Process latitudes in projection printing

Eytan Barouch, Uwe Hollerbach, Steven A. Orszag,
Princeton Univ., Princeton, NJ, USA

Brian D. Bradie, Martin C. Peckerar
Naval Research Lab., Washington, DC, USA

ABSTRACT
We have developed a simulation package to address a wide variety of process latitude issues. We demonstrate its versatility by studying three examples: (i) process latitude degradation due to "notching", (ii) line width dependence of a newly developed negative I-line chemically amplified resist on baking time, and (iii) line width control of an exposed X-ray 0.5 μm line as a function of baking time. A powerful all-purpose 3D dissolution algorithm has been developed for this purpose. It is the only dissolution algorithm capable of handling changes of topology of the dissolution surface.