

Now that we have some concept of binding, the first important part of the catalytic cycle, lets discuss the second part of the cycle:

Catalysis

Four introductory aspects to Enzyme Catalysis:

- 1) Rate enhancement (proficiency)
- 2) How do you measure catalysis (enzyme activity)
- 3) What is the relationship between reaction rate and [E]?
- 4) Enzyme nomenclature
 - a. reaction
 - b. helpers
 - c. enzymes

Enzyme nomenclature

- a. Reaction Nomenclature
- b. Enzyme helpers (cofactors)
- c. Naming enzymes

laming Enzymes	Enzyme	S
<u>*Trivial:</u>	Name -dehydrogenase ·	Reaction Catalyzed redox/hydride transfer lactate dehydrogenase dyceraldehyde-3-phosphate dehydrogenase
 Nearly all enzymes end with the suffix of "-ase." 	-oxidase	redox/O₂ as oxidizer cytochrome oxidase glucose oxidase
Generally, the names are of the form "substrate or	-oxygenase	redox/O2 incorporated cyclooxygenase Ribulose Bisphosphate Carboxylase Oxygenase
product – reaction catalyzed." For example,	-hydroxylase •	redox/-OH incorporated tyrosine hydroxylase phenylalanine hydroxylase
lactate dehydrogenase is for an enzyme that removes a	-kinase	transfer/Pi into substrate from ATP hexose kinase protein kinase A
hydrogen (plus 2e ⁻ , i.e., a hydride) from lactate,	-hydrolase (esterase, deacylase) .	hydrolysis with H ₂ O trypsin phospholipase C
yielding the carbonyl in	-phosphorylase	hydrolysis with Prinstead of H2O glycogen phosphorylase b Thymidine phosphorylase
pyruvate. There are two ways of	-mutase •	move P _i from one part of molecule to another phosphoglycerate mutase phosphoglucose mutase
naming enzymes; 1) Trivial and 2) Systematic	-isomerase -	configuration change triosephosphate isomerase phosphogluco isomerase
Not all possible types listed	-synthase •	synthesis fatty acid synthase nitric oxide synthase
Not all possible types listed Bullets are those also given as systematic	-synthetase ·	synthesis that requires ATP aminoacyl-IRNA synthetases acyl-CoA synthetase

Naming Enzymes Enzymes				
	Main Classes	SelectedTrivial Names	Type of Reaction Catalyzed	
Correlation of trivial and systematic:	oxidoreductases	oxidases reductases dehydrogenases	oxidation of a substrate reduction of a substrate introduction of double bond (oxidation) by formal removal of two H atoms from a substrate, with one H being accepted by a coenzyme	
	transferases	transaminases kinases	transfer of an amino group between substrates transfer of a phosphate group between substrates	
OTHLIL	hydrolases	lipases proteases nucleases carbohydrases phosphatases	hydrolysis of ester linkages in lipids hydrolysis of amide linkages in proteins hydrolysis of sugar-phosphate ester bonds in nucleic acids hydrolysis of glycosidic bonds in carbohydrates hydrolysis of phosphate-ester bonds	
What to know: 1) Trivial: substrate-reaction-ase a) Dehydrogenase, hydrolase*, isomerase, kinase, synthase, synthetase b)*substrate-ase 2) Systematic: OTHLIL (1–6) a) Oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase	lyases	dehydratases decarboxylases deaminases hydratases	removal of H_2O from a substrate removal of CO_2 from a substrate removal of NH_3 from a substrate addition of H_2O to a substrate	
	isomerases	racemases mutases	conversion of D isomer to L isomer, or vice versa transfer of a functional group from one position to another in the same molecule	
	ligases	synthetases carboxylases	formation of a new bond between two substrates, with participation of ATP formation of a new bond between a substrate and CO ₂ , with participation of ATP	

ENZYMES

(The WHAT and the How)

What must ALL enzymes to to achieve these amazing rate enhancements?

How do enzymes do what they do...... Mechanistically?

*Catalytic Strategies

versus

Mechanistic Strategies

WHAT must Enzymes do to lower Activation
Energies?
-nearly all enzymes do these

HOW do Enzymes lower Activation Energies?

- enzymes may use none, one, or more of these

Enzymes

Catalytic Strategies

- Position Effects: bind substrates where they need to be for reaction (rather than depending on random collisions)
- Polarization of bonds: make substrates more reactive by polarizing bonds (make better nucleophiles, electrophile, or leaving groups)
- Strain of bonds: bind substrates in such a way that they "look" like products (put strain on bonds that are to be broken (sessile))

 (Geometry)
- De-solvation: assist in removal of water shell around substrates or adding to products upon release (S & P are usually in direct contact with residues at the active site (no water))

^{*}Textbook uses this term a bit incorrectly. What they term <u>Catalytic strategies</u> are really those that answer HOW enzymes decrease the activation energy. The HOW-to strategies are really "Mechanistic" strategies.

*Catalytic Strategies

versus

Mechanistic Strategies

WHAT must Enzymes do to lower Activation Energies?

-nearly all enzymes do these

HOW do Enzymes lower Activation Energies?

- enzymes may use none, one, or more of these

*Textbook uses this term a bit incorrectly. What they term <u>Catalytic strategies</u> are really those that answer HOW enzymes decrease the activation energy. The HOW-to strategies are really "Mechanistic" strategies.

Mechanistic Strategies

HOW do Enzymes lower Activation Energies?
- enzymes use may use none, one, or more of these

There are THREE major strategies used by enzymes:

- acid-base catalysis: give and take protons
- covalent catalysis: change reaction paths
- metal ion catalysis: use redox cofactors, pK_a shifters

Mechanistic Strategies

General Acid-Base

Catalysis

Amino Acids

Recall, pK_a values can shift by orders of magnitude in the microenvironment of the active site

Amino acid residues	General acid form (proton donor)	General base form (proton acceptor)
Glu, Asp	R—COOH	R—C00-
Lys, Arg	R [±] N H H	R—NH₂
Cys	R-SH	R— S-
His	R-C=CH / \+ HN C NH H	R-C=CH HN N:
Ser	R-OH	R-0-
Tyr	R—OH	R

Enzymes

Mechanistic Strategies

Covalent Catalysis

- A transient covalent bond between the enzyme and the substrate
- Changes the reaction pathway

$$A \longrightarrow B \xrightarrow{H_{2O}} A + B$$

– catalyzed (X = catalyst):

$$A - B + X : \rightarrow A - X + B \xrightarrow{H2O} A + X : + B$$

Requires a nucleophile on the enzyme

EXAMPLES: Carbonic Anhydrase Proteases Amino transferase

Which Amino Acids?

Ser, Thr, Cys, Lys, Asp, Glu

Aldolase

- can be a reactive hydroxyl, thiolate, amine, or carboxylate
- May also be with metals (dative-covalent bond/coordinate)

Mechanistic Strategies

Metal Ion Catalysis

- · Involves a metal ion bound to the enzyme
- Interacts with substrate to facilitate binding
 stabilizes negative charges
- · Participates in oxidation reactions

EXAMPLES:

Carbonic Anhydrase Carboxylpeptidase A Cytochrome oxidase

