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Deformation and Structural Stability of Layered Plate
Microstructures Subjected to Thermal Loading

Martin L. Dunn, Yanhang Zhang, and Victor M. Bright, Member, IEEE

Abstract—We study the deformation and stability of
gold–polysilicon MEMS plate microstructures fabricated by
the MUMPS surface micromachining process and subjected to
uniform temperature changes. We measured, using an inter-
ferometric microscope, full-field deformed shapes of a series of
square and circular gold (0.5 m thick)/polysilicon (1.5 m thick)
plate microstructures with characteristic lengths (square side
length and circle diameter) ranging from = 150 to 300 m.
From these measurements we determined the pointwise and
average curvature of the deformed plates. Although the curvature
generally varies with position, the deformation response of the
plates can be broadly characterized in terms of the spatial average
curvature as a function of temperature change. In terms of
this, three deformation regimes were observed: i) linear ther-
moelastic response independent of plate size; ii) geometrically
nonlinear thermoelastic response that depends on plate size; and
iii) bifurcations in the curvature-temperature response that also
depend on plate size. We modeled the deformation response both
analytically and with the finite element method; in the former we
assume spatially constant curvature, while in the latter, we relax
this assumption. Good qualitative and quantitative agreement
is obtained between predictions and measurements in all three
deformation regimes, although the details of bifurcation are less
accurately predicted than the linear and nonlinear response. This
is attributed to their strong sensitivity to slight imperfections,
which is discussed in some detail. Good agreement is also obtained
between measurements and predictions of the spatial nonuni-
formity of the curvature across the plate. Although it is not the
focus of this study, the predictions, when coupled with curvature
measurements, can be used inversely to determine elastic and
thermal expansion properties of the materials in a layered plate
microstructure. [677]

I. INTRODUCTION

M ULTILAYER material systems abound in microelec-
tromechanical systems (MEMS) applications, serving

both active and passive structural roles. In these many ap-
plications, dimensional control is a critical issue. Surface
micromachined mirrors, for example, require optically flat
surfaces; less than 10% of a wavelength variation across the
mirror’s surface. Holographic data storage and optical beam
steering for display applications need reflective surfaces free
of optical phase distortion to increase the signal-to-noise
ratio, minimize crosstalk, and keep the system in focus. This
level of optical flatness is difficult to achieve due to curvature
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commonly seen in micromachined mirrors composed of several
different material layers. For other applications, such as radio
frequency (RF) MEMS, cantilever and bridge like structures are
used to make electrostatic switches. It is important to control
warpage of these large area, thin actuator structures in order to
achieve desired deflection versus voltage relationships, on–off
switching times, and RF frequency response. An inherent
characteristic of such multilayer material structures is that
misfit strains between the layers (for example, due to intrinsic
processing stresses or thermal expansion mismatch between
the materials upon a temperature change) lead to stresses in the
layers and deformation of the structures.

Numerous studies have elucidated the basic thermomechan-
ical response of layered plates when subjected to temperature
changes or other sources of misfit strains between the layers.
These have come in the context of many technological appli-
cations, the most common being structural composite materials
(Hyer, [16]–[18]; Dano and Hyer, [2]) and thin film/substrate
systems for microelectronics (Fahnlineet al., [7]; Masters and
Salamon, [22]; Finot and Suresh, [8]; Finotet al., [9]; Freund,
[10]–[12], [14]; Freundet al., [13]). When such a layered plate
is subjected to a temperature change, two key aspects of defor-
mation occur: straining of the midplane and bending. When the
transverse deflections due to bending are of prime importance,
as is often the case, one way to broadly characterize the de-
formation response, especially for plates with relatively large
in-plane dimensions as compared to their thickness, is in terms
of the average curvature developed as a function of tempera-
ture change. Formally, the curvature is a second-rank tensor,
and for the type of layered plate problems considered here it
can be wholly described by the two principal curvature com-
ponents, e.g., in the- and - directions, and . The cur-
vature is a pointwise quantity meaning it varies from point to
point over the in-plane dimensions of the plate. To illustrate the
nature of deformation, we consider the seemingly simple case
of a plate with total thickness much less than the in-plane di-
mensions of the plate composed of two isotropic layers with
different material properties (elastic modulus and thermal ex-
pansion) subjected to a temperature change (Fig. 1(a)). In terms
of the average curvature variation as a function of temperature
change, three deformation regimes have been identified as il-
lustrated in Fig. 1(b) (Finot and Suresh, [8], Finotet al.,[9],
Freundet al.,[13]; Freund, [14]; Masters and Salamon, [22],
[23]; Salamon and Masters, [24]). The first regime,I, consists of
a linear relation between the average curvature and temperature
change where , i.e., the average curvature is spheri-
cally symmetric. This symmetric deformation would not exist
if the material properties were anisotropic. This deformation
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regime is characterized by both small transverse displacements
and rotations and so conventional thin-plate theory adequately
describes the deformation. The second regime,II , consists of a
nonlinear relation between the average curvature and tempera-
ture, but again . The behavior is due togeometric non-
linearity that results when the deflections become excessively
large relative to the plate thickness and they contribute signif-
icantly to the in-plane strains. It has been shown (Fahnlineet
al., [7]; Finot and Suresh, [8]; Finotet al., [9]; Freundet al.,
[13]; Freund, [14]; Masters and Salamon, [22], [23]; Salamon
and Masters, [24]) that in these two regimes the symmetric de-
formation modes are stable. The second regime ends at a point
when the deformation response bifurcates from a spherical to
ellipsoidal deformation, i.e., . At this point, the be-
ginning of regimeIII , it becomes energetically favorable for
the plate to assume the ellipsoidal shape because to retain the
spherical deformation under an increasing temperature change
require increased midplane straining. After the bifurcation the
curvature in one direction increases while that perpendicular to
it decreases; the plate tends toward a state of cylindrical curva-
ture. This observation helps to explain the energetic argument
as unlimited cylindrical curvature can be obtained with no mid-
plane straining, while spherical curvature can not. This discus-
sion has been cast in the context of linear material behavior.
Additional deformation regimes result if material nonlinearity
is present, for example, yielding, but these are beyond the scope
of this work (see Finot and Suresh, [8], for a discussion of some
of these issues).

Most previous work regarding the deformation of layered sys-
tems has focused on the first linear regime. This includes most of
the understanding developed in the context of microelectronics
applications where the thin film limit of this behavior is ap-
plicable. Indeed, much of the understanding of these issues in
MEMS applications is built upon this knowledge base. In this
case one layer (the thin film) is much smaller than the other (the
substrate). A 0.5-m-gold film on a 500- m-thick, 100-mm-di-
ameter silicon substrate is a reasonable example. If subjected to
a 100 C temperature change, the maximum deflection would
about two percent of the thickness if the film fully covered the
substrate, and even less if it were patterned discontinuously.
The deformation falls into the linear regimeI of Fig. 1(b). In
fact, the most common application of this behavior in micro-
electronics is the use of the Stoney [28] equation to determine
thin film stresses (which are typically biaxial and spatially uni-
form) from measured wafer curvature. In MEMS applications
the layer thicknesses are not only small (on the order ofm) rel-
ative to in-plane dimensions, but they are often comparable to
each other. An example that is not unreasonable is a 0.5-m gold
film on a 1.5- m-thick, 400- m-diameter polysilicon plate. If
subjected to a 100C temperature change, the maximum de-
flection would be about six times of the thickness. This falls
into the nonlinear second regimeII of Fig. 1(b), and perhaps
even into regimeIII . Although not as heavily studied as the first,
the second and third deformation regimes have been observed
in structural composites cured at elevated temperatures (Hyer,
[16]), and more recently in microelectronics thin film systems
(Finot et al., [9]) and MEMS microstructures intended for RF
applications (Harshet al., [5]; Dunnet al., [4]). While much of

(a)

(b)

Fig. 1. Schematic of (a) the geometry of the two-layer plate microstructure
showing relevant dimensions, and (b) the general characteristics of the average
curvature versus temperature change of a two-layer plate microstructure.

the understanding regarding the thermomechanical behavior of
layered systems derives from experiences in microelectronics, a
key aim of this paper is to point out that significant differences
exist for many MEMS applications, and these must be well un-
derstood to optimize the design of reliable MEMS.

The understanding described above derives from a number
of studies with different technological motivations, primarily
structural laminated composites and thin films for microelec-
tronics. Most of these studies are analytical (Fahnlineet al.,
[7]; Finot and Suresh, [8]; Finotet al., [9]; Freundet al., [13];
Freund, [14]; Harper and Wu, [15]; Masters and Salamon, [22],
[23] Salamon and Masters, [24]) and build upon the original
work of Hyer [16]–[18]. The basic idea of Hyer’s, and all of
the subsequent, analyses is to assume an admissible displace-
ment field in terms of unknown parameters that
are suitably chosen to be consistent with observed deformation
modes. Values of the parametersare then determined via a
Ritz procedure so as to minimize the total potential energy of
the system. Different choices of the assumed displacement field
have been considered by these authors, and details of the proce-
dures are given in the above references. Such analyses are suffi-
cient to qualitatively, and in many cases quantitatively, explain
the three regimes of deformation shown in Fig. 1(b). In fact,
quite simple closed-form expressions result for special cases
that provide illuminating descriptions of observed phenomena
(see, for example, Freundet al., [13] and Freund [14]). A dis-
advantage of the analytical approaches is that for simplicity a
displacement field that is consistent with a spatially constant
curvature deformation mode is usually chosen. As will be seen
in our measurements and calculations, this is accurate in certain
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deformation regimes, but not in all. Additionally, these formula-
tions are strictly valid for only simple plate shapes; this may be
adequate for the structures considered here, but it is not for more
complex in-plane shapes, of either or both layers, that arise in
MEMS applications (see, for example, Harshet al., [6]).

In this work we study, via measurements and analysis,
the deformation behavior of a series of square and circular
gold–polysilicon plate microstructures fabricated by the
Multi-User MEMS Process (MUMPS) of Cronos (Koesteret
al., [21]) and subjected to uniform temperature changes which
generate internal stresses and deformation via thermal expan-
sion mismatch of the gold and polysilicon. We observe linear
and geometrically nonlinear deformations, as well bifurcations
in the equilibrium deformed shapes. The nonlinear deformation
and bifurcations depend strongly on the size of the plate.
We interpret the measurements in terms of both a constant
curvature analysis and detailed finite element analyses that
remove this restriction. Finally, the results are discussed in the
context of some MEMS applications. Guidelines are presented
in the form of curvature maps as a function of microstructure
geometry (plate size and shape) and temperature change for
the design of plate microstructures with controlled curvature.
Depending on the application, tailoring the curvature might
entail minimizing it (for example, micromirrors) or maximizing
it (for example, microactuators).

II. SAMPLES AND MEASUREMENTS

We designed a series of square and circular gold–polysilicon
plate microstructures and fabricated them using the MUMPS
surface micromachining process. The square and circular sam-
ples were fabricated using MUMPS 31 and 36, respectively. In
the series of microstructures, the polysilicon layer (POLY2 in
the MUMPS process) was fully covered by the gold layer. We
varied the characteristic dimension(square plate length or cir-
cular plate diameter) to include m, m, m,
and m, keeping the thickness of the gold and polysil-
icon fixed at nominal values of m and m, respec-
tively, as produced by the MUMPS process. The idea behind the
design of the microstructures was to yield square and circular
gold–polysilicon bilayer microstructures that rest as freely as
possible. To this end, the plates were supported on the substrate
by a 16- m-diameter polysilicon post (fabricated from POLY2
through anchor2 and connected to the nitride layer). Scanning
electron micrographs (SEMs) of typical plate microstructures
are shown in Fig. 2.

We measured the deformation of the plate microstructures as
a function of temperature change using an interferometric mi-
croscope and a custom-built thermal chamber that is covered
by a quartz window to allow optical access. Full-field measure-
ments of the out-of-plane displacement of the microstructures
were made with scanning white light interferometry as the tem-
perature was changed. The resolution of the out-of-plane dis-
placement measurements, , is on the order of a nm as
verified by making measurements on standard reference sam-
ples; the resolution of the temperature chamber is aboutC.
During tests when the temperature was being varied a 2.5X ob-
jective was used yielding a lateral spatial resolution of about

(a)

(b)

Fig. 2. SEM images of gold–polysilicon plate microstructures. The support
post and etch holes are apparent and thex–y coordinate system used in
subsequent measurements and analysis is identified. (a) 300�m�300 �m
square plate. (b) 300�m diameter circular plate.

m. At room temperature a 10X objective was also used
to more accurately study the spatial variation of the deforma-
tion. In this case the lateral spatial resolution is about m.
A Michelson objective was used which has a beam-splitting el-
ement that transmits one portion of the white light beam to a
reference mirror and the other to the object. The two beams re-
flected from the reference and the object are recombined and
projected onto a charge-coupled device (CCD) video camera,
to generate a signal proportional to the resultant beam inten-
sity produced by the interference effect. These signals are then
transferred into the spatial frequency domain and the surface
height for each point is obtained from the complex phase as a
function of the frequency. Complete details of the data reduc-
tion algorithm are given by De Groot and Deck [3] where they
report subpixel/fringe accuracy of 0.1 nm (De Groot and Deck,
[3]). We do not claim to have achieved such accuracy, but in our
measurements we are confident that we achieve nm-scale accu-
racy that is more than sufficient for our purposes.

The specific test protocol is designed to ensure that the
measured deformation during the temperature variations is
primarily due to thermal expansion mismatch between the gold
and polysilicon, and that the material behavior is thermoelastic.
Specifically, the sample is heated to approximately 100C
where it is nearly flat (the deviation from a perfectly flat surface
with zero curvature is always less than five percent of that
observed upon subsequent cooling). The sample is held at this
temperature for a time period sufficient to ensure it has reached
thermal equilibrium and a stable flat shape (about 3.5 min).
The sample is then slowly cooled to room temperature. The
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temperature is held constant for about 3.5 min every 5C so
that thermal equilibrium is reached, and also so that the stresses
do not significantly relax due to creep of the gold and/or
polysilicon (as shown elsewhere, the stresses can relax in these
microstructures even at such modest temperatures (Zhang and
Dunn, [29])). That this is the case is evident from the stability
of the subsequent curvature measurements as described next.
Full-field out-of-plane displacements of the surface of
the plate are then measured using the interferometric micro-
scope over a circular region of about 150m diameter about the
center of each plate. We measure only over this region, and not
over the entire plate, because the slope of the displacement field
outside this region is too large to be measured with the 2.5X
objective. At room temperature, though, we measured
over the entire plate surface with the 10X objective. We then
fit the measured data set with a sixth-order polynomial
in and (which was sufficient to accurately describe the
displacement profile in all cases). This polynomial was then dif-
ferentiated analytically to determine the approximate curvatures

and
as a function of position. Calculations of the exact curvatures,
e.g., , were also per-
formed and the results were found to not differ significantly
from the approximate values, consistent with numerical results
of Freund [14], and our own as discussed in Section III. Al-
though we can not measure them directly, we are confident that
temperature gradients in the temperature chamber contribute
insignificantly to the curvature of the gold–polysilicon plate
microstructures. This claim is based on measurements of
curvature developed in similar size single-material polysilicon
plate microstructures: they are about two to three orders of
magnitude less than those developed in the gold–polysilicon
plate microstructures.

III. A NALYSIS

As mentioned in the Introduction, numerous efforts have
been forwarded to model the response of multilayer plate struc-
tures subjected to thermomechanical loading. Here we consider
a two-layer plate with layer thicknesses and as shown
in Fig. 1(a). Each layer is isotropic and characterized by the
Young’s modulus , Poisson’s ratio , and thermal expansion
coefficient . In the application to follow, we take
layer 1 to be gold and layer 2 to be polysilicon. We consider
two plate shapes: circular, with diameter, and square with
side length . The plate is subject to a uniform temperature
change . In order to compute the deformed shape when the
plate is subject to a temperature change we use the approach of
Hyer (1984) as applied by Masters and Salamon [22]. Briefly,

we assume the transverse midplane displacement is of the form
( and are one-half the curvature

in the - and -directions), and the in-plane displacements of
the midplane are third-order polynomials inand , also with
unknown constant coefficients to be determined. The midplane
strains are then computed from the nonlinear strain-displace-
ment relations of the von Karman plate theory

(1)

where , , and are the midplane displacements in the, ,
and -directions, respectively. The strains at any point through
the thickness are then computed using the standard kinematic
relations for thin plates, and the stresses are computed from the
strains using the conventional linear thermoelastic constitutive
relations for each layer. The potential energy density of each
layer is computed from the stress and strain in each layer, and
the total potential energy of the plate is computed by integrating
the potential energy density over the volume of the plate. This
yields an expression for the potential energy of the plate in terms
of the unknown coefficients , which are determined by mini-
mizing the total potential energy. This process yields solutions
for all three regions of the deformation response of Fig. 1. Com-
plete details regarding this analysis can be found in these refer-
ences; here we present only the pertinent results in what we hope
is an accessible form. When the displacements are small, the
curvature and midplane strain de-
pend linearly on the thermal expansion mismatch strain (
where ) and can be expressed as shown in (2)–(3)
at the bottom of the page where and ,
where . These results agree
with those obtained by Finot and Suresh [8] and Freundet al.,
[13] and are independent of the plate size and shape (square or
circular). Note that in general both and are necessary to
compute the stresses in the layers. An important application of
these results is thethin-film limit where . Expanding
(2) in powers of and retaining only the lowest order term re-
covers Stoney’s [28] well-known result which is the term out-
side the brackets. Many recent papers have discussedcorrec-
tionsto Stoney’s result to increase the region of validity in terms
of layer thicknesses and modulus mismatch. We emphasize,
though, that (2) is valid for arbitrary layer thicknesses and mod-
ulus mismatch, and is quite simple to use itself. In the thin film

(2)

(3)
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limit, (3) reduces to . Finot and Suresh [8] and Freund
[14], among others, discuss the limitations of the thin-film sim-
plification of (2) and (3).

An important quantity for many applications where control
of the deformation is important is the maximum deflection
between two points on the plate. Retaining the assumption of
constant curvature, this can be expressed as

(4)

where again , for square and circular plates, respec-
tively. Note that for the square plate this represents the deflec-
tion between the plate center and a point on the edge along either

or . We emphasize that this simple result is based on the
assumption of uniform curvature; the appropriateness of this as-
sumption will be taken up in detail subsequently.

In the nonlinear, but symmetric deformation regime, the re-
lationship between both the curvature and midplane strain and
the thermal expansion mismatch is too complex to present here.
This is also the case in the nonlinear regime after bifurcation. An
important difference between the linear and nonlinear response,
though, is that the nonlinear response depends on the plate size.
The critical curvature at which bifurcation occurs, though, can
be obtained explicitly and is given by

(5)

for a square plate, and

(6)

for a circular plate. In (5) and (6) we have introduced the
well-known composite moduli , , and (see, for
example, Jones [19]). These are functions of the elastic moduli
of the layers, the layer thicknesses, and the geometrical ar-
rangement of the layers, and are defined and given explicitly in
the Appendix. The results for the square plate agree with those
of Masters and Salamon [22], [23]. In the simplified case where
there is no elastic mismatch between the layers and the elastic
response can be expressed in terms of the Young’s modulus
and Poisson’s ratio, (5), and (6) reduce to

(7)

where , , for the circular and square plates
respectively, and:

(8)

Equations (7) and (8) agree with the results of Finot and Suresh
[8] and Freundet al.[13], and Freund [14]. For the material pa-
rameters of polysilicon and gold, (5) and (6) predict that a square
plate will bifurcate at a smaller curvature than the circular one
with . Although we have focused on the critical cur-
vature for bifurcation, we note that for a plate with no elastic

mismatch, the critical condition can be expressed in terms of a
critical maximum deflection as (see for example,
Finot and Suresh, [8]).

While the assumed displacement field used in the Ritz
procedure could be modified to incorporate the dependence
of curvature on position, perhaps the simplest approach to
tackle these more general problems is to use the finite element
method to solve the geometrically nonlinear equations over
an arbitrary spatial domain. This is also the most viable
approach for complicated geometries. We used this approach
with the ABAQUS finite element code and used composite
shell elements to approximate the thin-plate kinematics of
the Kirchoff theory. Geometric nonlinearity is modeled using
the well-known von Karman theory for thin plates with large
deflections. Both materials are modeled as linear elastic with
isotropic material properties. Input parameters to the finite
element calculations are GPa, (in line
with measurements of Sharpeet al. [25]), GPa,

(King, [20]). The thermal expansion coefficients of
the materials were assumed to vary linearly with temperature
and values at 100(24)C used are C,
and C (King, [20]). Although some
uncertainty exists in the values of these material properties
for the gold and polysilicon films, we think that these values
are accurate enough for the purpose of modeling the observed
phenomena. Young’s modulus and Poisson’s ratio of the
polysilicon are in line with many measurements over many
MUMPS runs (Sharpe, [26]), and agree adequately with bulk
polycrystal averages of single crystal elastic constants. Typical
finite element meshes for the plate microstructures contained
elements with a characteristic dimension of about 12.5m, a
size that was chosen after a convergence study with mesh size.
Calculations were carried incorporating the support post and it
was found to be insignificant on the resulting displacements,
curvatures, and stresses except in a region very near the post.
If one carries out calculations as just described, the linear and
geometrically nonlinear response of the plate can be computed,
but the bifurcations, and the subsequent post-bifurcation be-
havior, cannot because of the perfect symmetry present in the
geometry and material behavior. In order to model the bifurca-
tions, one can seed an imperfection of some sort into the model.
We did this in two ways, with the hope of identifying the likely
actual imperfections that contribute to the observed behavior.
First, we introduced a slight thermal expansion mismatch
anisotropy into the model by assuming the thermal expansion
coefficient of the gold is orthotropic. Specifically, we defined
the in-plane thermal expansion coefficients to be
and , where was taken to be 0.01% of

.1 With this slight perturbation, the prebifurcation response

1Since gold and silicon are cubic, crystallographic texture would not be ex-
pected to result in orthotropy in thermal expansion, a second-rank tensorial
quantity. However, processing imperfections that lead to voids, defects, etc.,
could potentially lead to slight anisotropy. At present, it is probably not pos-
sible to measure thermal expansion and elastic properties on thin film samples
to this accuracy, so definitive confirmation of this supposition is lacking. We
note though that the stress developed upon a uniform temperature change de-
pend on the thermal expansion and elastic moduli. The latter, being fourth-rank
tensors, would exhibit orthotropy in the presence of general crystallographic
texture.
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(a)

(b)

Fig. 3. Contour plots of the (a) measured, and (b) predicted transverse displacementsw(x; y) at room temperature for the four gold–polysilicon circular plates:
D = 150, 200, 250, and300�m from left to right. Each contour band represents a displacement of 0.13, 0.22, 0.29, and 0.48�m for theD = 150, 200, 250,
and300�m plates, respectively.

was indistinguishable from that with the isotropic thermal
expansion. The second approach to seed the imperfection was
only used for the square plates; we defined one side of the plate
to be slightly larger than the other, i.e., the plate has dimensions

. As discussed by Freund [14], details of the
bifurcation, especially its sharpness, are strongly influenced
by small changes in the imperfection. We discuss this later in
light of both our measurements and predictions. Calculations
were carried out for the loading situation of an applied uniform
temperature change consistent with that experienced in the
measurements.

IV. RESULTS AND DISCUSSION

Figs. 3 and 4 show contour plots of the measured and pre-
dicted displacement field at room temperature for the
circular and square plates of all four plate sizes. Due to the
thermal expansion mismatch between the polysilicon and gold,
the m samples deform in a spherically symmetric
manner; contours of constant transverse displacement
are nearly circles. This is also the case as the size increases to

and 250 m, although the displacements increase as
the plate size increases. At m, though, the transverse
displacement contours are not circular, but elliptical, indicating
that the deformation is no longer spherically symmetric. It is
apparent that when subjected to the same temperature change,
both the magnitude and deformation mode of the different size
plates depend on the plate size. As the in-plane dimension of the
plate increases with the thickness held constant, the deformation

mode changes from one of spherical symmetry to one more like
cylindrical symmetry. Both the measured and predicted
contours show this same behavior and the agreement between
them is quite good. The deformation behavior for all plate sizes
is similar for both the square and circular plates, particularly
over the inner regions of the plate away from the edges. As we
will describe later, proper normalization of the curvature and
temperature change yields the functional form of this size de-
pendence before bifurcation.

In Figs. 5 and 6, we plot the average curvature in the- and
-directions as a function of the magnitude of the temperature

change during cooling. The temperature change is actually neg-
ative according to our convention but its magnitude is plotted for
convenience throughout the paper. Note that the results would
be the same, but with the sign of the curvature changed, if a tem-
perature change resulting in heating were used as long as no ma-
terial nonlinearity is present. In Figs. 5 and 6 measurements are
shown with symbols (the lines connecting them are used simply
to aid viewing), and the finite element predictions are shown
with solid lines. In these plots, the average curvatures are deter-
mined from the measured and computed by averaging

and along the
paths and , respectively, over a region of 150m
diameter from the center of the plate. Again, this is the extent
of the region that is experimentally accessible. The- and -di-
rections are taken to be aligned with the principal curvatures
after bifurcation. Before bifurcation, the response is spherically
symmetric and so the- and -directions are arbitrary and in-
distinguishable. The use of the average curvature as a measure
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(a)

(b)

Fig. 4. Contour plots of the (a) measured, and (b) predicted transverse displacementsw(x; y) at room temperature for the four gold–polysilicon square plates:
L = 150, 200, 250, and300�m from left to right. Each contour band represents a displacement of 0.23, 0.35, 0.45, and 0.6�m for theL = 150, 200, 250, and
300�m plates, respectively.

of the plate deformation seems appropriate if the curvature is,
or is close to, spatially uniform. This aspect will be taken up to
some degree later. The measurements and predictions in Figs. 5
and 6 show the three regimes of deformation as discussed in the
Introduction. It is apparent from both the measurements and pre-
dictions that in regimeI, the curvature-temperature response is
independent of plate size and shape. In regimeII , though, there
is a strong dependence on plate size. Although only one set of
data exists in regimeIII , calculations and measurements that are
not shown demonstrate a dependence on plate size and shape.
Figs. 5 and 6 show good agreement between the measurements
and predictions in all three deformation regimes. The major dis-
crepancy is the sharpness of the bifurcation for the m
plates; it is quite sharp in the predictions but much more gradual
in the measurements. There is of course a related discrepancy in
the temperature change at which the bifurcation occurs. To un-
derstand this we remind that the source of the bifurcation is an
imperfectionof some sort that breaks the ideal symmetry; we
will take this up in more detail in the following.

Following Freundet al. [13] and Freund [14], we introduce
the nondimensional curvature and temperature change (mis-
match strain)

In these expressions, , for the circular and square plates,
respectively. The data of Figs. 5 and 6, before bifurcation, are

Fig. 5. Average measured (top) and predicted (bottom) curvature as a function
of temperature change upon cooling from 100C to room temperature. The
curves from top to bottom are for theD = 150, 200, 250, and300 �m
microstructures, respectively.
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Fig. 6. Average measured (top) and predicted (bottom) curvature as a function
of temperature change upon cooling from 100C to room temperature. The
curves from top to bottom are for theL = 150, 200, 250; and 300�m
microstructures, respectively.

plotted in terms of these nondimensionalized variables in Fig. 7.
The four curves collapse to a single curve and the plate size ef-
fect in this regime is described by the nondimensionalization.
We emphasize, though, that this is in part because the average
curvature is computed over a region of 150m diameter, and
the curvature is relatively uniform over this region. In agree-
ment with Freund’s results, the geometric nonlinear effects ini-
tiate at a normalized temperature change (mismatch strain) of
about . Interestingly, predictions for both the circular
and square plates are indistinguishable, but the measurements
differ slightly, particularly at larger values of. Here the results
for the circular microstructures are slightly above those for the
square microstructures. The reason for this is unclear, but it is
perhaps due to slight differences in properties between the two
fabrication runs to produce the two sets of samples. Neverthe-
less, the agreement between the measurements and predictions
is quite good.

In Figs. 8 and 9 we explore the connection between the ther-
momechanical loading (the temperature change), the geometry
(plate size), and the boundaries between the three deformation
regimes for the gold–polysilicon plate microstructures. Fig. 8
shows the temperature change necessary to initiate nonlinear
effects (the transition between regionsI and II ) as a function
of polysilicon thickness when the gold film thickness is kept
constant at 0.5 m. Fig. 9 shows similar results for the onset
of bifurcation (the transition between regionsII and III ). For
simplicity, the calculations leading to these results were carried
out using the analytical model previously described. Limited re-
sults obtained from finite element calculations are in reasonable

Fig. 7. Nondimensional average curvature as a function of temperature change
for the linear and nonlinear regimes. Measurements (symbols: filled for circular
plates, and open for square plates) and predictions (solid line for both circular
and square plates) are shown. Both open and close symbol shapes denote the
same plate sizes as in Figs. 5 and 6, i.e.,l = 150 �m (triangles),l = 200 �m
(squares),l = 250 �m (diamonds), andl = 300 �m (circles).

agreement with these, particularly qualitatively (the differences
can be seen to some degree in Fig. 14, although that is not the
primary intent of that figure). In each figure, contours for con-
stant polysilicon layer thicknesses are shown. Of particular note
are m and m. These thicknesses correspond
to plates fabricated from the POLY2 and POLY2 POLY1
layers in the MUMPS process. The curve m corre-
sponds approximately to the case of a plate fabricated from the
MUMPS POLY2 OXIDE POLY1 layers, i.e., a structure
fabricated with a trapped oxide layer (Cowanet al., [1]). It is
approximate because the elastic moduli of the oxide differ from
that of polysilicon. Also notable are the curves for m.
These are applicable to a polysilicon process that is capable of
depositing more structural layers, such as the Sandia SUMMIT
process (see for example, Sniegowski and de Boer, [27]). Figs. 8
and 9 show the strong influence of the plate length/thickness
ratio on the development of geometrically nonlinear deforma-
tion and bifurcation.

In Fig. 10, we explore the effect of possible imperfections that
may trigger the bifurcation in the deformation behavior. In order
to simplify the interpretation of the results and identify basic
phenomenological features, the calculations in Fig. 10 were car-
ried out with constant room temperature material properties.
This slightly alters the exact magnitudes of calculated quan-
tities, but does not affect the conclusions drawn. This can be
seen quantitatively by comparing the results here with those in
Fig. 6 which incorporate temperature-dependent material prop-
erties. First, in Fig. 10(a) we alter the thermal expansion mis-
match by increasing the thermal expansion coefficient of the
gold and , while keeping fixed. This
increases the mismatch strain . Note that the same ef-
fect could be generated by decreasing the thermal expansion of
the polysilicon while keeping that of the gold constant since the
thermal expansion mismatch drives the deformation. Fig. 10(a)
shows that increasing the mismatch strain by about 8.5% de-
creases the temperature at which bifurcation occurs by about
5 C, but at the resolution of the plot it does not significantly
affect the linear and nonlinear portions of the temperature-cur-
vature response. Of course these results are for the particular
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Fig. 8. Temperature change required for the initiation of nonlinear geometry
effects as a function of plate size and the thickness of polysilicon for the
gold–polysilicon microstructures.

Fig. 9. Critical temperature change for bifurcation as a function of plate size
and the thickness of polysilicon for the square (solid lines) and circular (dashed
lines) gold–polysilicon microstructures.

material system and geometry considered. This 8.5% difference
in the mismatch strain is probably not an unrealistic estimate of
the uncertainty of the actual mismatch strain. Looking at these
results in light of the measurements, it seems that the uncer-
tainty in knowledge of the mismatch strain can not explain the
discrepancy between the observed and predicted deformation.
This is because it is not adequate to predict the observed differ-
ence between the measured and predicted temperature at which
bifurcation occurs, and because it does not resolve the differ-
ence in the sharpness of the bifurcation between measurements
and predictions.

In Fig. 10(b), we study the effect of slight anisotropy in the
mismatch strain by increasing the thermal expansion anisotropy
of the gold, . The principal result of this is a gradual begin-
ning of the bifurcation, from the sharp result with ,
as is increased. To the resolution of the plot, no significant
effect is observed in the linear and nonlinear regimes prior to
bifurcation. Interestingly, anisotropy in of less than one per-
cent leads to a decrease in temperature change at the beginning
of the bifurcation of about 15–20C. The latter is in line with
the discrepancy between measurements and predictions, and the
former is probably not an unreasonable degree of anisotropy as
discussed previously. We note, though, that because of the de-
crease in the sharpness of the bifurcation it is difficult to describe

(a)

(b)

(c)

Fig. 10. Effects of an initial imperfection on the bifurcation for theL =

300 �m plate: (a) effect of� :� = 14:5, 15, and 15.5� 10 = C; (b) effect
of �� :�� = 0:004, 0.1, and 0.2�10 = C; and (c) effect of�L:�L =

0:05, 0.1, 0.5, 3, and 6�m.

precisely the temperature change at which the bifurcation starts.
In Fig. 10(c), we study the effect of imperfection in the structural
geometry, specifically, the side length of the square plate. Like
the thermal expansion anisotropy, increased small anisotropy in
the plate side length leads primarily to a gradual beginning of
the bifurcation. Here m leads to only about a 7–10C
decrease in the beginning of the bifurcation. The latter is less
than that observed in the measurements and the former is much
larger than the measured which is about onem at most. As
a result, anisotropy in the geometry is probably not the primary
imperfection that actually contributes to the gradual bifurcation.
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These results, along with similar ones reported by Freund
et al.[13] and Freund [14], show that the details of the bifur-
cation are strongly influenced by slight perturbations of the im-
perfection. This sensitivity probably precludes a sharp bifurca-
tion in practice. Although we focused on the possible roles of

and , other imperfections such as other slight variations
in the geometry, nonuniformities in the layer thicknesses due to
deposition imperfections, the etch holes, and anisotropy and/or
heterogeneity in other material properties also can play a role
in the exact bifurcation details. In summary, the bifurcation de-
tails are a strong function of the details of the imperfections and
probably represent an aggregate effect of all of these. As a result,
it is prohibitively difficult to predict the bifurcation details. We
note, though, that if it is desired to make the bifurcation occur in
a particular direction one can incorporate an imperfection into
the microstructure design, for example, anisotropy in the length,
that overwhelms all other sources of imperfections that may not
be able to be accurately controlled.

In the analytical treatments discussed previously it is assumed
that the curvature is spatially uniform. The power of the finite
element calculations is that this requirement is relaxed and the
spatial variation of the curvature can be studied. Our full-field
measurement capability allows us to study this experimentally
as well. We take up this line of inquiry in Figs. 11 and 12 where
predicted and measured curvatures and are
plotted as a function of temperature change for four discrete
positions along the -axis and -axis , re-
spectively, for the m microstructures. In the linear
regime, the curves are indistinguishable implying that the cur-
vature is essentially uniform across the plate. In the nonlinear
regime, though, the curvature varies appreciably with position,
increasing by about a factor of two from the center to the pe-
riphery of the plate. As with the average curvature, good agree-
ment also exists between measurements and predictions here,
with the most significant discrepancy being the details of the
bifurcation as discussed previously. Although not shown, addi-
tional calculations have shown that the spatial nonuniformity of
the curvature increases as the plate size increases. The spatial
variation of the curvature raises concern regarding the suitable-
ness of an analysis based on constant curvature. As mentioned
previously, such an analysis may be adequate to describe the
general deformation behavior, but not finer details.

While to this point we have primarily focused on curvature,
in Fig. 13 we show the computed dependence of the midplane
strain on the temperature change at five discrete positions on
a square plate with m. Although not as promi-
nent, the three deformation regimes described in the context of
the curvature versus temperature change response
are apparent in the response. In regimesI and II ,

, while after the bifurcation (regimeIII )
as the deformation is no longer symmetric. The midplane strains
vary nearly linearly with temperature throughout the deforma-
tion; the nonlinearity in regionII is slight. Additionally, the
midplane strains do not vary significantly with position, espe-
cially when compared to the curvature variations of Figs. 11
and 12. This has important implications for strain measurements
using X-ray or neutron diffraction as it suggests fairly large
in-plane dimensions could be used for the sampling. Interest-

Fig. 11. Pointwise curvature as a function of temperature change for theD =
300 �m microstructure at four locations,2x=D = 2y=D. Solid lines are
predictions and the open circles are measurements which are connected by lines
to aid viewing.

Fig. 12. Pointwise curvature as a function of temperature change for the
L = 300 �m microstructure at four locations,2x=L = 2y=L. Solid lines are
predictions and the open circles are measurements which are connected by
lines to aid viewing.

ingly, unlike the curvature variation with position, the midplane
strains do not vary monotonically with position from the center
to the periphery of the plate. This is perhaps difficult to see from
Fig. 13(a), so in Fig. 13(b), we show the two contributions to
( and ), along with itself, as a func-
tion of plotted along when the plate is subjected to
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(a)

(b)

Fig. 13. (a) Pointwise midplane strain" (and" ) at five locations2x=L (and2y=L) as a function of temperature change for theL = 300 �m microstructure.
Curves before bifurcation correspond to2x(2y)=L = 0:67, 0.83, 0.5, 0.33, and 1 from top to bottom; (b) Midplane strain for theL = 300 �m microstructure
and its componentsdu=dx, and(1=2)(dw=dx) alongy = 0 for �T = �76 C.

C. This illustrates the role played by the geo-
metrical nonlinearity; the variation of the term
largely cancels out the variation of the term.

In Fig. 14 we plot the critical average curvature at which the
bifurcation in the equilibrium shape occurs as a function of the
plate size . Although not shown, similar behavior results for
the circular plate with diameter . Four results are shown: i) an
analytical prediction from the constant curvature calculation as
given by (5); ii) predictions from the simplification where there
is no elastic mismatch between the layers, (7); iii) finite ele-
ment predictions; and iv) the measurement for the m
sample. Despite the fact that the constant curvature approxima-
tion becomes questionable for larger plate sizes, (5) is a good
approximation as seen by the agreement with the finite element
calculations, at least for the elastic mismatch and plate sizes con-
sidered here. In fact, the simplified result of (7) for no elastic
mismatch is in reasonable agreement with the finite element and
the complete analytical results. Even better agreement would
be expected for practical situations where the elastic mismatch
were less such as silicon dioxide/gold and silicon dioxide/alu-
minum multilayers. The finite element calculations are shown
with error bars. These error bars show the range of critical curva-
ture (actually critical temperature change as shown in the figure)

Fig. 14. Critical temperature change for bifurcation as a function of square
plate size for the gold–polysilicon microstructures. The error bars on the finite
element calculations represent the difference in the critical temperature change
that results from a one percent change in the anisotropy of the mismatch strain
(as discussed with regard to Fig. 10).

that results from a one percent change in the anisotropy of the
mismatch strain (as discussed with regard to Fig. 10). Unfortu-
nately we only have a single measurement, but it is accurately
described by both the analytical and finite element results.
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V. CONCLUSION

We studied the deformation response of polysilicon/gold
square and circular plate microstructures subjected to uniform
temperature changes. Consistent with previous observations,
we observed three regimes of deformation in terms of the
average curvature-temperature response:I linear thermoelastic
response,II geometric nonlinear response, andIII bifurcations
in the deformation behavior. These phenomena, particular
regimes II and III , can be detrimental when dimensional
stability is a requirement, or can be beneficial for actuator
applications. In all three regimes, we found good agreement
between measurements and predictions, the latter based on
both an analytical calculation assuming a constant curvature
deformation mode, and finite element calculations that removed
this restriction. While simple analyses assuming a constant
curvature deformation mode are perhaps sufficient for simple
shapes (e.g., relatively simple blanketed or thin line patterns),
the finite element approach is better suited for arbitrary ge-
ometry with spatially varying curvature. The most significant
discrepancies between the measurements and predictions
occurred in the details of the bifurcations, but we showed that
these are unlikely to be accurately modeled without detailed
information regarding the imperfection that initially triggers
the bifurcation. When geometric nonlinearity occurs, the
average curvature depends on the in-plane dimensions of the
plate, and the curvature can vary significantly over the in-plane
dimensions. The average curvature may thus be insufficient to
adequately describe the deformation state of the microstruc-
ture. The spatially nonuniform curvature, and thus stresses,
makes the use of common average curvature measurements to
determine film stress, via the Stoney formula, questionable;
interpretation of such measurements must be made with care.
Finally, although our focus has been on deformation, we note
that significant differences exist with regard to the stress state
due to the comparable thicknesses of the layers, but these will
be discussed elsewhere.

APPENDIX

The composite moduli used in the text are defined in most
standard texts on composite materials (see for example, Jones
[19]), and are recorded here for completeness

(A1)

where and are defined in Fig. 1(a). In terms of and :

(A2)

In (A1), the depend on the generally anisotropic elastic
moduli of the th layer; for isotropic materials the nonzero com-
ponents reduce to,

(A3)

where , , and are Young’s modulus,
Poisson’s ratio, and the shear modulus, respectively, of theth
layer.
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