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ABSTRACT

Biometrics are a convenient alternative to traditional forms of access control
such as passwords and pass-cards since they rely solely on user-specific traits. Un-
like alphanumeric passwords, biometrics cannot be given or told to another per-
son, and unlike pass-cards, are always “on-hand.” Perhaps the most well-known
biometrics with these properties are: face, speech, iris, and gait. This dissertation
proposes a new biometric modality: gestures.

A gesture is a short body motion that contains static anatomical information
and changing behavioral (dynamic) information. This work considers both full-
body gestures such as a large wave of the arms, and hand gestures such as a subtle
curl of the fingers and palm. For access control, a specific gesture can be selected
as a “password” and used for identification and authentication of a user. If this

particular motion were somehow compromised, a user could readily select a new
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motion as a “password,” effectively changing and renewing the behavioral aspect
of the biometric.

This thesis describes a novel framework for acquiring, representing, and evalu-
ating gesture passwords for the purpose of general access control. The framework
uses depth sensors, such as the Kinect, to record gesture information from which
depth maps or pose features are estimated. First, various distance measures, such
as the log-euclidean distance between feature covariance matrices and distances
based on feature sequence alignment via dynamic time warping, are used to com-
pare two gestures, and train a classifier to either authenticate or identify a user.
In authentication, this framework yields an equal error rate on the order of 1-2%
for body and hand gestures in non-adversarial scenarios. Next, through a novel
decomposition of gestures into posture, build, and dynamic components, the rela-
tive importance of each component is studied. The dynamic portion of a gesture is
shown to have the largest impact on biometric performance with its removal caus-
ing a significant increase in error. In addition, the effects of two types of threats are
investigated: one due to self-induced degradations (personal effects and the pas-
sage of time) and the other due to spoof attacks. For body gestures, both spoof at-
tacks (with only the dynamic component) and self-induced degradations increase
the equal error rate as expected. Further, the benefits of adding additional sen-
sor viewpoints to this modality are empirically evaluated. Finally, a novel frame-
work that leverages deep convolutional neural networks for learning a user-specific
“style” representation from a set of known gestures is proposed and compared to
a similar representation for gesture recognition. This deep convolutional neural
network yields significantly improved performance over prior methods.

A byproduct of this work is the creation and release of multiple publicly avail-

able, user-centric (as opposed to gesture-centric) datasets based on both body and
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hand gestures.
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Chapter 1

Introduction

1.1 Motivation

Traditional biometrics have been plagued by the use of inherently nonrenewable
information. For instance, having to change or replace a person’s face, iris, fin-
gerprint, or speech is inconvenient and difficult. A compromised biometric is not
necessarily rare. Faces are open public information and are vulnerable to being
photographed, fingerprints are easily left on surfaces, and speech can be recorded
and replayed. Thus, a renewable biometric, one that could be easily changed if

compromised, would be invaluable.

Figure 1-1: Example depth map sequences of a body and a hand ges-
ture as captured by a Kinect camera.

Gesture is a new emerging biometric modality that is partially renewable. A



gesture is a short, few seconds long, body motion that contains static anatomical
information, and changing (dynamic) information. This thesis considers both full-
body gestures, such as a wave of the arms, and hand gestures, such as a subtle
curl of the fingers and palm. These gestures are typically only a few seconds long
and are performed in front of a stationary camera starting from a resting, neutral
position. Should a gesture ever be compromised, a user can intentionally select a
new gesture.! As a gesture consists of both static and dynamic information, the
dynamic portion can be altered. These gesture “passwords” can be presented to
an access control system to either identify who a person is, or to authenticate (verify)
whomever he/she claims to be (see Figure 1-2). These two primary access scenarios
which we consider for evaluating biometric performance, are commonly known as:
identification and authentication (verification).

Further, ongoing advances in depth capturing technologies, such as the Kinect
vl and v2 (Kin, 2014), have made acquiring quality biometric information based
on body gestures widely accessible. In fact, ubiquitous depth sensor integration is
expected in next-generation devices (smartphones, PCs, and tablets). One signifi-
cant advantage of a depth sensor is its resistance to spoofing and evasion since 3-D
information is required from its users. For example, unlike in face recognition, a
photograph for spoofing would no longer work (due to its flat surface) and instead
a 3-D molded mask would be required (much to the inconvenience of would-be
attackers). This combination of renewability and inherent spoofing resistance has

motivated us to carry out research in gesture passwords.

!In contrast to gait which is only unintentional user motion.
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Figure 1-2: Two of the most common access control scenarios we con-
sider.

1.2 Contributions

At the highest level, this dissertation introduces and validates a new modality, in-
tentional body gestures, for the purpose of authenticating or identifying a person.
Since this problem has not been tackled before, it necessitated both the generation
of new datasets and a systematic quantitative study of the security performance of

the proposed algorithms.

At a finer level, this dissertation makes the following contributions:



Contribution 1 - Gesture Representations: We introduce a novel framework for ac-
quiring, representing and evaluating gesture passwords for either authentication or
identification. This framework leverages information obtained by an RGB/depth-
sensing camera, such as the Kinect, from which silhouette or skeletal features are
extracted. We propose two distance metrics for comparing gestures: the log- eu-
clidean distance between feature covariance matrices and distance based on fea-
ture sequence alignment via dynamic time warping. This contribution has been

reported in the following works: (Wu et al., 2013; Wu et al., 2014a; Wu et al., 2015).

Contribution 2 - Gesture Component Decomposition and Valuation Framework:
We propose a novel framework for first decomposing gestures into posture, build,
and dynamics and then realistically re-synthesizing them with one or more com-
ponents suppressed. This framework enables a fair evaluation of the contributions
of different gesture components to authentication and identification performance.

This contribution has been reported in the following work: (Wu et al., 2014b).

Contribution 3 - Gesture Degradations and Threats: Models and Performance
Evaluation Framework: We study two major classes of threats to gesture-based
authentication and identification with the help of real-world test subjects. The first
class, intrinsic threats, contains self-induced degradations to the gesture password.
This can be due to personal effects (outerwear or belongings) or due to a user’s in-
ability to accurately reproduce a gesture after a long period of time. The second
class, extrinsic threats, focuses on spoof attacks. This contribution has been re-

ported in the following works: (Wu et al., 2014a; Wu et al., 2014c).



Contribution 4 - User-centric Datasets: We create four new real-world datasets
for the express purpose of evaluating the identification and authentication perfor-
mance of body and hand gestures. Unlike datasets for gesture recognition that
are gesture-centric and contain a high number of gestures per user, our datasets
uniquely focus on being user-centric, and all contain a high number of users per
gesture. In addition to this trait, we collect gesture samples under a multitude of
conditions such as: personal effects, the passage of time, inclusion of copycats, and
the usage of multiple camera sensors. This contribution has been reported in the

following works: (Wu et al., 2014a; Wu et al., 2014b; Wu et al., 2014c; Wu et al., 2015).

Contribution 5 - User Gesture Style for Authentication and Identification: We de-
velop a novel framework for authentication and identification based on a user’s ges-
ture style which is a set of common traits to gestures by the same user. This frame-
work is based on deep convolutional neural networks, specifically, a two-stream
convolutional network which uses both the spatial and the temporal information
in a gesture. This contribution has been reported in the following work: (Wu et al.,

2016).

1.3 Layout of Thesis

The following is the outline of the rest of the thesis.

Chapter 2 provides a brief overview and background of topics related to the
gesture modality.

Chapter 3 introduces and defines the proposed user recognition framework and

the metrics that are used to evaluate it.



Chapter 4 discusses the datasets that were collected to support the experimental
evaluations in this work.

Chapter 5 focuses on studies dealing with body gestures. These studies pertain
to the importance of dynamics, the robustness of the modality towards threats and
degradations, and the value of additional viewpoints.

Chapter 6 evaluates the biometric performance of hand gestures.

Chapter 7 explores learning user-specific gesture “style” using deep convolu-
tional networks.

Chapter 8 summarizes the conclusions and contributions of this dissertation

and outlines possible directions for future work.



Chapter 2

Background

In this chapter, works are reviewed that are similar in nature to gesture-based au-
thentication. As there is fundamentally no prior work in this biometric modality,
instead, techniques that can be adapted or reapplied for gesture access control are

described. The following is a short overview of these topics.

2.1 Gesture Recognition

Gesture authentication is perhaps most similar to gesture (action) recognition. In
both problems, users perform a gesture with intent in front of a sensor. In authen-
tication, the goal is to find or authenticate the user (analyze information specific
to a user), and in recognition, the goal is to find the gesture (analyze information
specific to a gesture). For example, in gesture recognition, information related to
the angular velocities of the joints holds much more importance than information
pertaining to a user’s body build and shape. This is because the angular velocities
of the joints are more gesture specific, than user specific.

First, we discuss methods for gesture recognition based on depth sensors. One
particular advantage of the Kinect is that skeletal joint information can be estimated
directly from the depth maps through pose estimation (Shotton et al., 2011; Shotton
et al., 2013). As a result of this, many features have been proposed for recognition
based on skeletal joints.

Xia et al. (Xia et al., 2012) proposed binning skeletal joints into 3-D spherical



coordinate bins, which could be used as a histogram feature. Wang et al. (Wang
et al., 2012b) proposed using local occupancy patterns (LOP) as features which are
computed by binning point-cloud values around calibrated skeletal joints. Ohn-
Bar and Trivedi (Ohn-Bar and Trivedi, 2013) proposed using histogram of oriented
gradients (HOG) around each skeletal joint and pairwise affinities between skeletal
joint angles as features. Ofli et al. (Ofli et al., 2013) proposed using linear dynamical
systems (LDSs) to model 3-D joints at several spatio-temporal scales on skeletal
joints.

To compare or classify these features, methods such as dynamic time warping
(DTW) (Reyes et al., 2011), hidden Markov models (HMMs) (Lv and Nevatia, 2006),
conditional random fields (CRFs) (Han et al., 2010), and multiple kernel learning
(MKL (Ofli et al., 2013), have been applied.

2.2 Biometrics

There are two categories of biometrics: physiological and behavioral.
Physiological biometrics are based on a person’s physical traits. These are the
well-known, “traditional” biometrics such as face, fingerprint, and iris.
Behavioral biometrics are based on a person’s habits (their trends, patterns and
“style”). These are signatures, keystrokes, or gait (walking) of an individual. Be-
havioral biometrics are quite similar to gestures and we discuss them in some detail

below.
Gait

Gait is the unique shape and motion of an individual walking that can be used for
identification. Using gait as a biometric has in recent years gained traction due to

its properties being recognizable from a distance. This long-range recognition is



Fingerprint Face Iris Retina

k Conjunctival

Hand geometry Periocular vasculature Key stroke dynamics
f‘
1o 08

Antii?bnﬁtry Signature Facial thermogram Hand thermogram Gait

Figure 2-1: A listing of a few common biometrics (both physical and
behavioral). Figure from (Jain et al., 2011).

desirable as it does not require the subject to be cooperative (or aware) of the iden-
tification. The most common approach for gait recognition is to perform silhouette
extraction (through background subtraction), and extract various features that can
be used for classification (such as through HMMs, and GMMs). Features such as
optical flow (Little and Boyd, 1998), GEI (Han and Bhanu, 2006) (gait energy image
— the averaged silhouette intensity), and biped models (Zhang et al., 2004) (coarse

pose estimation of the lower body) are among the most popular.
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On-line Signature

On-line signatures expand upon the classic pen and paper signature for authen-
tication. Instead of only considering the static image of a signature, dynamic in-
formation such as pen x-y position, x-y speed, and tip pressure (how hard a hand
is pressing) can be captured when a signature is performed on a touchscreen or
tablet. There are primarily two classes for on-line signature features. The first class
consists of “feature-based” scalars of global properties such as: the maximum and
minimum x-y pen velocity, or the standard deviation of the pen’s x-y acceleration.
The second class consists of “function-based” vectors of time-dependent sequences:
pen trajectory, velocity, acceleration, force, or pressure (Lei and Govindaraju, 2005).
“Feature-based” information can be compared using distances such as weighted
Euclidean distance and Mahalanobis distance. Elastic matching (predominantly,
variants of DTW (Faundez-Zanuy, 2007; Kholmatov and Yanikoglu, 2005)) and sta-
tistical modeling (HMMs) have also been used to match “function-based” informa-

tion.
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Chapter 3

Framework

This chapter presents a framework for access control through authentication or
identification. First, we discuss types of access control and their performance met-
rics. Next, we detail the framework used to represent, and compare gesture se-
quences that have been captured from the Kinect. We use two features for gestures:
silhouette shapes and skeletal joints. After defining these features, we propose var-
ious distances to compare pairs of gesture samples. Finally, we use an authorized

set of samples to train a classifier to determine access.

3.1 Evaluating Access Control

The performance of an access control system can be evaluated in one of two sce-
narios: authentication or identification (Jain et al., 2011). This section describes each

of these access scenarios and their associated performance metrics.

3.1.1 Recognition Algorithm

A simple yet powerful recognition algorithm such as nearest-neighbor (1-NN) can
be used to determine access based on suitable distance measures. If a query sample
is sufficiently close in distance (falls within a determined cutoff threshold) to an en-
rolled sample, access or identity can be granted. Based on this algorithm, measures

of security can be calculated for a given access scenario.
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e
Authentication: User presents gesture and identity
Query gesture sequence g Claims identity i
Y

Authorized Database of
Preprocessed Gesture Features

Extract Silhouette or Skeletal
Features: § = F

Passes samples with
identity {
Find nearest-neighbor in dataset A; = {51,52,...5m)

v

&

dyy(Q, Ap) = min d.(Q.5)

dyn(Q,4;) <6 dyn(Q,4;) = 6

[ Accept ] [ Reject ]

Figure 3-1: System diagram of a user performing authentication.

3.1.2 Authentication

This thesis primarily considers access control performance for authentication. In
authentication, a user provides two pieces of information: his/her claimed iden-
tity and a biometric (see Figure 3-1). If the biometric closely matches an enrolled
sample of the given identity (one-to-one-user match), the user is allowed access.
Otherwise, he/she is rejected.

Two kinds of errors are considered in this case: false acceptance and false re-
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jection. The false acceptance rate (FAR) is the rate at which unauthorized users are
allowed access. The false rejection rate (FRR) is the rate at which authorized users
are denied access. In any practical system, FAR and FRR will have trade-offs. One
can find these trade-offs by applying various acceptance thresholds across the sys-
tem. A common metric of performance is the equal error rate (EER) which occurs
when FAR and FRR are equal. This process is briefly recapped below.

Let A; = {S4,...S,,} be a set containing m gesture samples from a single autho-
rized user i. Let U; be a set of gesture samples that do not come from authorized
user i. The FRR is found by comparing samples in .A; amongst themselves (each
sample in 4; is treated as a query sample Q). This is done using leave-one-out cross
validation (LOOCV) such that each sample is compared to the set A;\{Q}, i.e., with
the query itself removed. The FAR is found by comparing samples in /; to samples
in A; (each sample in U/ is treated as a query sample). A nearest-neighbor criterion

dyn(-,-) is used to compare a single query sample Q to the authorized set A.

dyn(Q, A;) = minseq, di(Q, S).
where d, is one of the following distances (discussed in Section 3.3):
* dy.ri.pua (Upper Euclidean)
* dpier.puc (Temporal Hierarchy Euclidean Distance)
® drog—Eua (Log Euclidean Distance)

* dprw (Dynamic Time Warping)
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Then, for a given threshold value 6, the FAR and FRR are calculated by:

FRR(A;0) = Z954 1<dNN‘<j,|Ai\{Q}> > 0)

FAR(A;,U;, 0) = >_qeu, 1 ]TZ(|Q ) < 6)

where the indicator function 1(condition) equals 1 if the ‘condition’ is true and
equals 0 otherwise.

EER for the pair (A;,U;) is found by first computing the FAR-FRR pairs for dif-
ferent thresholds 6. Then, the EER is determined as the location on the boundary of
the convex hull of the FAR-FRR pairs where FAR equals FRR. In practice, this EER
does not lie directly on a FAR-FRR pair that corresponds to a single classifier (e.g., a
1-NN decision rule with a single decision threshold). Rather, the EER reflects two
classifiers (e.g., two 1-NN decision rules with two different decision thresholds),
where each classifier is chosen at random with a fixed probability (Scott et al., 1998).

This computation is repeated for each authorized user who each has his/her
own unique set (A;,U;). Effectively, each user in a dataset will have their own EER.
If these values are averaged across users, an average EER can be computed. Such
a score can be considered to represent the scenario where each user has their own
accept/reject threshold ¢;. If a global accept/reject threshold 6., is desired across
all users, a “global” EER can be computed. In this case, 6 is taken across all (A;, ;)

pairs simultaneously.

3.1.3 Identification

Access control can also be considered in the context of identification. In identifica-
tion, a user presents his/her biometric sample to a system which retrieves an en-
rolled identity through a one-to-many-user match (see Figure 3-2). This is called

the closed-set identification problem, i.e., classification under the assumption that
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l

Identification: User presents gesture

Query gesture sequence g

Authorized Database of
Preprocessed Gesture Features

Extract Silhouette or Skeletal
Features: Q@ = F,

Passes all

authorized samples
Find nearest-neighbor in dataset A=1(5155...5m)

Y

argmind,(Q, 5)
5

}

You are the identity of sample §!

Figure 3-2: System diagram of a user performing identification.

the query user’s identity is enrolled, i.e., no possibility of rejection. The correct
classification rate (CCR), and its complement error, CCE = 1-CCR, can be used to
express accuracy. This value is also computed with LOOCV, where each user is

labeled with the identity of his/her nearest-neighbor match.

3.2 Representation

The following sections describe how silhouette or skeletal feature matrices F are

computed. These features are used to represent each gesture sample, and will later
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be used to compute distances between pairs of samples.

3.2.1 Silhouette Features

A compact silhouette representation can be extracted from any gesture sequence

consisting of depth frames.

Figure 3-3: Each silhouette pixel n has an associated 13-dimensional
feature vector which consists of the pixel position (z,y,t) and 10 di-
rectional distances 9, to the silhouette boundary.

First, a sequence of binary silhouettes of a user performing a gesture is extracted
from a sequence of depth frames. This is accomplished by differencing each depth
map from a known depth map background. The largest 3-D connected component
with 18-connected pixel connectivity in the 3-D sequence of binary silhouettes is
taken to be a user’s silhouette tunnel.

In order to extract features from this silhouette tunnel, an approach similar to
the one used by Lai and Guo et al. (Lai et al., 2012; Guo et al., 2013) is adopted. Let
n =1,..., N indexall N pixels within the silhouette tunnel and let (z, y, ¢) denote the
space-time coordinates of pixel number n. The following 13-dimensional feature

vector f” is computed at each silhouette pixel and captures the shape and dynamic
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characteristics of a gesture (Figure 3-3):

fn = f([E,y,t) = [xayytaéE;6W75N75575NE75$W75$Ea5NW75T+75T—]/ (31)

where dprr denotes the Chebyshev distance between the space-time coordinates of
pixel n and those of the farthest silhouette boundary pixel in direction p;z. The first
8 directions are in the z, y spatial domain (4 cardinal directions and 4 inter-cardinal
directions), and the last 2 are in the temporal domain (forward and backward in
time).

The above procedure, after visiting all NV pixels of a silhouette tunnel, produces

a 13by N matrix F = [f!, 2 ... f"] as the final representation.

3.2.2 Skeletal Features

A gesture can also be described as a sequence of a user’s skeletal joints in rectan-
gular coordinates across time. The advantages of using skeletons (pose estimation)
over silhouettes, are two fold: (i) skeletal data is sparse yet informative and (ii)
skeletal data is relatively insensitive to changes in clothing, personal effects, and
lighting conditions. Conveniently, the Kinect SDK (Kin, 2014; Shotton et al., 2011)
provides rectangular coordinates of 20 skeletal joints of the human body for each
frame at 30 frames per second. These coordinates are extracted from each depth
frame and correspond to the following locations: head, neck, spine, center hip, and
left and right versions of the hand, wrist, elbow, shoulder, hip, knee, ankle and foot
(Figure 3-4). A skeleton’s evolution in time can be represented as a sequence of

features f! as follows:

ft = [Siv S;7 s S;O]/ t= ]-7 "'7T7 (32)



20

Figure 3-4: Example of a skeleton produced by the Kinect SDK.

t
)

where s! = (2!,9!,2!) € R®isa 1 x 3 row vector which denotes the z — y — 2
coordinates of the i-th skeletal joint in frame number ¢ and 7" is the total number of
frames.

Let F = [f!,£2 ... 7] denote a 60 by T' matrix that becomes the final represen-

tation of this procedure.

3.2.3 Normalization

Due to the nature of gesture dynamics and body build, individual feature elements
(e.g., coordinates s}, and distances along cardinal directions dp,z) may have signif-
icantly different dynamic ranges. A feature element with a large amplitude would
then influence an overall error metric more than a feature with a small amplitude.
In order to avoid developing a complicated metric with unequal weights for indi-
vidual elements, the approach of Hussein et al. (Hussein et al., 2013) is adopted
where the matrix F is normalized along rows (the time-wise or pixel-wise dimen-

sion) as follows:
F[i, 7] — min F[i, k]

. . B k:
Fnorm [Za j] - mBXF[Z, ]{;] — mkln F[7/7 k] (33)
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where F[i, j| denotes the value in the i-th row and j-th column of F. The above
normalization ensures that the values of all feature elements are contained within

the dynamic range [0, 1].
3.2.4 Covariance Descriptor

A gesture sequence can be also viewed as a “bag of features,” where each pixel
(silhouette) or frame (skeleton) is associated with an ~ x 1 feature vector. An h x h
empirical covariance matrix C of a collection of feature vectors (normalized accord-
ing to (3.3)) provides a low-dimensional, second-order representation of the entire
teature vector collection:

N
— 1 n _ n _ T
C T N zl: (fnorm IJ’) (fnorm I“l’) ) (34)

where p is the empirical mean of normalized feature vectors £ .. For silhouettes,

h = 13, and N is the total number of pixels in the silhouette tunnel. For skele-
tons, h = 60 and N is the number of frames in the skeletal sequence. Since C'is
a symmetric matrix, its upper-triangular part of size (h? + h)/2 can be used as an

independent gesture descriptor.

3.3 Distance Measures

There are numerous ways to measure distances between two gesture sequences. In
the following section, we describe how to compute the distance between pairs of
covariance matrices and how to compute dynamic time warping distance. These
distances represent the possibilities for d. as used in Figure 3-1 and 3.2, which are

used to compare biometric samples in authentication and identification.
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3.3.1 Distances between Covariance Matrices

Upper-Triangular Euclidean Distance

Perhaps the simplest way to measure the distance between two covariance matrices
of normalized features is to compute the Euclidean distance (Frobenius norm) be-
tween them. Since covariance matrices are symmetric, the upper-triangular portion
contains all the information. Hence, one basic distance function between (normal-
ized) covariance matrices that is considered is the Euclidean distance between their

upper-triangular parts. This is denoted by dy.ii puc (-, -)-

Euclidean Distance with Temporal Hierarchies

A key problem with the covariance descriptor is that the ordering of pixels or frames
does not matter or is irrelevant. If this order were to be scrambled, the covariance
matrix would remain unchanged. In order to emphasize the importance of frame
ordering in a gesture, Hussein et al. (Hussein et al., 2013) suggested using a hierar-
chical computation of covariance descriptors across temporal windows at various
scales. In this way, given any scrambling of the frames, the covariance matrices
across smaller time windows would be different. For example, consider this idea
for 3 temporal levels. At level i, 2°~! equal-length, non-overlapping windows are
computed across the entire sequence. For example, at the 3™ level in hierarchy there
would be 4 equal-length windows each of length N/4 (temporal ranges: 1 to | ¥ |,
& +1to [§], [§] +1to 2], and 2] 4 1 to N). All these covariance matrices
can be computed quickly through the use of integral signals (Hussein et al., 2013;
Tuzel et al., 2008).

For each covariance matrix that is computed from the temporal hierarchy, the

upper triangular portion serves as our gesture descriptor, and all these descrip-

tors are concatenated into one long gesture descriptor vector. For the case of 3
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layers, there are 7 covariance matrices. Each upper triangular matrix is of length
(60% + 60)/2 = 1,830, which concatenated together, yields a total length of 7 x
1,830 = 12, 810. Thus, for a single gesture sequence from one Kinect camera using
a 3-layer temporal hierarchy a descriptor of length 12,810 will be generated. A Eu-
clidean norm between these concatenations of upper-triangular parts can be used

as a distance. This is denoted by dpier puc (-, *)-

Log-Euclidean Distance

The log-Euclidean distance between two covariance matrices ', and C; proposed

by Arsingy et al. (Arsigny et al., 2006) is defined as follows:

dLog—Eucl(ChCQ) = || 108;(01) - 1Og(02)||2, (3.5)

where || - ||, denotes the matrix Frobenius norm and log(C) := VDV’ where C' =
VDV’ is the eigen-decomposition of covariance matrix C' and D is obtained from
D by replacing its diagonal entries with their logarithms. This distance is a Rie-
mannian metric on the manifold of covariance matrices. The basic intuition of this
distance is to convert the space of covariance matrices (forms a convex cone) to a
vector space, and then take a norm in the transformed Euclidean space. Additional

properties of this distance can be found in (Arsigny et al., 2006).

3.3.2 Dynamic Time Warping

Dynamic time warping (DTW) can be used to measure the distance between two
gesture sequences of possibly different durations. DTW is a non-linear alignment
algorithm that is relatively popular and has been extensively used in the literature
(Ding et al., 2008; Keogh, 2002; Ratanamahatana and Keogh, 2004). For skeletal

teatures, a modified version of this algorithm has been designed for this problem
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as detailed below.

1 T
f 1, ...,fgl1

™~
dprw(Fy,, Fy,)

Figure 3-5: Visualization of the path P between two sequences.

LetFy, = [f, ,--- ,fli]and F,, = [f ), --- , f 2] be two feature matrices of skeletal

features corresponding to gestures g; (17 frames long) and ¢, (7, frames long). A
distance based on the cost of aligning F,, and F,, can be computed from a 7} x T5
cost matrix. Let the cost matrix’s (i, j)-th entry be the cost of aligning the skeletal

feature in frame-i of gesture ¢g; with the skeletal feature in frame-j of gesture g,:

1 _J
COSt fgl’ 92 2 :Hspgl Spgz

An admissible alignment scheme is a path P through the cost matrix defined as

follows

P=A(ix,jx),k=1,....K 14y = j1 = 1,ixg =T,

Jr = T, Vk, i1 — ik, Jer1 — Jk € {0,1}}

where max(7},T;) < K < T + T is the path-length. The cost of a path is defined
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Figure 3-6: Visualization of the modified DTW cost function.

as follows:

pathcost(P,F . F,,) = Z cost(fix, £Ir)

91 g1’ 92
(ik,Jx)EP

The path of interest is the one with the least cumulative cost. This path can be
solved recursively using dynamic programming in quadratic time. The final cost is

defined as follows:

dprw (Fg,, Fy,) = mgnpathcost(P F, . F,)
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Chapter 4

Gesture Datasets

4.1 Motivation for New Datasets

The problems of gesture recognition and gesture-based authentication are similar
in the sense that they both involve users performing gestures. However, in the
former problem the goal is to recognize the gesture regardless of the user, whereas
in the latter problem the goal is to recognize the user regardless of the gesture.
Although it might seem that a given dataset of gestures can be used interchangeably
for studying both problems, e.g., analyzing user authentication performance using
a gesture recognition dataset, this is not the case.

Datasets for gesture recognition are typically gesture-centric meaning that they
have high number of gestures per user (many gestures to classify, few users per-
forming them) whereas studying authentication requires the opposite, namely a
user-centric dataset which has a high number of users per gesture. This issue is
highlighted in Table 4.1, where we compare gesture recognition datasets. Notably,
many of these datasets contain less than 20 users. In cases where there are more
than 20 users, the data has been collected in such a way that there is either not
enough users performing each gesture or the data contains dataset bias due to ges-
tures being performed continuously standing in-place. By standing in-place, each
user’s lower body posture does not significantly change which can cause dataset

bias. In gesture recognition, this is typically not an issue, as the same user will
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never be seen in both training and testing. However, for cases of user recognition,
this causes a significant issue, as the same user is almost always seen in both train-

ing and testing.

With these goals and issues in mind, three datasets were collected:

BodyLogin Dataset: Silhouettes vs Skeletons (BLD-SS) (Wu et al., 2014a)

BodyLogin Dataset: Posture, Build, Dynamics (BLD-PBD) (Wu et al., 2014b)

BodyLogin Dataset: Multiview (BLD-M) (Wu et al., 2014c)

HandLogin Dataset: In-air Hand Gestures (Wu et al., 2015)

Each of these datasets focuses on a different aspect of gesture-based user recog-
nition, and thus have been recorded under different scenarios as detailed in the

following sections.

4.2 Acquisition Methodology

Three of the aforementioned datasets (BodyLogin) have been collected with a
Kinect v1 sensor. These three datasets each recorded a subject from a forward-
facing Kinect sensor approximately 2 meters away. The Kinect v1 sensor captures
a 640x480 depth image and skeletal joint coordinates (pose estimation through the
SDK (Kin, 2014)) at 30 fps.

The last dataset, HandLogin, has been collected with a Kinect v2 sensor fac-
ing the ceiling. The Kinect v2, a time-of-flight depth sensor, is used to acquire a
512x424 depth image of each gesture sample at 30 fps. Each hand gesture sample is
recorded in near proximity to the sensor (approximately 50 cm) so as to maximize

hand detail.
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Table 4.1: A comparison of mostly body gesture recognition datasets
using either depth or mocap (motion capture) sensors. “In CMU Mo-
cap, all users do not perform all gestures (some gesture types only
have a single user performing it). In MSRC-12, gestures are per-
formed continuously in a long sequence, one after another causing

inherent biases.
Dataset | # of Users | # of Gestures |  Data Type
CMU Mocap (CMU, 2003) >100 109° Mocap
HDMO5 (Miiller et al., 2007) 5 >70 Mocap
MSRAction3D (Li et al., 2010) 10 20 Kinect vl Depth
HumanEva I/1I (Sigal et al., 2010) 4/2 6/1 RGB + Mocap
i .
MSRC-12 (Fothergill et al., 2012) 30 12 (Skgé?gri gnly)
MSRGesture3D (Wang et al., 2012a) 10 12 Depth
MSRDailyActivity3D .
(Wang et al., 2012b) 10 16 Kinect vl Depth
. Multimodal
Berkeley MHAD (Ofli et al., 2013) 12 11 (Depth + Mocap)
BodyLogin Combined (Ours) 40 5 Kinect vl Depth
Handlogin (Ours) 21 4 Kinect v2 Depth

At some point in each dataset, users were instructed to perform a pre-defined
gesture. Each user was instructed how to perform each gesture type through a
text and video prompt (a multi-modal instruction scheme). In the literature, a
multi-modal instruction scheme is known to improve gesture reproducibility over
a single-modal instruction scheme (e.g., text or video only) (Fothergill et al., 2012).
In order to strive for realistic intra-class variability and reduce pose bias, users were
instructed to leave (for approximately one minute) and re-enter the recording area

between gesture samples.

4.3 BodyLogin Dataset: Silhouettes and Skeletons

The BodyLogin Dataset: Silhouettes and Skeletons (BLD-SS) is used to compare

the performance of silhouette and skeletal features in real world scenarios. Over
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a two week, two session period (one session per week), gesture samples from 40
different college-affiliated users (27 males, 13 females) primarily 18-33 years old
were collected. Each subject was asked to perform 2 unique short gestures (ap-
proximately 3 seconds long), each with 20 samples. In total, about 1.4 hours of data
were recorded, with each user averaging 2 minutes of data (each sample about 3
seconds long). Both gestures involved motion in the upper and lower body (Fig-

ure 4-1):
* S gesture: drawing an “S” shape with both hands,

* User-defined gesture: user chooses his/her own gesture (no instruction).

User-defined gesture: knee lift (will vary between users)

Figure 4-1: Snapshots of the gestures each user performed in our
dataset (Kinect depth shown).

Degradations

Four different types of gesture scenarios were considered in BLD-SS:

No degradations

Personal effects

User Memory

Gesture Reproducibility
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Before/after user wearing backpack

Before/after user wearing a sweatshirt

Figure 4-2: Views of users wearing personal effects. Left two im-
ages are before personal effects (front and back Kinect views shown),
the right two images are after personal effects (front and back Kinect
views shown).

In the case of personal effects, users either wear or carry something during their
gestures. Half of our users were told to wear heavier clothing, and the other half
were told to carry some type of a bag. Users wore a variety of heavier clothing:
sweatshirts, windbreakers, and jackets. They carried backpacks (either on a single
shoulder or both), messenger bags, and purses.

The impact of user memory was tested by collecting samples a week after a user
first performed a gesture. Users were first asked to perform the gesture without
any video or text prompt. After a few samples were recorded, the user was shown
a prompt and asked to perform the gesture again. These last samples measured
reproducibility. Of the 20 samples recorded for each gesture, each of the described
scenarios had 5 samples recorded. Table 4.2 shows a summary of the degradation
scenarios that were used for each gesture.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

body-login/datasets/silhouettes-vs-skeletons/


http://vip.bu.edu/projects/hcis/body-login/datasets/silhouettes-vs-skeletons/
http://vip.bu.edu/projects/hcis/body-login/datasets/silhouettes-vs-skeletons/
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Table 4.2: Details of recording procedure for BLD-SS and BLD-M.
Users were instructed to “reset” initial position between gesture per-
formances. Half of the users wore coats, and the other half carried

bags.

Gesture: S gesture User-defined

Session I: 1. Observe video and text 1. Create custom gesture
description of gesture
2. No degradation: Perform | 2. No degradation: Perform
gesture normally (5 times) gesture normally (5 times)
3. Personal effects: Wear 3. Personal effects: Wear
a coat, or carry a bag a coat, or carry a bag
4. Perform gesture with 4. Perform gesture with
personal effect (5 times) personal effect (5 times)

Session 11 1. Memory: Perform gesture | 1. Memory: Perform gesture

(a week after):

4.4

from memory (5 times)

from memory (5 times)

2. Observe video and text
description of gesture

2. Observe video of prior
performance from Session I.

3. Reproducibility: Perform
gesture (5 times)

3. Reproducibility: Perform
gesture (5 times)

BodyLogin Dataset: Posture, Build and Dynamics

BodyLogin Dataset: Posture, Build and Dynamics (BLD-PBD) is a Kinect dataset
that contains gestures across two sessions. In the first session, users recorded ges-
tures under normal conditions. In the second session, users were matched to at-
tack targets and were made to spoof another’s gestures. This dataset was used to
evaluate the effects of user-specific posture, build and dynamics in the context of
authentication.

In total, about 1.8 hours of data were recorded, with each user averaging 3 min-
utes of data (each sample about 3 seconds long). There are 20 samples per gesture
(10 own and 10 attack) for each user. Users were all college-affiliated (25 males, 11

females) mostly in the age range of 18-33 years. The three gestures, designed to be
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of increasing complexity, involved movement in both the upper and the lower body

(Figure 4-3):

o Left-right gesture: user reaches right shoulder with left hand, and then

reaches left shoulder with right hand,

* Double-handed arch gesture: user draws an arch from left to right with both

hands,

* Balancing gesture: user first raises right arm forward while pulling left arm
back, then balances by forward sweeping left leg while simultaneously tuck-

ing left arm in and bringing right arm to rest.

-

Left-right gesture

Balancing gesture

Figure 4-3: Snapshots of the gestures each user performed in our
dataset (Kinect depth shown).

In order to facilitate our gesture spoofing study (Section 5.5 where extrinsic at-
tacks are considered), each of the 3 gestures of each user was matched to an attack
target after the first session. Attack targets were found by comparing the “centroid”

samples of each user. If A :={Sy,...,S,,} denotes a set of user’s first-session sam-
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ples (feature matrices) of a given gesture, then the user’s “centroid” sample is de-

fined for that gesture as follows:
Scentroid = arg ISHEI./ILXI Zl dDTW(87 Sz) (41)

A user’s attack target (in the second session), for a given gesture, is the owner of
the closest centroid sample (nearest-neighbor) for that gesture. The aim of match-
ing attackers to their “easiest victims” is threefold: 1) all participants can serve
as attackers in the study 2) no participant is asked to attack more than one user
which balances the burden across all participants, and 3) the odds of users suc-
ceeding as attackers are improved, which somewhat compensates for the lack of
experience and the limited practice-time available for an attack. Under this match-
ing scheme, vulnerable users get attacked more often than others and very distinct
users never get attacked. Furthermore, attackers may end up attacking up-to three
distinct users (one for each gesture). Most users had at least one attacker. The most
attackers a user had was seven.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

body-login/datasets/posture-build-dynamics/

4.5 BodyLogin Dataset: Multiview

BodyLogin Dataset: Multiview (BLD-M) is a multiple-viewpoint Kinect dataset
that contains gestures recorded under various degradations. This dataset was used
to evaluate the value of additional Kinect viewpoints in gesture authentication.
This dataset is an extension of BLD-SS to multi-view. As with BLD-SS, over a
two week, two-session period (one session a week), gesture samples from 40 dif-
terent college-affiliated users (27 males, 13 females) primarily 18-33 years old were

collected. Subjects were asked to perform 2 unique short gestures (approximately


http://vip.bu.edu/projects/hcis/body-login/datasets/posture-build-dynamics/
http://vip.bu.edu/projects/hcis/body-login/datasets/posture-build-dynamics/
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Figure 4-4: A setup with four Kinect cameras. Three Kinects (left,
center, and right) were placed in front of the user, at offset angles,
and one was placed behind the user (back). Skeletal estimation can
be performed independently from each viewpoint.

3 seconds long), each with 20 samples. In total, approximately 1.4 hours of data
were recorded, with each user averaging 2 minutes of data (each sample about 3
seconds long). As with BLD-SS, they performed the S gesture and User-defined ges-
ture, each with the same degradations. However, the main difference is that the
dataset was captured with 3 additional Kinects. 3 Kinects were placed facing the
user and 1 Kinect was directly behind (Figure 4-4). Of the forward-facing Kinects,
2 were offset by about 35 degrees to the side, with 1 device directly in front. All
devices were set up approximately 2 meters away from the user. Users were pri-
marily facing the center camera for the duration of the performed gesture. All the
Kinects were connected to a single PC to assure time synchronization. Captured
frames were synced to the frame-rate of the center Kinect.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

body-login/datasets/multiview/


http://vip.bu.edu/projects/hcis/body-login/datasets/multiview/
http://vip.bu.edu/projects/hcis/body-login/datasets/multiview/
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Flipping Fist gesture (occlusions in fingers)

Figure 4-5: Kinect v2 depth images of the 4 gestures used for authen-
tication. For visualization, images have been cropped, and only show
the lower 4-bits of the 16-bit depth image.

4.6 HandLogin Dataset: In-air Hand Gestures

The HandLogin dataset was collected to evaluate the biometric performance of in-
air hand gestures. Aiming to create a user-centric dataset (as the dataset from a re-
lated work was not publicly available (Aumi and Kratz, 2014)), hand gestures were
collected from 21 college-affiliated users consisting of 15 males, and 6 females. Each
user was asked to perform 4 unique types of hand-gestures, each type designed to
be a few seconds in duration. Ten samples of each gesture type were recorded,

with users instructed to leave and re-enter the recording area to reduce arm- and
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hand-pose biases between samples. In total, approximately 0.7 hours of data were

recorded.

F 3
b

Figure 4-6: Visualization of HandLogin camera setup. Kinect v2 cam-
era points towards the ceiling.

All 4 gestures were performed with the right hand starting in a “rest” posi-
tion: the hand extended downwards on top of a ceiling-facing Kinect sensor, with
fingers spread comfortably apart. This avoids the notorious “gorilla arm” issue,
where users would need to maintain their hand in a vertical front-to-parallel po-
sition, instead using a more comfortable horizontal down-to-parallel position (see
Figure 4-6). The orientation of our sensor was designed to mimic an authentication
terminal, where typically only a single user is visible. The gestures that have been
recorded:

Compass: users trace the compass directions of North, East, South and West
with an open hand with the restriction that after each compass direction has been

reached, the user must return to the center position before tracing a subsequent
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direction; this gesture evaluates planar translation,

Piano: users use their fingers to “press” the keys of an imaginary keyboard —
tingers are pressed one-by-one starting from the thumb and ending with the pinky;
this gesture evaluates subtle fingertip movements,

Push: users pull the arm back, and push towards the sensor; this gesture eval-
uates depth translation,

Flipping Fist: users first flip the hand over and close it into a fist, and then flip
the fist over and open it back to the starting hand pose in front of the sensor; this
gesture evaluates the effect of occlusions and more sophisticated fingertip motion.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

hand-login/dataset/

4.7 Dataset Statistics

In both the aforementioned datasets, the duration of a single gesture sample is usu-
ally only a few seconds long. User-specific durations for fixed gesture types are
shown in Figure 4.7 and 4-8 as stacked histograms. For the most part, these datasets
consider gestures that are intentionally short. This is useful as performing a ges-
ture that is too long becomes harder to remember and repeat. Further, having to
perform a long gesture can become too prohibitive and too inconvenient over other
alternative forms of access control. It is important to note that gestures that are of
longer duration do not necessarily yield better performance. There can be scenar-
ios where a gesture is too hard to remember, or too hard to replicate consistently,
which can result in poor biometric performance relative to a shorter and simpler
gesture.

All of the four aforementioned datasets have been made publicly available on

the lab website. Table 4.3 shows the most recent snapshot of public access to this


http://vip.bu.edu/projects/hcis/hand-login/dataset/
http://vip.bu.edu/projects/hcis/hand-login/dataset/
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Figure 4-7: Stacked histograms representing the lengths of the 5 ges-
tures in BodyLogin. Gestures were collected at 30 frames per second.
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resource.

Table 4.3: Current dataset downloads as of April 2016. Downloads
are a count of unique and registered users not originating from a BU

domain.
Dataset | # of Downloads | Year Released
BodyLogin: Silhouettes and Skeletons 8 Fall 2014
BodyLogin: Posture, Build, and Dynamics 11 Fall 2014
BodyLogin: Multiview 15 Summer 2014
HandLogin 3 Fall 2015
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Chapter 5

Body Gestures

5.1 Introduction

In this chapter, three studies pertaining to body gestures are explored. First, a body
gesture is decomposed into components — posture, build and dynamics. Subse-
quently, the impact of each component on biometric performance is evaluated.
Next, various potential performance-reducing “threats” are discussed. One threat
that is considered are the user induced degradations to the gesture sample. For
example, these are cases where a user performs a body gesture while carrying a
bag or wearing a heavy coat, or needs to recall and perform a gesture again after a
period of time. Other threats considered are those caused by other users through
spoof attacks. The impact on performance is evaluated when users are able to have
access to one’s personal gesture information, and attempt to “replay” one’s ges-
ture in front of a sensor. These threats are primarily investigated by changing the
testing samples to magnify the threat under consideration. Finally, the biometric
performance of additional camera viewpoints is explored. This analysis of multiple

viewpoints also considers situations with user-induced threats.
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5.2 Value of Posture, Build, and Dynamics
This section seeks to answer the following questions:

Which component of a gesture carries the weight of security performance? Is it the
static information of the user (pose and build), or is it the dynamics (style of move-

ments) the user performs and has full control over?

In this section, a novel method is developed to suppress the effects of specific
types of information in a gesture. A gesture can be represented as containing three
types of user-specific information: initial body posture, limb proportions (build)
and controlled user-dynamics. Each of these components can be isolated and sup-
pressed by using a spherical coordinate representation of skeletal limb vectors. Ini-
tial posture can be suppressed by setting the initial limb vectors to a standard ini-
tial posture obtained by averaging the initial posture across all users. Build can be
suppressed by setting all limb proportions to standard limb proportions obtained by
averaging the limb proportions across all users. Finally, dynamics can be removed
by ignoring all but the first frame of a gesture sequence. In the following sections,
these information suppression processes are detailed. Further, by suppressing sin-
gle or combination of components in a gesture, component-by-component security
performance can be evaluated to see which component(s) are the most valuable.
The analysis will show that the components rank in the order: dynamics, posture,
build in terms of best authentication performance. The empirical results shown in

this section are based on BLD-PBD dataset as discussed in Chapter 4.
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5.3 Gesture Components

5.3.1 Extraction

A skeleton can be represented in multiple ways. The simplest and most direct rep-
resentation is as a tuple of 20 joint vectors in rectangular coordinates as discussed
in Section 3.2.2. An alternative representation which is more convenient for isolat-
ing the individual effects of initial posture, limb proportions, and dynamics, is as a
tuple of 19 limb vectors together with one reference joint vector (see Figure 3-4). In
this context, it is useful to view the skeleton as a rooted tree with, for concreteness,
the spine joint (joint number 1) as the root (or the reference joint) of the tree and the
outgoing connected joints as the children. By knowing the coordinates of root at

: t
time? as s,

:= 8!, and the outgoing edge vectors from the root, the entire skele-
ton can be reconstructed. If the limb connecting joints 7 and j at time ¢ is denoted
by the limb vector v{; := s} — s}, then the feature vector (see Equation 3.2) can be

alternatively represented as follows:

fl={s' vl .ij=1,...,20:i<j(i,j) = limb}. (5.1)

spine’ Y 1,5

To ensure that the initial position of the reference joint remains the same across

1
spine

different repetitions of a gesture, s ;. is subtracted from all the joint vectors across

all the frames, or equivalently, s} ;. is subtracted from only the reference joint vec-
tor across all frames in the limb vector representation (5.1). By doing this, the spine
joint in the first frame is ensured to always be at the origin of the coordinate system.

Let r} i 0; ;, and o ; denote, respectively, the radius, azimuth angle, and eleva-
f?]’

tion angle of the limb vector v; ;, i.e., the spherical coordinates of v} ;. Rectangular

and spherical coordinates are information-equivalent repres