Week 1. CHILDES, root infinitives, and null subjects

Syntax
- Recall the basic structure of adult sentences.
- IP (a.k.a. TP, INFLP, ...) is the position of modals and auxiliaries, also assumed to be home of tense and agreement.
- CP is where wh-words move and where I moves in subject-aux-inversion.

Splitting the INFL
- Syntax since 1986 has been more or less driven by the principle “every separable functional element belongs in its own phrase.”
- Various syntactic tests support these moves as well (cf. CAS LX 523).

Functional heads
- The DP, CP, and VP all suffered a similar fate.
- DP was split into DP and NumP.
Functional heads

- CP was split into several “discourse-related” functional heads as well (topic, focus, force, and “finiteness”).

Functional structure

- Often, the “fine structure” of the functional heads does not matter, so people will still refer to “IP” (with the understanding that under a microscope it is probably AgrSP, TP, AgrOP, or even more complex), “CP”, “DP”, etc.
- The heart of “syntax” is really in the functional heads, on this view. Verbs and nouns give us the lexical content, but functional heads (TP, AgrSP, etc.) give us the syntactic structure.

How do kids get there?

- Given the structure of adult sentences, the question we’re concerned about here will be in large part: how do kids (consistently) arrive at this structure (when they become adults)?
- Kids learn it (patterns of input).
- Chickens and eggs, and creoles, and so forth.
- Kids start out assuming the entire adult structure, learning just the details (Does the verb move? How is tense pronounced?)
- Kids start out assuming some subpart of the adult structure, complexity increasing with development.

Testing for functional structure

- Trying to answer this question involves trying to determine what evidence we have for these functional structures in child syntax.
- It’s not very easy. It’s hard to ask judgments of kids, and they often do unhelpful things like repeat (or garble) things they just heard (probably telling us nothing about what their grammar actually is).

Testing for functional structure

- We do know what various functional projections are supposed to be responsible for, and so we can look for evidence of their effects in child language.
- This isn’t foolproof. If a child fails to pronounce the past tense suffix on a verb that was clearly intended to be in the past, does this mean there’s no TP? Does it mean they simply made a speech error (as adults sometimes do)? Does it mean they haven’t figured out how to pronounce the past tense affix yet?

Helpful clues kids give us

- Null subjects
- Root infinitives
- Kids seem to use nonfinite forms of main (root) clause verbs where adults wouldn’t. Again, there’s a certain crosslinguistic systematicity to it as well, from which we might take hints about kids’ functional structure.
Null subjects

- Lots of languages allow you to drop the subject.
 - Italian, Spanish: the verb generally carries enough inflection to identify the person, number of the subject.
 - Chinese: where the subject is obvious from context it can be left out.
 - On the view that kids know language, but are just trying to figure out the specific details (principles and parameters), one possibility is that they always start out speaking Italian (or Chinese) until they get evidence to the contrary. (Hyams 1986 made a very influential proposal to this effect)

Null subjects

- Kids do tend to speak in short sentences. There seem to in fact be identifiable stages in terms of the length of the kids' sentences (one-word stage, two-word stage, multi-word stage...), often measured in terms of MLU (mean length of utterance) which roughly corresponds to linguistic development.
 - Perhaps the kid’s just trying to say a three-word sentence in a two-word window, so something has to go.
 - That is, some kind of processing limitation.

Subject vs. object drop

<table>
<thead>
<tr>
<th></th>
<th>Subjects</th>
<th>A</th>
<th>E</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>57</td>
<td>61</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Object</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Why can’t English kids really be speaking Italian?

- In Italian, subjects can be dropped (but need not be), in English, they can’t be dropped at all.
- So since having subjects is consistent with Italian, what’s going to signal to the kid that they’ve got the wrong kind of language?
- A “subset” problem.
 - Possible solution? Expletive it and there.

- In Italian, null subjects are allowed wherever a subject pronoun would be, including embedded finite clauses (“I know that [he] has left”) and finite root questions (“What has [he] bought?”).
- In Kid English, null subjects never show up in these environments. It doesn’t seem so much like Italian.

Null subjects vs. time

- Null subjects seem to be pretty robustly confined to a certain portion of linguistic development. There’s a pretty sharp dropoff at around 2.5 or 3.
- Hamann’s Danish kids illustrate this well.
Optional/root infinitives

- Kids around the age of 2 also sometimes use infinitives instead of finite verbs in their main clauses.
- It’s “optional” in that sometimes they get it right (finite) and sometimes they get it wrong (nonfinite), at the same developmental stage.
- French:
 - Pas manger la poupée
 - Miché dormir
 - Miché sleep[inf]
- German:
 - Zahne putzen
 - Thorsten das haben
- Dutch:
 - Ik ook lezen
 - I also read[inf.]

Root infinitives

- English kids do this too, it turns out, but this wasn’t noticed for a long time.
- It only write on the pad (Eve 2;0)
- He bite me (Sarah 2;9)
- Horse go (Adam 2;3)
- It looks like what’s happening is kids are leaving off the -s.
- Taking the crosslinguistic facts into account, we now think those are nonfinite forms (i.e. to write, to bite, to go).

Root infinitives seem nonfinite

Poeppel & Wexler (1993) looked at V2 in German (where finite verbs should be in second position, nonfinite verbs should be at the end).

They concluded: the finiteness distinction is made correctly at the earliest observable stage.

<table>
<thead>
<tr>
<th>+finite</th>
<th>-finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2, not final</td>
<td>197</td>
</tr>
<tr>
<td>V final, not V2</td>
<td>11</td>
</tr>
</tbody>
</table>

Components

- CHAT: Chat is a transcription protocol common to most transcripts in the CHILDES database.
- CLAN: CLAN is a program (actually a collection of programs) used to transcribe data and analyze transcripts.
- CHILDES: The database itself consists of the transcripts (or other data, e.g., video, audio).

CHILDES

- Child Language Data Exchange System
 http://childes.psy.cmu.edu
- Founded in 1984, Concord, MA.
- Director Brian MacWhinney
 macw@mac.com.
- A source of, among other things, computerized—searchable—transcripts of child speech.
- Note: When using data from CHILDES, you must always cite the original source of the data. See the CHILDES database manual for details on what to cite for each corpus.

CHAT

- The CHAT format guidelines for coding your own transcripts are quite involved
 - see the 130-page manual for details.
- headers
 - @Participants
 - speaker “tiers”
 - “CHI,” “PAT.”
 - unintelligible speech
 - “xxx,” ignored.
 - “xx,” a word.
CLAN

- Analysis programs and transcript/text editor.
- Directories:
 - working: where it looks for transcript files to analyze
 - output: where it will put output files, default is working directory
 - lib and mor lib: where it looks for its own files, should be leave-able-as-is. If in doubt, set to lib in the same folder as the program file.

freq

- The freq command tallies up the number of times each word appears in the transcript.
- Useful to figure out which words are most common (or which words are used at all) in a child’s transcript.

combo

- The combo command is used to search for patterns in the transcripts.
- For all of the commands (including freq and mlu), there are certain options you should specify:
 - Tier +t*CHI
 - Input file(s) nina*
 - Output file > outfile.txt
- For example:
 - freq +t*CHI nina10.cha > freq-nina10.txt
 - mlu +t*CHI nina* > mlu-nina.txt

mlu

- The mlu command computes the mean length of utterance in morphemes. Used as a rough measure of the child’s linguistic development.
- Requires that CLAN can tell what the morphemes are.
- Many transcriptions are tagged with %mor tiers for this purpose. Morphemes are delimited by, e.g., -, &, and - (see CHAT manual)
 - what’re pro:wh|what v|do pro|you v|need ?
 - ...brought... ...v|bring&PAST...

Directories:

- transcript/text
- Analysis

lenth of

- freq (10-Sep-2004) is conducting analyses on:

> freq sample.cha

score

- 0.680 Type/Token ratio
- 50 Total number of words (tokens)
- 34 Total number of different word types used
- ------------------
- 2 you
- 2 yeah
- 1 wonderful
- 3 chalk
- 1 eat
- 1 don’t
- 1 delicious
- 1 chalk+chalk
- 3 chalk
- 1 are
- 1 any
- From file <sample.cha>

freq

- for all of the commands (including freq and mlu), there are certain options you should specify:
 - Tier +t*CHI
 - Input file(s) nina*
 - Output file > outfile.txt
- For example:
 - freq +t*CHI nina10.cha > freq-nina10.txt
 - mlu +t*CHI nina* > mlu-nina.txt

output

- where it will put output: where it will put output files, default is working directory

Working Directory

- where it looks for its own files, should be leave-able-as-is. If in doubt, set to lib in the same folder as the program file.
In addition to those, combo has a couple of other options we care about:

- `+s’eat*` search for...pattern in "...",
- `+@fname` search for...patterns in fname
- `-w2` show 2 lines before a found result
- `+w2` show 2 lines after a found result

For example:

```
 combo +w2 -w2 +s’eat*’ nina10.cha > eatn10.txt
```

For searches with combo:

- `x^y` finds x immediately followed by y (full words)
- `*` finds anything
- `x+y` finds x or y
- `!x` finds anything but x
- `^` finds any one character
- `x^*^y` finds x eventually followed by y
- `*ing` finds anything ending in ing
- `the^*^!grey^*^(dog+cat)` finds the followed eventually by something other than grey, followed eventually by either dog or cat. Finds the black cat, the big red dog, but not the grey cat (though: why?)

Harkening back, we talked about a couple of ideas about what’s wrong with kids’ trees.

Each idea makes predictions about what kids will and won’t say—and CHILDES can be used to see to what extent these predictions are met.

- Relatively painless computerized searching
- Relative to pen and paper, at least
- A lot of data available, a lot of kids available

Harris & Wexler (1996)

- Child English bare stems as “OIs”?
 - In the present, only morphology is 3sg -s.
 - Bare stem isn’t unambiguously an infinitive form.
 - No word order correlate to finiteness.
- OIs are clearer in better inflected languages. Does English do this too? Or is it different?
- Hypotheses:
 - Kids don’t “get” inflection yet; go and goes are basically homonyms.
 - These are OIs, the -s is correlated with something systematic about the child syntax (e.g., a structure missing T).

Harris & Wexler (1996)

- Exploring a consequence of having T in the structure: do support.
- Rationale:
 - Main verbs do not move in English.
 - Without a modal or auxiliary, T is stranded: The verb -ed not move.
 - Do is inserted to save T.
- Predicts: No T, no do insertion.

Empirically, we expect:

- She go
- She goes
- She not go (no T no do)
- She doesn’t go (adult, T and do)
- but never
- She not goes (evidence of T, yet no do).

On the other hand: All should be valid options if kids just don’t “get” inflection.
Harris & Wexler (1996)

- Looked at 10 kids from 1;6 to 4;1
 - Adam, Eve, Sara (Brown), Nina (Suppes), Abe (Kuczaj), Naomi (Sachs), Shem (Clark), April (Higginson), Nathaniel (Snow).
- Counted sentences…
 - with *no* or *not* before the verb
 - without a modal/auxiliary
 - with unambiguous 3sg subjects
 - with either -s or -ed as inflected.

<table>
<thead>
<tr>
<th></th>
<th>aff</th>
<th>neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>-inflec</td>
<td>782</td>
<td>47</td>
</tr>
<tr>
<td>+inflec</td>
<td>594</td>
<td>5</td>
</tr>
</tbody>
</table>

Harris & Wexler (1996)

- Affirmative:
 - 43% inflected
- Negative:
 - < 10% inflected
- It not works Mom
- no N. has a microphone
- no goes in there
- but the horse not stand ups
- no goes here!

Small numbers, but in the right direction.

Generalization: Considering cases with no auxiliary, kids inflect about half the time normally, but almost never (up to performance errors) inflect in the negative.

If *do* is an indicator of T in the negative, we might expect to see that *do* appears in negatives about as often as inflection appears in affirmatives.

Also, basically true: 37% vs. 34% in the pre-2;6 group, 73% vs. 61% in the post-2;6 group.

<table>
<thead>
<tr>
<th></th>
<th>present</th>
<th>past</th>
<th>future</th>
</tr>
</thead>
<tbody>
<tr>
<td>bare stem</td>
<td>771</td>
<td>128</td>
<td>39</td>
</tr>
<tr>
<td>-s</td>
<td>418</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>-ed</td>
<td>10</td>
<td>168</td>
<td>0</td>
</tr>
</tbody>
</table>

NS/IOI

- Some languages appear not to undergo the “optional infinitive” stage. Seems to correlate (nearly? perfectly?) with the target language’s allowance of null subjects. In principle, it would be nice to get this too, if it’s true. See, e.g., Wexler (1998).
- OI languages: Germanic languages studied to date (Danish, Dutch, English, Faroese, Icelandic, Norwegian, Swedish), Irish, Russian, Brazilian Portuguese, Czech
- Non-OI languages: Italian, Spanish, Catalan, Tamil, Polish

Root infinitives vs. time

- The timing on root infinitives is likewise pretty robust, quitting around 3 years old. Cf. null subjects.
So what allows null subjects?

- Subjects of infinitives can be null.
 - I want to win the lottery.
- Kids at the age where subjects are often missing often use infinitive verb forms.
- Perhaps that’s the key: Since kids can use infinitives where adults can’t (main clause main verb), this allows them to use null subjects in those sentences as a side effect.

Null subjects and infinitives

- Perhaps we’re on to something here.
- So null subjects are (for the most part—not completely) allowed by virtue of having infinitives.
- What allows the infinitives in child language?
- Generally taken as some kind of “disturbance of IP” (e.g., TP is missing), home of both tense and the EPP.

Whence the infinitives?

- Two major types of syntactic proposals:
 - Truncation
 - What the kids do not know is that trees go all the way to CP, so they sometimes stop early, sometimes short of TP (e.g., Rizzi). Or they don’t know about higher functional structure at all (e.g., Radford).
 - Optional tense
 - Kids will sometimes leave out a projection in their tree (e.g. TP and/or AgrP), but the rest of it is still there (e.g., Wexler).
- What do these predict?

Null subjects...

- Null subject parameter(s) is/are not initially mis-set (kids don’t all start off speaking Italian or Chinese—contra Hyams 1986, 1992); rather, child null subjects are (at least in part) due to the availability of non-finite verbs (the OI stage).
- Most null subjects are licensed by being the subject of a nonfinite verb (i.e. PRO)
- But there are still some null subjects with finite verbs… More on this in a moment.

Back to null subjects vs. ±Fin

- Bromberg & Wexler (1995) promote the idea that null subjects with finite verbs arise from a kind of “topic drop” (available to adults in special contexts).
- Proposal (Bromberg & Wexler)
 - Topic-drop applies to Very Strong Topics
 - Kids sometimes take (in reality) non-VS topics to be VS topics (a pragmatic error)
Prediction about NS

- RI’s have two ways of licensing NSs:
 - PRO (regular licensing of null subject)
 - Topic drop
- Finite verbs have one way to license a NS:
 - Topic drop
- So: We expect more null subjects with root infinitives (which we in fact see).
 - Cf. Rizzi: Subject in highest specifier can always be dropped, and RI’s also allow PRO. Same story, basically.

Bromberg, Wexler, *wh*-questions, and null subjects

If *topic drop* is something which drops a topic in SpecCP…

…and if *wh*-words also move to SpecCP…

…we would not expect null subjects with non-subject (e.g., *where*) *wh*-questions where the verb is finite (so PRO is not licensed).

Cf. Rizzi: Same prediction; if you have a CP, a subject in SpecTP won’t be in the highest specifier, so it can’t be dropped. One difference: Rizzi predicts no nonfinite *wh*-questions at all, hence no null subjects at all.

Bromberg, Wexler, *wh*-questions, and null subjects

Finiteness of null/pronominal subjects, Adam’s *wh*-questions (Bromberg & Wexler 1995)

<table>
<thead>
<tr>
<th></th>
<th>Finite</th>
<th>Nonfinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null</td>
<td>2</td>
<td>178</td>
</tr>
<tr>
<td>Pronoun</td>
<td>117</td>
<td>131</td>
</tr>
</tbody>
</table>

Adult null subjects (“diary drop”)

- Both Rizzi and Bromberg & Wexler appeal to properties of adult language to justify the child null subjects.
- B&W suggest that topic drop is available in English, but only for Very Strong topics, and what kids are doing wrong is identifying far too many things as VS topics.
- Rizzi suggests that the ability to drop a subject in the highest specifier is available in certain registers (“diary drop”) (where presumably Root=CP is disregarded, or at least relaxed to allow Root=IP).

Saw John today. Looked tired.

Truncation

- Rizzi’s “truncation” theory predicts:
 - No *wh*-questions with root infinitives
 - *wh*-question ⇒ CP, but
 - CP ⇒ IP, and
 - IP ⇒ finite verb
 - And of course we wouldn’t expect null subjects in *wh*-questions if null subjects are allowed (only) in the specifier of the root.