Several classes of theories

- No functional projections. (Radford) Kids don’t have any functional projections (TP, CP, and so forth). This comes later. No TP, no tense distinction.
- Structure building. (Vainikka, Guilfoyle & Noonan) Kids start with no functional projections and gradually increase their functional structure.

Radford (1995)

- A proposal about Early Child English.
- Kids’ syntax differs from adults’ syntax:
 - kids use only lexical (not functional) elements
 - structural sisters in kids’ trees always have a θ-relation between them.

[Diagram]

adult syntax ≠ child syntax

- Adults: CP—IP—VP
- Kids: VP

Evidence for absence of IP:
- No modals (repeating, kids drop them)
- No auxiliaries (Mummy doing dinner)
- No productive use of tense & agreement (Baby ride truck, Mommy go, Daddy sleep)

Absence of CP

- No CP system:
 - no complementizers (that, for, if)
 - no preposed auxiliary (car go?)
 - no wh-movement (imitating where does it go? yields go?; spontaneous: mouse doing?)
 - kids bad at comprehending wh-object questions (out of canonical order). (—What are you doing? —No.)
Absence of DP

- No DP system:
 - no non-θ elements
 - no expletives (raining, outside cold)
 - no of before noun complements of nouns (cup tea)
- kids tend not to use determiners (Hayley draw boat, want duck, reading book)
- kids don’t use possessive ’s, which may be a D.
- kids don’t use pronouns, which are probably Ds.

The transition to IP

- Slightly older kids alternate between Nom subjects and Acc subjects, between finite verbs and nonfinite verbs.
 - Looks like: kids are “code-switching” between a VP grammar and an IP grammar.
- If this is the case, we expect Nom subjects to occur in the IP grammar (with the finite verbs) and Acc subjects to occur in the VP grammar (with the nonfinite verbs).

The transition to IP

- Radford says look, they don’t (based on his “own (substantial) corpus”):
 - “numerous” nonfinite clauses with nominative subjects: I singing, I done it.
 - “frequent” finite clauses with accusative subjects: Me can make a hen, Me didn’t paint that.
- Even alternations in the same (finite) utterances: I need this one, Me does.

The transition to IP

- Radford concludes that once kids realize that there is an IP, then all utterances after that have the IP structure.
 - So there is a difference between inflectionless forms before the “IP stage” and after…
 - Initially, it was just a bare VP
 - Later, it’s an IP which is mysteriously missing inflection sometimes and also sometimes mysterious misassigning Case to its specifier.

Finite pretty much always goes with a nominative subject.

<table>
<thead>
<tr>
<th>Loeb & Leonard (1991)</th>
<th>7 representative kids 2;11-3:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>subject</td>
<td>Finite</td>
</tr>
<tr>
<td>he+she</td>
<td>436</td>
</tr>
<tr>
<td>him+her</td>
<td>4</td>
</tr>
<tr>
<td>% non-Nom</td>
<td>0.9%</td>
</tr>
</tbody>
</table>
Finite pretty much always goes with a nominative subject.

<table>
<thead>
<tr>
<th>Schütze & Wexler (1996)</th>
<th>Nina 1;11-2;6</th>
</tr>
</thead>
<tbody>
<tr>
<td>subject</td>
<td>Finite</td>
</tr>
<tr>
<td>he+she</td>
<td>255</td>
</tr>
<tr>
<td>him+her</td>
<td>14</td>
</tr>
<tr>
<td>% non-Nom</td>
<td>5%</td>
</tr>
</tbody>
</table>

So, Schütze & Wexler (and Loeb & Leonard) showed that the variation is not random (as if kids didn’t know how to use Case yet). When a verb is finite, they overwhelmingly use the correct subject Case. Just about all of the non-nominative subjects occur with nonfinite verbs.

So it still could be two separate grammars (a VP/lexical grammar or an IP/functional grammar that the kid picks between).

The transition to CP

- It has been observed that even after kids can invert yes-no questions…
 - Did you want that one?
- …they fail to invert in wh-questions
 - What he can ride in?
- Radford suggests: C comes in two flavors, “verbal” and “nonverbal”—root clauses are verbal, embedded clauses are nonverbal, and I will not move to C if C is nonverbal.

The transition to CP

- Radford suggests: C comes in two flavors, “verbal” and “nonverbal”—root clauses are verbal, embedded clauses are nonverbal, and I will not move to C if C is nonverbal.
- Adult embedded C is nonverbal (in English):
 - I don’t know what I should do.
 - “I don’t know what should I do.
- Adult matrix C is verbal:
 - What should I do?

The transition to CP

- Kids have C which isn’t specified either for verbal or for nonverbal.
- The rule about moving I to C doesn’t mention unspecified C, so I can move to unspecified C.
- But, if a wh-word moves into SpecCP, then Spec-head agreement with the nonverbal wh-word gives C a nonverbal feature, prohibiting I to C movement.

The transition to CP

- You get the feeling that the explanation is at least as complicated as the data being described?
- Is the fact that there is no embedded inversion in English enough to believe in a “sometimes nominal C”?
- And: Aren’t kids having trouble with subject agreement between I and SpecIP (“the specifier-head mis-licensing” Radford posits) at the same time that we have to believe that they are perfectly able to effect agreement between C and SpecCP…?
Radford, in sum

- Kids start with *lexical* structures, only later moving on to *functional* structures. 2 steps.
- This change at least possibly comes about via *maturation* (the lexical structures come “on line” at 20 months, the functional structures come “on line” at 24 months).
- Lack of IP, CP, DP used to explain missing modals, complementizers, determiners, pronouns—but it isn’t clear that the things CP (wh-questions, …) or IP (subject case, …) are responsible for are really missing.

Guilfoyle & Noonan

- A similar story, although better spelled out. Kids start out with just lexically-based trees, no functional categories.
- D (the and ’s); kids don’t have them…
 - Except they do… there are a few instances like *Where go the car?* which G&N dismiss based on a pretty archaic view of determiners and Japanese.
- Case (“KPs”); no empirical evidence.
 - And again, a pretty outdated story about Case. Only used so that VP-internal subjects need not violate the Case Filter.

Guilfoyle & Noonan

- IP; predicts no V-movement, no tense and agreement marking…
- Null subjects; assumed that when kids have just a VP, they can (must?) leave the subject in SpecVP. A subject in SpecVP can be dropped—a *pro*-drop language is a language where the subject (which can then be *pro*) can be left in SpecVP, they claim. Not a widely adopted view of *pro*-drop.

Vainikka (1993/4)

- Primarily using evidence from Case in English pronouns, also argues for a “structure-building” view.
- *I get Bozo… me get John* (Adam 2;3). Case marking isn’t inherently specified on the verb.
- Radford accounts for things like *me love boat* by assuming basically that “Case doesn’t work yet.” Vainikka shows that it is more systematic.
Vainikka (1993/4)

- The IP stage. After the VP stage, there start to be evidence of IP-related things but still no CP.
- Nina: sudden increase in nominative subjects.

Vainikka (1993/4)

- Weirdly, even when Nina had nominative subjects, when she asked *wh*-questions, she seemed to use oblique subjects.
 - Know what my making?
 - Look what my got.
- Proposal: There’s just an IP still—*wh*-word is going into SpecIP. But when SpecIP is filled, the subject can’t raise there, can’t appear in the nominative.

Vainikka (1993/4)

- CP stage: *wh*-words and nominative co-occur, inversion in questions.
 - How did he get out?
 - What do the horses eat?
 - Why can’t we open this piano?

Subjects vs. finiteness

- Turns out, null subjects seem to correlate with *nonfinite* verbs (Hyams’ BUCLD talk summarizes results of this sort):

<table>
<thead>
<tr>
<th>Language</th>
<th>Finite overt</th>
<th>Finite null</th>
<th>Finite n</th>
<th>Nonfinite overt</th>
<th>Nonfinite null</th>
<th>Nonfinite n</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>74%</td>
<td>26%</td>
<td>705</td>
<td>7%</td>
<td>93%</td>
<td>164</td>
</tr>
<tr>
<td>German</td>
<td>80%</td>
<td>20%</td>
<td>3636</td>
<td>11%</td>
<td>89%</td>
<td>2477</td>
</tr>
<tr>
<td>English</td>
<td>51%</td>
<td>49%</td>
<td>204</td>
<td>6%</td>
<td>94%</td>
<td>113</td>
</tr>
</tbody>
</table>

- So it *does* seem like the kids know the difference between finite and nonfinite—and they (tend to) drop subjects with nonfinite verbs and preserve subjects with finite verbs.
Rizzi (1993/4)

- This “around 2 year old” stage is characterized by a couple of symptoms:
 - nonfinite verbs in matrix clauses in certain languages (specifically, non-null subject languages)
 - dropped subjects
- How might we explain this co-occurrence?

Null subjects and C

- Crisma (1992): French kids typically (1/114 =1% vs. 407/1002=41%) do not produce null subjects with a wh-phrase.
- Valian (1991): English kids typically (9/552=2%) do not produce null subjects with a wh-phrase.
- Poeppel & Wexler (1993): German kids typically exclude null subjects from post-V2 position.

Null subjects and C

- It looks like: If the kid shows evidence of CP (wh-words, V2), then the kid also does not drop the subject.
- Rizzi’s idea:
 - A discourse-licensed null subject is available only in the highest specifier in the tree (topic-drop).
 - Axiom: CP=root
 - Kids don’t “get” the axiom until between 2-3 years old.

Truncated trees

- The result (of not having CP=root) is that kids are allowed to have truncated structures—trees that look like adult trees with the tops chopped off.
- Importantly: The kids don’t just leave stuff out—they just stop the tree “early.” So, if the kid leaves out a functional projection, s/he leaves out all higher XPs as well.

Truncation

- If kid selects anything lower than TP as the root, the result is a root infinitive—which can be as big as any kind of XP below TP in the structure.
- Note in particular, though, it can’t be a CP.
- So: we expect that evidence of CP will correlate with finite verbs.

Truncation

- Pierce (1989) looking at French observed that there are almost no root infinitives with subject clitics—this is predicted if these clitics are instances of subject agreement in AgrS; if there is no TP, there can be no AgrSP.
Truncation

- There is some dispute in the syntax literature as to whether the position of NegP (the projection responsible for the negative morpheme) is higher or lower than TP in the tree.
- If NegP is higher than TP, we would expect not to find negative root infinitives.

Truncation and NegP

- But we do find negative Root Infinitives—(Pierce 1989): in the acquisition of French, negation follows finite verbs and preceds nonfinite verbs (that is—French kids know the movement properties of finiteness, and thus they have the concept of finiteness).

Truncation and null subjects

- As for null subjects:
 - If the tree is just a VP, the subject can be omitted in its base position—it’s still in the specifier of the root.
 - If the tree is just a TP, the subject can be omitted from the normal subject position—note that this would be a finite verb with a null subject.
 - If the tree is a CP and SpecCP is filled (like in a wh-question) we expect no null subjects.

Null subject languages vs. root infinitives

- Italian seems to show no (or very very few) root infinitives. If this is maturation of “Root=CP” how could languages vary?
- Rizzi suggests:
 - In English, V doesn’t move
 - In French, tensed verbs move to AgrS (I), untensed verbs may move to AgrS
 - In Italian, all verbs move to AgrS
Null subject languages vs. root infinitives

- The idea (set in a “minimalist” framework) is that a verb needs to get to AgrS—it has a feature/property (parametric) that marks it as needing to get to AgrS in a grammatical sentence. Hence, the kid needs AgrS.

Very nice, very nice…

- But… one question: kids produce a lot of nominative subjects with nonfinite verbs. How does that happen? (Shouldn’t NOM entail AgrSP, which should in turn entail TP?)

<table>
<thead>
<tr>
<th>Nonfinite only</th>
<th>Nina</th>
<th>Peter</th>
<th>Sarah</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/he/she</td>
<td>184</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>Me/my/him/her</td>
<td>133</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>% non-NOM</td>
<td>42%</td>
<td>22%</td>
<td>37%</td>
</tr>
</tbody>
</table>

(from Schütze & Wexler 1996)

Several classes of theories

- No functional projections. (Radford)
- Structure building. (Vainikka, Guilfoyle & Noonan)
- Truncation. (Rizzi)
- Full competence. (Wexler)

Several classes of theories

- Truncation. (Rizzi) Like structure building but without the time course—kids have access to all of the functional structure but they don’t realize that sentences need to be CP’s, so they sometimes stop early.
- “ATOM” (Full competence). (Wexler, …) Kids have access to all of the functional structure and have a very specific problem with tense and agreement that sometimes causes them to leave one out.

Full Competence Hypothesis

- The morphosyntactic properties associated with finiteness and attributable to the availability of functional categories (notably head movement) are in place.
- The best model of the data is the standard analysis of adult German (functional projections and all)

The one exception:

- Grammatical Infinitive Hypothesis:
 - Matrix sentences with (clause-final) infinitives are a legitimate structure in child German grammar.
Adult German

- Phrase structure consists of CP, IP, VP.
- German is SOV, V2
 - The finite verb (or auxiliary or modal) is the second constituent in main clauses, following some constituent (subject, object, or adverbial).
 - In embedded clauses, the finite verb is final.
 - V2 comes about by moving the finite verb to (head-initial) C.

The acquisition data

- Andreas (2;1, from CHILDES)
- Unique spontaneous utterances
 - omitting repetitions
 - omitting prompted responses
 - omitting second and later occurrences of the identical utterance (not necessarily adjacent).
 - omitting imperatives, questions
 - omitting one-word responses

In brief...

- Kids can choose a finite or a nonfinite verb.
 - A finite (matrix) verb shows up in 2nd position
 - A nonfinite verb appears clause-finally

- Classification details
 - Non-finite:
 - verb ends in -en (infinitival marker).
 - Finite:
 - verb does not end in -en.
 - V2 (excludes ambiguous cases where V2 is also a final V); V[-fin] (excludes cases where V is also second).

Results

- There is a strong contingency.
- Conclude: the finiteness distinction is made correctly at the earliest observable stage.

<table>
<thead>
<tr>
<th></th>
<th>+finite</th>
<th>-finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2, not final</td>
<td>197</td>
<td>6</td>
</tr>
<tr>
<td>V final, not V2</td>
<td>11</td>
<td>37</td>
</tr>
</tbody>
</table>

Agreement

- Do kids know agreement? (is it random?)
 - 1 and 3 sg co-occur with correct agreement
 - 2sg (you) subjects are rare (in statements); agreement is phonologically impoverished, but not unambiguously wrong
 - 7 of 11 plural subjects showed an error (typical: *all animals lies there*).
- So, yes. (no.)
Conditional probabilities...

- Clahsen (1986) looked at:
 When the subject is 3sg, how likely is a kid to produce (3sg) -t? (he found: \(\sim 25\%)\)

- But given that sometimes kids use root infinitives, a better question to ask is:
 When the kid produces (3sg) -t, how often is it right (i.e. with a 3sg subject)? \(\sim 100\%\).

Do kids learn “this is a second position verb” for certain verbs?

- (Are some verbs used as auxiliaries?)
- Andreas used 33 finite verbs and 37 nonfinite verbs, 8 of which were in both categories—
 —and those 8 were finite in V2 position and nonfinite in final position.
- Remaining verbs show no clear semantic core that one might attribute the distribution to.

Verb positioning = functional categories

- In adult German, V2 comes about because \(V \rightarrow I \rightarrow C \).
- If we can see non-subjects to the left of finite verbs, we know we have at least one functional projection (above the subject, in whose Spec the first position non-subject goes).

When V is 2nd, what’s first?

- Usually subject, not a big surprise.
- But 19 objects before finite V2 (of 197 cases, 180 with overt subjects)
- And 31 adverbs before finite V2
- Conclude: Kids basically seem to be acting like adults; their V2 is the same V2 that adults use.

Some alternatives...

- Root infinitives due to “modal drop”?
 - Idea: I want to eat pizza.
 - RI? I want to eat pizza.
 - First question: why modals?
- Second, they don’t (always) seem to mean what they should if there is a null modal. 20/37 seem to be clearly non-modal.
 - Thorsten Ball haben (T already has the ball)

Modal drop

- Adult modals are in position 2, regardless of what is in position 1.
- If kids are dropping modals, we should expect a certain proportion of the dropped modals to appear with a non-subject in position 1.
- But none occur—nonfinite verbs also seem to come with initial subjects.
Modal drop

- On the other hand, if nonfinite final V indicates failure to raise to I and C, we don’t expect CP to be available for “topicalization” (the assumption is that V2 involves both movement of V to C and movement of something else to SpecCP, but no need to move something to SpecCP unless V is in C).

CP

- The Full Competence Hypothesis says not only that functional categories exist, but that the child has access to the same functional categories that the adult does.
- In particular, CP should be there too.
- Predicts what we’ve seen:
 - finite verbs are in second position only (modulo topic drop leaving them in first position)
 - nonfinite verbs are in final position only
 - subjects, objects, adverbs may all precede a finite verb in second position.

P&W’s predictions met—how did the other guys fare?

- “No C hypothesis” (kids don’t use overt complementizers)
- Of course, kids don’t really use embedded clauses either (a chicken-egg problem?)
 - Purported cases of embedded clauses without a complementizer aren’t numerous or convincing.
- Absence of evidence ≠ evidence of absence.

Modal drop

- Just to be sure (since the numbers are small), P&W check to make sure they would have expected non-subjects in position 1 with nonfinite verbs if the modal drop hypothesis were true.
 - 17% of the verbs are infinitives
 - 20% of the (finite) time we had non-subject topicalization
 - So 3% of the time (20% of 17%) we would expect non-subject topicalization in nonfinite contexts.
 - Of 251 sentences, we would have expected 8.
 - We saw none.

P&W’s predictions met—how did the other guys fare?

- Radford and related approaches: No functional categories for the young.
- Well, we see V2 with finite verbs
 - finite verb is second
 - non-subjects can be first
- and you can’t do this except to move V out of VP and something else to its left…
- You need at least one functional category.
- Andreas uses agreement correctly when he uses it—adults use IP for that.

P&W’s predictions met—how did the other guys fare?

- Can we get away with one functional category?
- The word order seems to be generable this way so long as F is to the left of VP.
 - subject can stay in SpecVP
 - V moves to F
 - non-subject could move to SpecFP.
- …though people tend to believe that IP in German is head-final (that is, German is head-final except for CP). How do kids learn to put I on the right once they develop CP?
P&W’s predictions met—how did the other guys fare?

- Can we get away with one functional category?
- Empirical argument:
 - negation and adverbs are standardly supposed to mark the left edge of VP.
 - A subject in SpecVP (i.e. when a non-subject is topicalized) should occur to the right of such elements.
- 19 Object-initial sentences, 31 adverb-initial sentences, 8 have an(other) adverb or negation, and all eight have the subject to the left of the adverb/negation.

The Full Competence Hypothesis

- The idea: Kids have full knowledge of the principles and processes and constraints of grammar. Their representations are basically adult-like.
- What’s different is that kids optionally allow infinitives as matrix verbs (which kids grow out of).

Some upcoming stuff…

- Papers to read (and suggested order):
 - Schütze & Wexler 1996 (background study)
 - Wexler 1998 (survey of state of the art)
 - Legendre et al. 2000 (optimality theory)

Concerning Wexler (1998)

- (Partial) clause structure:

Concerning Wexler (1988)

- The basic idea: In adult clauses, the subject needs to move both to SpecTP and (then) to SpecAgrP.
- This needs to happen because T “needs” something in its specifier (≈EPP) and so does Agr.
- The subject DP can “solve the problem” for both T and for Agr—for an adult.

Concerning Wexler (1988)

- The basic idea: In adult clauses, the subject needs to move both to SpecTP and (then) to SpecAgrP.
- For kids, the subject can only “solve the problem” for one of them. Either T or Agr is necessarily going to be left out in the cold.
Concerning Wexler (1988)

- Implementation: For adults:
 - T needs a D feature.
 - Agr needs a D feature.
 - The subject, happily, has a D feature.
 - The subject moves to SpecTP, takes care of T’s need for a D feature (the subject “checks” the D feature on T). The T feature loses its need for a D feature, but the subject still has its D feature (the subject is still a DP).
 - The subject moves on, to take care of Agr.

- Implementation: For kids:
 - Everything is the same except that the subject can only solve one problem before quitting. It “loses” its D feature after helping out either T or Agr.
 - Kids are constrained by the Unique Checking Constraint that says subjects (or their D features) can only “check” another feature once.
 - So the kids are in a bind.

Concerning Wexler (1988)

- Kids in a pickle: The only options open to the kids are:
 - Leave out TP (keep AgrP, the subject can solve Agr’s problem alone). Result: nonfinite verb, nom case.
 - Leave out AgrP (keep TP, the subject can solve T’s problem alone). Result: nonfinite verb, default case.
 - Violate the UCC (let the subject do both things anyway). Result: finite verb, nom case.
 - No matter which way you slice it, the kids have to do something “wrong”. At that point, they choose randomly (but cf. Legendre et al.)

Technical bits

- Features come in two relevant kinds: interpretable and uninterpretable.
- Either kind of feature can be involved in a “checking”—only interpretable features survive.
- The game is to have no uninterpretable features left at the end.
- “T needs a D” means “T has an uninterpretable [D] feature” and the subject (with its normally interpretable [D] feature) comes along and the two features “check”, the interpretable one survives. UCC=D uninterpretable on subjects?

Distributed Morphology

- A hypothesis about how we pronounce words.
- Idea: Syntax does what it does. Then Morphology gets a chance to look at the tree. Before Morphology, there’s no phonology there—Morphology gets to decide what phonology fits.

Distributed Morphology

- If Morphology sees V+T (the verb having combined with tense in some way, say Affix Hopping, or V→I), it needs to pronounce it.
- Languages have rules about these things that tell us…
Distributed Morphology

- In English, we have the following rules for pronouncing this tense/agreement affix:
 - (V+)T is pronounced like:
 - /s/ if we have features [3, sg, present]
 - /ed/ if we have the feature [past]
 - Ø otherwise

- [3sg] is a feature we’d expect to find on Agr; [present] is a feature we’d expect to find on T.
- Hence: only if both T and Agr are in the structure can we ever see -s. (And only if T is in the structure can we ever see -ed). Otherwise, stem (nonfinite) form.

On to Legendre et al. (2000)

- Wexler: During OI stage, kids sometimes omit T, and sometimes omit Agr.
- Legendre et al.: Looking at development (of French), it appears that the choice of what to omit is systematic; we propose a system to account for (predict) the proportion of the time kids omit T, Agr, both, neither, in progressive stages of development.

Optimality Theory

- Legendre et al. (2000) is set in the Optimality Theory framework (often seen in phonology, less often seen applied to syntax).
- “Grammar is a system of ranked and violable constraints”

- Grammar involves constraints on the representations (e.g., SS, LF, PF, or perhaps a combined representation).
- The constraints exist in all languages.
- Where languages differ is in how important each constraint is with respect to each other constraint.

Optimality Theory

- In our analysis, one constraint is Parse-T, which says that tense must be realized in a clause. A structure without tense (where TP has been omitted, say) will violate this constraint.
- Another constraint is *F (“Don’t have a functional category”). A structure with TP will violate this constraint.
Optimality Theory

- Parse-T and *F are in conflict— it is impossible to satisfy both at the same time.
- When constraints conflict, the choice made (on a language-particular basis) of which constraint is considered to be “more important” (more highly ranked) determines which constraint is satisfied and which must be violated.

Optimality Theory—big picture

- Universal Grammar is the constraints that languages must obey.
- Languages differ only in how those constraints are ranked relative to one another. (So, “parameter” = “ranking”)
- The kid’s job is to re-rank constraints until they match the order which generated the input that s/he hears.

Floating constraints

- The innovation in Legendre et al. (2000) that gets us off the ground is the idea that as kids re-rank constraints, the position of the constraint in the hierarchy can get somewhat fuzzy, such that two positions can overlap.

*F

Parse-T

(Under certain assumptions) this predicts that we would see TP in the structure 50% of the time, and see structures without TP the other 50% of the time.
French kid data

- Looked at 3 French kids from CHILDES
- Broke development into stages based on a modified MLU-type measure based on how long most of their utterances were (2 words, more than 2 words) and how many of the utterances contain verbs.
- Looked at tense and agreement in each of the three stages represented in the data.

French kid data

- Kids start out using 3sg agreement and present tense for practically everything (correct or not).
- We took this to be a “default”
 - (No agreement? Pronounce it as 3sg. No tense? Pronounce it as present. Neither? Pronounce it as an infinitive.).

French kid data

- This means if a kid uses 3sg or present tense, we can’t tell if they are really using 3sg (they might be) or if they are not using agreement at all and just pronouncing the default.
- So, we looked at non-present tense forms and non-3sg forms only to avoid the question of the defaults.

French kids data

- We found that tense and agreement develop differently—specifically, in the first stage we looked at, kids were using tense fine, but then in the next stage, they got worse as the agreement improved.
- Middle stage: looks like competition between T and Agr for a single node.