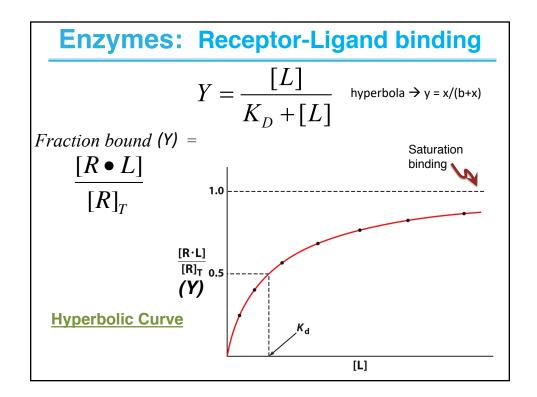
OUTLINE

Lecture 13 (10/08/25)

ENZYMES: Binding & Catalysis

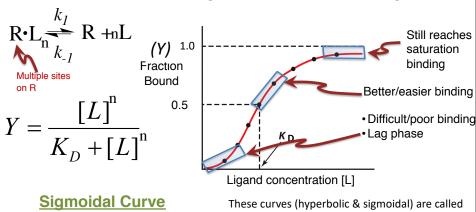
- 1. General
- 2. Catalytic cycle; turnover number = k_{cat}
 - Bindina
 - Models a.
 - How? (lock&key; induced fit)
 - How tight? Binding curves; Kd
 - Hyperbolic -saturation
 - Sigmoidal -cooperativity in saturation
 - 2. Catalysis

Nomenclature


- Catalytic power
 - Proficiency (rate enhancement) assay of rate

 - rate versus [E]
- Reading: Ch6; 178-179, 194-195, 179-181, 184-185

186-195


NEXT

- Exam 2 (Tues @8AM)(review session Fri)
- What do enzymes do; catalytic strategies (transition-state theory)
- 5. How do enzymes do it; mechanistic strategies

Enzymes: Receptor-Ligand binding

Cooperative Binding: Multiple binding sites

 Binding of a ligand at one site can affect the binding at other sites.

22

Enzymes

Now that we have some concept of binding, the first important part of the catalytic cycle, lets discuss the second part of the cycle:

binding curves or "isotherms."

Catalysis

Four introductory aspects to Enzyme Catalysis:

- 1) Rate enhancement
- 2) How do you measure catalysis (enzyme activity)
- 3) What is the relationship between reaction rate and [E]?
- 4) Enzyme nomenclature
 - a. reaction
 - b. helpers
 - c. enzymes

Enzymes

Catalysis

1) Rate Enhancement by Enzymes

Rate enhancement $(k_{\rm cat} \, {\rm s}^{-1}/k_{\rm un} \, {\rm s}^{-1})$

This ratio is sometimes called Proficiency

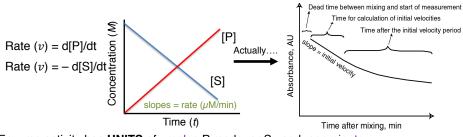
TABLE 6-5	Some Rate Enhancements Production	uced by
Cyclophilin		10 ⁵
Carbonic anhydrase		10 ⁷
Triose phosphate isomerase		10 ⁹
Carboxypeptidase A		10 ¹¹
Phosphoglucomutase		10 ¹²
Succinyl-CoA transferase		10 ¹³
Urease		10 ¹⁴
Orotidine mon	10 ¹⁷	

 2.5×10^{24} Uroporphyrinogen decarboxylase

Enzymes

Catalysis

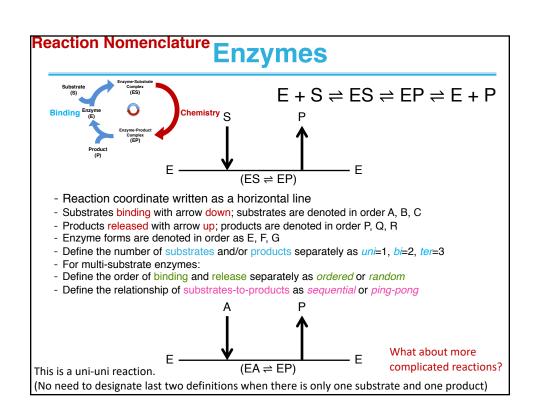
2) How do you measure enzyme activity?

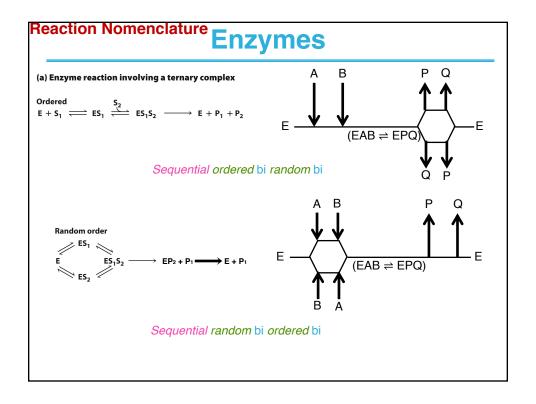

$$S \rightleftharpoons P$$

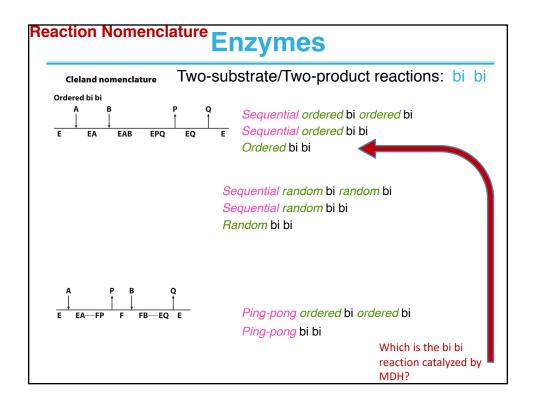
 $\underset{\text{For this, you need an ASSAY.}}{S} \overset{}{\rightleftharpoons} P$

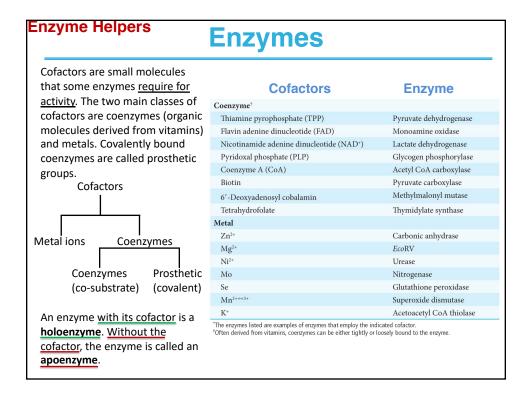
You can either measure the rate of disappearance of S or the appearance of P (or couple to faster reactions that measure these indirectly; called a coupled assay)

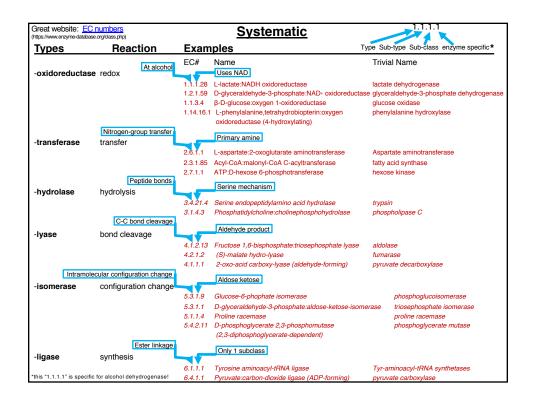

For example: Malate Dehydrogenase (MDH): D-malate + NADH + H+ ⇌ oxaloacetate + NAD+ Which of these, S or P, can you measure?

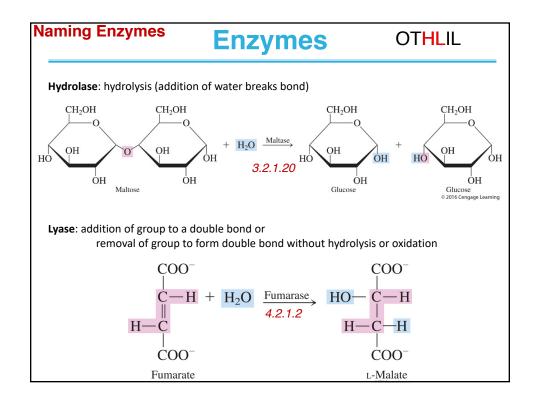

You can measure the appearance of NAD+ (P) or the loss of NADH (S):




Enzyme activity has **UNITS** of μ moles P made, or S used, per minute


[need only to multiply your rate by the volume of the assay.] $\mathbf{U} = \mu \text{mole/min}$





laming Enzymes	Enzymes	S
<u>*Trivial:</u>	Name -dehydrogenase	Reaction Catalyzed redox/hydride transfer lactate dehydrogenase glyceraldehyde-3-phosphate dehydrogenase
 Nearly all enzymes end with the suffix of "-ase." 	-oxidase	redox/O ₂ as oxidizer cytochrome oxidase glucose oxidase
 Generally, the names are of the form "substrate or 	-oxygenase	redox/O₂ incorporated cyclooxygenase Ribulose Bisphosphate Carboxylase Oxygenase
product – reaction catalyzed." For example,	-hydroxylase	redox/-OH incorporated tyrosine hydroxylase phenylalanine hydroxylase
lactate dehydrogenase is for an enzyme that removes a	-kinase •	transfer/P _i into substrate from ATP hexose kinase protein kinase A
hydrogen (plus 2e ⁻ , i.e., a hydride) from lactate,	-hydrolase (esterase, deacylase)	hydrolysis with H ₂ O trypsin phospholipase C
yielding the carbonyl in pyruvate.	-phosphorylase	hydrolysis with Prinstead of H ₂ O glycogen phosphorylase b Thymidine phosphorylase
There are two ways of	-mutase	move Pi from one part of molecule to another phosphoglycerate mutase phosphoglucose mutase
naming enzymes; 1) Trivial and 2) Systematic	-isomerase -	configuration change triosephosphate isomerase phosphogluco isomerase
Not all possible types listed	-synthase	synthesis fatty acid synthase nitric oxide synthase
Bullets are those enzymes also given as systematic on the next slide	-synthetase	synthesis that requires ATP aminoacyl-tRNA synthetases acyl-CoA synthetase

Naming Enzymes	En	zymes	
	Main Classes	SelectedTrivial Names	Type of Reaction Catalyzed
Correlation of trivial and systematic:	oxidoreductases	oxidases reductases dehydrogenases	oxidation of a substrate reduction of a substrate introduction of double bond (oxidation) by formal removal of two H atoms from a substrate, with one H being accepted by a coenzyme
	transferases	transaminases kinases	transfer of an amino group between substrates transfer of a phosphate group between substrates
	hydrolases	lipases proteases nucleases carbohydrases phosphatases	hydrolysis of ester linkages in lipids hydrolysis of amide linkages in proteins hydrolysis of sugar-phosphate ester bonds in nucleic acids hydrolysis of glycosidic bonds in carbohydrates hydrolysis of phosphate-ester bonds
OTHLIL	lyases	dehydratases decarboxylases deaminases hydratases	removal of H_2O from a substrate removal of CO_2 from a substrate removal of NH_3 from a substrate addition of H_2O to a substrate
	isomerases	racemases mutases	conversion of D isomer to L isomer, or vice versa transfer of a functional group from one position to another in the same molecule
	ligases	synthetases carboxylases	formation of a new bond between two substrates, with participation of ATP formation of a new bond between a substrate and CO ₂ , with participation of ATP

Naming Enzymes

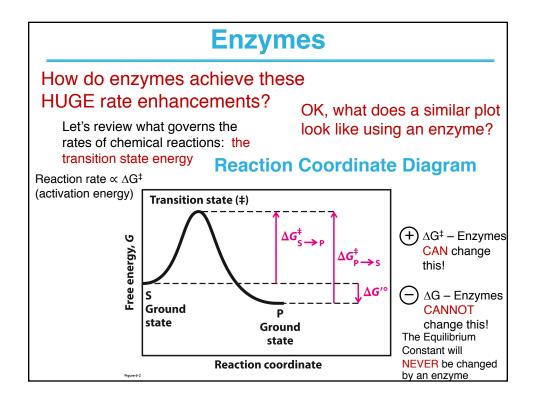
Enzymes

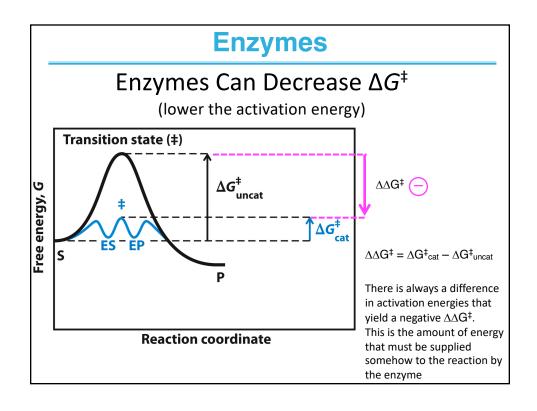
OTHLIL

Isomerase: transfer of functional group within a molecule (rearrangement)

$$\begin{array}{c|c} COO^-\\ H-C-OH\\ \hline & & \\ \hline CH_2O-P\\ \hline & & \\ \hline &$$

Ligase: joining of two molecules (bond formation) coupled with ATP hydrolysis


$$\begin{array}{c} \text{COO}^- \\ \downarrow \\ \text{CO}_2 \\ + \text{C} \stackrel{}{=} \text{O} \\ \downarrow \\ \text{CH}_3 \\ \text{Pyruvate} \\ \text{CH}_3 \\ \text{Pyruvate} \\ \\ \text{COO}^- \\ \text{Oxaloacetate} \\ \end{array} \rightarrow \begin{array}{c} \text{COO}^- \\ \downarrow \\ \text{COO}^- \\ \text{Oxaloacetate} \\ \end{array}$$


ENZYMES

(The WHAT and the How)

What must ALL enzymes to to achieve these amazing rate enhancements?

How do enzymes do what they do...... Mechanistically?

Enzymes

*Catalytic Strategies

versus

Mechanistic Strategies

WHAT must Enzymes do to lower Activation
Energies?
-nearly all enzymes do these

HOW do Enzymes lower Activation Energies?
- enzymes may use none, one, or more of these

Enzymes

Catalytic Strategies

- Position Effects: bind substrates where they need to be for reaction (rather than depending on random collisions)
- Polarization of bonds: make substrates more reactive by polarizing bonds (make better nucleophiles, electrophile, or leaving groups)
- Strain of bonds: bind substrates in such a way that they "look" like products (put strain on bonds that are to be broken (sessile))

 (Geometry)
- De-solvation: assist in removal of water shell around substrates or adding to products upon release (S & P are usually in direct contact with residues at the active site (no water))

^{*}Textbook uses this term a bit incorrectly. What they term <u>Catalytic strategies</u> are really those that answer HOW enzymes decrease the activation energy. The HOW-to strategies are really "Mechanistic" strategies.