NERNST: Microfluidic Analysis for Mars

Sample handling:
- Reagent additions without sample contamination
- Acid additions/titrations can be repeated on a single sample for increased precision
- Locations on a chip can be designated for detection of a target analyte – e.g. ClO$_4^-$

Analysis:
- Increased redundancy of sensors
- Arrays of electrodes with various selectivities
- Calibration performed over entire dynamic range
- ISEs can have selectivity determined in situ

Flight (microfluidics):
- Small footprint
- Low mass/power
- Small reagent volume
NERNST: Microfluidic Analysis for Mars

Main chip functions:
- Fluid manipulation
- Reagent addition
- Sample dilution
- Mixing
- Delivery to sensors

Measurable anions:
- \(\text{SO}_4^{2-} (\text{Pb}) \)
- \(\text{NO}_3^- (\text{Ag}) \)
- \(\text{O}_2^- (\text{Au}) \)
- \(\text{O}_2^{2-} (\text{Pt}) \)
- \(\text{ClO}_2^- (\text{Ag/Pt}) \)
- \(\text{ClO}_4^- (\text{Ag/Pt}) \)

Acknowledgements:
- Prof. Sam Kounaves (Tufts)
- Dr. Andrew Aubrey, Michael Lee (JPL)
- Dr. Richard Quinn (SETI/NASA Ames)
- Michael Hecht (JPL)
- Prof. Nikos A. Chaniotakis (U. Crete, GR)