θ-theory continued…

From last time:
- verbs have θ-roles (e.g., Agent, Theme, …) to assign, specified in the lexicon
- arguments chains receive θ-roles.
 —an argument is a referring expression (excludes wh-words).
 —a chain is a collection of positions the argument occupied.
- θ-criterion:
 —each argument must get exactly one θ-role.
 —each verb must assign each of its θ-roles to exactly one argument.
 —checked at the end of the derivation (evidence was wh-in-situ)

Some terminology:
- θ-position: a position in any given tree where a θ-role is assigned.
 (e.g., complement of V)
- θ′-position: positions in any given tree where a θ-role is not assigned.

(We’ll add to this A-positions, A′-positions, A-chains, and A′-chains shortly)

Segue: We talked about wh-phrases (not referring expressions) and how they have to undergo movement (leaving a trace) in order for the θ-criterion to be satisfied, since a trace is a referring expression, even though the wh-phrase which moved is not. Now, we’ll run through the same thing with quantificational phrases, also not referring expressions.

Quantifiers, QR, and c-command

Quantifiers like everyone, someone, noone are also not referring expressions. Just like wh-phrases, they need to move in order to satisfy the θ-criterion.

(1)
 a. John suspects everyone.
 b. SS: [IP John suspects everyone].
 c. LF: [IP everyone, [IP John suspects ti]].
(2)

(3) For every person x: [John suspects x].

(4) Everyone suspects someone.
 a. For every person x [there is a person y [x suspects y]].
 ‘For everyone x, you can find a person y such that x suspects y.’
 b. There is a person y [for every person x [x suspects y]].
 ‘There is a person y such that y is suspected by everyone.’

Two logical scope readings—we match the logical structure to syntactic structure:

(5)
We can define a notion of scope that predicts the readings:

(7) **Scope**
 The scope of α is the set of nodes α c-commands in the LF representation.

(8) **C-command**
 a c-commands b iff:
 i) the first branching node dominating α also dominates β.
 ii) α does not dominate β.

C-command is actually a pretty easy concept, but it’s clearer from a picture.

(9) Informally: To find what a node c-commands, go up one level, and it is everything below it except the original node.
In (10), *someone* c-commands *everyone*, and in (11) *everyone* c-commands *someone*.

So in (10), *someone* has scope over *everyone*, and in (11) *everyone* has scope over *someone*.

For this to work formally requires introducing some terminology about adjunction—

![Diagram](category (XP)

(12) \(\text{XP}_1 \xleftarrow{} \text{segment (XP}_1)\)

adjunct \(\text{XP}_2 \xleftarrow{} \text{segment (XP}_2)\)

adjunct \(\text{XP}_3 \xleftarrow{} \text{segment (XP}_3)\)

Segments count for determining c-command.

A-positions vs. A′-positions; A-chains vs. A′-chains

An **A-position** (argument position) is a structural position where an argument can be found at LF. For example, subject position (SpecIP), object position (complement of V).

An **A′-position** is a structural position where a non-argument can be found at LF.

We’ve been talking about quantifiers and *wh*-phrases, which are non-arguments by virtue of their not being referring expressions. We find them in SpecCP and adjoined to IP. Accordingly, SpecCP and adjoined positions are A′-positions.

Recall the: \(\theta\)-position vs. \(\theta′\)-position difference from before (A \(\theta\)-position being a position where an argument gets a \(\theta\)-role). Obviously, any A′-position is also a \(\theta′\)-position (if you have a non-argument there, it can’t be getting a \(\theta\)-role there). But there are A-positions which are not \(\theta\)-positions. SpecIP is a \(\theta\)-position only when the verb assigns an external argument, but it is always an A-position.

It is also useful to distinguish movement chains into **A-chains** (movement to an A-position) and **A′-chains** (movement to an A′-position).

Nonstandard arguments

Passives

(13) a. Mary ate the sandwich.
 b. The sandwich was eaten.

The passive verb does not assign an external \(\theta\)-role (to SpecIP).
We create the passive verb by attaching \textit{-ed} or \textit{-en} to the verb (remains a verb).

We consider this derivation to take place \textit{in the lexicon} (prior to insertion into \(X'\) trees). Attaching \textit{-en} suppresses the external \(\theta\)-role:

\begin{equation}
\text{(14)} \quad \text{\textit{eat}: Agent <Theme> \implies \textit{eaten}: — <Theme>}
\end{equation}

\begin{equation}
(15) \quad \begin{array}{c}
\text{IP} \\
\text{NP}_i \quad \text{SpecIP is an A-position.}
\end{array}
\begin{array}{c}
\text{I'} \quad \text{SpecIP is a } \theta'\text{-position.}
\end{array}
\begin{array}{c}
\text{I} \\
\text{be} \quad \{\text{the sandwich}_i, t_i\} \text{ is an A-chain.}
\end{array}
\begin{array}{c}
\text{VP} \\
\text{I} \\
[+\text{past}] \\
\text{V}_j \\
\text{t}_j
\end{array}
\begin{array}{c}
\text{VP} \\
\text{V'}
\end{array}
\begin{array}{c}
\text{eaten} \\
\text{t}_i
\end{array}
\end{equation}

EPP (SpecIP must be filled) forces movement of \textit{the sandwich} to SpecIP.

\underline{Unaccusatives}

There is a class of intransitive verbs that work in a very similar way to the passive.

\begin{enumerate}
\item[(16)] a. The vase broke.
\item[b.] John broke the vase.
\end{enumerate}

The standard analysis of this type of intransitive verb is that they have an internal argument but no external argument.

\begin{equation}
(17) \quad \text{\textit{break}: } \emptyset <\text{Theme}>
\end{equation}

\begin{equation}
(18) \quad [\text{ip } [\text{the vase}]_i [\text{vp broke } t_i]]
\end{equation}

As for (16a), it means something like ‘John caused the vase to break’ and is usually analyzed as having a “causative” morpheme that adds an external Agent argument (sort of the opposite of the passive morpheme, which removes the external argument).

\begin{equation}
(19) \quad [\text{ip John } [\text{vp CAUSE}+\text{break the vase }]]
\end{equation}
Adjectival passives

The adjectival passives are like the verbal passives (active object appears in subject position) but are adjectives (as we can see by the ability to prefix un- and the fact that they can modify nouns, selected by seem and remain).

(21) a. The island was uninhabited.
b. The performance was interrupted.

(22) a. CBS employees inhabited the island.
b. John interrupted the performance.

(23) a. The uninhabited island
b. The uninterrupted performance

(24) a. The island seemed uninhabited.
b. The performance remained uninterrupted.

Derived in the lexicon with a category changing suffix (also -en, -ed):

(25) inhabit: [+V –N] \(\rightarrow\) inhabited: [+V +N]

Case Theory

Traditionally, “case” refers to the marking on nouns in many languages which indicate their grammatical role.

John-SUBJ book-OBJ read(PAST)
‘John read a book.’

b. John-ga hon-o katta.
John-SUBJ book-OBJ bought
‘John bought a book.’

c. Knigu on čital
book-OBJ he-SUBJ read(past)
‘He read the book.’

English has a limited amount of morphological case as well, in the pronouns:
subjective forms	objective forms	possessive forms
1sg | I | me | my
2sg | you | you | your
3sg masculine | he | him | his
3sg feminine | she | her | her
1pl | we | us | our
2pl | you | you | your
3pl | they | them | their

(27) a. I met Pat.
 b. * me met Pat.
 c. * my met Pat.

(28) a. * Pat met I.
 b. Pat met me.
 c. * Pat met my.

(29) a. * I cousin met Pat.
 b. * Me cousin met Pat.
 c. My cousin met Pat.

Suppose: Since we see some evidence of case differentiation in English, all nouns in English get case—only on most nouns, you can’t tell the difference between subjective, objective, and possessive forms.

In fact: We’ll suppose that all noun phrases in all languages get case. A well-formed noun phrase is a noun phrase that has case.

More on this in a minute. First a mystery about English subjects:

The first part of the mystery we’re attempting to solve is why in the three examples with clausal subjects below, the first is ill-formed. All are non-finite.

(30) a. * John to leave suddenly is foolish.
 b. For John to leave suddenly is foolish.
 c. To leave suddenly is foolish.
 d. * For to leave suddenly is foolish.

The generalization seems to be:
Overt subjects cannot appear in the subject position of a nonfinite clause unless they are precedent by a prepositional complementizer (that is, for).

Suppose: NPs are assigned Case by something (like θ-roles are assigned by verbs) Overt NPs without Case are ill-formed (PRO can get away without Case).
Slightly more specifically:

- Infl can assign subjective Case to NPs “in its vicinity”
- (Transitive) V assigns objective Case to NPs “in its vicinity”
- P assigns objective Case to NPs “in its vicinity”

Now, consider:

(32)

a. For him to leave suddenly was foolish.
b. * For he to leave suddenly was foolish.
c. * For his to leave suddenly was foolish.

So: **Finite Infl** assigns subjective Case to the subject, but **nonfinite Infl** does not.

The explanation, then:

- *for* assigns objective Case
- finite Infl assigns subjective Case
- nonfinite Infl does not assign Case at all
- overt NPs need Case.
- (temporarily suppose that) PRO needs *not* to get Case.

(33) **Case Filter**

*NP if NP has phonetic content and has no Case.

Since the Case Filter allows PRO (without phonetic content) to escape without Case, it seems like it is a condition on PF. To pronounce an NP you need to know its Case.
For direct objects and objects of prepositions, we could get away with saying “the sister of the Case-assigner gets the Case:”

(34)
\[
\begin{array}{c}
\text{PP} \\
\overset{P'}{P} \\
\overset{P}{to} \rightarrow \overset{\text{NP}}{me} \\
\end{array} \quad \begin{array}{c}
\text{VP} \\
\overset{V'}{V} \\
\overset{V}{\text{meet}} \rightarrow \overset{\text{NP}}{me} \\
\end{array}
\]

But this wouldn’t work for *for* in the cases we looked at earlier:

(35)
\[
\begin{array}{c}
\text{CP} \\
\overset{C'}{C} \\
\overset{C}{\text{for}} \rightarrow \overset{\text{IP}}{\text{NP}} \overset{\text{I'}}{\text{I}_{\text{[fin]}}} \rightarrow \overset{\text{VP}}{\text{I}} \rightarrow \overset{\text{I}}{\text{I}} \rightarrow \overset{\text{I}}{\dots} \\
\end{array}
\]

We can define a relation of *government* that holds between C and NP like so:

(36)
\[
\textbf{Government (first statement)} \qquad \alpha \text{ governs } \beta \text{ iff} \\
\text{ i) } \alpha \text{ is an } X^\circ \text{ category (that is, } \alpha \text{ is a head) } \\
\text{ ii) } \alpha \text{ c-commands } \beta.
\]

This gets all three cases discussed so far (C, P, and V). Remember, c-command goes:

(37)
\[
\textbf{C-command} \qquad \alpha \text{ c-commands } \beta \text{ iff} \\
\text{ i) } \text{ the first branching node dominating } \alpha \text{ also dominates } \beta \\
\text{ ii) } \alpha \text{ does not dominate } \beta.
\]

We’re not quite there yet because this leaves open the possibility that C can govern *everything in IP* (since it c-commands everything in IP), yet we don’t want *for* to be able to assign objective case to, for example, the object of a preposition (in a sense, that’s the preposition’s job).
(38) **Minimality Condition**
In the configuration \([XP \ldots X \ldots [YP \ldots Y \ldots ZP \ldots]\ldots]\)
X does not govern ZP.

(39)
```
      X YP
     /    |
    Spec Y'   Y does govern ZP (it’s closer).
     
      ZP
```

(40) **Government**
\(\alpha\) governs \(\beta\) iff
i) \(\alpha\) is an \(X^\circ\) category (that is, \(\alpha\) is a head)
ii) \(\alpha\) c-commands \(\beta\)
iii) Minimality is respected.

So, Case-assignment happens under government; a Case-assigning head (C, V, P) can assign case to an NP that it governs.

In English, there appears to be an additional constraint:

An NP can only receive Case if it is (string) adjacent to the Case-assigner.

(41) a. * John makes frequently mistakes.
b. John frequently makes mistakes.

Recall that this gave us evidence that main verbs in English do not raise to Infl—only auxiliary verbs can. Why might that be? If Case has to be assigned under adjacency, *frequently* in (41a) interrupts Case-assigner makes and its object mistakes.

This predicts that where the verb does not assign Case to its object (for example, when the object is a PP), this ordering restriction does not hold:

(42) a. John knocked repeatedly on the door.
b. John repeatedly knocked on the door.

Incidentally, does the main verb raise to Infl in (42a)? It’s a complicated question. Based on the way we used the adverb test before, it would suggest “yes”—but another possibility is that \([\text{pp } on \text{ the door}]\) is extraposed, something that it is allowed to do because Case is not being assigned to it.
The generally accepted analysis of main verbs in English is that they never raise to Infl, meaning that, under our assumptions so far, something like this extraposition analysis must be correct.

Another thing that an adjacency requirement can explain is the order of the complements in ditransitive verbs:

(44) a. Mary gave the book to John.
 b. * Mary gave to John the book.

Here, the PP to John does not get Case from the verb, so it does not need be adjacent to it, but the book does get Case from the verb and so does need to be adjacent to it.

Subjective case and Spec-Head agreement

The machinery we have built up so far still doesn’t explain why a finite Infl assigns Case to the subject position, however:

(45) IP
 NP I'
 She I VP
 ...

Here, Infl governs VP, but does not govern the NP in its specifier.

Two approaches have been taken to this in the past:
 • Redefine c-command such that Infl c-commands the NP too.
 • Suppose that Infl assigns Case via a mechanism other than government.

A homework problem will address the first approach, we’ll take the second approach.

Recall that earlier we found a connection between the subject position and Infl in terms of agreement—Infl is the home of agreement inflection (in English, the –s that appears on the verb with 3sg subjects), but it is sensitive to features in SpecIP.

We handled this in terms of Spec-Head agreement:
We said that person, number, gender features (ϕ-features) were “relevant” in terms of agreement. We can add to that [subjective Case], which is “relevant” for Case assignment.

Issues of Objective Case

Ability to assign objective case turns out not to correlate with whether or not a verb selects (requires) a direct object.

(48) a. The boy relies [pp on the girl].
 b. * The boy relies.

Ouhalla uses the term transitive to refer to verbs which assign Case. In this sense, rely is an intransitive verb although it still requires an argument. In general, then, intransitive verbs cannot select an NP as its internal argument because it would not get Case.

Even similar verbs can differ on whether they assign Case or not:

(49) a. I listened *(to) him. \(\text{listen: intransitive}\)
 b. I heard him. \(\text{hear: transitive}\)

We also find examples where verbs assign Case to something which is not its argument at all: Exceptional Case Marking (ECM).

(50) a. Mary believes [John to be intelligent]. \(\text{Embeded subject gets}\)
 b. Mary believes [him to be intelligent]. \(\text{objective Case}\)
 c. * Mary believes [he to be intelligent].
 d. Mary sincerely believes [him to be intelligent]. \(\text{Adjacency}\)
 e. * Mary believes sincerely [him to be intelligent].
This is basically like our previous example:

(51) [For him to leave suddenly] would be foolish.

There, *for* assigns Case to *him* in SpecIP, and in (50), the root clause verb assigns Case.

\[
\begin{array}{c}
\text{VP} \\
\downarrow \\
\text{V'} \\
\text{V} \\
\text{IP} \\
\text{believe} \\
\text{NP} \\
\text{him} \\
\text{I'} \\
\text{I}_\text{[-fin]} \quad \text{VP} \\
\end{array}
\]

The same thing is true of our small clauses too:

(53) a. Mary considers [AP John [A_ intelligent]].
 b. Mary considers [AP him [A_ intelligent]].
 c. * Mary considers [AP he [A_ intelligent]].
 d. Mary sincerely considers [AP him [A_ intelligent]].
 e. * Mary considers sincerely [AP him [A_ intelligent]].

\[
\begin{array}{c}
\text{VP} \\
\downarrow \\
\text{V'} \\
\text{V} \\
\text{AP} \\
\text{considers} \\
\text{NP} \\
\text{him} \\
\text{A'} \\
\text{A} \\
\text{intelligent} \\
\end{array}
\]

ECM verbs (like *consider, believe*) take an IP complement not a (nonfinite) CP complement. First, we can’t have *that* in the complement clause, and more importantly, the verb would not govern the embedded subject (due to Minimality) if there was a closer head. (Note: they *can* take finite CP complements, though: *Mary believes that John is intelligent.*)
Possessive Case and the DP hypothesis

“Subject” (specifiers) of NPs appear to receive possessive Case.

(56)

a. His house
b. Mary’s translation of the book.

Where does this come from? It appears that complements of N can’t get Case from the N.

Remember how subjective Case comes about in clauses? It is assigned through Spec-Head agreement with Infl. The hypothesis we will pursue is that the possessive Case comes about through Spec-Head agreement with a similar functional category.

(57)

D here is for Determiner; this is a Determiner Phrase. In a sense, we really expected this anyway, since determiners did not fit into X'-structures yet.

DPs have a structure very similar to that of clauses:
In sentences Infl carries tense features, but D does not carry tense features.

This gives us a way of analyzing *gerundive phrases*, which look like sentences but act like nouns:

(59)
 a. [Mary’s watching TV] annoys her roommates.
 b. Her roommates are against [Mary’s watching TV].

(60)

Incidentally, *pronouns* (despite their name) are also of category D.

(61)

 a. You politicians are all alike.
 b. We linguists know the truth.
 c. People trust us linguists.

The case of the whole DP is reflected in the form that the pronoun takes.
Ouhalla glosses over something which might be confusing—

- Under the DP hypothesis DPs receive Case (rather than NPs).
- The genitive (possessive) Case is assigned to SpecDP by Spec-Head agreement (D has a feature [GEN] which agrees with a genitive Case DP in SpecDP).
- The case of the whole DP, however, is reflected in a pronoun in D. (D has a feature [ACC] which reflects the case assigned to the whole DP).

\[\text{(63)} \]

\[
\begin{array}{c}
\text{DP} \\
\text{D'} \\
\text{D} \\
\text{we} \\
\text{NP} \\
\text{N'} \\
\text{N} \\
\text{linguists}
\end{array}
\]

I saw \[\text{[DP Mary’s homework]}\].

Here, \text{Mary’s homework}, the whole DP has accusative Case (cf. \text{I saw him}). Hence, D has an [Acc] feature (assigned by the verb to the whole DP). However, \text{Mary’s} (in SpecDP) has genitive Case (assigned by D via Spec-Head agreement). Hence, D also has a [GEN] feature.

It appears that in general, when D is spelled out as a pronoun, it can’t assign genitive Case (doesn’t have the [Gen] feature): *John admires Carol’s us linguists.

This is all a little bit murky, but it is worth \text{pointing out} that it is murky so when you read about it you don’t think you’re the only one who finds it murky.

Head-movement in DPs

In DP’s, D plays a very similar role to the one played by Infl in IPs. D has no tense, but it does have \text{agreement}. Assuming that person, number, and gender (ϕ-features) originate in D (like tense and ϕ-features originate in I for IP), we need to posit an operation like Affix Hopping to get them together by SS (surface structure).

Just like adverbs showed us that Infl lowers to V in English sentences, we can see from the positioning of adjectives and nouns that D lowers to N in English DPs:
(65) a. The army totally destroyed the city.
b. * The army destroyed totally the city.

(66) a. The army’s total destruction of the city
b. * The army’s destruction total of the city
c. John’s unfounded allegations
d. * John’s allegations unfounded
e. People’s continuous donations to the fund.
f. * People’s donations continuous to the fund.

(Also noteworthy is the fact that Case adjacency is not an issue in (66) because destruction does not assign objective/accusative Case, even though Case adjacency provides a separate means of ruling out (65a)).

Case and movement

DP-movement:

(67) a. John seems [IP t_i to be happy].
b. It seems [CP that [IP John is happy]].
c. * It seems [IP John to be happy].

When we talked about (67a–b) before, we talked about the EPP (SpecIP must be filled—sentences must have a subject). In (67a), John moves from the lower subject position to the upper subject position because the upper subject position needs to be filled. Another option to satisfy this is to insert the expletive it into subject position, as in (67b), satisfying the EPP.

The question now is: What’s wrong with (67c)? The EPP should be satisfied for both clauses, yet the sentence is ungrammatical.

What’s wrong is that the embedded clauses is nonfinite, hence Infl lacks Case assignment features that are necessary to assign subjective Case to John. So, we end up with John left without Case and thus in violation of the Case Filter.

In (67b), John gets Case because the embedded clause is finite (just as the subject does in any finite sentence), and in (67a), John gets Case in the root clause, from the root clause Infl (which is finite).

So, we have two reasons to move John in (67a):
i) To satisfy the EPP, ii) to get Case on John.
In general, we like to avoid having redundant explanations for things, so people have argued for either dropping the EPP explanation (meaning that raising occurs solely in order to get Case on the DP) or dropping the Case explanation (meaning that raising occurs solely in order to satisfy the EPP, leaving some questions about (67c)). For most of the past 20 years, people have generally gone the first route, attributing movement to Case requirements, although very recently (within the last couple of years) the EPP explanation has been “making a comeback”—So the jury’s still out, but for concreteness, we’ll stick with the Case-based explanation:

- In raising constructions (e.g., *seems*) the DP moves because if it didn’t it would violate the Case Filter.

Passives and unaccusatives:

(68) [The book], was written \(t_i\).

The standard analysis of Passive is that a passive verb (*was kicked*) cannot assign accusative Case. This would mean that the object would remain Caseless if it did not move to SpecIP to receive subjective Case via Spec-Head agreement with Infl.

So attaching passive –en/-ed to a verb removes the verb’s ability to assign accusative Case. It is sometimes said to “absorb” accusative Case.

Unaccusative verbs work the same way:

(69) [The vase], broke \(t_i\).

Unaccusative verbs are those verbs which (surprise!) do not assign accusative Case, forcing the DP to look elsewhere (specifically, SpecIP) for its Case.

Notice also that both passives and unaccusatives do not assign an external \(\theta\)-role (if they did, the \(\theta\)-criterion wouldn’t be satisfied). There is a famous generalization about this called *Burzio’s Generalization*:

(70) **Burzio’s Generalization**

A verb (with an object) Case-marks its object iff it \(\theta\)-marks (i.e. assigns a \(\theta\)-role to) its subject.
The VP-internal subject hypothesis

We talked about this a little bit in class before, but now we can treat this a bit more seriously.

(71)
 a. All the travelers should drink from the well.
 b. The travelers should all drink from the well.

In each case all (a “floating quantifier”) modifies the travelers. But how can it modify the travelers in (71b)?

The usual answer to this is that the travelers has moved away from all in (71b)—the idea is that the subject does not start in SpecIP, but actually starts in SpecVP and moves up to SpecIP:

(72)
 a.
 \[IP \]
 \[QP_i \]
 \[Q \]
 \[all \]
 \[the travelers should \]
 \[V \]
 \[t_i \]
 \[V' \]
 \[drink \]
 \[from the well \]

 b.
 \[IP \]
 \[DP_i \]
 \[the travelers \]
 \[should \]
 \[VP \]
 \[QP \]
 \[Q \]
 \[all \]
 \[t_i \]
 \[V \]
 \[PP \]
 \[drink \]
 \[from the well \]

The reason the DP moves can be seen as the same thing that happens in passives and unaccusatives—Case is not available to a subject in SpecVP, and so it must move to SpecIP in order to get Case.

Incidentally: This means that V can only assign Case via government and Infl can only assign Case via Spec-Head agreement.
Doing it this way also means that the \(\theta \)-roles assigned by the verb are all assigned \textit{inside} the VP, the maximal projection of the verb itself. This is more intuitively appealing than the indirect \(\theta \)-role assignment we needed to have when the subject was base-generated in SpecIP (and gives us a more principled way to answer the question “Why can the verb assign a \(\theta \)-role to SpecIP but not to SpecCP?”)

Movement and chains

Movement of DPs, if we assume it is always motivated by Case, then takes place from a non-Case-marked position to a Case-marked position.

Similar to the \(\theta \)-criterion, we can define a Case requirement on chains that goes like this:

(73) **Case Requirement**

A chain is Case-marked if it contains exactly one Case-marked position.

This actually allows us to simplify our grammar a little bit—recall:

(74) a. * John seems is happy
 b. * [John] \(_i\) seems [\(t_i \) is happy].

Before, we ruled out this form of NP-movement (now DP-movement) because it was movement out of a “Tensed S” (a finite IP). However, we can now see the problem in terms of the subject \textit{John} receiving Case \textit{twice}—because finite Infl assigns Case to its specifier, \textit{John} gets Case once in the embedded clause, and then gets Case again from the finite Infl in the root clause. So: \textit{We} no longer need the TSC—The Case Requirement (a more general constraint) subsumes it.

In general, A-chains (argument chains) have a non-Case-marked position at their base and a Case-marked position at their head. Similarly, the generally have a \(\theta \)-position at their base and a \(\theta' \)-position at their head. With respect to arguments, the \(\theta \)-role is assigned to the tail of the chain and the Case is assigned to the head of the chain.

As for \textit{wh}-movement and Quantifier Raising, these are not movement to a Case position—in fact, they are generally movement \textit{from} a Case position.

(75) a. \textit{What} \(_i\) did John see \(t_i \)?
 b. \textit{John} suspects everyone.
 b’. LF: \[
 \text{[IP [everyone]}_i \ [\text{IP John suspects } t_i]]
 \]

This still satisfies the Case Requirement—only one Case is assigned, just at the bottom.