MODERN PHYSICS

Course title

Contact information

Gabriel SEYFARTH LNCMI-CNRS/UGA (National High Magnetic Field Laboratory) Polygone Scientifique, Grenoble (33) 4 76 88 78 56 gabriel.seyfarth@univ-grenoble-alpes.fr

other teachers

Prof. François MONTANET Prof. Johann COLLOT

Course book

general reading : "Modern Physics for Scientists and Engineers" S. Thornton/A. Rex, Brooks/Cole more specific literature is announced separately in the different parts

<u>Course</u>

The Modern Physics course consists of 4 different parts (parts A + B are taught in the first half of the semester, parts C + D in the second half)

PART A (G. Seyfarth)

Introduction to Quantum Physics

 $15h \rightarrow$ lectures (5*1h30), tutorials (5*1h30)

- I. Basic principles
 - \rightarrow Superposition principle
 - \rightarrow particle-wave duality
 - \rightarrow de Broglie relation
 - \rightarrow Heisenberg's uncertainty principle

II. Single-particle wave function and Schrödinger equation

- \rightarrow Harmonic oscillator
- \rightarrow infinte potential well
- \rightarrow H atom (only main quantum number)
- \rightarrow Tunneling

III. Interaction light \leftrightarrow matter

 \rightarrow Absorption, stimulated and spontaneous emission

IV. Outlook

 \rightarrow Identical particles and Pauli principle

PART B (F. Montanet)

Nuclear Physics

 $15h \rightarrow$ lectures (5*1h30), tutorials (5*1h30)

I - Properties of nuclei

1) Introduction and basic knowledge

Rutherford experiment Elementary forces and particles Properties of the nucleons Interactions between nucleons

2) Properties of nuclei

Conventions and definitions Nuclear size Nuclear masses & units (MeV, amu) Mass defect, binding energy Semi-empirical formulae Nucleus exited states, gamma-ray deexcitation.

3) Radioactivity

Radioactive decay law Half-life and radioactive constant Activity

II - Nuclear reactions

1) Introduction

Transformations Conservation laws Types of radioactive decays Induced reactions

2) Rest mass energy balance

Mass defect and binding energy Mean binging energy per nucleon

3) Induced reactions

Classical mechanics reminder Kinetics of nuclear reactions: threshold Coulomb barrier Reaction cross-section

4) Radioactive decays

2-body decays3-body decaysDecay diagram and branching ratios

PART C (J. Collot)

Relativity

 $15h \rightarrow$ lectures (5*1h30), tutorials (5*1h30)

Principles of special relativity

- \rightarrow Physical implications & Lorentz transformation
- \rightarrow Experimental tests of special relativity
- \rightarrow Minkowski's 4-d space-time
- \rightarrow Relativistic dynamics

Outlook : towards general relativity

PART D (J. Collot and G. Seyfarth)

Laboratory course

 $20h \rightarrow 5$ lab sessions (5*4h) for groups (2 students) BU students and Grenoble (UGA) students work together as French-American groups

Millikan oil drop experiment

Electron diffraction (particle-wave duality)

Atomic spectra (Balmer series of hydrogen)

Stefan-Boltzmann law / solar radiation / Emittance / Irradiance

Photovoltaic effect

Evaluation/Grading

2 oral exams \rightarrow midterm : Quantum Mechanics <u>or</u> Nuclear Physics \rightarrow end of semester : Relativity

2 written exams

- \rightarrow midterm : Quantum Mechanics and Nuclear Physics
- \rightarrow final : Relativity and Laboratory Course

For each lab session a report (one per group) is mandatory and will be graded.

weights for the final grade :

35% written exam QM + NP 35% written exam Relativity + lab course 15% oral exam QM/NP 7.5% oral exam relativity 7.5% lab reports