affects both Binding and Catalysis, but in opposite ways affected?

Which kinetic constant will be

Apparent K<sub>m</sub> gets smaller Apparent V<sub>max</sub> gets smaller

$$v_{0} = \frac{V_{\text{max}}[S]/(1+\frac{[1]}{K_{1}})}{\frac{K_{\text{m}}/(1+\frac{[1]}{K_{1}})+[S]}{V_{\text{max}}[S]}}$$

$$v_{0} = \frac{V_{\text{max}}[S]}{\frac{V_{\text{max}}[S]}{K_{\text{m}}+[S](1+\frac{[1]}{K_{1}})}}$$

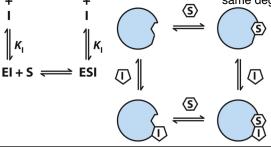


#### **Non-competitive Inhibition**

- Binds BOTH free enzyme (E) and enzyme bound to substrate (ES)
  - binds to a entirely different site from the active site (regulatory/inhibitory site)
  - inhibits both substrate binding and catalysis equally
  - Essentially just titrates out the [enzyme]

#### Non-competitive inhibition




Affects Catalysis; Binding is affected but to the same degree in opposite ways, so it cancels.



Which kinetic constant will be affected?

> Apparent  $K_m$  stays the same as its pulled and pushed the same.

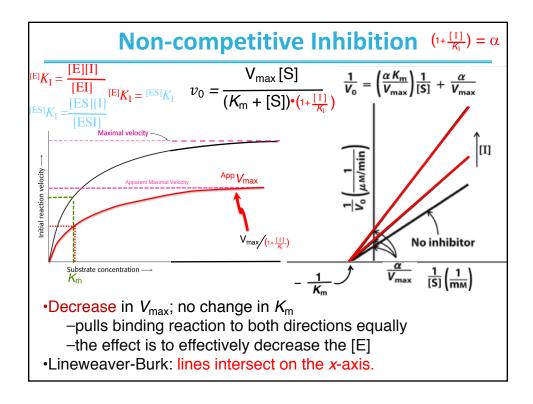
> Apparent V<sub>max</sub> gets smaller due to loss of  $[E]_T$  ([E]+[ES]).

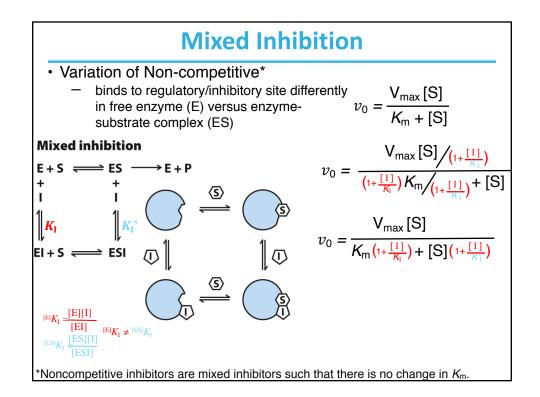


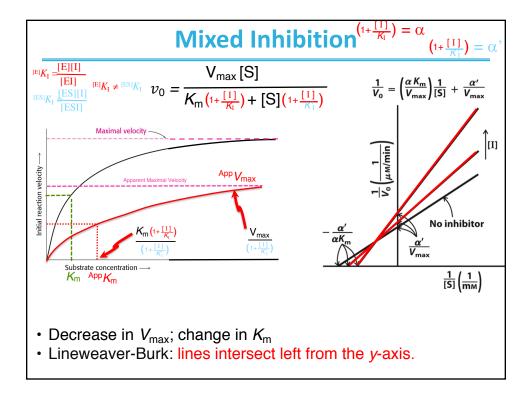
#### **Non-competitive Inhibition**

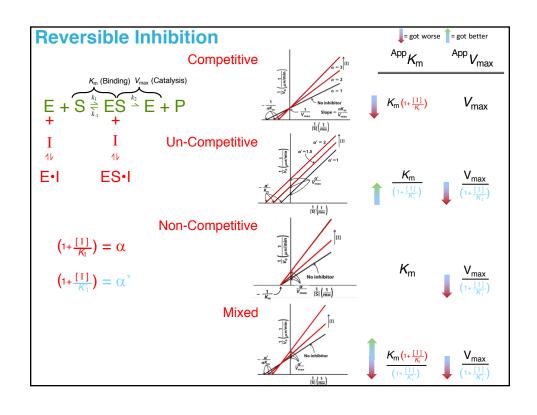
#### Non-competitive inhibition

$$v_0 = \frac{V_{\text{max}}[S]}{K_{\text{m}} + [S]}$$


$$v_0 = \frac{V_{\text{max}}[S]/(1+\frac{[1]}{K_1})}{K_{\text{m}} + [S]}$$


$$v_0 = \frac{V_{\text{max}}[S]}{(K_{\text{m}} + [S]) \cdot (1 + \frac{[1]}{K_1})}$$


$$|E|K_{I} = \frac{|E|[I]}{|EI|}$$


$$|E|K_{I} = \frac{|ES|[I]}{|ES|K_{I}} = \frac{|ES|[I]}{|ES|K_{I}}$$

$$^{[E]}K_{\mathrm{I}} = ^{[ES]}K_{\mathrm{I}}$$







