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Limitations of working memory force a reliance on motor exploration to retrieve forgotten features of the visual array. A
category search task was devised to study tradeoffs between exploration and memory in the face of significant cognitive
and motor demands. The task required search through arrays of hidden, multi-featured objects to find three belonging to the
same category. Location contents were revealed briefly by either a: (1) mouseclick, or (2) saccadic eye movement with or
without delays between saccade offset and object appearance. As the complexity of the category rule increased, search
favored exploration, with more visits and revisits needed to find the set. As motor costs increased (mouseclick search or
oculomotor search with delays) search favored reliance on memory. Application of the model of J. Epelboim and P. Suppes
(2001) to the revisits produced an estimate of immediate memory span (M) of about 4–6 objects. Variation in estimates of
M across category rules suggested that search was also driven by strategies of transforming the category rule into concrete
perceptual hypotheses. The results show that tradeoffs between memory and exploration in a cognitively demanding task
are determined by continual and effective monitoring of perceptual load, cognitive demand, decision strategies and motor
effort.
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Introduction

Active visual tasks, such as searching a room for mis-
placed keys, or driving a car along an unfamiliar route,
can make extraordinary demands on visual, cognitive and
motor resources. Information must be gathered from large
regions of space and retained for extended periods of time.
Visual details are continually being forgotten, and must be
retrieved by means of motor actions, such as movements
of the eye or head. Decisions about whether to rely on an
accumulating (but fragile) memory for the contents of a
scene, or to refresh memory by revisiting previously seen
locations, may be made at intervals ranging from one to
three times each second. These decisions must weigh the
risks of relying on a potentially inaccurate memory against
the costs in time or effort of generating the motor actions
needed to explore the environment. The challenges faced
during active tasks increase when the tasks impose sig-
nificant cognitive requirements involving the generation
and evaluation of hypotheses about the contents of the
scene. This study investigates the tradeoffs between explo-
ration and memory in a cognitively demanding task that
involves both visual search and categorization.

Much recent effort has been devoted to understanding
the trade-offs between memory and motor exploration
during active tasks. Initial reports emphasized the limited
capacity of memory in contrast to the seemingly unlimited
ability to generate eye movements (Ballard, Hayhoe, &
Pelz, 1995; O’Regan, 1992). This perspective was sup-
ported by novel studies of eye movements during “active”
visual tasks, showing that people preferred to re-examine
previously seen locations, rather than relying on memory,
in order to accomplish tasks such as copying arrangements
of colored blocks (Ballard et al., 1995) or solving prob-
lems in geometry (Epelboim & Suppes, 2001). Subsequent
work, however, altered views about the balance between
memory and exploration Studies showed that despite the
limits in the capacity of immediate memory for scene
details during active tasks, memory can be better than
expected, depending on the importance or predictability
of the details (Brady, Konkle, Alvarez, & Oliva, 2009;
Droll & Hayhoe, 2007; Hollingworth & Henderson, 2002;
Pertzov, Avidan, & Zohary, 2009), the location of the
details relative to the planned pathway of the saccadic
eye movements (Bays & Husain, 2008; Gersch, Kowler,
Schnitzer, & Dosher, 2008), or the number of times details
were previously viewed (Epelboim et al., 1995; Melcher,
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2001; Melcher & Kowler, 2001). In addition, motor explo-
ration proved not to be cost-free. Planning of saccadic eye
movements requires time and attention, so that people often
avoid making saccades, or decide to alter the saccadic
path, if the time needed for planning saccades is too long
(Araujo, Kowler, & Pavel, 2001; Coëffé & O’Regan,
1987; Hooge & Erkelens, 1998) or if the distances that
must be traveled are large (Ballard et al., 1995; Hardiess,
Gillner, & Mallot, 2008; Inamdar & Pomplun, 2003).
Taken together, these prior findings show that manage-
ment of resources during active visual tasks is not a matter
of favoring either memory or motor planning exclusively,
but requires decisions about how to strike the appropriate
balance between the two.
The prior work cited above focused mainly on perceptual

or perceptual-motor tasks that made significant demands on
visual memory and motor planning. Natural tasks, how-
ever, often impose significant cognitive demands as well.
We investigated the role of both cognitive and motor
demands in controlling the tradeoff between memory and
exploration by testing performance in a difficult visual
search task. The task required searchers to explore arrays
of hidden objects to find three multi-featured targets that
belonged to the same category. Cognitive demands were
controlled by varying the complexity of the rule that defined
the category. Motor demands were varied by changing the
effector mediating the search (arm or eye) and by imposing
different time constraints. The goal was to find out how the
cognitive and motor demands of the task affected strategies
of relying on memory or exploration.
How might cognitive demands affect strategies for

balancing memory and exploration? When thinking and
decision making become demanding, the best strategy may
be to decrease the reliance on immediate or working mem-
ory in favor of a greater reliance on exploration, thereby
freeing the limited memory resources for use in thinking
or planning, rather than in retaining the contents of the
display. Cognitive demands could also have more subtle
effects. For example, it is possible that only a subset of the
features of fixated objects are encoded during each glance
(Alvarez & Cavanagh, 2004; Bays, Catalao, & Husain,
2009; Droll, Hayhoe, Triesch, & Sullivan, 2005; Olson &
Jiang, 2002), and the selection of which features to encode
may depend on the task demands.
The effect of cognitive task demands on memory has

been addressed previously using dual-task methods. In a
classic study, Baddeley and Hitch (1974) concluded that
cognitive demands of a task do not affect memory based
on their finding that words or numbers could be retained
in working memory during simultaneous performance of
a separate, unrelated task. Other studies have shown that
sets of visual objects can be retained in working memory
while performing a concurrent visual search task (Woodman,
Vogel, & Luck, 2001), although visual search is slowed
when the spatial locations of objects have to be retained
during search (Oh & Kim, 2004; Woodman & Luck,
2004). Similarly, learning a new, rule-based category was

more difficult when performing a concurrent working
memory task, suggesting that working memory resources
were required for learning the category (Zeithamova &
Maddox, 2006). However, in such dual-task studies, in
contrast to most real-world tasks, the to-be-remembered
array is unrelated to the primary task. This encourages
a compartmentalization of resources in ways that might
not be relevant when memory and cognitive demands are
integrated into a single task (Sperling & Dosher, 1986), as
they are in most natural situations.

Present study

The present study imposed concurrent cognitive, percep-
tual and motor demands during a visual search task and
used the observed search pattern, mediated by either arm
or eye movements, to infer how memory resources were
managed. The task required subjects to search through an
array of hidden, multi-featured objects to find three that
belonged to the same category. The task was constructed so
that objects could be viewed only one at a time, allowing
the searcher to decide when to go back and re-explore
a previously visited location. Since only one object was
viewed at a time, the experimenters could keep track of
these decisions by observing the searcher’s motor behavior.
The approach was inspired in part by Epelboim and

Suppes’s (2001) study of eye movements while solving
geometry problems. They used sequences of eye fixations
to estimate the span of immediate memory by analyzing the
pattern of revisits to previously viewed locations. They
estimated the span of immediate memory to be about 4 or
5 regions of a diagram (similar to typical estimates; e.g.,
Luck & Vogel, 1997), with revisits serving to replenish
this limited store as regions were forgotten. We will apply
Epelboim and Suppes (2001) model to our search data.
(See Zelinsky, Loschky, & Dickinson, 2010, for a similar
model of revisits, applied to a memorization task.)
The cognitive demands of Epelboim and Suppes’s

(2001) geometry task were considerable, and were likely
to have played a large role in determining which regions
of the diagram were fixated. Subjects decided which
regions of a diagram were most relevant as they worked
through the problem, and thus were able to make strategic
decisions about limited resource allocation “online”. This
makes for a more natural task in which limited resources
must be allocated dynamically. However, because of the
complex nature of the geometry problems it is difficult to
systematically quantify how task demands affected mem-
ory use.
In the present study, cognitive task demands were con-

trolled by varying the complexity of the search rules, and
motor demands were controlled by varying the time and
effort needed to visit locations. Specifically:
(1) Variation in the cognitive demands of the task. The

cognitive demands of the search task were manipulated
by varying the complexity of the rule that defined the
set of target objects. Previous work has shown that the
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subjective difficulty of a category rule depends on both
the number of features relevant to the rule, as well as on
the nature of the decisions about candidate targets (e.g.,
searching for objects that share one or more features vs.
objects that differ on one or more features). Feldman
(2000), following on classical work by Shepard, Hovland,
and Jenkins (1961), found that the difficulty of learning
a new category from examples was proportional to the
shortest propositional formula that is logically equivalent
to that category; the more logically complex the formula,
the more difficult the category was to learn (see also
Aitkin & Feldman, 2006; Feldman, 2006; Pothos &
Chater, 2002; Pothos & Close, 2008). More recently,
Jacob and Hochstein (2008) found that, in a search task
in which subjects had to find sets of objects with either
the same features or different features, same-feature sets
were detected more quickly than different-feature sets. They
concluded that detecting similarities results from use of a
basic, built-in perceptual process, and is thus less effortful
than finding differences.
The present study used five different category rules

which were based on either one, two, or three of the
objects’ four features. Each rule required evaluating either
conjunctions of features (each feature value is the same),
or exclusive disjunctions of features (each feature value is
completely different), or both. Based on prior work (Aitkin
& Feldman, 2006; Feldman, 2006; Jacob & Hochstein,
2008), the complexity of the five rules used in the current
task was assumed to increase by either adding a feature to
the rule or by incorporating a disjunction. If the cognitive
demands of the task influence memory use, we expect
that as category complexity increases, searchers should
visit and revisit more object locations, rather than rely on
memory, to make the decision. Two additional aspects
of the task should be emphasized. First, the task involves
category search, and not category learning, since it
required finding a set of objects that satisfied a rule
presented before each trial (several possible sets that could
satisfy the rule were available in each display). Second,
the contents of the displays were chosen so that an “ideal
searcher” with perfect memory could find the targets after
searching the same number of object locations (between
4 and 5) regardless of the category rule. Thus, an effect of
the type of category rule on search would imply that the
human searcher (unlike the ideal searcher) was encounter-
ing performance limits due to limitations imposed by cog-
nitive processes and strategies and not due to statistical
fluctuations within the display.
(2) Variation in the motor costs of the task. Motor costs

were varied by testing both manual search (Experiment 1),
in which subjects searched through objects by clicking
locations with a mouse, and the (presumably less demand-
ing) oculomotor search (Experiment 2), in which fixation
on a location revealed the object. Two kinds of oculomotor
search were tested: search with delay, in which a brief
pause was imposed between fixating a location and the
appearance of the object at that location, and search with

no delay, in which the object appeared as soon as the
fixation was detected. In the delay condition, the duration
of the delay was chosen such that the time to carry out the
search approximated that of the manual search found in
Experiment 1. When the motor demands of a task are high
(as in manual search, or in delayed oculomotor search),
the best strategy may be to reduce exploration, thus mini-
mizing the amount of time or physical action required for
the task. If this were the case, manual search or oculo-
motor search with delay would be carried out with fewer
visits and revisits to object locations than oculomotor
search with no delay.
As a preview: Manipulations of the cognitive and motor

demands of the task altered the search patterns, and, by
implication, the use and reliance on memory. Increasing
the cognitive demands of the task, and decreasing the
motor demands, each resulted in more visits and more
revisits to object locations, that is, a bias to favor explo-
ration over memory. Further analyses done to estimate the
span of immediate visual memory from the pattern of
revisits using the model of Epelboim and Suppes (2001)
yielded estimates similar to those found in prior work
with very different task constraints (Epelboim & Suppes,
2001; Jacob & Hochstein, 2009), although the estimates of
immediate memory span did vary as a function of both the
motor demands and rule complexity. These results show
that concurrent monitoring of perceptual states, cognitive
load, and motor effort determine the strategies used to
control the balance between exploration and memory
during active visual tasks.
A portion of these results were presented at meetings of

the Vision Sciences Society (Kibbe, 2008; Kibbe, Kowler,
& Feldman, 2009).

Experiment 1

Methods
Subjects

Eight subjects participated. Subjects were either under-
graduates recruited from the General Psychology subject
pool who earned course credits for participation, paid sub-
jects who earned /10 for participation, or graduate student
volunteers. Subjects all had normal or corrected-to-normal
vision. Four subjects completed two sessions of 25 trials,
for a total of 50 trials each, and four subjects completed
one session of 25 trials. An additional subject was tested
but the data were not analyzed due to a visual impairment
not disclosed prior to experiment.

Stimuli

Stimuli were displayed on a Dell 19W LCD monitor
(refresh rate 75 Hz) viewed from a distance of 118 cm.
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Displays consisted of nine “hidden” objects (2.9- � 2.9-)
arranged in a 3 � 3 array (7.8- horizontally by 7.0- verti-
cally). The location of each object was indicated by a black
outline (3.1-� 2.8-) and the distance between midpoints of
objects was 4.6- horizontally and 4.4- vertically. Objects
were revealed by clicking on their location with a mouse.
Each object was defined by four trinary features: color (red,
green, or blue), shape (oval, rectangle, or diamond), texture
(solid, striped, or grid), and orientation (upright, down-
ward, or sideways). Figure 1 shows a sample array.
On each trial subjects searched for a set of three objects

belonging to the same category according to one of the five
possible category rules. The five category rules were formed
by combining conjunction and disjunction rules over the
objects’ features (see Figure 2 for examples):

1. Category S: Objects share one feature (the other
3 features are irrelevant);

2. Category SS: Objects share two features (the other
2 features are irrelevant);

3. Category SD: Objects share one feature, differ on
one feature, with the remaining 2 features irrelevant;

4. Category SSD: Objects share two features, differ on
one feature, with the remaining feature irrelevant;

5. Category SDD: Objects share one feature, differ on
two features, with the remaining feature irrelevant.

Here, “differ” means that each object must have a
different value of the feature (e.g. one is red, one is blue,
and one is green.) Since the searcher was never told which
specific features to search for, the searcher had to decide

which features and objects to explore and of those, which
might satisfy the category.
An experimental session consisted of 25 trials organized

into five blocks of five trials each. Each category rule (see
above) was tested once per block. The order of testing
rules within a block was pseudo-randomized with the con-
straint that the same category rule was never tested twice
in succession and no two categories ever appeared in the
same order in each block.
The nine objects on each trial were selected such that an

ideal searcher (with no memory loss), limited only by
statistical fluctuations in the content of the display, would
have about the same probability of finding a correct set of
three objects for each category rule, regardless of com-
plexity. To create each trial, an algorithm tested every
possible 3-object combination of a randomly drawn set of
nine objects against a given category rule. The algorithm
chose the nine objects such that on each trial there were
nine to 12 possible correct sets of three objects for each
rule. If the nine objects drawn did not fit the criterion, a
new set of nine objects was drawn. To verify the success
of this algorithm, an ideal searcher was programmed to
perform the search task by choosing locations to visit at
random, store the object at each visited location in memory,
and then check its memory after every visit to see whether
it had found a set of three objects that satisfy the category.
The ideal searcher completed 500 trials of each category
type (2500 total trials) and performed the about the same

Figure 1. A sample array of objects for a trial. In the actual
experiment, these objects were hidden from view and could be
revealed one at a time by either a mouse click (Experiment 1) or a
an eye fixation (Experiment 2). The category rule is displayed at
the bottom of the screen at all times. This sample shows Category
S (Objects share one feature). There are 10 possible correct sets
in the sample array.

Figure 2. Category rules and examples of each. During training,
subjects were presented with three-object sets and were asked to
judge whether they were an example of the category rule.
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Figure 3. A sample trial for Category S in Experiment 1. Each screen represents the sequence of actions over the course of the trial. Once
three objects were selected, the trial ended.
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regardless of category rule, requiring an average of 4.7
visits to find a correct set.

Training

Before beginning the experiment, subjects received 26
training examples to familiarize them with the categories
and objects. In each training example, subjects were given
a category (e.g. “Objects share one feature”). They were
then presented with three objects, and asked to decide
whether the three objects belonged to the given category.
Subjects were given feedback as to whether they were
correct and an explanation as to why or why not. An
experimenter observing the subject answered any ques-
tions that the subject had about the categories. Subjects
were allowed to go through the training examples as many
times as they liked until they were confident that they
understood the categories. Most subjects felt confident
that they had learned the categories after going through all
the training examples only once or twice.

Procedure

A sample sequence of events in a trial are illustrated
in Figure 3. Before each trial, an instruction screen
appeared that defined the category rule for that trial.
When subjects were ready to proceed, they clicked on
the instruction screen and nine outline rectangles (one
per object) appeared. These nine rectangles indicated the
location of each object. The content of a given location
was revealed by moving the mouse cursor to the location
and clicking on the location. A revealed object remained
visible for 1 second. Only one object could be viewed at
a time. While one object was visible, clicking on another
location had no effect. Inspection of the locations con-
tinued until the set of 3 had been found. A right-click
of the mouse was used to select a location as belonging
to the set. A selected object remained visible and was
highlighted with a heavy black border. Once selected,
an object could not be unselected. After three objects were
selected, the trial ended. It was possible to select one or two
objects, and then continue search, however, this strategy
was followed only rarely (G1%). (Subjects were advised
that selecting only a portion of the set before finding all
three objects was likely to lead to error since choices could
not be revised.) Subjects were allowed to search for up to
two minutes, at which point the trial timed out. No sub-
jects failed to complete the trial in the allotted time. Eye
movements were not recorded during in Experiment 1.

Results

There were three main performance measures: 1) error
(selecting a set of objects that did not satisfy the category
rule); 2) mean total number of visits to objects per trial;

and 3) mean number of revisits to previously viewed
objects per trial.

Error

Error was defined as selecting a set of three objects that
did not satisfy the category rule. Figure 4 shows that the
mean number of errors within each category rule were low,
an average of 1 error or fewer per subject for each category
rule, with the highest number of errors for the most com-
plex category. This works out to a total of only 17 trials
with errors out of all 275 trials tested (across the 5 rules and
8 subjects). The remaining analyses of visits and revisits
are based solely on trials in which an error was not made.

Visits

The mean number of objects viewed per trial was
an indicator of the search strategy. The mean number
of visits increased significantly as category complexity
increased (Figure 5), from about 9 visits/trial for the
easiest category rule, to 17 visits/trial for the most difficult
rule (F(4) = 7.021, p G 0.001). Post-hoc analysis indicated
significant increases in mean visits between adjacent cate-
gories, except between Category SD (same on one feature;
differing on one feature) and category SSD (same on two
features, differing on one feature) (LSD p G 0.03).
The large effect of the category rule on the number of

visits (Figure 5) was not due to variations in the prob-
ability of encountering sets of objects that satisfied the
category rule. Displays were constructed so that an ideal
searcher, with perfect memory and limited only by the
statistical fluctuations in the display, could find a correct
set using about the same number of visits across the
category rules (see Methods). Results of simulations using
the ideal searcher tested in 500 simulations per rule are
shown in Figure 5. The ideal searcher found correct sets in

Figure 4. Mean number of errors/subject for each category rule
(4–5 trials/category per subject). Error was defined as selecting a
set of three objects that did not satisfy the category rule. Error
bars represent T1 standard error.
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an average of 4.7 visits, with small (G.5 object) fluctua-
tions across the rules. Further simulations, in which the
ideal searcher’s memory was limited to the contents of
4 locations, produced similar results, with 4.8 visits on
average required to find the sets, and only small differ-
ences in the mean number of objects viewed across the
categories. Thus, the effect of rule complexity on the
number of visits, shown in Figure 5, represents limitations
imposed by cognitive factors or by variation in search
strategies across the different rules.
Adding disjunctions to the category rule played a larger

role in increasing the number of visits than adding fea-
tures (see increases between Category SS vs. SD and
Category SSD vs. SDD in Figure 5). This suggests that the
increases in the number of visits across category rules was
not due exclusively to limitations on the number of features
that can be held in memory.

Revisits

Performance was characterized by frequent revisits to
previously seen object locations. The mean number of
revisits increased as complexity increased (F(4) = 9.026,
p G .001, Figure 5), with revisits constituting more than
half of the total number of visits for the most complex
category. Post-hoc analyses showed that adding a disjunc-
tion to the category rule resulted in a significant increase in
revisits (Category SS vs. SD: LSD mean difference = 3.27
revisits, p G 0.05; Category SSD vs. SDD: LSD mean
difference = 5.98 revisits, p G 0.001.)

Summary

Search became more difficult as the complexity of
the categories increased, requiring more visits to object

locations, more revisits, and resulting in more errors. The
effect could not be driven by statistical fluctuations in the
stimuli because stimuli were chosen such that an ideal
searcher performed nearly identically on each category.
The increase in number of visits across the categories

was also not due solely to the number of features defining
the category. There were significant increases in the num-
ber of visits between categories defined over the same
number of features, but differing in categorical structure,
as when a category rule contained a disjunction rather
than a conjunction. Thus, the effects of category rule on
search involved issues of cognitive search strategies, and
not exclusively feature memory load.
Experiment 1 required arm movements and mouse

clicks to search the object array. Experiment 2 reduced
the motor demands by testing search mediated by eye
movements. In oculomotor search, the motor demands
should be reduced because moving the arm is more
effortful and takes longer than moving the eye. In the
oculomotor search task, a saccade-contingent method
was used so that the contents of each location were not
visible until the location was fixated. Given the expected
difference between the time needed for oculomotor and
manual search, two different types of oculomotor search
were tested: 1) a no-delay condition in which the contents
of a location were revealed as soon as it was fixated, and 2)
a delay condition in which a brief delay was imposed
between the fixation of an object and that object becoming
visible.

Experiment 2

Methods
Subjects

A total of 14 subjects participated, half in the no-delay
and half in the delay condition. Subjects had normal or
corrected-to-normal vision (soft contact lenses). Two other
subjects were excluded prior to the experiment due to
failure to acquire a usable signal from the eye tracker
because of interference from eyelashes. An additional three
subjects were excluded post-experiment due to failure to
reach the criterion of choosing a correct set on at least 4
out of 5 trials in each of the 5 categories. Performance
below this criterion was regarded as representing failure to
understand the task or to make sufficient effort to find a
correct set. All subjects completed one block of 25 trials
each.

Stimuli

Stimuli were identical to those in Experiment 1, except
they were displayed on a Viewsonic G90fB 19W CRT

Figure 5. Mean visits and revisits to objects in the display during
manual search (Experiment 1). Each bar represents performance
averaged over the 8 subjects (subjects were tested in 4 to 5 trials
per category rule). Trials on which an error was made were not
included. Error bars represent T1 standard error.
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monitor (refresh rate 75 Hz). Movements of the right eye
were recorded by an Eyelink 1000 (tower version, with
chin and forehead supports). Viewing was monocular.

Training

Training proceeded exactly the same as in Experiment 1.
Eye movements were not measured during training.

Procedure

The procedure was much the same as Experiment 1.
The main difference was that objects were revealed by an
eye fixation rather than a mouse click (Figure 6). The
mouse cursor was never visible.
Before beginning the experiment, the standard nine-

location calibration incorporated into the Eyelink software
was run. This was followed by a test of the gaze-contingent
software in which a test stimulus (3 � 3 array of outline
rectangles) was presented. Each location was programmed
to be gaze-contingent such that an image appeared in the
location only when the location was fixated by the subject.
The subject was asked to look around the display and verify
that each of the nine test images would appear when
fixated. If all appeared when fixated, the experiment
proceeded. No subjects failed to meet this criterion. Note
that during the experiment fixations that fell between object
locations did not result in the appearance of an object.
Each trial consisted of the following events: (1) the

instruction screen displaying the category rule for the
upcoming trial, which remained on until a button press on
the gamepad; (2) the 9-point Eyelink calibration; (3) a
repeat of the instruction screen for four seconds; and (4) the
appearance of the test stimulus for the trial (3 � 3 array
of nine outline rectangles). In the No Delay condition, the
content of the locations was revealed by an eye fixation,
which was detected online and was visible only while the
line of sight remained on the object. When the line of
sight fell between objects, which happened occasionally,
no object was revealed. Blinks during fixation and fixa-
tions between objects had no effect on the visibility of the
objects.
In the Delay condition a delay was imposed such that

an object became visible 750 ms after the fixation was
detected rather than immediately upon fixation. The value
of 750 ms was chosen based on preliminary testing by
independent observers in the lab who judged the duration
to be long enough to be noticeable but short enough to not
make the task too uncomfortable or unpleasant. During
the experiment, no object was revealed if the fixations
were too brief, i.e., if the subject looked away from the
target within the 750 ms.
Objects were selected as members of the set by fixating

the object location and pressing a button on the gamepad.
Selected objects remained visible, as in Experiment 1.
Usually, subjects selected all three objects at the same

time and did not make further visits. On rare occasions
(6% of trials), subjects visited one or two objects after
selecting the first two objects in the set but before selecting
the third object. If a set was not selected in 2 minutes, the
trial automatically timed out.
Subjects were allowed to abort a trial if they experi-

enced difficulty revealing objects via fixations, or if they
had mistakenly selected an object, by pressing the trigger
on the gamepad. For the no-delay condition, a total of 23
of the 175 trials were aborted (mean per subject: 3.29/25
trials) due to difficulty revealing objects because of loss of
signal or drift (n = 22) or mistakenly selecting an object
the subject did not intend to choose (n = 1). For the delay
condition, a total of 9 of 175 trials were aborted (mean
per subject: 2.8/25 trials) due to difficulty revealing objects
(n = 5), mistakenly selecting an object (n = 2), or
accidentally pressing the abort trigger on the gamepad
(n = 2). An additional 5 trials were aborted automatically
because they timed out.
The data reported below were based on the recorded

locations of objects that were revealed by a fixation. In
some cases subjects fixated a location, looked away at a
blank region of the display, and returned to the same
location (8% of fixations in the oculomotor (no delay)
condition, 4% of fixations in the delayed oculomotor
condition). Such sequences were tallied as two consec-
utive visits in the report of the results below. In addition,
the occasional refixation of an already selected object was
not counted as a visit in the reported data. Such refixations
were rare because in the vast majority of trials (94%) all
3 objects were selected together at the end of the trial.

Results
Error

Errors, defined as choosing a set of three objects that
did not satisfy the category rule for the given trial, were
infrequent (see Figure 4). Across all subjects, there were a
total of 7 trials in which an error was made in 152 com-
pleted trials in the no-delay condition, and 14 trials in
which an error was made in 161 completed trials in the
delay condition. The difference between errors in the delay
and no-delay conditions was not significant (Paired t =
j1.51, p = 0.21, two-tailed). As in Experiment 1, error
increased with category complexity, but never exceeded
about 1 trial/condition. The remaining analyses include
only correct trials.

Visits and revisits

Results were similar to Experiment 1 in that the mean
number of visits per trial increased across the categories.
There was a significant effect of category on the number
of visits for both the no-delay (F(4) = 6.671 p = 0.001,
Figure 7) and the delay conditions (F(4) = 6.234, p = 0.001,
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Figure 6. A sample trial for Category S in Experiment 2. Each screen represents the sequence of actions over the course of the trial. Once
three objects were selected, the trial ended.
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Figure 8). The mean number of times a viewed object was
revisited also increased as category complexity increased
for both the delay and the no-delay conditions (no-delay
condition: F(4) = 6.491, p = 0.001, Figure 7; delay
condition: F(4) = 7.037, p G 0.001, Figure 7). Post-hoc
analysis of pairwise comparisons between adjacent cate-
gories indicated a significant increase in visits between
Categories SS and SD for the no-delay condition (LSD p =
0.038), and between Categories S and SS for the delay
conditions (LSD p = 0.034). For the revisits, there was a
significant increase Categories S and SS for both delay
and no-delay conditions (LSD p G 0.05). In the case of
oculomotor search, adding both features and disjunctions
(and not just adding disjunctions, as was found for manual
search) led to more visits and revisits.
Imposing a delay between the landing of the saccade

and the appearance of the contents of the location had
large effects on performance. The delay increased the total
time per trial spent searching (mean = 42.6 s/trial for delay;
28.2 s/trial for no-delay). Nevertheless, despite longer
search times in the delay condition, there were about half
as many total visits/trial in the delay condition (Figure 8)
than in the no-delay condition (Figure 7). The delay also
resulted in an average of 65% fewer revisits than in
the no-delay condition (Figures 7 and 8). Thus, the delay
encouraged a strategy of responding on the basis of fewer
total views, a strategy that did not lead to more errors
(Figure 4).
Imposing the delay also affected the search rate. Even

after accounting for the time consumed by the delay itself,
subjects searched about twice as slowly in the delay con-
dition (mean = 2.2 s/object) as in the no-delay condition
(mean = 1.2 s/object). These results show that when cost
(in time) of search was low, as in the no-delay condition,
subjects preferred to visit more objects, and take less time

viewing each one. When cost of search was increased by
adding a delay, subjects changed strategy, spending more
time viewing each object and visiting fewer objects.
The pattern of performance found for the delayed oculo-

motor search was similar to that found for manual search
in Experiment 1. Specifically, both manual and delayed
oculomotor search produced significantly fewer visits and
revisits than no-delay oculomotor search (visits: F(2) =
175.57, p G 0.001; revisits: F(2) = 183.26, p G 0.001), and
there was no difference in the number of visits or revisits
between manual and delayed oculomotor search (LSD
p = n.s.). There was no significant interaction between
search method and category (F(8) = 1.619, p = n.s.).

Summary

The number of visits and revisits to objects increased
across categories, regardless of whether search was
mediated by arm movements or by saccadic eye move-
ments. Thus, increasing the cognitive demands of the
search by adding either features or disjunctions to the
category rule encouraged a strategy of increased explo-
ration. In addition, searches with greater motor demands
(manual search in Experiment 1, or delayed oculomotor
search in Experiment 2) resulted in fewer visits and
revisits, that is, less reliance on exploration, than oculo-
motor search with no delay. The observed number of visits
and revisits during delayed oculomotor search was more
similar to manual search than to oculomotor search with
no delays (see above for statistical support). This suggests
that time, rather than motor effort, was the critical factor
influencing strategy: faster searches (oculomotor search
with no delay) encouraged more exploration.
The effects of both the category rule and delay show that

the decision of how to trade off memory and exploration is

Figure 7. Mean visits and revisits to objects in the display during
oculomotor search with no delay (Experiment 2). Each bar repre-
sents performance averaged over the 7 subjects (subjects were
tested in 4 to 5 trials per category rule). Trials on which an error
was made were not included. Error bars represent T1 standard
error.

Figure 8. Mean visits and revisits to objects in the display during
delayed oculomotor search (Experiment 2). Each bar represents
performance averaged over the 7 subjects (subjects were tested
in 4 to 5 trials per category rule). Trials on which an error was
made were not included. Error bars represent T1 standard error.
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affected by both cognitive demands and motor costs. The
following analysis uses the pattern of exploration, in par-
ticular, revisits to the same object location, to infer how
memory was used during search.

Analysis of the patterns of revisits

The analyses thus far have been focused on the average
number of visits and revisits across categories. Another
informative aspect of performance is the pattern of revisits
to previously viewed object locations (Ballard et al., 1995;
Droll & Hayhoe, 2007). Patterns of revisits have been
used to infer the amount of information held in immediate,
or working, memory during active tasks (Epelboim &
Suppes, 2001; Jacob & Hochstein, 2009), and can thus
provide insights about the decisions to tradeoff memory
and motor activity.
For the current task, the model of Epelboim and Suppes

(2001) was fit to the data in an attempt to estimate the
span of immediate memory (as they did) and, more gen-
erally, characterize the role of memory in the task.
Epelboim and Suppes analyzed patterns of eye move-
ments while solving geometry problems to estimate the
number of regions of a geometric diagram that are held in
immediate memory during the task. In their Oculomotor
Geometric Reasoning Engine (OGRE) model, visual
working memory is an unordered store of images, the
size of which is constant for a given subject and problem. A
brief description of the model follows (see Epelboim &
Suppes, 2001, for details).
According to the OGRE model, fixation of a region

results in the image of that region, denoted I(g), to be
added to a limited-capacity immediate memory. Regions are
added to memory until it reaches its capacity (denoted M).
At that point, scanning of each new region results in
the image of an already-stored region being overwritten.
All stored images have an equal probability of being
overwritten.
Epelboim and Suppes (2001) stressed that their concep-

tion of visual memory is analogous to a mental workspace
(e.g., Baddeley & Hitch, 1974), where all the contents are
in active use for solving the problem. Therefore, should an
image in memory be overwritten, there is a high like-
lihood that the region will have to be rescanned and added
back to visual memory on the next fixation. Specifically,
if image I(g) is overwritten on fixation FJ+1, then the
probability that it will be viewed again on the next fixation,
Fj+2, is 1 j (. This means that, with probability (, an
overwritten item will not be rescanned, probably because
it is no longer needed for the current cognitive compu-
tations. It may be rescanned at a later time if needed
again.
Epelboim and Suppes showed that, with probability 1j (,

fixation FJ depends only on the immediately prior fixation,
FJj1, and the state of visual memory immediately prior
to the scan, VJj1. Thus, the path of fixations constitutes a

first-order Markov process, with only rare events (with
probability () dependent on the distant past.
The procedure used to estimate the size of immediate

memory (M) from the observed pattern of fixations was
derived from the tree below (Epelboim & Suppes, eq. 3),
where OJ denotes overwriting of a region in memory (with
probability 1/M), and RJ denotes a refixation of that same
region on the next fixation, with probability 1 j ( (bars
indicate negation).

ð1Þ

The theoretical distribution of re-fixation times, k (where
k is the number of fixations between the original fixation
on a region and a re-fixation) is given by:

PðRkþJ kOkj1þj;
�
Rkj1þJ;Okj2þJ
�

;I;RJþ1

�
;RJ
�Þ

¼ 1j
1

M

� �kj2
1

M
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The value of M that produces the best fit of Equation (2)
to the observed distribution of refixation times is the esti-
mated size of visual memory for the given task.

Applying OGRE to the category search task

Epelboim and Suppes suggested that the OGRE model
could be applied to different cognitive tasks requiring the
use of visual information. The present search task seemed
a promising candidate task for at least two reasons. First,
the model assumes that the contents of visual memory are
being used for the momentary mental operations required
for solving the problem. This means that if an item in
memory that is currently in use were to be overwritten,
it would be revisited immediately. Since the current task
used hidden visual objects, maintaining memory represen-
tations of previously viewed visual elements is essential
to successful completion of the task. Second, the OGRE
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model assumes that the effective size of visual memory
can vary from problem to problem. In the current task, the
complexity of the categorization rule, as well as the motor
demands, were both varied. The OGRE model is thus a
promising means of determining whether these variations
changed the effective size of working memory (M). It is
important to stress, however, that M is an estimate of the
number of items held in working memory during the task,
not an estimate of memory capacity.
There are also differences between the current search

task and Epelboim and Suppes’s geometry problems for
which OGRE was proposed. For example: (1) in the
category search task, each object contains multiple fea-
tures, all or some of which may be selectively remembered
during a given fixation, while M is defined in the model
in terms of objects (or locations), but not component
features, and (2) the search task provides the option of
abandoning old object locations and choosing to visit new
locations in an attempt to find three objects that fit the
category rule, while in geometry the relevance of various
portions of the diagram remained fixed as they were
constrained by the problem. The implications of these
aspects of the category search task will be discussed at the
end of this section.

Epelboim and Suppes noted that M in their study could
vary with both subject or with the type of problem. We
examined the effect of category complexity and motor
costs on M, with data pooled across subjects.
Before attempting to fit the model, we examined

whether the data from both Experiments 1 and 2 met the
criteria for independence of path, i.e., the sequence of
visits was a first-order Markov process, such that the
location searched on visit n was statistically dependent on
the location searched on visit n j 1 and not on the
location searched in the earlier visit, n j 2. Independence
of path was tested for each category rule in Experiment 1
and in both conditions of Experiment 2 (delay and no-
delay), using a Chi2 Test for Independence. Results of the
tests are shown in Table 1. A strong relationship was
found between the locations searched on visit n and visit
n j 1 (p G 0.0001 for all categories and conditions,
Table 1). We also found small but significant depend-
encies between the locations searched on visit n and visit
n j 2 for many of the rules. Although this indicates a
higher-order Markov process could be appropriate, we
decided that given the strong dependencies between n and
n j 1 relative to the weak dependencies between n and
n j 2 it was reasonable to begin by testing the first-order
model.
The span of visual memory, M, was estimated using the

same procedure as Epelboim and Suppes, namely, fitting
Equation (2) to the distributions of k, the number of visits

Category

1st order 2nd order

Chi2 pG Chi2 pG

Manual search
S 5.99 .0001 0.07 ns
SS 7.62 .0001 0.22 .025
SD 11.09 .0001 0.15 .001
SSD 6.61 .0001 4.75 .01
SDD 7.60 .0001 0.33 .0001

Oculomotor Search (no delay)
S 7.29 .0001 1.14 .0001
SS 11.71 .0001 0.29 .001
SD 15.71 .0001 0.86 .0001
SSD 15.95 .0001 0.48 .0001
SDD 11.53 .0001 0.45 .0001

Delayed Oculomotor Search
S 5.17 .0001 0.25 .01
SS 8.65 .0001 0.37 ns
SD 7.97 .0001 0.09 .01
SSD 6.46 .0001 1.52 ns
SDD 7.69 .0001 0.29 .05

Table 1. Results of the Chi Square Test for Independence which
tested whether the data from both Experiment 1 (Manual Search)
and Experiment 2 (Oculomotor Search and Delayed Oculomotor
Search) met the criteria for independence of path outlined by the
OGRE model (Epelboim & Suppes, 2001), i.e., the sequence of
visits was a first-order Markov process, such that the location
searched on visit n was statistically dependent on the location
searched on visit n j 1 and not on the location searched in the
earlier visit, n j 2.

Category M Chi2

Manual search
S 4.58 0.13
SS 4.49 0.03
SD 4.89 0.06
SSD 3.95 0.17
SDD 4.67 0.14

Oculomotor Search (no delay)
S 5.28 0.09
SS 5.19 0.16
SD 5.39 0.07
SSD 5.39 0.19
SDD 6.44 0.29

Delayed Oculomotor Search
S 5.47 0.24
SS 4.17 0.12
SD 4.94 0.11
SSD 4.34 0.05
SDD 5.09 0.16

Table 2. Estimates of M, obtained by fitting the OGRE model
(Equation 2, see text) to the distribution of k, the number of
locations visited between visiting and revisiting the same location.
M is taken to be an estimate of immediate memory span. Chi2

values indicate the goodness of the fit of the model to the data,
where a value closer to 0 indicates a better fit (all p = n.s.).
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Figure 9. Histograms showing the distributions of k, the number of locations visited between visiting and revisiting a location, under
manual search, Experiment 1. Equation 2 is plotted with the best-fit parameters of M and ( for each category (see text for details).
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Figure 10. Histograms showing the distributions of k, the number of locations visited between visiting and revisiting a location, under oculomotor
search with no delay, Experiment 2. Equation 2 is plotted with the best-fit parameters of M and ( for each category (see text for details).

Journal of Vision (2011) 11(3):14, 1–21 Kibbe & Kowler 14



Figure 11. Histograms showing the distributions of k, the number of locations visited between visiting and revisiting a location, under delayed
oculomotor search, Experiment 2. Equation 2 is plotted with the best-fit parameters of M and ( for each category (see text for details).
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made between a revisit of the same object. Following the
procedure of Epelboim & Suppes, consecutive visits to the
same location were counted as a single visit (consecutive
revisits made up G2% of visits in manual search, 8% in
oculomotor search with no delay, and 4% in delayed
oculomotor search). This meant that k Q 2. Parameters M
and ( were allowed to vary and were estimated using a
minimization search (Matlab function fmincon). Values of
M and ( were chosen such that the theoretical distribution
of k produced by Equation (2) was as close as possible to
the actual distribution of k in the data. Fit was evaluated
using the Chi2 goodness-of-fit test (see Table 2).
Figure 9 shows distributions of k for each category rule

in Experiment 1 (manual search), along with the theoret-
ical function obtained from fitting the model (Equation 2).
Figures 10 and 11 show the same analyses performed for
the oculomotor search with and without delays in Experi-
ment 2. Fits of the model to the data were very good in all
conditions (see Table 2 for Chi2 values). Note that the
manual search data diverged slightly from what was
predicted by the model in that the frequency of revisits
for k = 2 was systematically lower than for k = 3 across
categories (see Figure 9). This pattern did not appear in
Epelboim and Suppes data, nor in the oculomotor search
results from Experiment 2, and indicates that some other
process, not captured by the model, had some influence on
the decisions.
We also confirmed that k did not vary over the course of

a trial. This was done by computing the correlations
between each observed value of k and the proportion of
the trial that had been completed at the time of the revisit
(where the proportion of the trial that was completed was
equal to the ordinal number of the visit divided by the
total number of visits in the trial). In oculomotor search,

correlations were near zero (oculomotor with no delay:
r = .016, n = 3969, p = 0.29; delayed oculomotor search:
R = j0.0008, n = 1412; p = 0.97.). There was a small but
significant positive correlation between k and proportion
of the trial completed in manual search (r = 0.19, n =
1951, p G 0.001). This was due to the infrequent (9.6%)
occurrences of large values of k (k 9 10), which were
limited to the latter portions of trials.
Values of M, estimates of the effective span of working

memory, are shown in the first column of Table 2 and in
Figure 12. Estimates of M were greater in the no-delay
condition (mean = 5.53) than in the delay condition (mean =
4.79; paired t = 2.72, p = 0.05, two-tailed; Table 2). There
was no significant difference between M in the manual
and delayed oculomotor search (paired t = j1.41, p = n.s.),
with both showing significantly smaller estimates of M
than for the oculomotor search without imposed delays
(F(2) = 6.03, p = 0.02). These estimated values of M are
similar to those obtained by Epelboim and Suppes (2001),
as well as to the reported average number of items viewed
between revisits to the same item by Jacob and Hochstein
(2009).
Figure 12 shows that the estimated values of M varied

across the category rules. Before considering the possible
implications of these variations in M, we tested whether
the variations were statistically reliable. To do this the
model was fit with M constrained to take on the same
value across category rules. The model in which M was
unconstrained fit significantly better than the model in
which M was constrained in both the manual and delayed
oculomotor search, verifying the reliability of the effects
of category rule on M (Manual: Chi2 10.595, p G 0.001;
Oculomotor with delay: Chi2 12.737, p G 0.001). The fit of
the unconstrained model for the oculomotor condition
with no delay was also better, but only marginally so
(Chi2 2.334, p = 0.08).
Examining the pattern of variation in the values of M

over the category rules (Figure 12) showed that when a
feature was added to the rule (Category S vs. SS, and
Category SD vs. SSD), M decreased. On the other hand,
when a disjunction was added to the category rule while
the number of features remained the same (Category SS
vs. SD and Category SSD vs. SDD), M increased. These
variations in M were as great as about T1 object for
manual and delayed oculomotor search; variations were
much smaller for oculomotor search with no-delay. The
possible implications of these variations in M will be
considered in the Discussion.

Discussion

The performance of active tasks depends on a series of
decisions about when to rely on exploration and when to
rely on memory in order to retrieve information about the

Figure 12. Estimates of M, the measure of immediate memory
span, for each condition and category (see text for details on how
M was obtained). Adding a feature to the category rule (e.g.
objects must share a feature) resulted in a decrease in M, while
adding a disjunction (e.g. objects must differ on a feature) resulted
in an increase in M.
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content of displays. The category search task was devised
to study the role of both cognitive and motor demands in
controlling these decisions. The category search task
required finding three objects from a set of nine hidden,
multi-featured objects that satisfied a given category rule.
Cognitive demands of the task were varied by changing
the complexity of the category rule, specifically, by
adding features or by adding disjunctions to the rule.
Motor demands of the task were varied by changing the
effector (more effortful arm movements vs. less effortful
saccades), as well as by adding time constraints (delay vs.
no-delay, in the case of oculomotor search).
Analysis of key aspects of the search patterns (the

number of object locations visited, the number of object
locations re-visited, and the number of visits between a
revisit of the same object location) showed that both the
cognitive and motor demands affected the tradeoff
between exploration and memory. As the category rules
were made more complex by either adding features or
adding disjunctions, searchers responded by relying more
on exploration, that is, they took more visits and revisits to
find the set of objects that satisfied the rule. As motor
demands decreased, where the relevant aspect of motor
demands was the time required to view an object, rather
than the effector (arm or eye), searchers also relied more
on exploration, using more visits and a higher rate of visits
in the case of oculomotor search with no delay.
These systematic patterns show that decisions about

how to tradeoff the use of exploration and memory are not
made arbitrarily, but rather are driven by strategic use of
resources. We consider possible strategies of resource
management below.

Strategies during category search: Effects of delay

One factor driving the strategies during category search
was the interest in avoiding the cost of delays. Search in
both the manual task and the delayed-oculomotor task,
which proceeded at about the same rate (number of
objects inspected/second), required about the same num-
ber of visits and revisits to find the set, despite the use of
different effectors. On the other hand, oculomotor search
with no delay resulted in a faster rate of search and more
visits and revisits. Adding the delay (750 ms) between
fixation on a location and the appearance of the contents
resulted in a slower rate of search, that is, fewer objects
searched/second, even when the delay duration itself was
taken into account.
Delays also influenced the estimates of the span of

immediate memory (M) in that values of M were similar
for manual and delayed oculomotor search, but larger for
oculomotor search with no delay.
One way to interpret the effects of delay is to view the

time it takes to perform the action as a resource that needs
to be managed. Searchers may have reduced the number
of visits in situations where visits were time-consuming

because spending time waiting for display contents to
appear was an unproductive nuisance. Alternatively, the
effect of delay may reflect strategies for managing
memory. With longer delays the probability of previously
viewed objects being forgotten may increase. As a result
searchers operating with delays may have opted to focus
their search on a small number of locations, which would
be revisited frequently. This strategy reduces the number
of features that have to be preserved over a given period
of time, in contrast to a strategy of gathering more
information and more features by exploring widely, which
is what appeared to characterize oculomotor search with
no delay.

Strategies during category search: Effects of rule
complexity

Performance in all three motor conditions showed a
similar pattern of variation in the number of visits and
revisits across the category rules. Adding either features to
the rule or adding disjunctions resulted in a more visits
and revisits required to find the set. Why? Simulations
using an ideal searcher, even one with a fixed capacity
memory for the contents of locations, showed only
minimal effects of the category rule on the number of
visits required to find the set. This shows that the human
searchers were modulating the way they used their limited
memory across the rules. One way of modulating the use
of memory would be by selecting which feature or features
to encode from each object (e.g., Droll & Hayhoe, 2007).
Although we have no direct measurement of features
chosen from a given selected object, the analysis of the
span of immediate memory (M) (Figure 12) provides the
basis for some conjectures.
The analysis of the span of immediate memory showed

that M tended to increase when a disjunction was added to
the rule (e.g., SS vs. SD; or SSD vs. SDD). Category rules
with disjunctions (i.e., each object in the set must have a
different value of the feature), introduce a greater level of
cognitive complexity and abstraction (e.g., Feldman,
2000; Jacob & Hochstein, 2008). To deal with the
disjunctions, searchers may have used the rule to generate
specific, perceptually meaningful hypotheses. For exam-
ple, given the rule SD (share one feature; differ on
another), searchers might decide after viewing one or
two objects to search for a set made up of a blue square,
blue circle and blue triangle (see also Jacob & Hochstein,
2008). With such a specific and limited search target,
searchers may have then reduced the number of fea-
tures sampled from a given object to those few that were
relevant to evaluating the current hypothesis. This strategy
would require examination of many objects before a
revisit, i.e., a larger value of M, in an attempt to find a
set that conformed to the hypothesis. For rules that
lacked disjunctions, on the other hand, such as SS (share
two features), searchers could test different perceptual
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hypotheses in parallel without having to keep track of as
many values of the features per hypothesis as for rules
with disjunctions. For example, for rule SS they might
be able to search for 3 blue squares or 3 blue circles in
parallel. As a result of such a specific, targeted, hypothesis-
driven search, finding sets containing disjunctions would
require more visits over a larger set of objects, and more
visits between revisits to the same object, than rules without
disjunctions, which is consistent with the results observed.
According to the above interpretations, the human

searcher has limited memory, and must re-visit locations
to refresh forgotten details, but (unlike the simulated ideal
searcher) is not simply adding all available features to
memory and testing all combinations until one emerges
that satisfies the rule. The human searcher may be driven
by the process of ongoing hypothesis formation and
testing, sampling and saving information only to the
extent needed to support or refute the current hypothesis.
The critical decisions during active tasks, such as
searching for a category, are not only whether to rely on
memory or exploration, but also how to formulate
hypotheses, and how to select the locations that would
provide the information that is most useful to testing and
evaluating the current ongoing hypothesis driving the
search.

Relation to prior studies

The present results can be compared to the prior study
of Jacob and Hochstein (2009), who also examined visual
search under conditions that imposed high memory load.
In their ‘Identity Search Task,’ searchers looked for a pair
of identical, multi-element block patterns among distrac-
tor block patterns. They too found revisits to previously
viewed items. Jacob and Hochstein (2009) reported there
were about 4–5 intervening fixations between a fixation on
the same object. This is similar to the estimates of
memory span (M) of both Epelboim and Suppes (2001)
and the present study (Figure 12), as well as in many prior
estimates of the size of immediate or working memory
(e.g. Luck & Vogel, 1997). It is interesting that such
different tasks produce similar estimates of immediate
memory span.
Jacob and Hochstein’s (2009) results also showed

frequent fixations on the identical pair prior to selecting
the pair, and they speculated that these revisits represented
a period of early subthreshold recognition prior to a
conscious decision that a pair was found. Jacob and
Hochstein (2009) did not specify a mechanism (such as a
limited memory buffer) to explain why the revisits were
needed. Possibilities include that with each refixation, a
representation of the selected candidate pair was being
built-up by successively adding more characteristics of the
pattern. In this sense, the eye movements in their study
were driven by the development of hypothesesVi.e.,
selection of candidate pairs of blocksVa process we have

suggested was also relevant to category search. Given the
low cost of motor exploration in Jacob and Hochstein’s
task, there was no incentive or need to tax memory
capacity by trying to memorize multiple characteristics of
the patterns on each fixation.

Conclusions

Our results show that cognitive demands and motor
demands each affected decisions about how to tradeoff
exploration and memory in different ways. This means
that decisions about where and when to aim the next
movement of eye or arm are based on multiple aspects of
performance that must be taken into account concurrently,
including the costs and tolerance for delays, the manage-
ment of memory, and the generation and testing of ongoing
hypotheses. These findings lead to two broad conclusions
about the strategies used to control motor exploration
during active visual tasks:
The first is that strategies of managing memory and

exploration are adaptive. There have been numerous
examples of how efficient motor performance during active
visual tasks is adaptive in that it is driven by monitoring of
internal states, including motor variability, motor effort,
visual contrast sensitivity, or limits on the span of immediate
memory (e.g., Araujo et al., 2001; Ballard et al., 1995;
Droll & Hayhoe, 2007; Epelboim & Suppes, 2001; Legge,
Klitz, & Tjan, 1997; Motter & Belky, 1998; Najemnik &
Geisler, 2005, 2009; Trommershäuser, Maloney, & Landy,
2003; Wu, Kwon, & Kowler, 2010). The category search
task studied here is more open-ended and “top-down” than
most of the active tasks studied in the past in that there are
multiple possible routes to solutions, making the decisions
more complex. Nevertheless, despite such complexity,
performance depended systematically on both the cogni-
tive and motor characteristics of the task, and thus reflects
the application of consistent underlying rules and strat-
egies. These results extend the findings that human beings
can adopt efficient adaptive strategies for trading off
exploration and memory to situations that impose signifi-
cant and open-ended cognitive demands.
The second conclusion is that strategies of exploration

are linked to hypothesis-testing and decision-making.
The consideration of the role of decisions is often given
less attention in studies of how people plan exploratory
movementsVparticularly eye movementsVbecause the
benefits of eye movements are so strongly linked to
overcoming the limits of vision in eccentric retina. How-
ever, there are examples where eye movements are
preferred, or helpful, when visual resolution for display
elements is good enough to support task performance
without eye movements (Ko, Poletti, & Rucci, 2010;
Kowler & Steinman, 1977), which means that the benefits
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accompanying the eye movements may lie elsewhere.
Theoretical arguments have been made both for (Ballard,
Hayhoe, Pook, & Rao, 1997) and against (Viviani, 1990)
a role for eye movements in controlling the temporal
sequence of decisions during active tasks. We have argued
that the effects we found of category complexity on motor
exploration, which was reflected in both the total visits/
category, as well as in the pattern of revisits, can be
attributed not only to management of memory, but also to
links between motor exploration and the ongoing gener-
ation, testing and revision of concrete perceptual hypoth-
eses derived from the abstract category rule. Future
versions of the category search task, with additional
experimental manipulations, such as presenting different
features at different locations (e.g., Rehder & Hoffman,
2005), or changing features unpredictably (Droll & Hayhoe,
2007), may provide further insights into how the sequen-
ces of exploratory movements are linked to the evolving
sequences of decisions and problem-solving strategies
during active visual tasks.
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