Team Terriers Locational Power Grid Study

Ziming Hua, Wenxuan Fu

Zhanfeng Li, Haihan Yuan

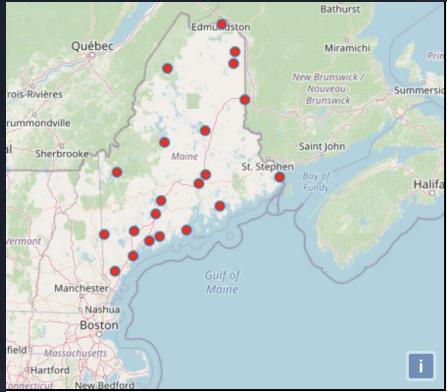
Central Maine Power

Given:

- Actual load data from 2019 to 2021 of CMP
- Historical weather data from lowa State University

Goal:

• Predict the hourly loads of CMP for the next day



Cleaning Data

The original data we download from Iowa State University ASOS Network contains contains 30 variables. However, most of them are not that helpful and contains WAY TOO MUCH missing values.

After carefully reviewing each variables, we decided to keep the following variables:

'station', 'valid', 'tmpf', 'dwpf', 'relh', 'drct', 'sknt', 'p01i',

'alti', 'mslp', 'vsby', 'skyc1', 'skyl1', 'feel'

> freq.na(asos2019	_2022_ro	outine)	
	missing	%	
snowdepth	101723	100	
ice_accretion_3hr	101648	100	
skyc4	101634	100	
skyl4	101634	100	
ice_accretion_6hr	101607	100	
ice_accretion_1hr	101192	99	
peak_wind_gust	97603	96	
peak_wind_drct	97603	96	
peak_wind_time	97603	96	
skyc3	93539	92	
skyl3	93539	92	
gust	87970	86	
skyc2	76418	75	
skyl2	76418	75	
wxcodes	71464	70	
skyl1	34243	34	
mslp	23579	23	
p01i	10800	11	
drct	9525	9	
feel	1909		
sknt	1836	2	
skyc1	372	0	
dwpf	363	0	
relh	363	0	
tmpf	329	0	
vsby	259	0	
alti	227	0	
station	0	0	
valid	0	0	
metar	0	0	
>			

Selected Variables

- Statio:three or four character site identifier
- Valid:timestamp of the observation
- tmpf:Air Temperature in Fahrenheit, typically @ 2 meters
- Dwpf: Dew Point Temperature in Fahrenheit, typically @ 2 meters
- Relh: Relative Humidity in %
- Drct: Wind Direction in degrees from *true* north
- Sknt:Wind Speed in knots
- P01i: One hour precipitation for the period from the observation time to the time of the previous hourly precipitation reset.
- Alti: Pressure altimeter in inches
- Mslp: Sea Level Pressure in millibar
- Vsby: Visibility in miles
- Skyc1:Sky Level 1 Coverage
- Skyl1:Sky Level 1 Altitude in feet
- Feel: Apparent Temperature (Wind Chill or Heat Index) in Fahrenheit
- A ANY A THE ANY A ANY A

Cleaning Data

Separate 'valid' column into four columns:Year, month, day, hour

Fill in NaN values: There are still many NaN values in our dataframe, since our variables are about weather, we use the 'Last Observation Carried Forward' method to fill those NaN values.

Check Correlation:

dwpf & tempf have high correlation of 0.91

alti & mslp have high correlation of 1

We drop dwpf and alti columns.

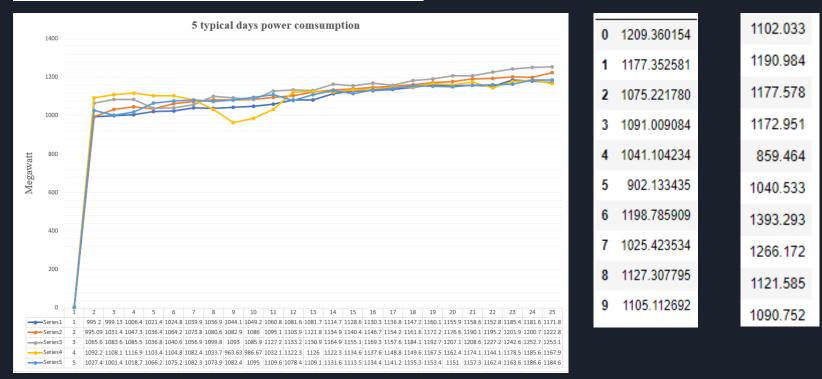
	yearr	monthh	datee	hourr	tmpf	dwpf	relh	drct	sknt	p01i	alti	dsm	vsby	skyl1
yearr	1.00													
onthh		1.00			0.27	0.32				0.03				
datee			1.00			0.03				0.04				
hourr				1.00		0.02		0.06	0.09	0.01				
tmpf		0.27			1.00	0.91	0.04	-0.10		0.02				
dwpf		0.32			0.91	1.00	0.44	-0.23	-0.22	0.11	-0.22	-0.25		-0.23
relh		0.18			0.04	0.44	1.00	-0.36	-0.35	0.25	-0.21	-0.23	-0.55	-0.43
drct						-0.23	-0.36	1.00	0.51	-0.09			0.23	
sknt						-0.22	-0.35	0.51	1.00	0.12	-0.28	-0.28		
p01i						0.11	0.25	-0.09	0.12	1.00	-0.17		-0.39	
alti						-0.22	-0.21	-0.17	-0.28	-0.17	1.00	1.00	0.21	0.29
mslp		0.03		-0.02		-0.25	-0.23	-0.16	-0.28	-0.18	1.00	1.00	0.23	0.30
vsby		-0.02				-0.15	-0.55	0.23	0.04	-0.39	0.21	0.23	1.00	0.40
skyl1						-0.23	-0.43	0.13	-0.08	-0.19	0.29	0.30	0.40	1.00

Multiple Linear Regression Model

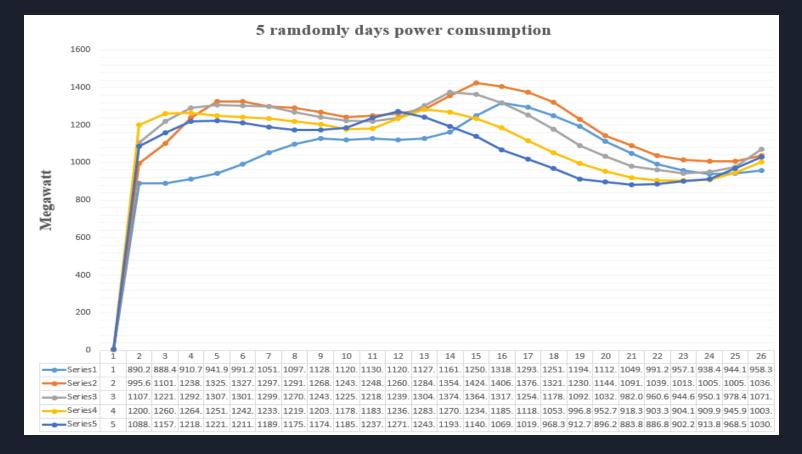
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
lr = LinearRegression().fit(X_train, y_train)
np.mean(cross_val_score(lr, X_train, y_train, cv=5))

Predict Value & Real value

0.11217934523843542



Multiple Linear Regression Model



Random Forest Regression Model

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
np.mean(cross_val_score(rf, X_train, y_train, cv=5))

0.5031362802852091

Predict Value Real value

0	1187.84494	1102.033
1	1064.43623	1190.984
2	1051.87970	1177.578
3	1107.31617	1172.951
4	942.14033	859.464
5	1142.30232	1040.533
6	1401.84201	1393.293
7	1007.59489	1266.172
8	1098.34358	1121.585
9	1066.53211	1090.752

Learn from those Models

The variable 'Hour' would definitely affect power grid load, so we use it as one of the input variables.

There are patterns of the load curve. For example, in most of the days, 3 am is the time where power grid load meet its minimum. From 3 am to 6 pm, the power grid load continue increasing and meet its maximum at 6 or 7 pm. Then it continues decreasing to meet its minimum at 3 am.

As for our models' prediction, we did not do well. As shown in previous slides, our multiple linear regression model predict that the power grid load would continue to increase in a given day.

For our random forest regression model, the results are slightly better than the Linear Regression model. The model successfully predict the pattern that from 6 pm to 3 am, the power grid load would continue to decrease to daily minimum, then continues to increase to daily maximum at 6 pm.

If we have more time, we would build a time series model, this should predict better outcomes that fits the power grid load in real data!

Thank You!