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LEARNING TEMPORAL VARIATIONS FOR ACTION

RECOGNITION

QILI ZENG

ABSTRACT

As a core problem in video analysis, action recognition is of great significance for

many higher-level tasks, both in research and industrial applications. With more and

more video data being produced and shared daily, effective automatic action recogni-

tion methods are needed. Although, many deep-learning methods have been proposed

to solve the problem, recent research reveals that single-stream, RGB-based networks

are always outperformed by two-stream networks using both RGB and optical flow

as inputs. This dependence on optical flow, which indicates a deficiency in learning

motion, is present not only in 2D networks but also in 3D networks. This is somewhat

surprising since 3D networks are explicitly designed for spatio-temporal learning.

In this thesis, we assume that this deficiency is caused by difficulties associated

with learning from videos exhibiting strong temporal variations, such as sudden mo-

tion, occlusions, acceleration, or deceleration. Temporal variations occur commonly

in real-world videos and force a neural network to account for them, but often are not

useful for recognizing actions at coarse granularity. We propose a Dynamic Equilib-

rium Module (DEM) for spatio-temporal learning through adaptive Eulerian motion

manipulation. The proposed module can be inserted into existing networks with

separate spatial and temporal convolutions, like the R(2+1)D model, to effectively

handle temporal video variations and learn more robust spatio-temporal features.

We demonstrate performance gains due to the use of DEM in the R(2+1)D model on

miniKinetics, UCF-101, and HMDB-51 datasets.
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Chapter 1

Introduction

Video is a ubiquitous information medium in the modern society, with a range of

applications in television, surveillance and social media. Compared to static images,

video provides a more natural and comprehensive way to record scenes and capture

events, which is much closer to the way humans observe and analyze objects, activities

and emotions.

In the last two decades, thanks to the rapid growth of internet bandwidth and

mobile devices, there has been an explosive increase in the number of videos uploaded

every day to online platforms, such as Facebook, Instagram, Youtube and many oth-

ers. While such videos are mostly intended for entertainment, they can also be used

for personalized recommendations, targeted advertising, censorship, etc. This, how-

ever, necessitates an analysis of video streams to understand their content. Obviously,

manual inspection is time-consuming, expensive and hence not scalable. Therefore,

automatic computer algorithms for video understanding are needed.

In the field of computer vision, video modeling and understanding has been studied

for decades leading to various algorithms and applications, such as video inpainting,

video captioning, action recognition, etc. Due to the fact that most videos are human-

related, understanding human actions is not only an important goal in itself, but also

serves as the foundation for other higher-level tasks, such as action anticipation, video

generation, etc. Therefore, human action recognition has been one of core topics in

computer vision for decades. Although largely solved in simple cases, human action
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recognition still faces significant challenges due the complexity of natural human

motion, variations in body build and pose, and interactions between actors and their

environment.

Although traditional methods based on hand-crafted feature extraction perform

well in many cases, they do not generalize to large-scale, real-world video datasets and

would not perform well on massive daily uploads of, often, complex videos. Since deep

convolutional neural networks (CNN) became a dominant solution to universal image

understanding, people have attempted to replicate their success on video, which is

often considered as a sequence of still images.

3D Convolutional Networks (3D ConvNets) were proposed based on a natural

extension from 2D pixels to 3D voxels in order to learn from video data in an elegant

way. However, this simple transformation from spatial convolution to spatio-temporal

convolution failed to achieve desirable performance with regard to the accuracy of

prediction. It has been observed that 3D ConvNets with only RGB as an input

do not perform as well as their two-stream counterparts which take RGB and optical

flow as two independent inputs. Since optical flow is computed deterministically from

video frames, the introduction of optical flow can be considered as feature engineering

which, in the context of deep learning, is a limitation and suggests that current 3D

ConvNets could be improved in terms of learning spatio-temporal information.

A lot of research has been conducted in order to understand this deficiency and

seek ways to improve recognition accuracy. Some of the developed approaches have

focused on exploring the possibilities of training single RGB stream with extra super-

vision (Stroud et al., 2018; Crasto et al., 2019). Other approaches have attempted to

analyze the reasons for optical flow’s impact and to incorporate the learning of optical

flow into the networks (Sevilla-Lara et al., 2017; Ng et al., 2018; Zhu et al., 2018a;

Zhao and Snoek, 2019). Still other solutions facilitated indirect motion modeling
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based on the nature of spatio-temporal data (Zhao et al., 2018a; Zhao et al., 2018b;

Wang et al., 2018; Feichtenhofer et al., 2019; Wang et al., 2019a; Liu et al., 2019).

The proposed method falls under the umbrella of the last category of methods.

In this thesis, we propose and develop a Dynamic Equilibrium Module (DEM)

designed to explicitly account for the temporal variability of people and objects’

dynamics. This module can be used as an enhancement to various CNN architectures.

It has been developed based on one observation and one hypothesis.

First, we noticed that motion in real-world videos can dramatically change in just

a few frames and, therefore, is difficult to predict. Since the human visual system is

endowed with bi-directional attention, i.e., top-down and bottom-up (Lu and Sperling,

1995; Buschman and Miller, 2007), and with prior knowledge of object structure,

maintaining visual coherence with respect to moving objects over time is not difficult,

which contributes to handling motion variations. However, in the case of neural

networks trained from scratch, learning high temporal variations of motion leads

to high computational cost. Considering the mechanism for motion interpretation

inside a CNN, which was demonstrated in early CNN-based optical flow estimators

(Dosovitskiy et al., 2015; Ilg et al., 2017), a large displacement between adjacent

frames cannot be handled by local convolutional operators. When recognizing actions

from several frames (a video segment), the network must include different groups of

filters across layers in order to adapt to time-varying motion. This, on the other hand,

brings about extra difficulties in making accurate prediction with given supervision

and limited-scale dataset.

Nevertheless, for general action recognition, where each trimmed short video is

associated with one coarse label (e.g., “playing soccer” rather than specific actions

of “dribbling”, “passing” or “shooting”), fine-grained motion information including

acceleration and deceleration may be unnecessary. For instance, humans would not
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need to know whether the speed of a swimmer increases or decreases before under-

standing the person is swimming. In most cases, a coarse description of objects and

their dynamics is sufficient to generate reliable prediction for action category.

Having argued that a detailed motion description is not required and even could

lead to extra computational cost during learning, we propose to develop a specialized

network structure to deal with time-varying movement. We expect this structure

could be helpful in reducing the sensitivity of the network to temporal variations and

enhancing network’s robustness to different motion types. DEM, that we propose in

this thesis, encapsulates this idea.

DEM can be inserted into existing models such as R(2+1)D (Tran et al., 2018),

S3D (Xie et al., 2018) and P3D (Qiu et al., 2017), where a 3D convolution is de-

composed into consecutive convolutions, a 2D spatial one and a 1D temporal one.

More specifically, DEM inserted between a spatial convolution and a temporal one

is expected to stabilize the spatio-temporal learning by extracting Eularian motion

representation from adjacent spatial feature maps and merging this information back

into the backbone network before temporal convolution. Compared to SlowFast Net-

works (Feichtenhofer et al., 2019) and Random Temporal Skipping (Zhu and Newsam,

2018), where temporal variations are handled by explicit multi-rate sampling, DEM

shares the same motivation but provides a more flexible solution to motion modeling.

The subsequent chapters are organized as follows. Chapter 2 gives a review of

related work, including major milestones and recent progress in action recognition,

motion representation and video sequence modeling. Chapter 3 describes the pro-

posed Dynamic Equilibrium Module (DEM) and intuitively explains how it works.

Chapter 4 quantitatively demonstrates the effectiveness of DEM through experimen-

tal results and an ablation study. Chapter 5 summaries the thesis and discusses

possible extensions in the future.
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Chapter 2

Related Work

2.1 Action Recognition

Different from image classification, video-based action recognition requires reliable

motion features to reflect the dynamic changes occurring in videos. Laptev et al.

proposed a spatio-temporal interest points (STIPs) method (Laptev and Lindeberg,

2003) by extending Harris corner detector to 3-dimensional space to capture motion.

Similarly, 3D extensions of Scale-Invariant Feature Transform (SIFT) (Klaeser et al.,

2008), Speeded Up Robust Features (SURF) (Willems et al., 2008) and Histogram of

Oriented Gradients (HOG) (Laptev et al., 2008) have also been introduced. Guo et

al. proposed to efficiently generate low-dimensional representation for pre-computed

motion descriptors, such as optical flow and silhouette tunnel, via log-covariance

matrices (Guo et al., 2010; Guo et al., 2013). Dense Trajectories (DT) (Wang et al.,

2011) and the method’s successor, Improved Dense Trajectories (iDT) (Wang et al.,

2013) were the best performing solutions before deep learning’s remarkable success.

However, iDT is computationally expensive and becomes intractable on large-scale

video datasets.

Since AlexNet’s (Krizhevsky et al., 2012) breakthrough in image classification,

there have been active explorations into action recognition using neural networks. In

early attempts, features were extracted in each frame through Convolutional Neural

Networks (CNNs) pretrained on an image dataset and these frame-level represen-

tations were then fused via feature pooling (Joe Yue-Hei Ng et al., 2015), high-
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dimensional feature encoding (Girdhar et al., 2017; Diba et al., 2017; Lin et al., 2018)

or recurrent neural networks (RNNs)(Donahue et al., 2015; Joe Yue-Hei Ng et al.,

2015; Srivastava et al., 2015) to generate a video’s global description.

(a)

(b)

(c)

Figure 2·1: Comparison between different spatio-temporal convolutions, where video
frames are represented by blue rectangles: (a) 2D convolution for video modeling; (b)
3D convolution; (c) (2+1)D convolution.

Simonyan et al. proposed a biologically-inspired Two-Stream Network (Simonyan

and Zisserman, 2014) which computes the representation of appearance and motion
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separately by taking video frames and optical flow as inputs to two different branches

of networks, respectively. Two-stream networks successfully alleviate the problem of

weak temporal modeling ability of 2D convolutions by using motion features explic-

itly. A number of methods followed this design, such as Temporal Segment Networks

(TSN) (Wang et al., 2016), Hidden Two-Stream Networks (Zhu et al., 2018b), Spa-

tiotemporal Pyramid Network (Wang et al., 2017). Feichtenhofer et al. proposed a

fusion scheme for appearance and motion features (Feichtenhofer et al., 2016). Two-

Stream networks also inspired research with other modalities including audio (Li et al.,

2017), motion vectors (Wu et al., 2018), and estimated motion representations (Zhao

et al., 2018a). However, computing optical flow is expensive and, more importantly,

could be considered as feature engineering in the context of deep networks since it is

pre-computed from video frames.

3D convolution is another family of solutions, which learns spatio-temporal repre-

sentation in a unified way. An early version of 3D ConvNets was proposed by Ji et al.

(Ji et al., 2013), while Tran et al. proposed a modern 3D convolutional network (C3D)

(Tran et al., 2015) with more mature deep learning configurations. Subsequent work

with 3D Convolution includes I3D (Carreira and Zisserman, 2017) and R3D (Hara

et al., 2018), which inflated a 2D Inception Network and a Residual Network into

corresponding 3D versions along the temporal dimension. X3D (Feichtenhofer, 2020)

further explored feasible solutions to expand 2D networks along other axes, such as

bottleneck width and depth. Considering the heavy computational complexity of 3D

convolutions and the inexact symmetry of 3D kernels (spatial and temporal infor-

mation is intermixed and considered jointly), researchers made an effort to employ

2D and 3D operators together in proper order (Xie et al., 2018; Zhou et al., 2018b),

decompose 3D convolution into consecutive 2D and 1D convolutions (Qiu et al., 2017;

Tran et al., 2018), or apply 2D operations along 3 planes of spatio-temporal tensors
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(horizontal, vertical and temporal) whose outputs are fused by a weighted summation

(Li et al., 2019).

Although 3D ConvNets are designed to jointly learn spatio-temporal features, al-

most all of them achieve improved performance with an extra flow stream, which

means that complementary motion information is still beneficial and thus current 3D

networks are not sufficiently capable of modeling motion as expected. Some work has

been undertaken to understand how optical flow helps spatio-temporal learning in

action recognition (Sevilla-Lara et al., 2017; Güney et al., 2019). D3D (Stroud et al.,

2018) and MARS (Crasto et al., 2019) methods transfer knowledge from an optical-

flow stream to an RGB stream via distillation and demonstrate that, under proper

supervision, 3D networks could perform similarly to their two-stream counterparts.

Researchers also investigated possible approaches to learn from dynamics without ex-

plicitly using or estimating motion features. Most of this work was proposed based on

the temporal structure and internal relations within a sequence of frames. Non-local

Networks (Wang et al., 2018) established pixel-to-pixel relations across all feature

maps, implicitly learning motion through generalized self-attention. Correlation Net-

works (Wang et al., 2019a) established frame-to-frame matches over convolutional

feature maps through learnable correlation operators. Temporal Shift Module (Lin

et al., 2019) performs efficient temporal modeling by moving the feature map along

the temporal dimension, which enables high-speed online action recognition with 2D

networks.

2.2 Motion Representation

Motion in a video sequence implies a relationship between video frames and reflects

important properties of moving objects, such as shape, texture, and 3D structure,

from which distinctive patterns can be captured and used for many tasks. Various
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motion descriptors have been developed in the past, however most of them can be

classified as either a Lagrangian or Eulerian approach.

The Lagrangian perspective on motion considers it as the movement of particles in

a medium. Among the most successful hand-crafted Lagrangian approaches are dense

optical flow (Horn and Schunck, 1981) and improved dense trajectory (Wang and

Schmid, 2013) methods. Since accurate optical flow computation using variational

approaches requires hundreds of iterations (Zach et al., 2007), CNNs were explored

for optical flow estimation as well (Dosovitskiy et al., 2015; Ilg et al., 2017; Ranjan

and Black, 2017; Sun et al., 2018; Fan et al., 2018). Although FlowNetS (Dosovitskiy

et al., 2015) demonstrates the ability of directly converting image pairs into optical

flow, special structures or intermediate representations including correlation layers

(Dosovitskiy et al., 2015), cost volume (Xu et al., 2017) and image pyramids (Ranjan

and Black, 2017) have been adopted for more robust estimation in highly-dynamic

scenes.

The Eulerian perspective on motion, on the other hand, considers motion as a

variation of pixel values at fixed positions over time. Without explicitly capturing

pixel correspondences, Eulerian motion features are more sensitive to occlusions, blur,

and large displacements, and thus only provide a rough motion description. Previous

explorations have successfully employed Eulerian motion in video motion magnifi-

cation (Wu et al., 2012; Wadhwa et al., 2013; Oh et al., 2018a) and video frame

interpolation (Meyer et al., 2018).

In the area of action recognition, RGB differences, the simplest Eulerian motion

representation, have been used in Temporal Segment Network (Wang et al., 2016).

However, its experimental results are inferior to those of the same network operating

on optical flow as the input. Similar to (Wadhwa et al., 2013), phase-based motion,

where movement’s state is represented by the phase of pixels in complex domain,
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was also applied to action recognition (Hommos et al., 2018). Temporal Difference

Networks (TDN) (Ng and Davis, 2018) made an attempt to extract learning-based

Eulerian motion as an independent stream for subsequent classification. All these

prior methods consider Eulerian motion as a replacement for or complement of optical

flow, while in the proposed DEM module, Eulerian motion is learned to manipulate

spatio-temporal representations flowing through the backbone network.

2.3 Sequential and Temporal Modeling

Recurrent Neural Networks (RNN), especially with gated cells such as Long Short-

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent

Units (GRU) (Cho et al., 2014) have been widely used for decades in order to extract

and learn information from a sequence, including natural language (Sutskever et al.,

2014) and sound (Eck and Schmidhuber, 2002). There is also a long history of us-

ing convolutional networks for effective and parallelizable sequence modeling (Waibel

et al., 1989; van den Oord et al., 2016; Bai et al., 2018). The combinations of convo-

lutional networks and recurrent models have been also explored, such as ConvLSTMs

(Donahue et al., 2015) and VideoLSTMs (Li et al., 2018). Recent work also proposed

effective long-range sequence modeling solutions solely based on attention mechanism

(Vaswani et al., 2017).

Since frames are organized in a video in temporal order, video modeling often

leverages time-related characteristics for specific tasks. Temporal Relation Network

(TRN) (Zhou et al., 2018a) samples video frames sparsely in different temporal in-

crements and fuses the features through multi-scale multilayer perceptrons (MLP)

to explore temporal dependencies between frames at multiple time scales. Consider-

ing real-world movement is continuous and smoothly-varying, slow feature analysis

(Zou et al., 2012; Jayaraman and Grauman, 2016) was proposed to utilize temporal
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continuity in video for unsupervised representation learning. Wei et al. proposed to

learn and visualize the ”arrow of time”, i.e., the natural temporal order of video se-

quence, and demonstrated its effectiveness as a self-supervised pretraining for action

recognition (Wei et al., 2018). Wang et al. and Dwibedi et al. employed temporal

cycle-consistency for self-supervised representation learning and achieved desirable

results on several fine-grained tasks (Dwibedi et al., 2019; Wang et al., 2019b).

The model proposed in this thesis has been also inspired by prior work on video

modeling using multivariate or temporal multi-scale sampling, which emphasizes

learning representations for actions occurring at various speeds. Multirate Gated

Recurrent Unit (mGRU) (Zhu et al., 2017) followed the idea of Clockwork RNN

(Koutnik et al., 2014) and encoded video frames with different intervals. Random

Temporal Skipping (Zhu and Newsam, 2018) attempted to cover all motion speed

variations by randomizing the sampling rate during training in an exhaustive way.

Similarly, Dynamic Temporal Pyramid Network (DTPN) (Zhang et al., 2018) also

sampled frames with different frame rate to construct a natural pyramidal represen-

tation for arbitrary-length input videos. SlowFast Networks (Feichtenhofer et al.,

2019) included two different network streams for both high frame-rate inputs and low

frame-rate inputs, modeling motion at fine and coarse temporal resolutions separately.

Temporal Pyramid Network (TPN) (Yang et al., 2020) aggregated the information of

temporal variations at multiple feature levels in the backbone network in a plug-and-

play manner and fused them to make the final prediction.
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Chapter 3

Dynamic Equilibrium Module

In order to improve performance of CNN-based action recognition, in this chapter

we propose a Dynamic Equilibrium Module (DEM). This module aims at discovering

temporal variations in the input video and in its intermediate spatio-temporal repre-

sentations within the backbone network. The module produces feedback signals that

allow the backbone network to leverage motion information more accurately.

3.1 Eulerian Description of Temporal Variations

Temporal variations occurring in a video sequence capture the change in dynamics of

objects in a 3-D scene. Such changes occur naturally in a real world and are usually

unpredictable but are of key importance for recognizing actions. Before focusing on

temporal variations let us first define general Eulerian motion representation in the

context of neural networks.

A Eulerian motion description typically involves computing the difference of cer-

tain properties of an image sequence either in space-time or in spatio-temporal fre-

quency domain. For instance, using temporal convolution TConv with filters of size

t × 1 × 1 (temporal × horizontal × vertical dimensions), the dynamics present in a

video sequence could be described in the most general form as follows:

∆I = TConv(It−1, It−2, . . . , I0) (3.1)

where It denotes a video frame at time t. As modern convolutional neural networks
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learn representation in a hierarchical manner, we assume such operation is not only

applicable to the input frames (low-level motion), but also to intermediate feature

maps (high-level motion). In practice, motion description is usually inferred from a

pair of input frames, in which case t would equal 2 in (3.1).

By observing adjacent video frames, humans can easily determine whether a par-

ticular frame contains large-amplitude motion, occlusions, acceleration, deceleration,

etc. However, it is not obvious how to characterize such temporal variations mathe-

matically. One possible quantitative description of such variations can be obtained by

analyzing either three consecutive video frames (in the input layer) or three consec-

utive spatio-temporal representations (in subsequent layers), denoted xn−1,xn,xn+1,

as follows:

Dn = g(f(xn−1,xn), f(xn,xn+1)) − f(xn−1,xn+1) (3.2)

where f and g refer to TConv operations with different filters. The role of Dn can be

explained as follows. In case of an action that evolves uniformly in time (for example,

linear, constant-velocity movement such as a cyclist coasting on a flat road), motion

description based on the observation of (xn−1,xn+1) should be numerically close to the

composition of motion descriptions based on observations of (xn−1,xn) and (xn,xn+1)

and, consequently, Dn should be small. If Dn is large, then xn or (xn−1,xn+1) likely

disobeys action uniformity in time (e.g., the cyclist makes a sudden turn). While a

large value of Dn can be useful in recognizing a particular detail in an action (e.g.,

cyclist’s turn), it is not helpful in determining a high-level action (i.e., cycling, in this

example). In order to learn the fine details of an action, a more complex network

(more parameters) or extra supervision would be needed. Therefore, the goal is to

“discover” such fine details and help the backbone network compensate for them.
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3.2 Module Formulation

An observation of time-varying appearance by human visual system leads to motion

perception. Attributes of movement, such as velocity and acceleration, are closely

related to the way the appearance of objects changes in time. In other words, what

is presented in consecutive video frames determines how motion is interpreted, e.g.,

by speeding up a video of ”touching”, people may understand it as ”hitting”. Mo-

tion interpretation in a neural network works similarly – pattern matching between

frames could fail if excessive temporal variability is present. Following the idea of

motion magnification (Oh et al., 2018b), we believe that spatio-temporal represen-

tation learning can be influenced by adaptive manipulation of the appearance in an

image sequence.

However, temporal variations in a video lead to extra and unnecessary cost for a

network that is trying to predict a coarse action label rather than a fine detail in an

action. Accounting for this fine detail would require the network to learn different

groups of filters across layers thus increasing network’s complexity. If the temporal

variations in a video could be suppressed or, in other words, if the dynamics in a video

could be equilibrated, then learning from spatio-temporal data could be significantly

simplified. To this end, we introduce the Dynamic Equilibrium Module (DEM) that

attempts to generate motion compensation based on the detected temporal varia-

tions in a video and pass this information back to the backbone network for motion

manipulation.

DEM implements equation (3.2) to estimate temporal variations around a certain

frame, then fuses this representation with the original spatial feature map to generate

the compensation signal. Figure 3·1 shows a diagram of DEM and its interaction with

a unit in the backbone network, in our case a (2+1)D layer.

Function f in DEM is realized by using dilated convolution (Yu and Koltun, 2016),
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Figure 3·1: Illustration of a DEM inserted into a (2+1)D layer. Red and
green blocks represent spatial and temporal convolutional layers, respectively. Arith-
metic operation nodes are all pixel-wise.
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where computing f(xn,xn+1) is implemented with a normal TConv and computing

f(xn−1,xn+1) is implemented by the same TConv with the dilation rate of 2. See

Figure 3·2 for detailed illustration on a simple example.

Figure 3·2: Computing a representation of temporal variations. This ex-
ample shows the situation where the temporal length of input is 4. {xi}3i=0 denotes
the input sequence and xp denotes padding. fm,n refers to the result of applying f
to xm and xn, and similarly gl,m,n. The difference between gl,m,n and fl,n reflects the
temporal variations related to xm, as defined in equation (3.2).

In order to generate feedback for motion manipulation, we have considered various

approaches to fusing the original spatio-temporal representation with the represen-

tation of temporal variations computed in equation (3.2), including concatenation,

bi-linear pooling, and pixel-wise multiplication. We selected pixel-wise multiplication

for all experiments in this thesis due to its higher efficiency and lower memory usage.

Although DEM could be inserted between a pair of spatial and temporal convo-

lutions without any modification, the number of parameters in the whole network

would increase after insertion. Therefore, similarly to the R(2+1)D Network (Tran

et al., 2018), in all experiments we adjusted the number of midplane channels, i.e., the

number of spatial filters, in all the (2+1)D convolutional layers with a DEM to ensure
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that the total number of parameters in the network is equivalent to that of R3D net-

works. More specifically, the number of parameters Nparam in one 3D convolutional

layer can be calculated by

N3D = t× d× d×Nin ×Nout (3.3)

where t refers to the temporal length, d is the spatial width and height, and Nin, Nout

are the numbers of channels in the input and output tensors, respectively. A (2+1)D

convolutional layer would then have N(2+1)D parameters:

N(2+1)D = (1 × d× d×Nin) ×Nmid + (t× 1 × 1 ×Nmid) ×Nout (3.4)

where Nmid denotes the number of midplane channels. After DEM insertion, the

number of parameters in a (2+1)D + DEM unit would be

N(2+1)D+DEM = (1 × d× d×Nin) ×Nmid + (t× 1 × 1 ×Nmid) ×Nout

+2 × (2 × 1 × 1 ×Nmid) ×Nmid

+(1 × d× d×Nmid) ×Nmid (3.5)

We solve for Nmid in order to have the same number of network parameters in the

three cases. Table 3.1 provides detailed results of such an adjustment for 18-layer

models. The diagram of an R(2+1)D-18 network is provided in Figure 3·3.



18

Figure 3·3: Illustration of an R(2+1)D-18 network. Stem (conv1) layer con-
tains only one (2+1)D layer. Replacing all the (2+1)D layers by 3D convolutions
results in R3D network. DEM can be inserted into (2+1)D layers between the spatial
convolution and temporal convolution, as illustrated in Figure 3·1.
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Chapter 4

Experimental Results

4.1 Experimental Setup

4.1.1 Datasets

Kinetics-400 (Kay et al., 2017) is a large-scale human-centric video dataset collected

from Youtube, containing 400 human action classes, 240k training videos and 20k

validation videos. Since the testing subset is reserved for competition and its labels

are not provided, we use the validation subset for testing our models. Unfortunately,

training on Kinetics-400 would be extremely time-consuming on our hardware, thus

in most experiments we trained and tested our models on a subset of Kinetics-400,

called miniKinetics (Kinetics-200) (Xie et al., 2018). It includes 200 action classes

with 80k and 5k videos for training and validation. As the availability of dataset

videos varies over time due to deletion or withdrawal, there might be fewer videos

that could be effectively downloaded. In our experiments, we were able to collect only

77,152 and 4,988 videos as training and validation subsets.

UCF-101 (Soomro et al., 2012) is another trimmed video dataset for human

action recognition, consisting of 13,320 videos with 101 annotated classes. The dataset

is officially divided into training (70%) and testing (30%) subsets in three different

splits.

HMDB-51 (Kuehne et al., 2011) comprises 6,766 videos collected from real

movies and YouTube and annotated into 51 classes. Similarly, HMDB-51 also has

three splits for training (80%) and testing (20%).
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4.1.2 Training Configuration

Our model was implemented in PyTorch (Paszke et al., 2019). We used Adam op-

timizer (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.99. The initial learning rate

is 0.004 and is divided by 10 when validation loss becomes saturated. Our models

are trained from scratch and all the convolutional layers are initialized with Kaiming

Initialization (He et al., 2015). Following (He et al., 2018), we initalize γ vectors to

1 and β vectors to 0 in all the synchronized batch normalization layers.

We extract 16 frames as one sample. The extracted frames are first resized to

171 × 128 multiplied by a random factor within [1.0, 1.2] (spatial jittering) and then

randomly cropped to 112×112, i.e., every input sample has 16×112×112 dimension.

We also randomly flip the frames horizontally with the probability of 0.5 and randomly

rotate them by an angle between −15◦ and 15◦. In each epoch, we sample 4 clips

per video randomly (temporal jittering) so that the size of an epoch is increased to ∼

30k. Training takes about 40 epochs on miniKinetics. We also terminate the training

process when learning rate drops below 4e-7.

Due to limited computing resources, we deployed NVIDIA APEX1 on 4 Tesla

P100s/V100s for mixed-precision training and testing. Compared to full precision

(32-bit), mixed precision leads to memory savings and computing acceleration (on

V100 machines), at the cost of possible performance loss. Furthermore, since we found

out that the original DEM would lead to numerical overflow under mixed-precision

mode, we alternatively use ReLU-6 in DEM instead of ReLU in all experiments. We

have to point out that the original design with ReLU works well in full-precision.

In the experiments on miniKinetics, we use the total batchsize of 192, simulated by

gradient accumulation on a physical batchsize of 96.

1https://github.com/NVIDIA/apex
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4.1.3 Evaluation Metrics

We report both clip-based and video-based performance using top-1/top-5 accuracy.

The clip-based metric assumes each clip from a video shares the label with the video.

In this case, the accuracy for a dataset is computed using the predictions for all

clips extracted from the dataset. In the video-based metric, predictions (probability

distribution) for multiple clips from the same video are averaged to form a global

description of the video and then used in the accuracy computation. Video-based

accuracy describes the ability of a model to predict labels in a normal off-line setting,

while clip-based accuracy is important for tasks when only a limited part of a video

is available, such as in action anticipation. Following common settings, we extract 10

clips uniformly from each video in the validation subset in case of miniKinetics and

3 clips in case of the other two datasets. Unlike in the training stage, the extracted

frames are center-cropped to avoid randomness.

4.2 Results and Discussion for miniKinetics

4.2.1 Main Results

In order to demonstrate the effectiveness of the DEM module, we compare the per-

formance of the original R(2+1)D-18 model with R(2+1)D-18 equipped with DEM

on the miniKinetics dataset. Following the most commonly-used evaluation scheme

(Tran et al., 2018), we train and test the models using clips composed of 16 consecu-

tive frames, i.e., subsampling rate of 1 when extracting a clip from video. Tables 4.1

and 4.2 show video-based and clip-based top-1 accuracy performance of both models,

respectively.The first row in both tables reports the case when both the training and

testing are performed with the sub-sampling rate of 1. Clearly, R(2+1)D-18 with

DEM (w/) outperforms the original model without DEM (w/o).

Figure 4·1 shows the distribution of accuracy difference between the model with
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Table 4.1: Video-based performance evaluation on miniKinetics for
R(2+1)D-18 with (w/) and without (w/o) DEM. SR and Acc. @1 are ab-
breviations of the subsampling rate and Top-1 Accuracy, respectively. Using the
accuracy of the model trained and tested with the same subsampling rate as the ref-
erence, ∆ Acc. is calculated by testing the model at a different subsampling rate and
subtracting the corresponding accuracy from the reference value.

Training SR Testing SR
Testing Acc. @1 /% ∆ Acc. @1 /%

w/o DEM w/ DEM w/o DEM w/ DEM

1

1 52.52 53.53 0.00 0.00

2 51.63 53.13 -0.89 -0.40

4 47.27 49.36 -5.25 -4.17

2

1 50.50 54.30 -1.74 -1.55

2 52.24 55.85 0.00 0.00

4 50.66 54.75 -1.58 -1.10

4

1 48.22 49.00 -7.04 -7.27

2 53.67 54.26 -1.59 -2.01

4 55.26 56.27 0.00 0.00

Table 4.2: Clip-based performance evaluation on miniKinetics for
R(2+1)D-18 w/ and w/o DEM.

Training SR Testing SR
Testing Acc. @1 /% ∆ Acc. @1 /%

w/o DEM w/ DEM w/o DEM w/ DEM

1

1 40.45 42.30 0.00 0.00

2 40.25 42.45 -0.20 +0.15

4 38.04 40.61 -2.41 -1.69

2

1 38.69 41.90 -2.73 -2.79

2 41.42 44.69 0.00 0.00

4 41.77 45.19 +0.35 +0.50

4

1 36.35 36.81 -9.09 -9.29

2 41.63 42.56 -3.81 -3.54

4 45.44 46.10 0.00 0.00
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DEM against the model without DEM across all miniKinetics classes. Note, that 129

out of 200 classes are predicted more accurately when using DEM. The top 15 and

bottom 15 classes in terms of accuracy improvement due to the insertion of DEM are

shown in Figure 4·2.

Figure 4·1: Histogram of top-1 accuracy difference due to the use of DEM
and computed across all miniKinetics action classes. The difference is calcu-
lated as the per-class accuracy of R(2+1)D-18 with DEM minus that of R(2+1)D-18
without DEM. All 200 classes are included in this evaluation.

4.2.2 Handling Temporal Variations

In order to verify the ability of DEM to handle temporal variations in videos, Tables

4.1 and 4.2 show additional results from experiments using different combinations of

training and testing sub-sampling rates. Experiments were performed in two scenar-

ios: the same sub-sampling rates in training and testing, and different sub-sampling

rates in training and testing. We discuss each scenario below.

Experiments with matched sub-sampling rates. We increased the training and

testing sub-sampling rates simultaneously from 1 to 2 to 4 (Tables 4.1 and 4.2). In

the case of sub-sampling by 2, we dropped every other frame but still extracted 16

frames from a video. Clearly, the 16 extracted frames capture temporal informa-

tion over a 32-frame span in the original video. In other words, a higher temporal

sub-sampling rate leads to a larger temporal receptive field thus capturing informa-

tion over a longer time span, i.e., larger-scale temporal information represented in
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Figure 4·2: Top-1 accuracy difference for individual miniKinetics action
classes. The difference is calculated as the per-class accuracy of R(2+1)D-18 with
DEM minus that of R(2+1)D-18 without DEM. Only the top and bottom 15 classes
are shown. There are 200 classes in total.
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a video. The sub-sampling also creates a larger pixel displacement, thus simulating

faster-moving objects (video with higher dynamics). When training and testing with

the sub-sampling rate of 2, the model with DEM outperforms the model without

DEM by a larger margin than in the case of sub-sampling by 1 (3.61% top-1 accuracy

improvement compared to 1.01% for video-based evaluation and 3.27% improvement

compared to 1.85% for clip-based evaluation). This seems to indicate that DEM con-

tributes to handling higher dynamics resulting from sparser temporal sampling and

thus enables the network to benefit from longer time-scale information and suppresses

the side effect of larger displacements at the same time. It is worth noting that when

training and testing with the sub-sampling rate of 4, R(2+1)D-18 with DEM seems

to perform only slightly better than the original model without DEM (only 1.01%

top-1 accuracy improvement for video-based evaluation and 0.66% improvement for

clip-based evaluation). We believe that in the case of video-based evaluation this is

due to the fact that the average length of videos in miniKinetics is only 300 frames

and given that we sample ten 16-frame clips with uniformly-distributed start points,

the total temporal receptive field of the network already spans the whole video even

for sub-sampling by 2 (ten clips each covering 32 frames in the original video). There-

fore, an increase of the sub-sampling rate above 2 will not lead to the extraction of

longer time-scale information and thus the improvement on video-based benchmark

will be smaller. However, although we also noticed that there is only marginal im-

provement on clip-based benchmark with the sub-sampling rate of 4, we have no clear

explanations for these results so far.

Experiments with mismatched sub-sampling rates. The models trained and

tested with the same sub-sampling rate are expected to achieve the best performance

since training and testing are conducted on similar dynamics. In order to evaluate the

DEM’s capability to generate a robust representation of temporal variations, we use
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different sub-sampling rates in training and testing. It is clear from Tables 4.1 and

4.2 that when training with sub-sampling rate of 1, R(2+1)D with DEM has smaller

fluctuations in top-1 accuracy changes due to sub-sampling mismatch than R(2+1)D-

18 without DEM, which indicates a contribution of DEM to more robust spatio-

temporal learning. For training with sub-sampling rate of 2, both models produce

similar fluctuations in clip-based evaluation, but in video-based evaluation the model

with DEM produces smaller fluctuations than the one without DEM. The two models

perform similarly in both evaluations when the sub-sampling rate is increased to 4.

We believe the underlying reason for this is that training with a larger sub-sampling

rate enhances model’s robustness to temporal variations.

In all the above experiments, we implemented R(2+1)D-18 according to the orig-

inal Caffe implementation2. We have to point out that, for unclear reasons, this

implementation does not strictly follow the parameter-equivalent principles discussed

in Section 3.2. The first convolutional layer, i.e., the stem layer, was developed with

the midplane size of 45 in the original implementation, instead of 83, a value resulting

from formula (3.4). For a fair comparison, we use the original version of R(2+1)D as

a reference and adjust our R(2+1)D with DEM accordingly. Therefore, all the models

with DEM in the experiments thus far had the midplane size of 14 in their stem layer

instead of 20. However, we found this implementation does not lead to any special

benefits and may in turn, be harmful to our models with DEM since the midplane is

too small compared to common configurations for this structure. Therefore, in all the

subsequent experiments our implementation of R(2+1)D-18 and R(2+1)D-18 with

DEM uses parameters from Table 3.1 that are derived from equations (3.4) and (3.5).

2https://github.com/facebookresearch/VMZ
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4.3 Ablation Study

As mentioned in Chapter 3.1, we believe DEM, constructed for Eulerian motion

manipulation, should be applicable to handling both low-level and high-level temporal

variations. In order to further study its ability to deal with temporal variations at

different levels, we add the module separately to each layer in R(2+1)D-18. The

impact of this addition is shown in Table 4.3.

conv1 conv2 x conv3 x conv4 x conv5 x
Accuracy - Video Accuracy - Clip

top-1 top-5 top-1 top-5

55.01 80.97 43.01 70.19
√

59.84 84.34 48.21 74.52
√

61.85 84.90 49.41 75.16
√

61.07 84.84 49.47 75.20
√

61.63 84.94 50.03 75.40
√

59.54 83.66 47.73 74.10
√ √ √ √ √

58.30 83.02 45.91 72.80

Table 4.3: Impact of the insertion depth of DEM. A checked box indicates the
layer into which DEM was inserted.

Since conv1 is a simple (2+1)D layer, it is reasonable that the improvement by

only adding a DEM only here is less impactful than by adding the same DEM to

other layers (residual blocks with four (2+1)D layers in each of them). Still, even

with a DEM inserted in the first layer, it outperforms the original network by a

large margin, thus demonstrating DEM’s effectiveness in explicit learning of temporal

variations. The insertion of DEM into any of the middle 3 layers (conv2 x, conv3 x,

and conv4 x) leads to similar performance in each case, which means DEM is able

to contribute to spatio-temporal learning at various stages of the network. Adding

DEM to conv5 x results in less improvement, which we believe is because of the

slowness of spatio-temporal features (Carreira et al., 2018; Huang et al., 2018) at



29

(a) (b)

Figure 4·3: Training and testing loss. (a) Comparison between R(2+1)D-18
without DEM (Original) and with DEM in all layers (Full); (b) Comparison of
R(2+1)D-18 with DEM inserted in one layer only.

this stage. Since conv5 x layers are very close to the final fully-connected layer, the

most detailed temporal information in the representation is filtered out and thus the

temporal variations are much weaker here than in the previous layers, which makes

DEM less beneficial at this stage. These experimental results also serve as evidence

of the underlying mechanisms in DEM, designed to capture and handle temporal

variations, as we expected.

It is interesting to note that inserting one DEM into each of the layers (the model

we used in previous sections) leads to a reduced performance compared to inserting

it into one layer only. This phenomenon may imply that an excessive suppression of

temporal variations hinders the generation of accurate predictions. Another possible

reason is the increased complexity of the model with multiple DEMs compared to

those with a single DEM, which can be deduced from Figure 4·3. This figure shows

that, although the training loss for the model with multiple DEMs is similar to that

of the original R(2+1)D (Figure 4·3(a)), it is higher than the training loss for all

models with a single DEM (Figure 4·3(b)). This is an indication that optimization
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becomes harder when adding a DEM to each layer.

Comparing Table 4.3 with Tables 4.1 and 4.2, we also find that R(2+1)D-18 with

and without DEM both benefit from increasing the number of midplane channels in

the stem layer’ R(2+1)D-18 with DEM improves more than the one without DEM.
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4.4 Transfer to UCF-101 and HMDB-51

In order to demonstrate generality of the proposed module, we fine-tune and test the

developed models on UCF-101 and HMDB-51 datasets. The models are pre-trained

on miniKinetics with the aforementioned configurations. During fine-tuning, we use

Stochastic Gradient Descent (SGD) with momentum of 0.9 as the optimizer. The

initial learning rate is set to 0.0004 and divided by 10 when validation loss saturates.

As recommended by (Hara et al., 2018), we only fine-tune the conv5 x and fully-

connected layers in search of best performance. We also fully fine-tune the models

on Split 1 of both datasets and confirm that there is only a marginal gap (< 1%)

between full fine-tuning and partial fine-tuning using this strategy. The results are

shown in Table 4.4.

UCF-101 HMDB-51

w/o DEM w/ DEM w/o DEM w/ DEM

Split 1 70.58 73.46 42.55 43.14

Split 2 70.13 73.38 37.64 41.11

Split 3 70.13 73.38 42.16 42.22

Average 70.28 73.41 40.78 42.16

Table 4.4: Video-based performance evaluation on UCF-101 and HMDB-
51 for R(2+1)D-18 with and without DEM. All the models are pre-trained on
MiniKinetics. Top-1 Accuracy is reported.

It can be concluded from these results that R(2+1)D-18 with DEM generalizes

well to other domains and still outperforms the original version without DEM. Based

on the observation from Chapter 4.3, that representation in conv5 x contains limited

temporal variations, we are able to claim that the ability of DEM to handle temporal

variations is transferable to other datasets.
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Chapter 5

Conclusions

5.1 Summary of the thesis

In this thesis, we focused on coarse-grained action recognition. We presented an effec-

tive insertable Dynamic Equilibrium Module to explicitly handle temporal variations

in a video. Such variations, we believe, are difficult to handle by many spatio-temporal

networks and require increased network complexity to accurately model video. Our

module generates feedback to the backbone network in order to achieve motion equi-

librium. As we showed, our module achieves performance gains on several mainstream

action recognition benchmarks, thus indicating more robust spatio-temporal learning.

5.2 Future Work

Due to limited time and computing resources, some experiments designed for further

validation and explanation of the proposed module have not been carried out. The

intended main evaluation on Kinetics-400 and Something-Something datasets is cur-

rently in progress but has not been tuned to a desirable performance by the time the

submission of this thesis. We hope to form a more systematic analysis of this module

in the future.

As an extension of the current project, we are also looking forward to working

on fine-grained video modeling tasks, such as frame in-painting and prediction, and

exploring the relationship between learning for motion and learning for higher-level
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aspects of video understanding, such as spatio-temporal localization, complex activity

understanding, and human-object interaction.
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