
#### Lecture 14 (10/15/25) **ENZYMES: Binding & Catalysis** C. Quantifying the Catalytic Power: Kinetics A. Binding; Binding curves; 1. Review B. Catalysis 2. Enzyme Kinetics Catalytic power a. Rate vs. [S] for enzyme catalyzed reaction Nomenclature; Cofactors; Reaction; names Transition State Theory initial rate $(v_0)$ Energetics (thermodynamics) vs. kinetics Lower activation energy; negative $\Delta\Delta G^{\ddagger}$ b. ES complex Reactions Catalytic strategies Binding reactionCatalytic reaction binding the transition state (What an enzyme ii. Meaning of rate curve: hyperbolic curve Position (proximity) iii. Rate expression; Michaelis-Menten Kinetics Polarization Assumptions Strain M-M equation derivation desolvation V<sub>max</sub> & K<sub>m</sub> values Mechanistic strategies c. Meaning of rate expression (M-M equation) Howan enzyme does it i. Acid-base catalysis $[S] = K_m$ Covalent catalysis ii. $[S] >> K_m$ Metal-ion catalysis iii. [S] << K<sub>m</sub> • Reading: Ch6; 184-188 188-195 Homework #13, 14 • Reading: Ch6; 191, 197-200 Homework #15



# ENZYMES

# (The WHAT and the How)

What must ALL enzymes to to achieve these amazing rate enhancements?

**How** do enzymes do what they do...... Mechanistically?

### **Enzymes**

\*Catalytic Strategies

versus

**Mechanistic Strategies** 

WHAT must Enzymes do to lower Activation
Energies?
-nearly all enzymes do these

HOW do Enzymes lower Activation Energies?
- enzymes may use none, one, or more of these

\*Textbook uses this term a bit incorrectly. What they term <u>Catalytic strategies</u> are really those that answer HOW enzymes decrease the activation energy. The HOW-to strategies are really "Mechanistic" strategies.

# **Enzymes**

# **Catalytic Strategies**

Effect on

 Position Effects: bind substrates where they need to be for reaction (rather than depending on random collisions)

ΔΔG<sup>‡</sup>

 Polarization of bonds: make substrates more reactive by polarizing bonds (make better nucleophiles, electrophile, or leaving groups)

ΔH **–** 

 Strain of bonds: bind substrates in such a way that they "look" like products (put strain on bonds that are to be broken (sessile))

ΔS –

 De-solvation: assist in removal of water shell around substrates or adding to products upon release (S & P are usually in direct contact with residues at the active site (no water))

ΔH **–** 

# Enzymes Illustration of TS Stabilization Idea: Imaginary Stickase (a) No enzyme Substrate (metal stick) (b) Enzyme complementary to substrate Magnets Magnets (c) Enzyme complementary to transition state Reaction coordinate

## **Enzymes**

# **Catalytic Strategies**

versus

# Mechanistic Strategies

WHAT must Enzymes do to lower Activation
Energies?
-nearly all enzymes do these

HOW do Enzymes lower Activation Energies?
- enzymes may use none, one, or more of these

# **Enzymes**

# Mechanistic Strategies

HOW do Enzymes lower Activation Energies?
- enzymes use may use none, one, or more of these

There are THREE major strategies used by enzymes:

- acid-base catalysis: give and take protons
- covalent catalysis: change reaction paths
- metal ion catalysis: use redox cofactors,  $pK_a$  shifters

# What Is Enzyme Kinetics?

- Kinetics is the study of the rate at which compounds react.
- The rate of enzymatic reaction is affected by:
  - enzyme
  - substrate
  - effectors
  - Temperature
  - Reaction conditions (salts, buffers, pH)

# **Enzyme Kinetics**

# Why Study Enzyme Kinetics?

- · Quantitative description of biocatalysis
- Determine the order of binding of substrates
- · Elucidate acid-base catalysis
- Understand catalytic mechanism
- Find effective inhibitors (drugs)
- · Understand regulation of activity

#### **Review of Chemical Kinetics**

Consider a simple reaction:

$$A \stackrel{k_1}{\rightleftharpoons} B$$

Thermodynamics tells us:

$$K_{\rm eq} = \frac{[\rm B]}{[\rm A]}$$
 and

 $k_{\text{eq}} = \frac{k_I}{k_I}$ 

Kinetics tells us: The rate of a chemical reaction (v) is proportional making reactant to the concentration of the specie(s) participating in the

rate limiting step.  $v \propto [A]$ 

Furthermore, the reaction rate (v) is determined by measuring how much A disappears **as a function of time** or how much B appears **as a function of time**. v = -d[A]/dt = d[B]/dt

Suppose that we can readily measure the disappearance of A. The velocity of the reaction is given by solving the differential equation above to get the formula below, where  $k_1$  is a proportionality constant.

During an enzyme catalyzed reaction when the enzyme is saturated with substrate, it's first-order reaction..... only dependent on IEI with k<sub>1</sub> as k<sub>6:1</sub>

$$v = k_{l}[A]$$

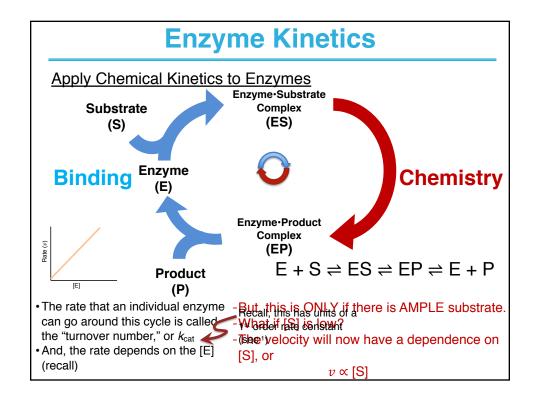
When the velocity of a reaction is directly proportional to a single reactant concentration, the reaction is called a first-order reaction and the proportionality constant has the units s<sup>-1</sup>.

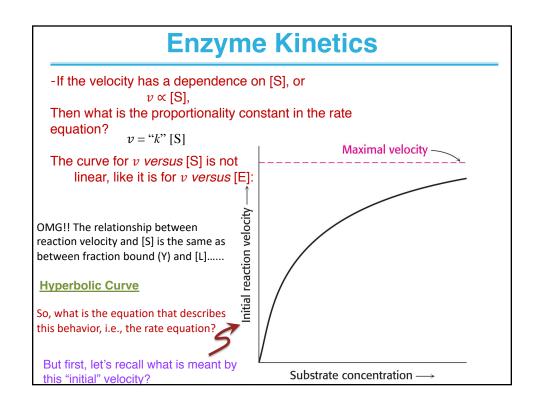
# **Enzyme Kinetics**

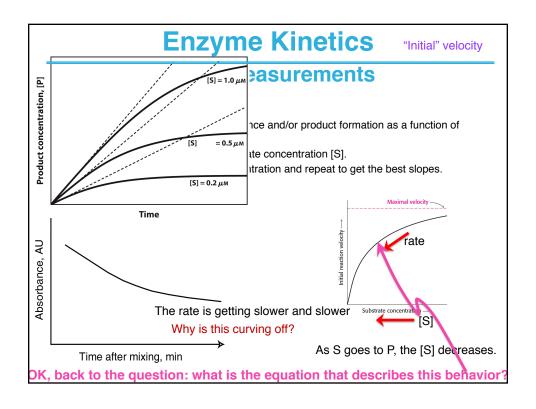
#### **Review of Chemical Kinetics**

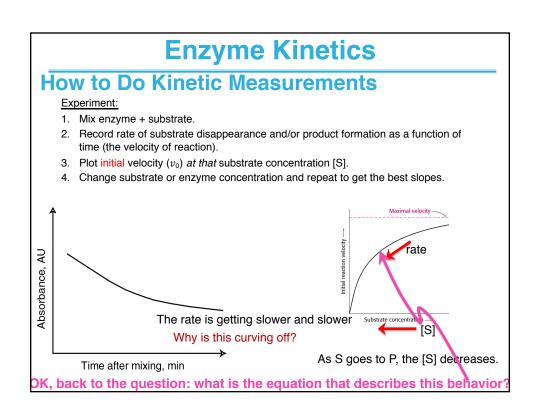
When the velocity of a reaction is directly proportional to the concentrations of **two** reactants, the reaction is called a second-order reaction and the proportionality constant has the units M<sup>-1</sup>s<sup>-1</sup>.

Many important biochemical reactions are biomolecular or second-order reactions.


$$2 A \rightarrow P$$


$$A + B \rightarrow P$$


The rate equations for these reactions are:


$$v = k_{\parallel}[A]^2$$
 and  $v = k_{\parallel}[A][B]$ 

During an enzyme catalyzed reaction when the enzyme binds to substrate, it's a "pseudo" second-order reaction.....









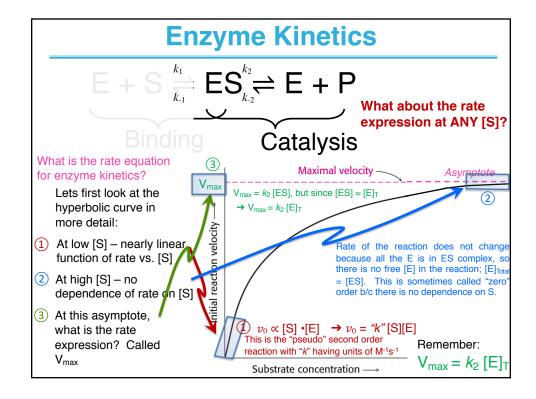
$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$
Binding Catalysis

So, what is the equation that describes this behavior, i.e., the rate equation?

Lets focus on binding:

$$K_{\text{eq}} = \frac{[\text{ES}]}{[\text{E}][\text{S}]} = \frac{k_1}{k_{-1}}$$

This is just like any other binding reaction, which we already discussed...


OR

Remember:

$$K_{\rm d} = \frac{[\rm E][\rm S]}{|\rm ES|} = \frac{k_{-1}}{k_1}$$

 $K_{\rm d} = \frac{k_{-1}}{k_1}$ 

What about catalysis?



This question was answered in 1913 by Michaelis & Menten

They used these principles and derived the equation that describes the relationship between  $v_0$  and [S] for enzymecatalyzed reactions that show "hyperbolic" behavior...... The famous Michaelis-Menten Equation





Maud Menten, 1879-1960

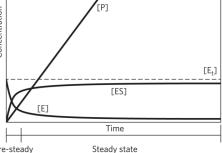
Leonor Michaelis, 1875–1949

# **Enzyme Kinetics**

# Derivation of Michaelis-Menten Equation:

- 1. Start with a model mechanism.
- 2. Identify constraints and assumptions.
- 3. Carry out algebra
- 1. Simplest Model Mechanism: one reactant, one product, no inhibitors

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$


# **Enzyme**

# Derivation of Michael

2. Identify constraints and assumption

There are 4 important ASSUMPTIONS for

1. Use only INITIAL rate ( $v_0$ ). This means you can ignore  $k_2$ . The mechanism  $\sin_{\text{Pre-steady}}$ 



$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{state}{\rightharpoonup} E + P$$

2. The slow step is AFTER binding. In other words, binding is a rapid equilibrium. This is the so-called RAPID EQUILIBRIUM ASSUMPTION.

$$v_0 = k_2 [ES]$$

- 3. The substrate is in vast excess of the enzyme (a true catalyst). This means you can ignore the amount of substrate in the ES complex, and  $[S]_{free} = [S]_{Total}$ . We can get everything in easily measured quantities:  $[E]_{T}$ ,  $[S]_{T}$ , and  $v_{0}$ , but not  $[ES]_{T}$ .
- 4. The rate of formation of ES and the rate of breakdown are are equal. This is the so-called STEADY-STATE ASSUMPTION. Therefore, the [ES] does not change.

# **Enzyme Kinetics**

Derivation of Michaelis-Menten Equation:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightharpoonup} E + P$$

- 3. Carry out the algebra.
  - Starting with the Steady-State assumption

$$\frac{d[ES]}{dt} = \text{rateof formation of ES-rateof breakdown of ES} = 0$$

$$k_1$$
 [E][S] =  $k_2$ [ES] +  $k_{-1}$ [ES]

Collect [ES] terms:  $k_1$  [E][S] =  $(k_2 + k_{-1})$ [ES]

Substitute the expression  $[E] = [E]_T - [ES]$ , because free [E] is difficult to determine:

$$k_1$$
 ([E]<sub>T</sub> – [ES])[S] =  $(k_2 + k_{-1})$ [ES]

Collect [ES] terms:

$$k_1 [E]_T[S] - k_1 [ES][S] = (k_2 + k_{-1})[ES]$$
  
 $k_1 [E]_T[S] = (k_2 + k_{-1} + k_1[S])[ES]$ 

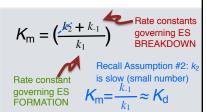
Derivation of Michaelis-Menten Equation:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightharpoonup} E + P$$

Carry out the algebra.

$$k_1 [E]_T[S] = (k_2 + k_{-1} + k_1[S])[ES]$$

Solve for [ES]:


$$\frac{k_1 [E]_T[S]}{(k_2 + k_{-1} + k_1[S])} = [ES]$$

Divide by  $k_1/k_1 = 1$ ):

$$\frac{\left(\frac{[E]_{T}[S]}{\left(\frac{k_{2}+k_{-1}}{k_{1}}\right)+[S]}\right)}{\left(\frac{k_{2}+k_{-1}}{k_{1}}\right)+[S]} = [ES]$$

Define  $K_m$  as this collection or rate constants: Substitute in  $K_m$ :

$$\frac{[E]_{T}[S]}{K_{m} + [S]} = [ES$$



# **Enzyme Kinetics**

Derivation of Michaelis-Menten Equation:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightharpoonup} E + P$$

3. Carry out the algebra.

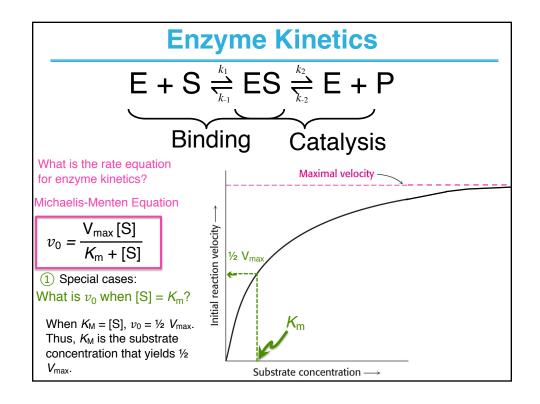
$$\frac{[E]_{T}[S]}{K_{m} + [S]} = [ES]$$

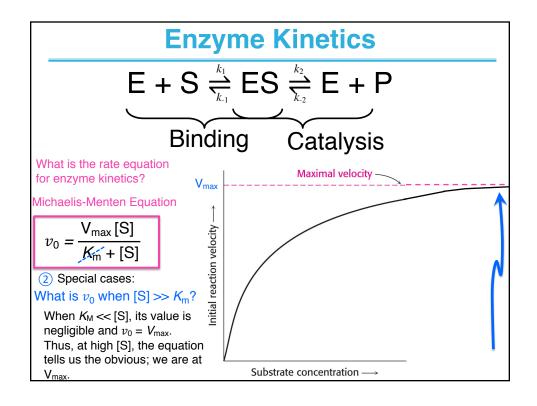
Use RAPID EQUILIBRIUM ASSUMPTION (#2):

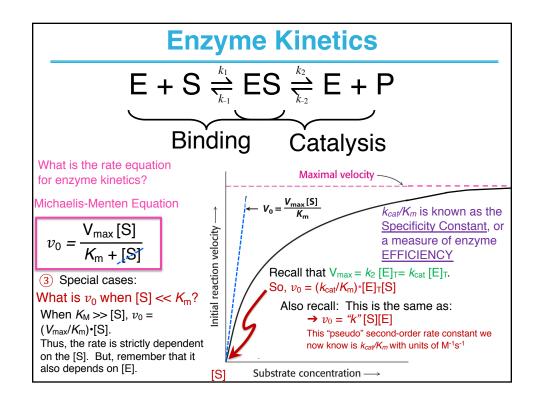
$$v_0 = k_2 \text{ [ES]}$$

$$\frac{[\mathsf{E}]_\mathsf{T}[\mathsf{S}]}{K_\mathsf{m} + [\mathsf{S}]} = v_0/k_2$$

Solve for  $v_0$  and make the rate equation:


$$\frac{k_2[E]_T[S]}{K_m + [S]} = v_0$$
 Michaelis-Menten Equation  
Recall:  
hyperbola  $\rightarrow y = x/(b+x)$ 


Recall definition of  $V_{\text{max}}$ :


$$V_{\text{max}} = k_2 [E]_T$$

$$v_0 = \frac{\mathsf{V}_{\mathsf{max}}[\mathsf{S}]}{\mathsf{K}_{\mathsf{m}} + [\mathsf{S}]}$$

$$Y = \frac{[L]}{K_D + [L]} \qquad \frac{v_0}{V_{\text{max}}} = \frac{[S]}{K_{\text{m}} + [S]}$$







# Enzyme Efficiency is Limited by Specificity: $k_{\rm cat}/K_{\rm M}$ • Diffusion from the active site limits the maximum value for specificity/efficiency.

Can gain efficiency by having high velocity or affinity for substrate

**Enzyme Kinetics** 

- catalase vs. acetylcholinesterase

| TABLE 6-8 Enzymes for Which $k_{\rm cnt}/K_{\rm m}$ is Close to the Diffusion-Controlled Limit $(10^{\rm s}~{\rm to}~10^{\rm o}~{\rm M}^{-1}{\rm s}^{-1})$ |                                       |                                            |                                                  |                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|
| Enzyme                                                                                                                                                     | Substrate                             | kcat (s <sup>-1</sup> )                    | Km (M)                                           | $k_{\text{cat}}/K_{\text{m}}$<br>$(\mathbf{M}^{-1}\mathbf{s}^{-1})$ |
| Acetylcholinesterase                                                                                                                                       | Acetylcholine                         | 1.4 x 10 <sup>4</sup>                      | 9 x 10 <sup>-5</sup>                             | 1.6 x10 <sup>8</sup>                                                |
| Carbonic anhydrase                                                                                                                                         | CO <sub>2</sub><br>HCO <sub>3</sub> - | 1 x 10 <sup>6</sup><br>4 x 10 <sup>5</sup> | 1.2 x 10 <sup>-2</sup><br>2.6 x 10 <sup>-2</sup> | 8.3 x 10 <sup>7</sup><br>1.5 x 10 <sup>7</sup>                      |
| Catalase                                                                                                                                                   | H <sub>2</sub> O <sub>2</sub>         | 1 x 10 <sup>7</sup>                        | 2.5 x 10 <sup>-2</sup>                           | 4 x 10 <sup>8</sup>                                                 |
| Crotonase                                                                                                                                                  | Crotonyl-CoA                          | 5.7 x10 <sup>3</sup>                       | 2 x 10 <sup>-5</sup>                             | 2.8 x 10 <sup>8</sup>                                               |
| Fumarase                                                                                                                                                   | Fumarate<br>Malate                    | 8 x 10 <sup>2</sup><br>9 x 10 <sup>2</sup> | 5 x 10 <sup>-6</sup><br>2.5 x 10 <sup>-5</sup>   | 1.6 x 10 <sup>8</sup><br>3.6 x 10 <sup>7</sup>                      |
| β-Lactamase                                                                                                                                                | Benzylpenicillin                      | 2.0 x 10 <sup>3</sup>                      | 2 x 10 <sup>-5</sup>                             | 1 x 10 <sup>8</sup>                                                 |
| Source: A. Fersht, Structure                                                                                                                               | e and Mechanism in Protein Sci        | ence, p. 166, W. H                         | . Freeman and Con                                | npany, 1999.                                                        |

SUMMARY:  $E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$ 

The final form in case of a single substrate is the Michaelis-Menten equation:

$$v_0 = \frac{k_{cat}[E_{tot}][S]}{K_m + [S]} = \frac{V_{max}[S]}{K_m + [S]}$$

- k<sub>cat</sub> (turnover number): how many substrate molecules one enzyme molecule can convert per second
- K<sub>m</sub> (Michaelis constant): an approximate measure of a substrate's affinity for an enzyme; actually, it is the ratio of rate constants for formation and loss intermediate involved in rate-limiting step.
- During steady state, the maximum velocity (V<sub>max</sub>) occurs when all the enzyme is in the ES complex and is dependent on the breakdown of that complex (k[ES]).
- The microscopic meaning of K<sub>m</sub> and k<sub>cat</sub> depends on the details of the mechanism.

# **Enzyme Kinetics**



Variations in  $K_M$  Can Have Physiological Consequences

Two enzymes play a key role in the metabolism of alcohol.

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} + \text{NAD}^+ & \xrightarrow{\text{Alcohol}} \\ \text{Ethanol} & \text{CH}_3\text{CHO} + \text{NADH} + \text{H}^+ \\ & \text{Aldehyde} \\ \text{CH}_3\text{CHO} + \text{NAD}^+ + \text{H}_2\text{O} & \xrightarrow{\text{Aldehydrogenase}} \\ \text{CH}_3\text{COO}^- + \text{NADH} + 2\text{H}^+ \\ \end{array}$$

Some people respond to alcohol consumption with facial flushing and rapid heart beat, symptoms caused by excessive amounts of acetaldehyde in the blood. There are two different acetaldehyde dehydrogenases in most people, one with a low  $K_{\rm M}$  and one with a high  $K_{\rm M}$ .

The low  $K_{\rm M}$  enzyme is genetically inactivated in some individuals. The enzyme with the high  $K_{\rm M}$  cannot process the acetaldehyde fast enough (less efficient), and so some acetaldehyde appears in the blood.

So, if knowing the values of the constants,  $K_m$  and  $V_{max}$ , for enzymes and their substrates is important, how are they determined?