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ABSTRACT

Biometrics are a convenient alternative to traditional forms of access control

such as passwords and pass-cards since they rely solely on user-specific traits. Un-

like alphanumeric passwords, biometrics cannot be given or told to another per-

son, and unlike pass-cards, are always “on-hand.” Perhaps the most well-known

biometrics with these properties are: face, speech, iris, and gait. This dissertation

proposes a new biometric modality: gestures.

A gesture is a short body motion that contains static anatomical information

and changing behavioral (dynamic) information. This work considers both full-

body gestures such as a large wave of the arms, and hand gestures such as a subtle

curl of the fingers and palm. For access control, a specific gesture can be selected

as a “password” and used for identification and authentication of a user. If this

particular motion were somehow compromised, a user could readily select a new

vi



motion as a “password,” effectively changing and renewing the behavioral aspect

of the biometric.

This thesis describes a novel framework for acquiring, representing, and evalu-

ating gesture passwords for the purpose of general access control. The framework

uses depth sensors, such as the Kinect, to record gesture information from which

depth maps or pose features are estimated. First, various distance measures, such

as the log-euclidean distance between feature covariance matrices and distances

based on feature sequence alignment via dynamic time warping, are used to com-

pare two gestures, and train a classifier to either authenticate or identify a user.

In authentication, this framework yields an equal error rate on the order of 1-2%

for body and hand gestures in non-adversarial scenarios. Next, through a novel

decomposition of gestures into posture, build, and dynamic components, the rela-

tive importance of each component is studied. The dynamic portion of a gesture is

shown to have the largest impact on biometric performance with its removal caus-

ing a significant increase in error. In addition, the effects of two types of threats are

investigated: one due to self-induced degradations (personal effects and the pas-

sage of time) and the other due to spoof attacks. For body gestures, both spoof at-

tacks (with only the dynamic component) and self-induced degradations increase

the equal error rate as expected. Further, the benefits of adding additional sen-

sor viewpoints to this modality are empirically evaluated. Finally, a novel frame-

work that leverages deep convolutional neural networks for learning a user-specific

“style” representation from a set of known gestures is proposed and compared to

a similar representation for gesture recognition. This deep convolutional neural

network yields significantly improved performance over prior methods.

A byproduct of this work is the creation and release of multiple publicly avail-

able, user-centric (as opposed to gesture-centric) datasets based on both body and
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hand gestures.
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Chapter 1

Introduction

1.1 Motivation

Traditional biometrics have been plagued by the use of inherently nonrenewable

information. For instance, having to change or replace a person’s face, iris, fin-

gerprint, or speech is inconvenient and difficult. A compromised biometric is not

necessarily rare. Faces are open public information and are vulnerable to being

photographed, fingerprints are easily left on surfaces, and speech can be recorded

and replayed. Thus, a renewable biometric, one that could be easily changed if

compromised, would be invaluable.

Figure 1·1: Example depth map sequences of a body and a hand ges-
ture as captured by a Kinect camera.

Gesture is a new emerging biometric modality that is partially renewable. A
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gesture is a short, few seconds long, body motion that contains static anatomical

information, and changing (dynamic) information. This thesis considers both full-

body gestures, such as a wave of the arms, and hand gestures, such as a subtle

curl of the fingers and palm. These gestures are typically only a few seconds long

and are performed in front of a stationary camera starting from a resting, neutral

position. Should a gesture ever be compromised, a user can intentionally select a

new gesture.1 As a gesture consists of both static and dynamic information, the

dynamic portion can be altered. These gesture “passwords” can be presented to

an access control system to either identify who a person is, or to authenticate (verify)

whomever he/she claims to be (see Figure 1·2). These two primary access scenarios

which we consider for evaluating biometric performance, are commonly known as:

identification and authentication (verification).

Further, ongoing advances in depth capturing technologies, such as the Kinect

v1 and v2 (Kin, 2014), have made acquiring quality biometric information based

on body gestures widely accessible. In fact, ubiquitous depth sensor integration is

expected in next-generation devices (smartphones, PCs, and tablets). One signifi-

cant advantage of a depth sensor is its resistance to spoofing and evasion since 3-D

information is required from its users. For example, unlike in face recognition, a

photograph for spoofing would no longer work (due to its flat surface) and instead

a 3-D molded mask would be required (much to the inconvenience of would-be

attackers). This combination of renewability and inherent spoofing resistance has

motivated us to carry out research in gesture passwords.

1In contrast to gait which is only unintentional user motion.
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Authentication access scenario.

User provides gesture password (shown as a skeletal joint sequence)

and purported identity.

Identification access scenario.

User only provides gesture password (shown as a skeletal joint sequence).

Figure 1·2: Two of the most common access control scenarios we con-
sider.

1.2 Contributions

At the highest level, this dissertation introduces and validates a new modality, in-

tentional body gestures, for the purpose of authenticating or identifying a person.

Since this problem has not been tackled before, it necessitated both the generation

of new datasets and a systematic quantitative study of the security performance of

the proposed algorithms.

At a finer level, this dissertation makes the following contributions:
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Contribution 1 - Gesture Representations: We introduce a novel framework for ac-

quiring, representing and evaluating gesture passwords for either authentication or

identification. This framework leverages information obtained by an RGB/depth-

sensing camera, such as the Kinect, from which silhouette or skeletal features are

extracted. We propose two distance metrics for comparing gestures: the log- eu-

clidean distance between feature covariance matrices and distance based on fea-

ture sequence alignment via dynamic time warping. This contribution has been

reported in the following works: (Wu et al., 2013; Wu et al., 2014a; Wu et al., 2015).

Contribution 2 - Gesture Component Decomposition and Valuation Framework:

We propose a novel framework for first decomposing gestures into posture, build,

and dynamics and then realistically re-synthesizing them with one or more com-

ponents suppressed. This framework enables a fair evaluation of the contributions

of different gesture components to authentication and identification performance.

This contribution has been reported in the following work: (Wu et al., 2014b).

Contribution 3 - Gesture Degradations and Threats: Models and Performance

Evaluation Framework: We study two major classes of threats to gesture-based

authentication and identification with the help of real-world test subjects. The first

class, intrinsic threats, contains self-induced degradations to the gesture password.

This can be due to personal effects (outerwear or belongings) or due to a user’s in-

ability to accurately reproduce a gesture after a long period of time. The second

class, extrinsic threats, focuses on spoof attacks. This contribution has been re-

ported in the following works: (Wu et al., 2014a; Wu et al., 2014c).
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Contribution 4 - User-centric Datasets: We create four new real-world datasets

for the express purpose of evaluating the identification and authentication perfor-

mance of body and hand gestures. Unlike datasets for gesture recognition that

are gesture-centric and contain a high number of gestures per user, our datasets

uniquely focus on being user-centric, and all contain a high number of users per

gesture. In addition to this trait, we collect gesture samples under a multitude of

conditions such as: personal effects, the passage of time, inclusion of copycats, and

the usage of multiple camera sensors. This contribution has been reported in the

following works: (Wu et al., 2014a; Wu et al., 2014b; Wu et al., 2014c; Wu et al., 2015).

Contribution 5 - User Gesture Style for Authentication and Identification: We de-

velop a novel framework for authentication and identification based on a user’s ges-

ture style which is a set of common traits to gestures by the same user. This frame-

work is based on deep convolutional neural networks, specifically, a two-stream

convolutional network which uses both the spatial and the temporal information

in a gesture. This contribution has been reported in the following work: (Wu et al.,

2016).

1.3 Layout of Thesis

The following is the outline of the rest of the thesis.

Chapter 2 provides a brief overview and background of topics related to the

gesture modality.

Chapter 3 introduces and defines the proposed user recognition framework and

the metrics that are used to evaluate it.
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Chapter 4 discusses the datasets that were collected to support the experimental

evaluations in this work.

Chapter 5 focuses on studies dealing with body gestures. These studies pertain

to the importance of dynamics, the robustness of the modality towards threats and

degradations, and the value of additional viewpoints.

Chapter 6 evaluates the biometric performance of hand gestures.

Chapter 7 explores learning user-specific gesture “style” using deep convolu-

tional networks.

Chapter 8 summarizes the conclusions and contributions of this dissertation

and outlines possible directions for future work.
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Chapter 2

Background

In this chapter, works are reviewed that are similar in nature to gesture-based au-

thentication. As there is fundamentally no prior work in this biometric modality,

instead, techniques that can be adapted or reapplied for gesture access control are

described. The following is a short overview of these topics.

2.1 Gesture Recognition

Gesture authentication is perhaps most similar to gesture (action) recognition. In

both problems, users perform a gesture with intent in front of a sensor. In authen-

tication, the goal is to find or authenticate the user (analyze information specific

to a user), and in recognition, the goal is to find the gesture (analyze information

specific to a gesture). For example, in gesture recognition, information related to

the angular velocities of the joints holds much more importance than information

pertaining to a user’s body build and shape. This is because the angular velocities

of the joints are more gesture specific, than user specific.

First, we discuss methods for gesture recognition based on depth sensors. One

particular advantage of the Kinect is that skeletal joint information can be estimated

directly from the depth maps through pose estimation (Shotton et al., 2011; Shotton

et al., 2013). As a result of this, many features have been proposed for recognition

based on skeletal joints.

Xia et al. (Xia et al., 2012) proposed binning skeletal joints into 3-D spherical
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coordinate bins, which could be used as a histogram feature. Wang et al. (Wang

et al., 2012b) proposed using local occupancy patterns (LOP) as features which are

computed by binning point-cloud values around calibrated skeletal joints. Ohn-

Bar and Trivedi (Ohn-Bar and Trivedi, 2013) proposed using histogram of oriented

gradients (HOG) around each skeletal joint and pairwise affinities between skeletal

joint angles as features. Ofli et al. (Ofli et al., 2013) proposed using linear dynamical

systems (LDSs) to model 3-D joints at several spatio-temporal scales on skeletal

joints.

To compare or classify these features, methods such as dynamic time warping

(DTW) (Reyes et al., 2011), hidden Markov models (HMMs) (Lv and Nevatia, 2006),

conditional random fields (CRFs) (Han et al., 2010), and multiple kernel learning

(MKL (Ofli et al., 2013), have been applied.

2.2 Biometrics

There are two categories of biometrics: physiological and behavioral.

Physiological biometrics are based on a person’s physical traits. These are the

well-known, “traditional” biometrics such as face, fingerprint, and iris.

Behavioral biometrics are based on a person’s habits (their trends, patterns and

“style”). These are signatures, keystrokes, or gait (walking) of an individual. Be-

havioral biometrics are quite similar to gestures and we discuss them in some detail

below.

Gait

Gait is the unique shape and motion of an individual walking that can be used for

identification. Using gait as a biometric has in recent years gained traction due to

its properties being recognizable from a distance. This long-range recognition is
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Figure 2·1: A listing of a few common biometrics (both physical and
behavioral). Figure from (Jain et al., 2011).

desirable as it does not require the subject to be cooperative (or aware) of the iden-

tification. The most common approach for gait recognition is to perform silhouette

extraction (through background subtraction), and extract various features that can

be used for classification (such as through HMMs, and GMMs). Features such as

optical flow (Little and Boyd, 1998), GEI (Han and Bhanu, 2006) (gait energy image

– the averaged silhouette intensity), and biped models (Zhang et al., 2004) (coarse

pose estimation of the lower body) are among the most popular.
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On-line Signature

On-line signatures expand upon the classic pen and paper signature for authen-

tication. Instead of only considering the static image of a signature, dynamic in-

formation such as pen x-y position, x-y speed, and tip pressure (how hard a hand

is pressing) can be captured when a signature is performed on a touchscreen or

tablet. There are primarily two classes for on-line signature features. The first class

consists of “feature-based” scalars of global properties such as: the maximum and

minimum x-y pen velocity, or the standard deviation of the pen’s x-y acceleration.

The second class consists of “function-based” vectors of time-dependent sequences:

pen trajectory, velocity, acceleration, force, or pressure (Lei and Govindaraju, 2005).

“Feature-based” information can be compared using distances such as weighted

Euclidean distance and Mahalanobis distance. Elastic matching (predominantly,

variants of DTW (Faundez-Zanuy, 2007; Kholmatov and Yanikoglu, 2005)) and sta-

tistical modeling (HMMs) have also been used to match “function-based” informa-

tion.
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Chapter 3

Framework

This chapter presents a framework for access control through authentication or

identification. First, we discuss types of access control and their performance met-

rics. Next, we detail the framework used to represent, and compare gesture se-

quences that have been captured from the Kinect. We use two features for gestures:

silhouette shapes and skeletal joints. After defining these features, we propose var-

ious distances to compare pairs of gesture samples. Finally, we use an authorized

set of samples to train a classifier to determine access.

3.1 Evaluating Access Control

The performance of an access control system can be evaluated in one of two sce-

narios: authentication or identification (Jain et al., 2011). This section describes each

of these access scenarios and their associated performance metrics.

3.1.1 Recognition Algorithm

A simple yet powerful recognition algorithm such as nearest-neighbor (1-NN) can

be used to determine access based on suitable distance measures. If a query sample

is sufficiently close in distance (falls within a determined cutoff threshold) to an en-

rolled sample, access or identity can be granted. Based on this algorithm, measures

of security can be calculated for a given access scenario.
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Figure 3·1: System diagram of a user performing authentication.

3.1.2 Authentication

This thesis primarily considers access control performance for authentication. In

authentication, a user provides two pieces of information: his/her claimed iden-

tity and a biometric (see Figure 3·1). If the biometric closely matches an enrolled

sample of the given identity (one-to-one-user match), the user is allowed access.

Otherwise, he/she is rejected.

Two kinds of errors are considered in this case: false acceptance and false re-



13

jection. The false acceptance rate (FAR) is the rate at which unauthorized users are

allowed access. The false rejection rate (FRR) is the rate at which authorized users

are denied access. In any practical system, FAR and FRR will have trade-offs. One

can find these trade-offs by applying various acceptance thresholds across the sys-

tem. A common metric of performance is the equal error rate (EER) which occurs

when FAR and FRR are equal. This process is briefly recapped below.

LetAi = {S1, . . .Sm} be a set containing m gesture samples from a single autho-

rized user i. Let Ui be a set of gesture samples that do not come from authorized

user i. The FRR is found by comparing samples in Ai amongst themselves (each

sample inAi is treated as a query sample Q). This is done using leave-one-out cross

validation (LOOCV) such that each sample is compared to the setAi\{Q}, i.e., with

the query itself removed. The FAR is found by comparing samples in Ui to samples

inAi (each sample in Ui is treated as a query sample). A nearest-neighbor criterion

dNN(·, ·) is used to compare a single query sample Q to the authorized set A.

dNN(Q,Ai) = minS∈Ai
d∗(Q,S).

where d∗ is one of the following distances (discussed in Section 3.3):

• dU.tri.Eucl (Upper Euclidean)

• dHier.Eucl (Temporal Hierarchy Euclidean Distance)

• dLog−Eucl (Log Euclidean Distance)

• dDTW (Dynamic Time Warping)
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Then, for a given threshold value θ, the FAR and FRR are calculated by:

FRR(Ai, θ) =

∑

Q∈Ai
1(dNN(Q,Ai\{Q}) ≥ θ)

|Ai|

FAR(Ai,Ui, θ) =

∑

Q∈Ui
1(dNN(Q,Ai) < θ)

|Ui|

where the indicator function 1(condition) equals 1 if the ‘condition’ is true and

equals 0 otherwise.

EER for the pair (Ai,Ui) is found by first computing the FAR-FRR pairs for dif-

ferent thresholds θ. Then, the EER is determined as the location on the boundary of

the convex hull of the FAR-FRR pairs where FAR equals FRR. In practice, this EER

does not lie directly on a FAR-FRR pair that corresponds to a single classifier (e.g., a

1-NN decision rule with a single decision threshold). Rather, the EER reflects two

classifiers (e.g., two 1-NN decision rules with two different decision thresholds),

where each classifier is chosen at random with a fixed probability (Scott et al., 1998).

This computation is repeated for each authorized user who each has his/her

own unique set (Ai,Ui). Effectively, each user in a dataset will have their own EER.

If these values are averaged across users, an average EER can be computed. Such

a score can be considered to represent the scenario where each user has their own

accept/reject threshold θi. If a global accept/reject threshold θglobal is desired across

all users, a “global” EER can be computed. In this case, θ is taken across all (Ai,Ui)

pairs simultaneously.

3.1.3 Identification

Access control can also be considered in the context of identification. In identifica-

tion, a user presents his/her biometric sample to a system which retrieves an en-

rolled identity through a one-to-many-user match (see Figure 3·2). This is called

the closed-set identification problem, i.e., classification under the assumption that
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Figure 3·2: System diagram of a user performing identification.

the query user’s identity is enrolled, i.e., no possibility of rejection. The correct

classification rate (CCR), and its complement error, CCE = 1-CCR, can be used to

express accuracy. This value is also computed with LOOCV, where each user is

labeled with the identity of his/her nearest-neighbor match.

3.2 Representation

The following sections describe how silhouette or skeletal feature matrices F are

computed. These features are used to represent each gesture sample, and will later
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be used to compute distances between pairs of samples.

3.2.1 Silhouette Features

A compact silhouette representation can be extracted from any gesture sequence

consisting of depth frames.

Figure 3·3: Each silhouette pixel n has an associated 13-dimensional
feature vector which consists of the pixel position (x, y, t) and 10 di-
rectional distances δ∗ to the silhouette boundary.

First, a sequence of binary silhouettes of a user performing a gesture is extracted

from a sequence of depth frames. This is accomplished by differencing each depth

map from a known depth map background. The largest 3-D connected component

with 18-connected pixel connectivity in the 3-D sequence of binary silhouettes is

taken to be a user’s silhouette tunnel.

In order to extract features from this silhouette tunnel, an approach similar to

the one used by Lai and Guo et al. (Lai et al., 2012; Guo et al., 2013) is adopted. Let

n = 1, ..., N index allN pixels within the silhouette tunnel and let (x, y, t)denote the

space-time coordinates of pixel number n. The following 13-dimensional feature

vector fn is computed at each silhouette pixel and captures the shape and dynamic
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characteristics of a gesture (Figure 3·3):

fn = f(x, y, t) := [x, y, t, δE , δW , δN , δS, δNE, δSW , δSE, δNW , δT+, δT−]
′ (3.1)

where δDIR denotes the Chebyshev distance between the space-time coordinates of

pixel n and those of the farthest silhouette boundary pixel in direction DIR. The first

8 directions are in the x, y spatial domain (4 cardinal directions and 4 inter-cardinal

directions), and the last 2 are in the temporal domain (forward and backward in

time).

The above procedure, after visiting all N pixels of a silhouette tunnel, produces

a 13 by N matrix F = [f1, f2, . . . , fN ] as the final representation.

3.2.2 Skeletal Features

A gesture can also be described as a sequence of a user’s skeletal joints in rectan-

gular coordinates across time. The advantages of using skeletons (pose estimation)

over silhouettes, are two fold: (i) skeletal data is sparse yet informative and (ii)

skeletal data is relatively insensitive to changes in clothing, personal effects, and

lighting conditions. Conveniently, the Kinect SDK (Kin, 2014; Shotton et al., 2011)

provides rectangular coordinates of 20 skeletal joints of the human body for each

frame at 30 frames per second. These coordinates are extracted from each depth

frame and correspond to the following locations: head, neck, spine, center hip, and

left and right versions of the hand, wrist, elbow, shoulder, hip, knee, ankle and foot

(Figure 3·4). A skeleton’s evolution in time can be represented as a sequence of

features f t as follows:

f t := [st1, s
t
2, ..., s

t
20]

′ t = 1, ..., T, (3.2)
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Figure 3·4: Example of a skeleton produced by the Kinect SDK.

where sti = (xt
i, y

t
i , z

t
i) ∈ R

3 is a 1 × 3 row vector which denotes the x − y − z

coordinates of the i-th skeletal joint in frame number t and T is the total number of

frames.

Let F = [f1, f2, . . . , fT ] denote a 60 by T matrix that becomes the final represen-

tation of this procedure.

3.2.3 Normalization

Due to the nature of gesture dynamics and body build, individual feature elements

(e.g., coordinates sti, and distances along cardinal directions δDIR) may have signif-

icantly different dynamic ranges. A feature element with a large amplitude would

then influence an overall error metric more than a feature with a small amplitude.

In order to avoid developing a complicated metric with unequal weights for indi-

vidual elements, the approach of Hussein et al. (Hussein et al., 2013) is adopted

where the matrix F is normalized along rows (the time-wise or pixel-wise dimen-

sion) as follows:

Fnorm[i, j] =
F[i, j]−min

k
F[i, k]

max
k

F[i, k]−min
k

F[i, k]
(3.3)
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where F[i, j] denotes the value in the i-th row and j-th column of F. The above

normalization ensures that the values of all feature elements are contained within

the dynamic range [0, 1].

3.2.4 Covariance Descriptor

A gesture sequence can be also viewed as a “bag of features,” where each pixel

(silhouette) or frame (skeleton) is associated with an h× 1 feature vector. An h× h

empirical covariance matrix C of a collection of feature vectors (normalized accord-

ing to (3.3)) provides a low-dimensional, second-order representation of the entire

feature vector collection:

C :=
1

N

N
∑

1

(fnnorm − µ)(fnnorm − µ)T , (3.4)

where µ is the empirical mean of normalized feature vectors fnnorm. For silhouettes,

h = 13, and N is the total number of pixels in the silhouette tunnel. For skele-

tons, h = 60 and N is the number of frames in the skeletal sequence. Since C is

a symmetric matrix, its upper-triangular part of size (h2 + h)/2 can be used as an

independent gesture descriptor.

3.3 Distance Measures

There are numerous ways to measure distances between two gesture sequences. In

the following section, we describe how to compute the distance between pairs of

covariance matrices and how to compute dynamic time warping distance. These

distances represent the possibilities for d∗ as used in Figure 3·1 and 3·2, which are

used to compare biometric samples in authentication and identification.
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3.3.1 Distances between Covariance Matrices

Upper-Triangular Euclidean Distance

Perhaps the simplest way to measure the distance between two covariance matrices

of normalized features is to compute the Euclidean distance (Frobenius norm) be-

tween them. Since covariance matrices are symmetric, the upper-triangular portion

contains all the information. Hence, one basic distance function between (normal-

ized) covariance matrices that is considered is the Euclidean distance between their

upper-triangular parts. This is denoted by dU.tri.Eucl(·, ·).

Euclidean Distance with Temporal Hierarchies

A key problem with the covariance descriptor is that the ordering of pixels or frames

does not matter or is irrelevant. If this order were to be scrambled, the covariance

matrix would remain unchanged. In order to emphasize the importance of frame

ordering in a gesture, Hussein et al. (Hussein et al., 2013) suggested using a hierar-

chical computation of covariance descriptors across temporal windows at various

scales. In this way, given any scrambling of the frames, the covariance matrices

across smaller time windows would be different. For example, consider this idea

for 3 temporal levels. At level i, 2i−1 equal-length, non-overlapping windows are

computed across the entire sequence. For example, at the 3rd level in hierarchy there

would be 4 equal-length windows each of length N/4 (temporal ranges: 1 to
⌊

N
4

⌋

,
⌊

N
4

⌋

+ 1 to
⌊

N
2

⌋

,
⌊

N
2

⌋

+ 1 to
⌊

3N
4

⌋

, and
⌊

3N
4

⌋

+ 1 to N ). All these covariance matrices

can be computed quickly through the use of integral signals (Hussein et al., 2013;

Tuzel et al., 2008).

For each covariance matrix that is computed from the temporal hierarchy, the

upper triangular portion serves as our gesture descriptor, and all these descrip-

tors are concatenated into one long gesture descriptor vector. For the case of 3
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layers, there are 7 covariance matrices. Each upper triangular matrix is of length

(602 + 60)/2 = 1, 830, which concatenated together, yields a total length of 7 ×

1, 830 = 12, 810. Thus, for a single gesture sequence from one Kinect camera using

a 3-layer temporal hierarchy a descriptor of length 12,810 will be generated. A Eu-

clidean norm between these concatenations of upper-triangular parts can be used

as a distance. This is denoted by dHier.Eucl(·, ·).

Log-Euclidean Distance

The log-Euclidean distance between two covariance matrices C1, and C2 proposed

by Arsingy et al. (Arsigny et al., 2006) is defined as follows:

dLog−Eucl(C1, C2) := || log(C1)− log(C2)||2, (3.5)

where || · ||2 denotes the matrix Frobenius norm and log(C) := V D̃V ′ where C =

V DV ′ is the eigen-decomposition of covariance matrix C and D̃ is obtained from

D by replacing its diagonal entries with their logarithms. This distance is a Rie-

mannian metric on the manifold of covariance matrices. The basic intuition of this

distance is to convert the space of covariance matrices (forms a convex cone) to a

vector space, and then take a norm in the transformed Euclidean space. Additional

properties of this distance can be found in (Arsigny et al., 2006).

3.3.2 Dynamic Time Warping

Dynamic time warping (DTW) can be used to measure the distance between two

gesture sequences of possibly different durations. DTW is a non-linear alignment

algorithm that is relatively popular and has been extensively used in the literature

(Ding et al., 2008; Keogh, 2002; Ratanamahatana and Keogh, 2004). For skeletal

features, a modified version of this algorithm has been designed for this problem
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as detailed below.

Figure 3·5: Visualization of the path P between two sequences.

Let Fg1 = [f1g1 , · · · , f
T1

g1
] and Fg2 = [f1g2 , · · · , f

T2

g2
] be two feature matrices of skeletal

features corresponding to gestures g1 (T1 frames long) and g2 (T2 frames long). A

distance based on the cost of aligning Fg1 and Fg2 can be computed from a T1 × T2

cost matrix. Let the cost matrix’s (i, j)-th entry be the cost of aligning the skeletal

feature in frame-i of gesture g1 with the skeletal feature in frame-j of gesture g2:

cost(f ig1 , f
j
g2
) =

20
∑

p=1

||sip,g1 − sjp,g2 ||2.

An admissible alignment scheme is a path P through the cost matrix defined as

follows

P = {(ik, jk), k = 1, . . . , K : i1 = j1 = 1, iK = T1,

jK = T2, ∀k, ik+1 − ik, jk+1 − jk ∈ {0, 1}}

where max(T1, T2) ≤ K ≤ T1 + T2 is the path-length. The cost of a path is defined
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Figure 3·6: Visualization of the modified DTW cost function.

as follows:

pathcost(P,Fg1 ,Fg2) =
∑

(ik,jk)∈P

cost(f ikg1 , f
jk
g2
)

The path of interest is the one with the least cumulative cost. This path can be

solved recursively using dynamic programming in quadratic time. The final cost is

defined as follows:

dDTW (Fg1 ,Fg2) = min
P

pathcost(P,Fg1 ,Fg2)
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Chapter 4

Gesture Datasets

4.1 Motivation for New Datasets

The problems of gesture recognition and gesture-based authentication are similar

in the sense that they both involve users performing gestures. However, in the

former problem the goal is to recognize the gesture regardless of the user, whereas

in the latter problem the goal is to recognize the user regardless of the gesture.

Although it might seem that a given dataset of gestures can be used interchangeably

for studying both problems, e.g., analyzing user authentication performance using

a gesture recognition dataset, this is not the case.

Datasets for gesture recognition are typically gesture-centric meaning that they

have high number of gestures per user (many gestures to classify, few users per-

forming them) whereas studying authentication requires the opposite, namely a

user-centric dataset which has a high number of users per gesture. This issue is

highlighted in Table 4.1, where we compare gesture recognition datasets. Notably,

many of these datasets contain less than 20 users. In cases where there are more

than 20 users, the data has been collected in such a way that there is either not

enough users performing each gesture or the data contains dataset bias due to ges-

tures being performed continuously standing in-place. By standing in-place, each

user’s lower body posture does not significantly change which can cause dataset

bias. In gesture recognition, this is typically not an issue, as the same user will
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never be seen in both training and testing. However, for cases of user recognition,

this causes a significant issue, as the same user is almost always seen in both train-

ing and testing.

With these goals and issues in mind, three datasets were collected:

• BodyLogin Dataset: Silhouettes vs Skeletons (BLD-SS) (Wu et al., 2014a)

• BodyLogin Dataset: Posture, Build, Dynamics (BLD-PBD) (Wu et al., 2014b)

• BodyLogin Dataset: Multiview (BLD-M) (Wu et al., 2014c)

• HandLogin Dataset: In-air Hand Gestures (Wu et al., 2015)

Each of these datasets focuses on a different aspect of gesture-based user recog-

nition, and thus have been recorded under different scenarios as detailed in the

following sections.

4.2 Acquisition Methodology

Three of the aforementioned datasets (BodyLogin) have been collected with a

Kinect v1 sensor. These three datasets each recorded a subject from a forward-

facing Kinect sensor approximately 2 meters away. The Kinect v1 sensor captures

a 640×480 depth image and skeletal joint coordinates (pose estimation through the

SDK (Kin, 2014)) at 30 fps.

The last dataset, HandLogin, has been collected with a Kinect v2 sensor fac-

ing the ceiling. The Kinect v2, a time-of-flight depth sensor, is used to acquire a

512x424 depth image of each gesture sample at 30 fps. Each hand gesture sample is

recorded in near proximity to the sensor (approximately 50 cm) so as to maximize

hand detail.
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Table 4.1: A comparison of mostly body gesture recognition datasets
using either depth or mocap (motion capture) sensors. ⋄In CMU Mo-
cap, all users do not perform all gestures (some gesture types only
have a single user performing it). ‡In MSRC-12, gestures are per-
formed continuously in a long sequence, one after another causing
inherent biases.

Dataset # of Users # of Gestures Data Type

CMU Mocap (CMU, 2003) >100 109⋄ Mocap

HDM05 (Müller et al., 2007) 5 >70 Mocap

MSRAction3D (Li et al., 2010) 10 20 Kinect v1 Depth

HumanEva I/II (Sigal et al., 2010) 4/2 6/1 RGB + Mocap

MSRC-12 (Fothergill et al., 2012) 30 12
‡ Kinect v1

(Skeletons Only)

MSRGesture3D (Wang et al., 2012a) 10 12 Depth

MSRDailyActivity3D 10 16 Kinect v1 Depth
(Wang et al., 2012b)

Berkeley MHAD (Ofli et al., 2013) 12 11 Multimodal
(Depth + Mocap)

BodyLogin Combined (Ours) 40 5 Kinect v1 Depth

Handlogin (Ours) 21 4 Kinect v2 Depth

At some point in each dataset, users were instructed to perform a pre-defined

gesture. Each user was instructed how to perform each gesture type through a

text and video prompt (a multi-modal instruction scheme). In the literature, a

multi-modal instruction scheme is known to improve gesture reproducibility over

a single-modal instruction scheme (e.g., text or video only) (Fothergill et al., 2012).

In order to strive for realistic intra-class variability and reduce pose bias, users were

instructed to leave (for approximately one minute) and re-enter the recording area

between gesture samples.

4.3 BodyLogin Dataset: Silhouettes and Skeletons

The BodyLogin Dataset: Silhouettes and Skeletons (BLD-SS) is used to compare

the performance of silhouette and skeletal features in real world scenarios. Over
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a two week, two session period (one session per week), gesture samples from 40

different college-affiliated users (27 males, 13 females) primarily 18-33 years old

were collected. Each subject was asked to perform 2 unique short gestures (ap-

proximately 3 seconds long), each with 20 samples. In total, about 1.4 hours of data

were recorded, with each user averaging 2 minutes of data (each sample about 3

seconds long). Both gestures involved motion in the upper and lower body (Fig-

ure 4·1):

• S gesture: drawing an “S” shape with both hands,

• User-defined gesture: user chooses his/her own gesture (no instruction).

S gesture (common to all users)

User-defined gesture: knee lift (will vary between users)

Figure 4·1: Snapshots of the gestures each user performed in our
dataset (Kinect depth shown).

Degradations

Four different types of gesture scenarios were considered in BLD-SS:

• No degradations

• Personal effects

• User Memory

• Gesture Reproducibility
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Before/after user wearing backpack

Before/after user wearing a sweatshirt

Figure 4·2: Views of users wearing personal effects. Left two im-
ages are before personal effects (front and back Kinect views shown),
the right two images are after personal effects (front and back Kinect
views shown).

In the case of personal effects, users either wear or carry something during their

gestures. Half of our users were told to wear heavier clothing, and the other half

were told to carry some type of a bag. Users wore a variety of heavier clothing:

sweatshirts, windbreakers, and jackets. They carried backpacks (either on a single

shoulder or both), messenger bags, and purses.

The impact of user memory was tested by collecting samples a week after a user

first performed a gesture. Users were first asked to perform the gesture without

any video or text prompt. After a few samples were recorded, the user was shown

a prompt and asked to perform the gesture again. These last samples measured

reproducibility. Of the 20 samples recorded for each gesture, each of the described

scenarios had 5 samples recorded. Table 4.2 shows a summary of the degradation

scenarios that were used for each gesture.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

body-login/datasets/silhouettes-vs-skeletons/

http://vip.bu.edu/projects/hcis/body-login/datasets/silhouettes-vs-skeletons/
http://vip.bu.edu/projects/hcis/body-login/datasets/silhouettes-vs-skeletons/
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Table 4.2: Details of recording procedure for BLD-SS and BLD-M.
Users were instructed to “reset” initial position between gesture per-
formances. Half of the users wore coats, and the other half carried
bags.

Gesture: S gesture User-defined

Session I: 1. Observe video and text 1. Create custom gesture
description of gesture

2. No degradation: Perform 2. No degradation: Perform
gesture normally (5 times) gesture normally (5 times)

3. Personal effects: Wear 3. Personal effects: Wear
a coat, or carry a bag a coat, or carry a bag

4. Perform gesture with 4. Perform gesture with
personal effect (5 times) personal effect (5 times)

Session II 1. Memory: Perform gesture 1. Memory: Perform gesture
(a week after): from memory (5 times) from memory (5 times)

2. Observe video and text 2. Observe video of prior
description of gesture performance from Session I.

3. Reproducibility: Perform 3. Reproducibility: Perform
gesture (5 times) gesture (5 times)

4.4 BodyLogin Dataset: Posture, Build and Dynamics

BodyLogin Dataset: Posture, Build and Dynamics (BLD-PBD) is a Kinect dataset

that contains gestures across two sessions. In the first session, users recorded ges-

tures under normal conditions. In the second session, users were matched to at-

tack targets and were made to spoof another’s gestures. This dataset was used to

evaluate the effects of user-specific posture, build and dynamics in the context of

authentication.

In total, about 1.8 hours of data were recorded, with each user averaging 3 min-

utes of data (each sample about 3 seconds long). There are 20 samples per gesture

(10 own and 10 attack) for each user. Users were all college-affiliated (25 males, 11

females) mostly in the age range of 18-33 years. The three gestures, designed to be
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of increasing complexity, involved movement in both the upper and the lower body

(Figure 4·3):

• Left-right gesture: user reaches right shoulder with left hand, and then

reaches left shoulder with right hand,

• Double-handed arch gesture: user draws an arch from left to right with both

hands,

• Balancing gesture: user first raises right arm forward while pulling left arm

back, then balances by forward sweeping left leg while simultaneously tuck-

ing left arm in and bringing right arm to rest.

Left-right gesture

Double-handed arch gesture

Balancing gesture

Figure 4·3: Snapshots of the gestures each user performed in our
dataset (Kinect depth shown).

In order to facilitate our gesture spoofing study (Section 5.5 where extrinsic at-

tacks are considered), each of the 3 gestures of each user was matched to an attack

target after the first session. Attack targets were found by comparing the “centroid”

samples of each user. If A := {S1, . . . ,Sm} denotes a set of user’s first-session sam-
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ples (feature matrices) of a given gesture, then the user’s “centroid” sample is de-

fined for that gesture as follows:

Scentroid = argmin
S∈A

m
∑

i=1

dDTW (S,Si). (4.1)

A user’s attack target (in the second session), for a given gesture, is the owner of

the closest centroid sample (nearest-neighbor) for that gesture. The aim of match-

ing attackers to their ”easiest victims” is threefold: 1) all participants can serve

as attackers in the study 2) no participant is asked to attack more than one user

which balances the burden across all participants, and 3) the odds of users suc-

ceeding as attackers are improved, which somewhat compensates for the lack of

experience and the limited practice-time available for an attack. Under this match-

ing scheme, vulnerable users get attacked more often than others and very distinct

users never get attacked. Furthermore, attackers may end up attacking up-to three

distinct users (one for each gesture). Most users had at least one attacker. The most

attackers a user had was seven.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

body-login/datasets/posture-build-dynamics/

4.5 BodyLogin Dataset: Multiview

BodyLogin Dataset: Multiview (BLD-M) is a multiple-viewpoint Kinect dataset

that contains gestures recorded under various degradations. This dataset was used

to evaluate the value of additional Kinect viewpoints in gesture authentication.

This dataset is an extension of BLD-SS to multi-view. As with BLD-SS, over a

two week, two-session period (one session a week), gesture samples from 40 dif-

ferent college-affiliated users (27 males, 13 females) primarily 18-33 years old were

collected. Subjects were asked to perform 2 unique short gestures (approximately

http://vip.bu.edu/projects/hcis/body-login/datasets/posture-build-dynamics/
http://vip.bu.edu/projects/hcis/body-login/datasets/posture-build-dynamics/
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Figure 4·4: A setup with four Kinect cameras. Three Kinects (left,
center, and right) were placed in front of the user, at offset angles,
and one was placed behind the user (back). Skeletal estimation can
be performed independently from each viewpoint.

3 seconds long), each with 20 samples. In total, approximately 1.4 hours of data

were recorded, with each user averaging 2 minutes of data (each sample about 3

seconds long). As with BLD-SS, they performed the S gesture and User-defined ges-

ture, each with the same degradations. However, the main difference is that the

dataset was captured with 3 additional Kinects. 3 Kinects were placed facing the

user and 1 Kinect was directly behind (Figure 4·4). Of the forward-facing Kinects,

2 were offset by about 35 degrees to the side, with 1 device directly in front. All

devices were set up approximately 2 meters away from the user. Users were pri-

marily facing the center camera for the duration of the performed gesture. All the

Kinects were connected to a single PC to assure time synchronization. Captured

frames were synced to the frame-rate of the center Kinect.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

body-login/datasets/multiview/

http://vip.bu.edu/projects/hcis/body-login/datasets/multiview/
http://vip.bu.edu/projects/hcis/body-login/datasets/multiview/
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Compass gesture (flat translation)

Piano gesture (subtle finger movements)

Push gesture (change in distance to sensor)

Flipping Fist gesture (occlusions in fingers)

Figure 4·5: Kinect v2 depth images of the 4 gestures used for authen-
tication. For visualization, images have been cropped, and only show
the lower 4-bits of the 16-bit depth image.

4.6 HandLogin Dataset: In-air Hand Gestures

The HandLogin dataset was collected to evaluate the biometric performance of in-

air hand gestures. Aiming to create a user-centric dataset (as the dataset from a re-

lated work was not publicly available (Aumi and Kratz, 2014)), hand gestures were

collected from 21 college-affiliated users consisting of 15 males, and 6 females. Each

user was asked to perform 4 unique types of hand-gestures, each type designed to

be a few seconds in duration. Ten samples of each gesture type were recorded,

with users instructed to leave and re-enter the recording area to reduce arm- and
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hand-pose biases between samples. In total, approximately 0.7 hours of data were

recorded.

Figure 4·6: Visualization of HandLogin camera setup. Kinect v2 cam-
era points towards the ceiling.

All 4 gestures were performed with the right hand starting in a “rest” posi-

tion: the hand extended downwards on top of a ceiling-facing Kinect sensor, with

fingers spread comfortably apart. This avoids the notorious “gorilla arm” issue,

where users would need to maintain their hand in a vertical front-to-parallel po-

sition, instead using a more comfortable horizontal down-to-parallel position (see

Figure 4·6). The orientation of our sensor was designed to mimic an authentication

terminal, where typically only a single user is visible. The gestures that have been

recorded:

Compass: users trace the compass directions of North, East, South and West

with an open hand with the restriction that after each compass direction has been

reached, the user must return to the center position before tracing a subsequent
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direction; this gesture evaluates planar translation,

Piano: users use their fingers to “press” the keys of an imaginary keyboard –

fingers are pressed one-by-one starting from the thumb and ending with the pinky;

this gesture evaluates subtle fingertip movements,

Push: users pull the arm back, and push towards the sensor; this gesture eval-

uates depth translation,

Flipping Fist: users first flip the hand over and close it into a fist, and then flip

the fist over and open it back to the starting hand pose in front of the sensor; this

gesture evaluates the effect of occlusions and more sophisticated fingertip motion.

This dataset has been made available at http://vip.bu.edu/projects/hcis/

hand-login/dataset/

4.7 Dataset Statistics

In both the aforementioned datasets, the duration of a single gesture sample is usu-

ally only a few seconds long. User-specific durations for fixed gesture types are

shown in Figure 4·7 and 4·8 as stacked histograms. For the most part, these datasets

consider gestures that are intentionally short. This is useful as performing a ges-

ture that is too long becomes harder to remember and repeat. Further, having to

perform a long gesture can become too prohibitive and too inconvenient over other

alternative forms of access control. It is important to note that gestures that are of

longer duration do not necessarily yield better performance. There can be scenar-

ios where a gesture is too hard to remember, or too hard to replicate consistently,

which can result in poor biometric performance relative to a shorter and simpler

gesture.

All of the four aforementioned datasets have been made publicly available on

the lab website. Table 4.3 shows the most recent snapshot of public access to this

http://vip.bu.edu/projects/hcis/hand-login/dataset/
http://vip.bu.edu/projects/hcis/hand-login/dataset/
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Figure 4·7: Stacked histograms representing the lengths of the 5 ges-
tures in BodyLogin. Gestures were collected at 30 frames per second.
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Figure 4·8: Stacked histograms representing the lengths of the 4 ges-
tures in HandLogin. Gestures were collected at 30 frames per second.
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resource.

Table 4.3: Current dataset downloads as of April 2016. Downloads
are a count of unique and registered users not originating from a BU
domain.

Dataset # of Downloads Year Released

BodyLogin: Silhouettes and Skeletons 8 Fall 2014

BodyLogin: Posture, Build, and Dynamics 11 Fall 2014

BodyLogin: Multiview 15 Summer 2014

HandLogin 3 Fall 2015
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Chapter 5

Body Gestures

5.1 Introduction

In this chapter, three studies pertaining to body gestures are explored. First, a body

gesture is decomposed into components – posture, build and dynamics. Subse-

quently, the impact of each component on biometric performance is evaluated.

Next, various potential performance-reducing “threats” are discussed. One threat

that is considered are the user induced degradations to the gesture sample. For

example, these are cases where a user performs a body gesture while carrying a

bag or wearing a heavy coat, or needs to recall and perform a gesture again after a

period of time. Other threats considered are those caused by other users through

spoof attacks. The impact on performance is evaluated when users are able to have

access to one’s personal gesture information, and attempt to “replay” one’s ges-

ture in front of a sensor. These threats are primarily investigated by changing the

testing samples to magnify the threat under consideration. Finally, the biometric

performance of additional camera viewpoints is explored. This analysis of multiple

viewpoints also considers situations with user-induced threats.
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5.2 Value of Posture, Build, and Dynamics

This section seeks to answer the following questions:

Which component of a gesture carries the weight of security performance? Is it the

static information of the user (pose and build), or is it the dynamics (style of move-

ments) the user performs and has full control over?

In this section, a novel method is developed to suppress the effects of specific

types of information in a gesture. A gesture can be represented as containing three

types of user-specific information: initial body posture, limb proportions (build)

and controlled user-dynamics. Each of these components can be isolated and sup-

pressed by using a spherical coordinate representation of skeletal limb vectors. Ini-

tial posture can be suppressed by setting the initial limb vectors to a standard ini-

tial posture obtained by averaging the initial posture across all users. Build can be

suppressed by setting all limb proportions to standard limb proportions obtained by

averaging the limb proportions across all users. Finally, dynamics can be removed

by ignoring all but the first frame of a gesture sequence. In the following sections,

these information suppression processes are detailed. Further, by suppressing sin-

gle or combination of components in a gesture, component-by-component security

performance can be evaluated to see which component(s) are the most valuable.

The analysis will show that the components rank in the order: dynamics, posture,

build in terms of best authentication performance. The empirical results shown in

this section are based on BLD-PBD dataset as discussed in Chapter 4.
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5.3 Gesture Components

5.3.1 Extraction

A skeleton can be represented in multiple ways. The simplest and most direct rep-

resentation is as a tuple of 20 joint vectors in rectangular coordinates as discussed

in Section 3.2.2. An alternative representation which is more convenient for isolat-

ing the individual effects of initial posture, limb proportions, and dynamics, is as a

tuple of 19 limb vectors together with one reference joint vector (see Figure 3·4). In

this context, it is useful to view the skeleton as a rooted tree with, for concreteness,

the spine joint (joint number 1) as the root (or the reference joint) of the tree and the

outgoing connected joints as the children. By knowing the coordinates of root at

time t as stspine := st1, and the outgoing edge vectors from the root, the entire skele-

ton can be reconstructed. If the limb connecting joints i and j at time t is denoted

by the limb vector vt
i,j := stj − sti, then the feature vector (see Equation 3.2) can be

alternatively represented as follows:

f t ≡ {stspine,v
t
i,j , i, j = 1, . . . , 20 : i < j, (i, j) = limb}. (5.1)

To ensure that the initial position of the reference joint remains the same across

different repetitions of a gesture, s1spine is subtracted from all the joint vectors across

all the frames, or equivalently, s1spine is subtracted from only the reference joint vec-

tor across all frames in the limb vector representation (5.1). By doing this, the spine

joint in the first frame is ensured to always be at the origin of the coordinate system.

Let rti,j , θ
t
i,j , and φt

i,j denote, respectively, the radius, azimuth angle, and eleva-

tion angle of the limb vector vt
i,j , i.e., the spherical coordinates of vt

i,j . Rectangular

and spherical coordinates are information-equivalent representations of a vector
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and one can readily convert from one set of coordinates to another, i.e.

vt
i,j = (xt

i − xt
j, y

t
i − ytj, z

t
i − ztj)↔ (rti,j , θ

t
i,j , φ

t
i,j).

The initial posture for each gesture can be thought of as the unintentional, ha-

bitual orientation of one’s body parts. This orientation can be described via the

azimuth and elevation angles of all skeletal edges in the first frame:

{(θ1i,j , φ
1
i,j), i, j = 1, . . . , 20 : i < j, (i, j) = limb}.

Subsequent postures in the sequence pertain to the gesture’s dynamics. The limb

proportions describe the shape of a user’s body (user build) regardless of the ges-

ture that he/she performs. Ideally, limb lengths should not change across frames.

However, the estimates of joint coordinates produced by the Kinect SDK are not

perfect. This issue is addressed by computing the average length of each limb in a

gesture across all frames and dividing it by the average length of the spine limb as

follows:

r̄i,j =

∑T

t=1 r
t
i,j

∑T

t=1 r
t
spine

(5.2)

where rtspine = rt1,2 is the spine limb length (Figure 3·4) and r̄i,j is the limb proportion

for limb (i, j). Thus, for a given gesture sequence with 20 skeletal joints, there will

be 19 limb proportions,

r̄ := {r̄i,j , i, j = 1, . . . , 20 : i < j, (i, j) = limb},

where r̄1,2 = 1. From the above discussion it follows that any gesture can be repre-

sented as the combination of three sets of values: initial posture, {(θ1i,j, φ
1
i,j), ∀i, j :

(i, j) = limb}, limb proportions r̄, and dynamics {(θti,j , φ
t
i,j), ∀i, j : (i, j) = limb, t =
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2, . . . T}.

5.3.2 Suppression

This approach to study the individual and combined effects of initial posture, limb

proportions and dynamics on user authentication performance is to first transform

a given set of gestures to new ones (in rectangular coordinates) in which one or

more gesture components (initial posture, limb proportions, dynamics) are either

retained or suppressed and then evaluate the authentication performance on the

transformed set of gestures.

The advantage of this approach, is that it allows us to use a single classifier and

a single common feature space, namely the rectangular skeletal coordinates, for

all the component combinations. If separate classifiers were developed for each

combination of components (which live in different feature spaces), it would be

unclear whether any performance differences are due to the components or/and

the specific classifiers.

Suppressing Initial Posture

To remove the effects of user-specific initial posture, a limb-specific angular offset

is introduced, (∆θoffseti,j ,∆φoffset
i,j ), to every single frame. The goal of this is to orient

the initial posture (1st frame), to a standard initial posture. As a result, this also re-

orients subsequent frames in a sequence. The standard initial posture can be found

by averaging the initial posture angles across all samples of all the users to yield

(θ1,standardi,j , φ1,standard
i,j ). The angular offsets are then the angular differences between

the standard initial posture and the user’s initial posture:

(∆θoffseti,j ,∆φoffset
i,j ) = (θ1,standardi,j − θ1i,j , φ

1,standard
i,j − φ1

i,j) (5.3)
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Figure 5·1: A skeletal sequence before and after initial body posture
suppression. Note the change in leg posture.

A transformed gesture (in rectangular coordinates) with the initial posture sup-

pressed (i.e., standardized) is then obtained by adding the angular offsets to the

spherical coordinates of all frames and converting the result back to rectangular

coordinates:

(r̄i,j, θ
t
i,j +∆θoffseti,j , φt

i,j +∆φoffset
i,j )→ (vt,noposture

i,j ). (5.4)

A typical effect of initial posture suppression is shown in Figure 5·1.

Suppressing Limb Proportions (Build)

To remove the effects of limb proportions, the radial distances (limb length propor-

tions) are replaced with a set of standard limb proportions. Standard limb propor-

tions are found by averaging the limb proportions across all samples of all users to

obtain r̄standard. A transformed gesture (in rectangular coordinates) with the limb

proportions suppressed (i.e., standardized) is then obtained by replacing the radial

distances (limb length proportions) with the standardized limb length proportions
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Figure 5·2: A skeletal sequence before and after body build suppres-
sion. Note the change in user height.

in all frames and converting the result back to rectangular coordinates:

(r̄standardi,j , θti,j , φ
t
i,j)→ (vt,nobuild

i,j ) (5.5)

A typical effect of body build suppression is shown in Figure 5·2.

Suppressing Dynamics

Figure 5·3: A skeletal sequence before and after dynamics suppres-
sion.

The suppression of dynamics is quite straightforward: just keep the first frame

and discard the others. The effect of this suppression is visualized in Figure 5·3.
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Initial postures (1st frame)

Intermediate posture.

Figure 5·4: Skeletons with various components suppressed. Top row
suppressions (left to right): Dynamics, Dynamics+Posture, Dynam-
ics + Build, Dynamics + Posture + Build (standard initial posture
and standard build). Bottom row suppressions (left to right): Noth-
ing, Posture, Build, Posture + Build.

Suppressing Component Combinations

Above, we described how to remove each of the three types of information. To

remove more than one type of information at a time, one only needs to combine

the procedures proposed above for the information that is to be removed. Table 5.1

describes various combinations of information that are evaluated. The case where

all components are suppressed is not evaluated as all gesture samples would be

identical. Figure 5·4 shows a few samples of skeletons for gestures constructed

using this methodology.



46

Table 5.1: Various combinations of components considered when re-
constructing gesture sequences.

Information Initial Limb Dynamics
Suppressed Posture Proportions

Nothing X X X

Dynamics X X

Build X X

Posture X X

Dynamics+Build X

Dynamics+Posture X

Posture+Build X

Table 5.2: User authentication EER (average of user-specific EERs)
with zero effort attacks when various components are suppressed
(please see Table 5.1 for component combinations). The best-
performing EERs for each gesture are in boldface.

Information Left-right Double- BalancingSuppressed handed arch
Nothing 1.97% 0.25% 0.68%

Dynamics 3.83% 3.01% 2.12%
Build 2.09% 0.38% 1.20%

Posture 3.75% 0.61% 1.30%
Dynamics 4.29% 4.88% 3.72%
+Build

Dynamics 8.22% 4.76% 4.39%
+Posture
Posture 6.91% 0.91% 3.22%+Build

Results: Effects of Posture, Build, and Dynamics

Authentication EER is computed for all 36 users from first-session samples of BLD-

PBD dataset for each of the 3 gestures. This is equivalent to considering all 36 users

as performing zero-effort attacks against one another in the worst case scenario

when they all select the same gesture. Only skeletal information was used in this

analysis (silhouettes are not considered). Each skeletal gesture sequence was com-

pared using our variant of dynamic time warping. Feature normalization was not
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performed (normalization may suppress some component). The 7 combinations

of gesture components that are described in Section 5.3.1 were applied to each of

the 3 gestures, as shown in Table 5.2. If each user has a different gesture, the EER

performance would only be better (lower) than the values shown here.

In terms of gestures, the “double-handed arch” performs best, followed by “bal-

ancing,” and then the “left-right” gesture. The “left-right” gesture should be ex-

pected to perform the worst as it is the least sophisticated (complex) of the three

gestures. The “balancing gesture” was originally expected to perform the best due

to its high complexity (it requires hand-leg coordination and body balancing). Sur-

prisingly, it was only second-best. This can be explained, in retrospect, by the dif-

ficulty of reliably reproducing a complex gesture which has the effect of increasing

the FRR and thereby the EER. So while complex gestures may be psychologically

appealing as having higher discriminative power, they may actually be counterpro-

ductive because they can be difficult to reproduce.

In terms of gesture components, the suppression of dynamics has the single

largest impact on the EER for every gesture followed by, somewhat surprisingly, the

initial posture, and finally build. For example, for the “double-handed arch” ges-

ture, the EER increases by 2.76% (from 0.25%) when the dynamics are suppressed,

by 0.36% when the posture is suppressed, and by 0.13% when the build is sup-

pressed (Table 5.2). Clearly dynamics play an important role. However, the role of

posture and build is not insignificant. For instance, for the “left-right” gesture, the

EER with posture and build retained but with dynamics suppressed is 3.83% which

is lower than 6.91% when only dynamics are preserved. When all components are

used, the EER is 1.97%. Similarly for the “balancing” gesture the EER with only

posture and build (no dynamics) is 2.12% which is smaller than 3.22% when only

dynamics are preserved. When all components are used, the EER is 0.68%. Thus,
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while dynamics is the most significant component of the three, the combination of

all components results in a significant improvement.

5.4 Intrinsic Threat Model: Performance Under Degradations

An intrinsic threat occurs when an authorized user is responsible for a security

vulnerability. This type of threat can be analyzed by adding samples with user-

induced degradations into the testing set. Degradations due to personal effects,

such as when users either wear or carry something during their gestures, are con-

sidered. For example, users could be wearing thick sweatshirts or carry backpacks.

This is an important degradation to consider for daily-use, e.g., should users per-

form well with this degradation it would show promise that this modality main-

tains security performance while being convenient. Degradations due to time are

also considered.

This section seeks to answer the following questions:

After a period of time, such as a week, would users be able to recall a gesture success-

fully? Further, if users are shown their own previously-performed gesture, can they

reproduce it successfully?

Results: Silhouettes vs Skeletons

Conveniently, the BLD-SS dataset contains 2 different gestures (S gesture and User-

defined) that are recorded with the 3 degradations of interest. To analyze this

dataset, multiple representations and distance functions were tried to see which

worked best across the degradations. In particular, the focus was to see whether

the silhouette representation or the skeletal representation was more resilient to in-

trinsic degradations. The distance methods applied to each feature representation

evaluated are shown in Figure 5·5.
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Silhouette

Skeletal Joints
(Shotton

et al., 2011)

U.Tri.Eucl.

Log Euclidean
(Lai et al., 2012)

U.Tri.Eucl. (Hus-
sein et al., 2013)

Log Euclidean

DTW (Wu et al., 2013)

Features Methods

Figure 5·5: Overview of the features and methods studied for intrin-
sic threats. Both silhouette and skeletal joint features are extracted
from depth maps generated by the Kinect sensor.
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Table 5.3: Global equal error rate (EER) for the problem of user authentication. Smaller is better. The
best results for silhouettes and for skeletons are shown in boldface. SvS△: denotes the error differ-
ence between the best performing result from skeletons vs. silhouettes (best skeleton - best silhouette).
Everything∗ contains samples both with and without degradations.

Gesture Train-set/Test-set User Authentication Equal Error Rate (EER)

Data Type: Silhouette Skeletal
SvS△ Diff. Skel.

Distance Metric: Log-Eucl. U.Tri. Eucl. Log-Eucl. U.Tri. Eucl. DTW Better

S Gesture

No degrad./No degradations 3.46% 2.70% 9.30% 7.79% 5.26% 2.56%
No degrad./Personal-effects 11.13% 12.97% 12.94% 10.67% 6.56% -4.56% X

No degrad./User memory 17.62% 19.79% 24.13% 13.61% 13.42% -4.20% X

No degrad./Reproducibility 20.16% 20.22% 24.09% 14.04% 16.60% -6.13% X

No degrad./All the above 14.12% 15.12% 18.94% 12.09% 11.16% -2.96% X

Everything∗/Everything∗ 2.85% 4.35% 13.94% 7.14% 4.49% 1.64%

Column Averages: 11.56% 12.53% 17.22% 10.89% 9.58% -2.27% X

User-defined

No degrad./No degradations 1.12% 1.69% 19.19% 1.56% 0.30% -0.82% X

No degrad./Personal-effects 2.51% 4.65% 21.69% 3.31% 0.68% -1.83% X

No degrad./User memory 12.14% 13.82% 27.54% 2.07% 2.97% -10.07% X

No degrad./Reproducibility 12.86% 15.00% 25.38% 3.70% 2.09% -10.77% X

No degrad./All the above 7.28% 8.53% 24.07% 2.93% 1.70% -5.58% X

Everything∗/Everything∗ 0.73% 1.45% 23.83% 1.76% 0.45% -0.29% X

Column Averages: 6.11% 7.52% 23.62% 2.55% 1.36% -4.89% X
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Table 5.4: Correct classification error (CCE) for the problem of closed-set identification. All users who
query the system are known before-hand to exist in the system (no reject option). Please see the caption
of Table 5.3 for explanations.

Gesture Train-set/Test-set User Closed-set Identification Error (1 - CCR)

Data Type: Silhouette Skeletal
SvS△ Diff. Skel.

Distance Metric: Log-Eucl. U.Tri. Eucl. Log-Eucl. U.Tri. Eucl. DTW Better

S Gesture

No degrad./No degradations 2.50% 2.50% 4.50% 7.00% 1.00% -1.50% X

No degrad./Personal-effects 16.00% 27.00% 10.50% 14.50% 5.50% -10.50% X

No degrad./User memory 42.50% 57.50% 28.00% 32.00% 21.00% -21.50% X

No degrad./Reproducibility 44.00% 55.50% 37.50% 33.50% 29.00% -15.00% X

No degrad./All the above 26.25% 35.63% 20.13% 21.75% 14.13% -12.13% X

Everything∗/Everything∗ 1.88% 3.25% 2.25% 2.25% 1.00% -0.88% X

Column Averages: 22.19% 30.23% 17.15% 18.50% 11.94% -10.25% X

User-defined

No degrad./No degradations 1.00% 3.00% 7.50% 0.00% 0.00% -1.00% X

No degrad./Personal-effects 3.06% 5.10% 13.27% 3.06% 1.02% -2.04% X

No degrad./User memory 19.00% 24.00% 24.00% 4.00% 5.00% -15.00% X

No degrad./Reproducibility 21.00% 23.00% 21.61% 2.01% 3.52% -18.99% X

No degrad./All the above 11.06% 13.82% 16.60% 2.26% 2.39% -8.79% X

Everything∗/Everything∗ 0.25% 0.75% 5.91% 0.63% 0.13% -0.13% X

Column Averages: 9.23% 11.61% 14.81% 1.99% 2.01% -7.66% X
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Training and Testing Scenarios

Six types of training and testing scenarios are considered for evaluation. Five sce-

narios only train with clean, “No degradations” user samples. These five scenarios

are then tested with user samples either from “No degradations,” “Personal ef-

fects,” “User memory,” “Reproducibility,” or “All the above” (all degradations –

does not include “No degradations”). The final, sixth scenario “Everything” con-

siders when degradations are included in training data. In this case, “Everything”

trains and tests off all gesture samples with and without degradations. Tables 5.3 -

5.4 show these scenarios in identification and authentication for the S gesture and

User-defined gesture.

Discussion of Results

Impact of Gesture Complexity

Overall, across both tables, User-defined gestures outperform S gestures for every

scenario. This is expected, as it is harder to distinguish between users perform-

ing the same gestures. For User-defined gestures, each user has a distinguishable

descriptor mean. Whereas, for S gestures, the descriptor means are similar. Intro-

ducing degradations, causes a more detrimental effect in the latter, as can be seen

in our results.

Impact of Degradations

Unsurprisingly, introducing any degradation into the testing data causes an over-

all drop in performance. In particular, the effect of time (second-session gestures

recorded after a week) has a greater impact than personal-effects. From our results,

silhouette features are more adversely impacted by degradations than skeletons. If

we look at the impact of degradations for silhouette features using log-euclidean
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distance, the EER increases by around fivefold on average. Shape changes from ei-

ther the user performing a gesture differently, or having a different silhouette from

the inclusion of a bag or coat, has a great impact on silhouette features.

Skeletal features on the other hand, are not as impacted, as the joints tend to

lie within stable “centered” regions within the silhouette. If we look at the impact

of degradations for skeletal features using upper triangular euclidean distance, the

EER increases by around a quarter on average. However, this can be a “double-

edged sword.” Although skeletal features are more robust to shape deformations,

silhouettes may carry more information. This is seen to be the case with the S ges-

ture where silhouette features outperform skeletons when the training data con-

tains samples of the type of degradations that can appear during testing.

Sensitivity to Sample Reproducibility

There are a few peculiarities in our results. In S gestures, there is a decrease in per-

formance from user memory to reproducibility, while in the User-defined case there

is an increase. Upon closer inspection of the data, we noticed that a few users per-

formed a mirror-image of their gestures during the user memory degradation tests.

Gestures that were normally left to right, were performed right to left. This tended

to happen more frequently in User-defined gestures. When users were shown the

gesture again, user performance improved – which is what is seen for the case of

User-defined gestures. The reverse is true in S gestures, which is attributed to a

slight difference in protocol. Whereas in the User-defined case the user’s original

performance from a week earlier was shown, in the S-gesture case a generic action

recording (from an individual who was not part of the dataset) was shown. From

these empirical results, it would seem that users tend to perform differently when

instructed to replicate themselves or another person.
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Impact of Representation Metrics

In terms of metrics, silhouettes tend to have the best results with the Log-Euclidean

distance. For skeletons, however, DTW empirically outperforms covariance metrics

in most cases. This may be because the lengths of the gesture sequences are short

(about 3 seconds or 90 frames) in comparison to the feature dimensionality (60).

For silhouettes, features exist on a per pixel level (order of millions) whereas skeletal

features only exist at a per frame level (order of hundreds). If the number of frames

in the sequence were much longer (or a temporal hierarchy were to be considered),

covariance metrics may outperform DTW.

Impacts Overall

Overall, in the idealized scenario for individual-user authentication (Table 5.3)

where each user has a customized gesture and the training set contains examples of

all degradations (“Everything”), the EER is as low as 0.45% (Skeletons with DTW)

across 40 users. On the average, the best skeletal results outperform the best sil-

houette results by 4.89% EER. Even when all users perform the same gesture (S

gesture), the EER is as low as 2.85%. For this gesture, on the average, the best skele-

tal results outperform the best silhouette results by 2.27% EER. Furthermore, the

skeletal features always outperform silhouette features when training data contains

no samples with degradations, but testing data does.

For closed-set identification (Table 5.4) our empirical results indicate that skele-

tal features always outperform silhouettes, but the improvement is small when the

training set is representative of the testing set (No degradations/No degradations

and Everything/Everything).

Although our conclusions about the improved performance with skeletal fea-

tures cannot be drawn in every scenario, our results indicate that skeletal features
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are always preferable when training data lacks degradations that are present dur-

ing testing. Thus, in situations where large quantities of varied training data cannot

be obtained, skeletal features may be preferable. Further, our results indicate that

the most significant degradation of the ones considered are time-related. Possibly,

this leaves room for either procedure improvement (selecting more “memorable”

gestures, more training, more frequency of gesture use, etc.) or algorithmic im-

provement.

5.5 Extrinsic Threat Model: Performance Under Spoof Attacks

An extrinsic threat occurs when another user is responsible for a security vulnera-

bility, such as from a spoof attack. This naturally raises the following question:

How easy is it to spoof someone’s gesture?

This question can be somewhat answered by using minimal effort imperson-

ation attacks (Gafurov et al., 2007). These are when amateur attackers are trained

to mimic an authorized user with limited training time, basic knowledge of the sys-

tem, and a set number of attack trials. This threat can be more effective when the

mimicking target is matched to a user most similar to the attacker. Conveniently,

the BLD-PBD dataset can be used as it contains such types of attacks.

The attacks in the BLD-PBD dataset limited the time to study a target to 1 minute

and permitted 10 trials (10 recorded samples) by each attacker on a single target

per gesture. For practice, attackers were allowed to view a looping video record-

ing of their target’s “centroid” sample from the first session. Attackers were given

a chance to “mirror” the gesture by being shown streaming video of their prac-

tice. Once they were comfortable or a minute had elapsed, the spoof attempts were

recorded.
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Effects of Amateur Spoofing Attacks

Table 5.5: EER shown for matched zero-effort attacks, and matched
spoofing attacks. Results are shown for when no information is sup-
pressed (Nothing), and when user-unique initial posture and build
information are removed.

Gesture Information Matched Matched EERSpoof
Suppressed Zero-Effort EER Spoof EER −EERZero−Effort

Left-right Nothing 2.78% 2.35% -0.43

Posture+Build 7.33% 10.28% +2.95

Double-handed Nothing 1.24% 1.13% -0.11

arch Posture+Build 3.78 % 4.22 % +0.44

Balancing Nothing 2.66% 2.06% -0.60

Posture+Build 5.60% 6.36% +0.76

Using the same procedure as in Section 5.2 on the BLD-PBD dataset, each sam-

ple is represented by a skeletal sequence and is compared to another sample using

the nearest-neighbor DTW distance. In order to evaluate spoofing attacks, EER is

considered in two contexts: matched zero-effort EER and matched spoofing EER.

In computing matched zero-effort EER, only samples from the first session belong-

ing to the pool of authorized users who will be attacked in the second session (ap-

proximately 16 users attacked for each gesture) are used. For each authorized user,

unauthorized samples are only considered from users who will attack them in the

second session. As we only use first-session samples, all these unauthorized sam-

ples are “matched” zero-effort attacks.

Following this train of thought, the matched spoofing EER is computed across

the same authorized users with the only difference being unauthorized samples

that are now second-session spoof attacks instead of first-session ones. These re-

sults are shown in Table 5.5.

Additional insight into this threat can be found by using the work of Section 5.2.

By utilizing component suppression, we can determine how resilient each compo-
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nent is to spoofing. In fact, when static information is suppressed (build and pos-

ture) leaving behind only dynamic information, it can be seen that attackers are

more successful and security performance decreases. This shows that with train-

ing, attackers can replicate the dynamics of a gesture, but they are not quite able to

imitate the static components of a gesture.

Discussion of Results

Intuitively, one would expect the EER to increase after a matched spoofing attack

relative to a matched zero-effort attack. Surprisingly, for this dataset, the EER per-

formance actually slightly improves for all 3 gestures. This suggests that it is non-

trivial for lay persons to effectively copy a user’s gesture even when they are explic-

itly asked to attack their most vulnerable target and they have the opportunity to

practice using a video recording of their target performing his/her gesture.

Despite the unexpected decrease in EER of the matched spoofing attack relative

to the matched zero-effort attack, interestingly, the EER based on dynamics alone,

i.e., with posture and build suppressed actually increases consistently across all

three gestures (see the last column of Table 5.5). This suggests that training does

improve the ability of a lay user to copy the dynamics. Thus, body build and ini-

tial posture offer a limited but non-negligible level of protection against spoofing

attacks.

5.6 Value of Multiple Viewpoints

Adding more sensors can help improve the security performance of a system. For

gestures, this addition has the natural advantage of capturing motion that may be

occluded in a single viewpoint (for example arms behind one’s back). The question

to answer is:
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How much improvement can be gained from these additional sensors, and are they

worth it?

The multi-view skeletal-based user samples from BLD-M can be used to answer

this question.

Introducing additional viewpoints requires modifications to the framework. In

particular, some sort of fusion scheme is necessary. Two simplistic schemes are

used to approach this problem: score- and feature-based fusion.

5.6.1 Score Fusion

In score fusion, each Kinect viewpoint is considered to be an independent system.

Each system computes an individual score for a given query gesture against a tem-

plate from the enrollment database, and an aggregate score across all viewpoints

is used to determine an acceptance or rejection.

For a given gesture g1, multiple feature matrices Fg1,v are considered, where v

denotes one of V viewpoints. Since the viewpoints are considered to be indepen-

dent, only features from the same v are compared. This means only distances of the

form: dv = d∗(Fg1,v,Fg2,v) are computed. Thus, given a set of V viewpoints, there

will be a set of scores S = {d1, d2, ...dV } consisting of distances from each viewpoint

for any two gesture sequences. To get a fused score, one of the following operations

on the set S is applied: min, mean, median.

5.6.2 Feature Fusion

In feature fusion, concatenation is considered: combining features before a distance

score is computed. To achieve this, the feature vectors Fg1,v across all V viewpoints

is simply concatenated. For example:

Fg1,global = [Fg1,1;Fg1,2; ...Fg1,V ]
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yielding a new singular feature of size 60V × T for skeletal features (see Section

3.2.2), where T is the number of frames. If the temporal hierarchy-based covari-

ance descriptor described in Section 3.3.1 is used, a final upper-triangular descrip-

tor would be of length 7(602V 2+60V )/2. Naturally, given a single descriptor, there

will only be one score, so no subsequent score fusion step is necessary.

5.7 Effects of Multiview

The final score obtained through aggregation of individual scores or through fea-

ture concatenation is used to evaluate authentication and identification perfor-

mance. Although more sophisticated fusion techniques could be applied, we be-

lieve the key insights into the benefits of using multiview data would remain un-

changed.

For analysis, intrinsic attacks are considered, as before in Section 5.4, but in the

context of multiple viewpoints. Extrinsic attacks (spoofing) have not been specifi-

cally analyzed with multiple viewpoints, but the overall conclusions are expected

to be similar. Skeletal sequences were taken from multiple views in the BLD-M

dataset, and were converted into temporal hierarchy-based covariance descriptors.

The upper-triangular Euclidean distance dHier.Eucl(·, ·), was subsequently taken be-

tween sequences.
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Table 5.6: Equal error rate (EER) for authentication shown to 1 digit of precision. Smaller is better. FRR,
and thereby EER, is rounded off to the nearest accuracy margin which is the fraction of 1 over the num-
ber of positive samples in each train-set (this margin is 1/200 = 0.5% for all but “Everything*” which
is 1/800 = 0.125%). The best results for single-viewpoint and multi-viewpoint are shown in bold-
face. B.M-B.S denotes the error difference between the best performing result from multi-viewpoint
vs. single-viewpoint (best multi - best single). M-C, similarly denotes the error difference between the
mean multi-viewpoint scheme and the center camera (mean scheme - center). “Everything∗” contains
samples with and without degradations.

User Authentication Equal Error Rate (EER)

Gesture Train-set/Test-set Single-Viewpoint Multi-Viewpoint Fusion Multi minus Single

Camera/Method: Left Right Center Min Mean Median Concat B.M-B.S M-C

S Gesture

No degrad./No degrad. 4.0% 5.5% 9.0% 5.0% 5.5% 5.0% 6.5% 1.0% -3.5%
No degrad./Personal effects 7.5% 7.5% 9.0% 7.5% 7.5% 7.0% 8.0% -0.5% -1.5%
No degrad./User Memory 11.5% 11.5% 14.0% 11.5% 10.5% 11.0% 11.0% -1.0% -3.5%

No degrad./Reproducibility 11.5% 12.5% 13.0% 10.5% 10.5% 11.0% 11.0% -1.0% -2.5%
No degrad./All of the above 9.5% 9.5% 12.0% 8.5% 9.0% 9.0% 9.5% -1.0% -3.0%

Everything∗/Everything∗ 4.1% 4.0% 6.1% 3.9% 3.9% 3.8% 4.1% -0.3% -2.3%

Column Averages: 8.0% 8.4% 10.5% 7.8% 7.8% 7.8% 8.4% -0.2% -2.7%

User-defined

No degrad./No degrad. 1.5% 2.0% 1.0% 1.0% 0.5% 0.5% 1.0% -0.5% -0.5%
No degrad./Personal effects 1.5% 2.0% 2.0% 1.5% 1.0% 1.5% 2.0% -0.5% -1.0%
No degrad./User Memory 2.5% 1.5% 2.5% 2.0% 1.5% 1.5% 2.0% 0.0% -1.0%

No degrad./Reproducibility 3.5% 2.0% 3.5% 3.0% 2.0% 2.5% 3.5% 0.0% -1.5%
No degrad./All of the above 2.5% 2.0% 2.5% 2.0% 1.5% 2.0% 2.0% -0.5% -1.0%

Everything∗/Everything∗ 1.5% 1.0% 1.4% 1.3% 0.9% 0.9% 1.4% -0.1% -0.5%

Column Averages: 2.2% 1.8% 2.1% 1.8% 1.2% 1.5% 2.0% -0.5% -0.9%
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Table 5.7: Correct classification error (CCE) for closed-set identification shown to 1 digit of precision.
All query samples are assumed to have been enrolled into the system beforehand. See the caption of
Table 5.6 for explanations.

User Closed Set Identification (CCE)

Gesture Train-set/Test-set Single-Viewpoint Multi-Viewpoint Fusion Multi minus Single

Camera/Method: Left Right Center Min Mean Median Concat B.M-B.S M-C

S Gesture

No degrad./No degrad. 1.5% 3.0% 3.5% 2.0% 2.5% 2.5% 2.5% 0.5% -1.0%
No degrad./Personal effects 6.5% 6.0% 11.1% 7.0% 6.5% 7.0% 6.0% 0.0% -4.5%
No degrad./User Memory 19.5% 20.0% 17.5% 18.0% 15.5% 16.5% 14.5% -3.0% -2.0%

No degrad./Reproducibility 28.5% 26.0% 22.5% 26.5% 21.5% 22.0% 20.5% -2.0% -1.0%
No degrad./All of the above 14.0% 13.8% 13.6% 13.4% 11.5% 12.0% 10.9% -2.8% -2.1%

Everything∗/Everything∗ 1.3% 1.1% 1.3% 0.5% 0.8% 1.3% 0.6% -0.6% -0.5%

Column Averages: 11.9% 11.7% 11.6% 11.2% 9.7% 10.2% 9.2% -2.4% -1.9%

User-defined

No degrad./No degrad. 0.0% 0.5% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% -0.5%
No degrad./Personal effects 0.5% 0.0% 1.0% 0.0% 0.5% 1.0% 0.5% 0.0% -0.5%
No degrad./User Memory 1.5% 2.5% 3.5% 3.0% 1.5% 2.0% 1.0% -0.5% -2.0%

No degrad./Reproducibility 1.0% 1.0% 1.5% 1.0% 0.0% 1.0% 0.5% -1.0% -1.5%
No degrad./All of the above 0.8% 1.0% 1.6% 1.0% 0.5% 1.0% 0.5% -0.3% -1.1%

Everything∗/Everything∗ 0.1% 0.3% 0.1% 0.0% 0.1% 0.1% 0.1% -0.1% 0.0%

Column Averages: 0.7% 0.9% 1.4% 0.8% 0.4% 0.9% 0.4% -0.2% -0.9%
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Various results for authentication and identification are shown in Tables 5.6

and 5.7, respectively. Due to degraded skeletal pose estimates from the rear-facing

Kinect, only the frontal 3 cameras are considered in our multi-viewpoint evalua-

tions. Under our methodology, including the 4-th camera does not improve results.

At a high level, looking at the row “Everything” in Table 5.6, S gestures are out-

performed by User-defined gestures. This should come as no surprise, as it should

be harder to distinguish between users when they all perform the same gesture.

In consequence, it is not surprising that the presence of degradations introduced

into the test set causes a more significant performance drop for S gestures than for

User-defined gestures. The introduction of any degradation causes a performance

drop, although more for some degradations than others. In particular, time-related

degradations (samples after a week), as seen in “User Memory” and “Reproducibil-

ity” rows, produce a larger drop than “Personal effects” degradation. Overall, these

results are consistent with the conclusions drawn in Section 5.4.

It turns out that for results based on multiple viewpoints, the center camera is

not always the best performing one across all test-set scenarios; the side cameras

(left and right) consistently outperform the center camera. For the S gesture, the

training sample that is closest to the test sample belongs to the center camera for

only about 22% of the test samples (∼32% match to the left and∼46% to the right).

For the User-defined gesture, about 39% of the test samples find their best match

among the center training samples, about 28% with the left, and about 33% with

the right. This can be explained as follows. If a part of the body is occluded during

a gesture in one viewpoint, another camera may be able to see the gesture more

clearly without this occlusion. Inherently, this shows the value of multiview acqui-

sition during enrollment and testing.

If one multi-viewpoint fusion method out of all the methods applied had to be
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picked, the mean score fusion would be chosen. This is because it performs the

best across both gesture test-sets (mean fusion scores are bolded the most). Thus,

in comparison to the single-viewpoint authentication setup which only consists of

a single centered camera, an average EER decrease of 2.7% (∼26% relative improve-

ment) and 0.9% (∼43% relative improvement), for the S and User-defined gestures

can be found due to multi-viewpoint mean fusion. Similarly, in comparison to the

single-viewpoint identification setup, an average CCE decrease of 1.9% (∼16% rel-

ative improvement) and 0.9% (∼68% relative improvement), for the S and User-

defined gestures, is found due to multi-viewpoint mean fusion. In every testing

scenario that is compared to the center viewpoint, multiple viewpoints always out-

perform – they are always more informative.

Even if the best performing single-viewpoint camera is compared against the

best performing fusion scheme, separately for each of the six training/testing sce-

narios, an overall improvement in performance by using multiple viewpoints is still

found. Specifically, the average EER decreases by 0.2% (∼3% relative improvement)

and 0.2% (∼33% relative improvement), and average CCE decreases by 2.4% (∼23%

relative improvement) and 0.2% (∼32% relative improvement), respectively for the

S and User-defined gestures.

Finally, a finer perspective of the benefit of multiple viewpoints can be obtained

by examining the ROC curves for single-view and multi-view authentication for

“No degradations/All of the above” scenario shown in Figure 5·6.

5.8 Concluding Remarks

This chapter investigated multiple aspects of using body gestures as a biometric.

Specifically:

• showing that dynamic information is invaluable to authentication perfor-
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mance (ranked the highest in our methods over posture and build).

• a way to decompose body gestures into posture, build and dynamics.

• an investigation into possible degradations that a user can induce such as

having a bag, wearing a coat, or having to perform a gesture after a period of

time.

• showing that skeletal features tend to be more robust over silhouette features

against user degradations.

• an investigation into spoof attacks.

• showing that dynamic information is susceptible to spoof attacks, but build

and posture are less so.

• an investigation into how much there is to gain by adding additional camera

viewpoints.
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Figure 5·6: Convex hull of the ROC curves illustrating the EER im-
provement from using multiple views: mean fusion is compared to a
single view (center). These results correspond to the EER values from
the train-set/test-set “No degradations/All of the above,” in Table 5.6
for both the S gesture and User-defined gesture.
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Chapter 6

Hand Gestures

6.1 Introduction

Figure 6·1: Depth images of in-air hand gestures captured with
Kinect v2 that is pointing towards the ceiling.

This chapter focuses on evaluating the biometric potential of in-air hand ges-

tures. A novel approach is proposed for user access by leveraging a temporal hierar-

chy of depth-aware silhouette covariances, which is an extension and improvement

to the methods proposed in previous chapters. Further, the usefulness of shape

and depth information is investigated in this modality, as well as the importance

of hand movement when performing a gesture. The empirical results described in

this chapter are based on the HandLogin dataset described in Chapter 4. By ex-

ploiting both shape and depth information our method attains an average 1.92%

Equal Error Rate (EER) on a dataset of 21 users across 4 predefined hand-gestures.

This method consistently outperforms related methods on this dataset.
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6.2 Related Work

Much like for body gestures, there has been extensive work in hand-gesture recog-

nition with depth-sensors such as the Kinect (Ren et al., 2011b; Ren et al., 2011a;

Suarez and Murphy, 2012; Wang et al., 2012a; Kurakin et al., 2012), but there has

been little work in authentication. Perhaps the work most closely related is that of

Aumi and Kratz (Aumi and Kratz, 2014) who propose using dynamic time warping

(DTW) across six 3-D fingertip and palm coordinates (coarse hand pose-estimation)

from a depth-image for hand-gesture authentication. Similar “signature”-type ges-

tures have also been proposed using an accelerometer, gyroscope and touchscreen

on a mobile phone (Patel et al., 2004; Farella et al., 2006; Liu et al., 2009; Sae-Bae

et al., 2012). Many of these methods only use a single-coordinate in space and pro-

pose elastic matching algorithms (much like DTW) for authentication. As a result,

physiological and anatomical shape information of the hand is lost in all these ap-

proaches. Although not the focus of this chapter, authentication with American

Sign Language (ASL) using RGB frames (one frame per signed letter) has been in-

vestigated using features such as color histogram, DCT, and entropy (Gupta et al.,

2013; Fong et al., 2013).

6.3 Extended Silhouette Representation

A few modifications are done to the feature representation originally proposed in

Chapter 3. Specifically, depth is added to the feature vector (see Equation 3.1), and

a spatial-hierarchy is proposed in addition to the temporal hierarchy. The entire

method is briefly recapped below.

As before, a compact silhouette representation can be extracted from any ges-

ture sequence consisting of depth frames. A sequence of binary silhouettes of a
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hand-gesture is extracted by thresholding the difference between each depth frame

and known depth background. Afterwards, the largest two-dimensional, compo-

nent with 8-connected pixel connectivity of each frame is assumed to belong to the

user’s hand silhouette tunnel. Let n = 1, ..., N index all N pixels within the sil-

houette tunnel and let (x, y, t) denote the space-time coordinates of pixel number

n. Similarly to Equation 3.1, the following 14-dimensional feature vector fn is com-

puted at each silhouette pixel which captures the shape, depth, and dynamics of a

gesture:

fn = f(x, y, t) := [x, y, t, z, δE , δW , δN , δS, δNE, δSW , δSE, δNW , δT+, δT−]
T (6.1)

where z is the depth value at (x, y, t), and ddir denotes the Chebyshev distance

between a pixel n and its the nearest silhouette boundary pixel in direction dir .

The first 8 directions are in the x, y, spatial plane (4 cardinal directions and 4 inter-

cardinal directions), and the last 2 are in the temporal direction (forward and back-

ward in time). Further, let F = [f1, f2, . . . , fN ] denote a 14 by N matrix that is com-

puted from any silhouette tunnel. The features are rescaled by normalizing each

row of F to range from 0 to 1 as done before (see Section 3.2.3).

6.4 Covariance Descriptor

The aforementioned silhouette representation can be seen as a “bag of features”

since each silhouette pixel has an associated 14×1 feature vector. A 14×14 empirical

covariance matrix C of the collection of feature vectors can be used to provide a

low-dimensional, second-order descriptor:

C :=
1

N

N
∑

n=1

(fn − µ)(fn − µ)T , (6.2)
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where µ is the empirical mean of feature vectors fn. Since C is a symmetric matrix,

the upper-triangular portion of size (142+14)/2 = 105 can be used as an equivalent

gesture descriptor. Further, a simple way to compare the distance between the two

descriptors is to compute the Euclidean distance (Frobenius norm) between them.

This is denoted by dU.tri.Eucl(·, ·).

6.5 Adding a Temporal Hierarchy

A temporal hierarchy can be incorporated to assign importance to a specific order

of frames in a gesture (see Chapter 3). As before (see Section 3.3.1), 3 temporal hi-

erarchy levels are applied. The upper triangular portions of all covariance matrices

computed from this hierarchy are concatenated together to yield one long gesture

descriptor. With 3 levels, this yields 7 covariance matrices, giving a final descriptor

length of 105× 7 = 735. The Frobenius norm between two descriptors of this type

is used as the distance metric.

6.6 Incorporating Hand Morphology

Figure 6·2: A complete hand silhouette is partitioned into 3 “sub”-
silhouettes using per-frame adaptive depth thresholding. The thenar
eminence can be seen in the lower-left region of the second silhouette.

Additional biometric information may be found by leveraging hand morphol-

ogy (such as the thenar eminence in Figure 6·2). An investigation was done to un-

derstand whether silhouette parts (perhaps pertaining to the hand’s morphology)
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could be used to improve authentication performance. To achieve this goal, a crude

segmentation algorithm was applied, based on depth, to partition a hand silhou-

ette into multiple (“sub”-silhouette) regions. Across a sequence of frames, these

mutually-exclusive regions form additional “sub”-silhouette tunnels. To generate

these tunnels, multiple frame-dependent depth thresholds r are found as follows.

Consider the frame t, where K segmented silhouettes need to be found (K = 3

is used). Let (rt,1, rt,2, · · · , rt,K+1), be ordered depth-thresholds with the property

that the range between any consecutive threshold pair (rt,i, rt,i+1) contains a fraction

1
K

of all the depth values in the given frame. Using these thresholds, the segmen-

tation at frame t associated with the i-th threshold pair yields frame t in the i-th

“sub”-silhouette tunnel. As these segmentations can be noisy, connected compo-

nents with less than 20 pixels were removed.

A covariance matrix was computed for each of these “sub”-silhouette tunnels.

For fusion, the Frobenius norms (of covariance matrix differences between the

query and enrolled samples) is averaged across 4 tunnels: the 1 full-silhouette and

the 3 i-corresponding “sub”-silhouette covariances. Further, each of these matrices

can use a temporal hierarchy as described in the next section.

Discussion of Results

Entry control performance is evaluated in the context of user authentication (Jain

et al., 2011).

Table 6.1 shows the authentication EER and confidence interval for 4 methods.

The first method is a baseline, which is used to highlight the improvements that

can be gained from incorporating depth-information and leveraging a temporal hi-

erarchy. In this method, we use a single silhouette tunnel and a 13× 13 covariance

matrix that does not use the depth value z from the feature vector in Equation (6.1).
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Table 6.1: Average of user-specific EER and the confidence interval
for various methods and gestures. The best-performing EER for each
gesture is in boldface. Please refer to Section 6.6 for additional infor-
mation about these methods.

Method
Gesture Used

Compass Piano Push Flipping Fist Average

1. Baseline 2.97%±0.69% 4.32%±0.99% 5.94%±1.31% 3.85%±0.91% 4.27%±0.51%

2. Temporal Hierarchy 1.98%±0.57% 2.90%±0.82% 5.28%±1.14% 2.40%±0.73% 3.14%±0.43%

3. Additional Tunnels 0.44%±0.16% 1.29%±0.46% 4.89%±0.95% 1.05%±0.54% 1.92%±0.35%+ Temporal Hierarchy

4. First Frame of 5.33%±1.04% 7.00%±1.30% 7.94%±1.37% 6.44%±1.27% 6.68%±0.62%Silhouette Tunnel

Subsequent methods use the full 14×1 feature vector (with z). The second method,

incorporates the temporal hierarchy representation as described in Section 6.5. The

third method, incorporates the temporal hierarchy representation and additional

silhouette tunnels (a total of 4) from Sections 6.5 and 6.6. The last method (fourth)

shows the value of motion in a gesture. Since, all gestures start with the right-

hand in a neutral position, using only the first frame will have no dynamics. Fur-

ther, there is no time information in the first frame, as the features associated with

(t, dT−, dT+) in the covariance matrix become irrelevant.

Incorporating additional silhouette tunnels from depth-information and the

temporal hierarchy representation yields the best result on average (method 3) with

an 1.92% EER. Comparing this to the baseline with a 4.27% average EER, there is a

2.35% EER reduction.

The gestures in order of performance from best to worst are: Compass, Flip-

ping Fist, Piano, then Push. The push gesture always performs the worst. This is

believed to be due to poorer hand segmentations that are prevalent in this gesture.

A few users were noted as pulling the arm back too close to the body, resulting

in silhouettes that sporadically include portions of the chest. Since only depth in-

formation is used in this approach, it is difficult to differentiate between the body
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parts. Using RGB information may be useful in this case since skin pigment should

be easy enough to differentiate from clothing.

As expected, method 4, using only the first frame performs the worst out of all

the methods. This enforces the notion that there exists a unique behavioral move-

ment in each user’s hand gesture.

It is important to point out that the Flipping Fist gesture performs quite well

(2nd best). This result indicates that occluded shapes of the hand (such as a fist

where all five fingers are hidden still contains useful biometric information). This

suggests that hand gestures need not be limited to cases where all fingers are visible,

and that in these cases, leveraging features based on shape and depth (as features

based on fingertip locations are ill-defined) is useful for authentication.

6.7 Concluding Remarks

This chapter investigated the use of silhouette and depth representations for user

authentication from in-air hand gestures. Compared to our baseline silhouette

covariance approach described in previous chapters, our depth-enhanced repre-

sentation reduces the EER by over 2%. Furthermore, the value of movement is

demonstrated; without movement (authentication from hand shape only) the EER

increases by almost 5%. This is important since hand motion is a renewable com-

ponent of an in-air hand gesture and can be easily replaced if compromised, thus

leading to enhanced security.
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Chapter 7

Deep Learning and Gesture Styles

In this chapter, deep learning methods are explored in the context of gesture bio-

metrics (for both hand and body). The following are the key contributions:

• Development of a two-stream convolutional network for user identification

and authentication based on body and hand gestures.

• Assessment of the value of dynamics for user identification and authentica-

tion.

• Evaluation of the user-insensitive representation for gesture recognition, and

gesture-insensitive representation (style) for user identification and authenti-

cation.

This approach is validated on two biometrics-oriented datasets (BodyLogin and

HandLogin), and one gesture-centric dataset (MSRAction3D).

7.1 Motivation for Learning Gesture Style

Prior chapters evaluate gesture biometric performance by matching each user to a

single gesture motion – effectively associating each user with a fixed gesture “pass-

word”. A user is expected to recall and replicate this specific gesture for subsequent

security access. In this chapter, this assumption is generalized, by learning a ges-

ture “style,” across a bank of trained gesture motions. Effectively, rather than focus-

ing on identifying a user performing a specific “password,” the goal is to identify
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a user across a set of gestures, in-effect learning a user-specific gesture style. Re-

cent advances in deep convolutional neural networks are leveraged in this section,

and are shown to be able to outperform methods proposed in prior chapters for

user recognition. Further, performance is evaluated against non-trained gestures,

as well as when users are not trained in the initial network. For evaluation, body-

and hand-based gestures from depth maps acquired by Kinect sensors (v1 and v2)

(Kin, 2014) are focused on (Figure 7·1).

7.2 Related Work

Perhaps the closest to the goal of this work can be found in (Kviatkovsky et al.,

2015), where action-specific metric learning from normalized joint positions of the

body was used to predict identity from a pool of known actions. Our work differs

in that user identity is learned directly from depth images (end-to-end), without

the need to have pose estimates of body joint positions. We use depth maps and

associated optical flow, which can be useful in cases where skeletal pose estimation

is not reliable or available (such as for hand poses).

7.3 Convolutional Neural Networks

Deep convolutional neural networks (CNNs) have become very successful in vi-

sion tasks involving single still images. One of the contributions of this chapter is

in adapting such CNNs to gesture-based biometrics where both static limb propor-

tions as well as gesture dynamics (style) come into play.

The goal of CNNs is to learn a large set of kernel weights optimal for a particular

loss function. Within this domain, several single-image network architectures have

been proposed, such as: AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy

et al., 2015), and VGGNet (Simonyan and Zisserman, 2014b). These networks gen-
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erally vary in the number of layers, number of kernels, and size of kernels.
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BodyLogin: Full-body gestures (captured with Kinect v1)

Handlogin: In-air hand gestures (captured with Kinect v2)

MSRAction3D: Full-body gestures (captured with Kinect v1)

Figure 7·1: Examples of normalized depth images and corresponding
colored optical-flow (Liu, 2009) for body and hand gestures captured
using various depth sensors. Hue indicates optical flow orientation,
and saturation indicates magnitude.
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Figure 7·2: A visualization of how a deep network is used for user identification and authentication.
In identification (top), a network is fine-tuned using gesture depth-map frames and optical flow. In
authentication (bottom), weights are borrowed from an identification network, and the fully-connected
layer output is used as authentication features.



78

In this section, AlexNet is used to analyze the biometric performance of ges-

tures. AlexNet (Krizhevsky et al., 2012) is an eight-layer deep convolutional net-

work consisting of five convolutional and three fully-connected layers (the last of

which is a soft-max layer). This network is adapted to gesture sequences by using

a variant of the two-stream convolutional network architecture proposed in (Si-

monyan and Zisserman, 2014a). Two-stream convolutional networks, as the name

implies, train two separate convolutional networks: one for spatial information,

and a second one for temporal information. Although such networks were origi-

nally intended for RGB images, they have been adapted to handle depth maps.

The first network is a “spatial stream” convolutional network (Figure 7·2) where

a stream of T input depth-map frames, extracted from the input video through

uniform temporal sub-sampling, are mapped to a stream ofT output feature vectors

(os) by passing each frame one-by-one through this network.

The second network is a “temporal stream” convolutional network that takes a

sequence of colored, optical flow frames as input. Optical flow (Liu, 2009) is com-

puted for each pair of adjacent depth-map images (depth-map values are treated

as luminance values). The computed optical flow vectors are mapped into polar

coordinates and then converted to hue (vector’s angle), and saturation (vector’s

magnitude), with a fixed brightness (Figure 7·1). Much like in the first network,

this stream of T input optical flow frames is mapped to a stream of T output fea-

ture vectors (ot) by passing each colored optical flow frame one-by-one through the

“temporal-stream” network.

A simple convex combination of the outputs of both networks is used to yield a

single output oc which is then used for performance evaluation:

oc = wsos + wtot,



79

where ws ≥ 0 is the spatial stream network weight, wt ≥ 0 is the temporal stream

network weight, ws + wt = 1, and os and ot are the respective network outputs.

When ws = 1, wt = 0, only information from the spatial-stream network is used,

and when ws = 0, wt = 1, only information from the temporal-stream network is

used. These results are reported for a wide sampling range of (ws, wt) weight pairs.

A schematic visualization of such a network is shown in Figure 7·2.

7.3.1 CNNs for Identification and Authentication

Identification: The use of this network for closed-set identification (given a gesture,

identify a user from a set of known users) is straightforward. During training (see

Section 7.3.2), gesture sequences are broken up into single frames to be trained

standalone. During testing, the mean of the soft-max probability outputs across

T frames (oc) is used. As described in the previous section, oc is a weighted combi-

nation of the softmax probabilities for an input across two networks. This yields a

single soft-max probability vector of length N (given N users to identify), and the

component with the largest probability identifies the user. Although not the main

focus of this section, gesture recognition uses the same structure where N is the

number of gestures rather than the number of users to identity.

Authentication: In authentication (given a gesture, is a user who (s)he claims to

be?), the output features from the “full7” layer of the network trained for identifi-

cation (Figure 7·2) are used. This avoids having to train a separate authentication

network for each user which is very expensive computationally and there are not

enough training samples for each positive class represented by an authentic user.

In this approach, for T frames that are uniformly sampled from a gesture sequence,

two features of dimension 4096 × T are extracted yielding os and ot, whose linear
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combination gives oc (4096 is the length of the last fully connected layer). Since there

is no built-in classification in this approach (no soft-max layer), these features are

used as inputs to a two-class classification algorithm for authentication, e.g., based

on nearest-neighbor or SVM. The intuition behind this idea is that, given enough

users to identify, the network will naturally learn a user-separating feature space,

which can be leveraged for authentication.

The parameters and training of all the elements of our networks are discussed

in the next section.

7.3.2 Network Implementation Details

Typically, there are not enough training samples in gesture datasets to train all the

weights of a deep convolutional network from scratch. Therefore, the common

practice is followed to “pre-train” the network (Donahue et al., 2014; Karayev et al.,

2014) using weights from another network with sufficient data. In our case, the

dataset “pre-training” an AlexNet is ImageNet (Russakovsky et al., 2015) (result-

ing in a network with a soft-max loss function that classifies RGB images into 1000

classes) to initialize the weights in our 5 convolutional layers (conv1 to conv5). Al-

though our modality is different, as we use depth images and colored optical flow

(instead of RGB), initializing with ImageNet weights is still effective. Our fully-

connected layers are trained from scratch, with weights initialized to be zero-mean

Gaussian with a small standard deviation of 0.001. In all our networks, a batch size

of 256 images is used. The spatial stream networks are started with a learning rate of

0.003, decreasing this rate by one-tenth every 3, 000 iterations until a total of 12, 000

iterations are completed. The temporal stream networks are started with a learning

rate of 0.001, decreasing this rate by one-tenth every 1, 000 iterations until a total of

6, 000 iterations are completed. Dropout is set to at 0.5 in the fully-connected layers
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of both networks.

The entirety of all the networks are implemented using Caffe (Jia et al., 2014;

Wang et al., 2015) on a single Titan Z GPU.

7.4 On Gesture Datasets

This method is evaluated on 3 publicly-available datasets. Two of these datasets

(Chapter 4) were designed for user authentication and identification (collected with

the intention of maximizing the number of users): BodyLogin and Handlogin. The

third one, was designed for gesture recognition (collected with the intention of

maximizing the number of gesture/action types).

HandLogin (Wu et al., 2015) is a dataset containing in-air hand gesture se-

quences of 21 users, each performing 4 different gestures that are recorded by a

Kinect v2 sensor (see Chapter 4 for details).

BodyLogin (Wu et al., 2014a; Wu et al., 2014c; Wu et al., 2014b) is a full-body

multi-view dataset containing gesture sequences of 40 users performing 5 different

gestures that are recorded by Kinect v1 sensors. The complete BodyLogin that is

used here is the combination of all 3 body datasets described in Chapter 4. Four

of these gestures are pre-defined and the fifth gesture is created by the user (user-

defined). In this study, training and testing use samples across all degradations,

and only from those of the center camera viewpoint.

MSRAction3D (Li et al., 2010; Wang et al., 2012b) is a full-body single-view

dataset containing motion sequences of 10 users, performing 20 different actions

in front of a Kinect v1 sensor. Each subject performs each action 2 or 3 times, with

a total of 567 depth map sequences. Actions in this dataset are quite varied, for

example: arm waves, hammer motions, catches, punches, symbol drawings, kicks,

tennis swings, golf swings, and jogging. Although in (Li et al., 2010) the actions are
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split into 3 subsets for evaluation, this work considers all the actions at once, which

is a more difficult scenario.

The depth data from all datasets are first background-subtracted (background

frames are given) and then normalized and re-sized using bicubic interpolation to

224 × 224 pixels as shown in Figure 7·1. For BodyLogin, this causes some clear

geometric distortions which can be seen.

Discussion of Results

In authentication, the ℓ2 distance is used between the features of gesture sequences

(flattened vectors of length 4096×T, T = 50). Here, EER is again used as a measure

of authentication performance (see Section 3.1.2).

In all the experiments, the deep network approach is benchmarked against re-

implemented depth- silhouette covariance features as proposed in Section 6.3 and

in the paper (Wu et al., 2015). This benchmark method is not based on convolu-

tional neural networks.

User Identification: The system attempts to identify a user across a whole pool

of possible gestures. Performance is tested both when a gesture has been seen by

the system and also when it has not. The latter case evaluates how well the learned

model generalizes to gestures that have not been part of the training set. If it per-

forms well, our model would have, in effect, learned a specific “style” with which

a user performs gestures, not just the specific gestures a user performs.
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Table 7.1: User identification results for BodyLogin and HandLogin.

Dataset
Scenario User Identification CCE ( %)

Weighted Convnets (ws, wt) Baseline

Training / Testing Gestures ←− Spatial Temporal −→ (Wu et al., 2015)
(1, 0) (23 ,

1
3) (12 ,

1
2) (13 ,

2
3) (0, 1)

HandLogin 1. All / All 0.24% 0.24% 0.24% 0.71% 4.05% 6.43%

(21 users, 2. All but Compass / Compass 2.38% 2.86% 4.76% 8.57% 36.19% 82.38%

4 gestures) 3. All but Piano / Piano 1.91% 0.48% 1.43% 1.91% 12.86% 68.10%

4. All but Push / Push 44.29% 49.05% 54.29% 67.62% 77.14% 79.52%
5. All but Fist / Fist 16.67% 15.71% 17.14% 20.00% 31.43% 72.38%

BodyLogin 1. All / All 0.05% 0.05% 0.05% 0.05% 5.01% 1.15%

(40 users, 2. All but S / S 0.75% 1.00% 1.25% 1.75% 16.75% 75.75%
5 gestures) 3. All but Left-Right / Left-Right 0.88% 1.25% 1.50% 1.88% 11.50% 80.88%

4. All but 2-Hand Arch / 2-Hand Arch 0.13% 0.13% 0.13% 0.38% 6.25% 74.50%
5. All but Balancing / Balancing 9.26% 10.01% 13.27% 19.52% 45.06% 77.97%

6. All but User Defined / User Defined 5.28% 5.53% 6.16% 8.54% 22.49% 71.61%

Table 7.2: User identification on MSRAction3D. (Kviatkovsky et al., 2015) performs user identification
on skeletal pose-estimates derived from depth-maps.

Dataset
User Identification CCE ( %)

Weighted Convnets (ws, wt) Baselines

←− Spatial Temporal −→ (Wu et al., 2015) (Kviatkovsky et al., 2015)
(1, 0) (12 ,

1
2) (0, 1)

MSRAction3D 0.0% 0.0% 0.53% 13.6% 7.0%
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Results for both the BodyLogin and Handlogin datasets are shown in Table 7.1.

The first row of this table (“All / All”) refers to a scenario when the network has

been trained with samples from all gestures. In this row, the dataset is split into one

half for training and the other half for testing, where each half contains samples

from all gestures. The remaining rows in the table are for scenarios when the net-

work has been trained on some gestures while tested on a different unseen gesture.

For example, for “All but Fist / Fist” the network has been trained on “Compass,”

“Piano” and “Push” but tested on “Fist.” In Table 7.2, the results are reported for

user identification on MSRAction3D dataset. Here, only one sample of each action

is used for training, and remaining 1-2 samples are used for testing. This is the

same as the row (“All / All”) in Table 7.1, where training is with samples from all

gestures. In addition to our silhouette covariance benchmark from Section 6.3 and

(Wu et al., 2015), this work also compares to a method that uses skeletal joint esti-

mates and a distance metric based on skeletal coordinates (Kviatkovsky et al., 2015).

Suppression of Dynamics in User Identification: In order to understand the im-

pact of dynamics in our deep network representation, empirically, the effect of “re-

moving” it is studied. Although a similar study was done in Section 5.2 and paper

(Wu et al., 2014b), that was based on pose-estimated skeletons. Our study is based

on depth maps. This work considers both the input to the temporal stream network,

as well as the input to the spatial stream network as containing full dynamic infor-

mation. To suppress the impact of dynamics, the temporal network is completely

removed, and only the first 3 depth-map frames are used (out of typically hundreds

of frames, spanning the time duration of less than a tenth of a second) as input to

the spatial stream network. In Table 7.3, the empirical performance of dynamics

suppression is assessed for the two-stream approach as well as for the approach
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from Section 6.3 and paper (Wu et al., 2015) which has been reimplemented for this

experiment.
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Table 7.3: Results for the suppression of dynamics in user identification: only first 3 frames of each
depth-map sequence are used for training and testing, and the temporal stream is disabled (ws =
1, wt = 0).

Dataset Scenario User Ident. CCE ( %)

Data Used Spatial (Wu et al., 2015)

HandLogin All frames 0.24% 6.43%

No dynamics 1.90% 9.29%

BodyLogin All frames 0.05% 1.15%

No dynamics 1.00% 32.60%

Table 7.4: User authentication results for BodyLogin and HandLogin.

Dataset
Scenario User Authentication EER ( %)

Weighted Convnets (ws, wt) Baseline

Users ←− Spatial Temporal −→ (Wu et al., 2015)
(1, 0) (23 ,

1
3) (12 ,

1
2) (13 ,

2
3) (0, 1)

HandLogin Leave 5 persons out 2.52% 2.20% 2.71% 4.09% 6.50% 11.45%

BodyLogin Leave 10 persons out 2.76% 2.45% 1.99% 3.07% 8.29% 3.46%
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User Authentication: Here, the system attempts to verify a user’s query gesture

and claimed identity against a pool of known gestures (all gestures of the claimed

identity). As it is impractical to train a deep network for each user, this work instead

trains an identification network first and uses it as a feature extractor for authentica-

tion (see Section 7.3). In these experiments, one-fourth of the user pool is “leave-

out” for testing, and the remaining three-fourths are used for training an identifi-

cation network (for feature extraction). For BodyLogin, this is leave-10-persons-out

and for HandLogin this is leave-5-persons-out cross-validation. In the benchmark

authentication method, covariance features from the test samples are used. The

average EER across 4 “leave-out” folds for authentication is shown in Table 7.4 for

Bodylogin and HandLogin.

Gesture Recognition: Here, the system attempts to recognize the gesture type per-

formed across a pool of users. While in user identification the system is trying

to learn the user-identity irrespective of which gestures the user performs, in ges-

ture recognition the system is trying to learn the gesture irrespective of the users

who perform them. Thus, similar to how gestures are “leave-out” in user identi-

fication, users are “leave-out” in gesture recognition. Specifically, half of the user

pool is “leave-out” for testing, and the remaining half is used for training a gesture

recognition network. For MSRAction3D, the common cross-validation approach of

leave-5-persons-out is followed as done in (Oreifej and Liu, 2013), and in BodyLo-

gin1 and Handlogin, leave-20-persons-out, and leave-10-persons-out (half of each

dataset population), is performed respectively. The results for gesture recognition

are reported in Table 7.5.

1Of the 5 gesture classes in BodyLogin, 4 gesture classes are shared across users, and 1 is not,
being user-defined. This means that in leave-persons-out gesture recognition, the fifth gesture class
will not have samples of its gesture type in training. As a result, the fifth gesture class is expected
to act as a “reject”/“not gestures 1 - 4” category for gesture recognition.
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Table 7.5: Gesture recognition results. For each dataset, leave-(N/2)-
persons-out cross-validation is performed, where N is equal to the
total number of users in the dataset.

Dataset
Gesture Recognition CCE ( %)

Weighted Convnets (ws, wt) Baseline

←− Spatial Temporal −→ Wu (Wu et al., 2015)
(1, 0) (12 ,

1
2) (0, 1)

HandLogin 15.00% 6.82% 10.91% 0.91%

BodyLogin 21.10% 15.09% 20.35% 15.44%

MSRAction3D 44.36% 36.00% 40.36% 25.45%

Discussion: The above results demonstrate a significant decrease in error when

using deep networks compared to benchmark methods in user identification (all 3

datasets) and authentication (HandLogin and BodyLogin).2. This decrease is most

striking in identification, when gestures are tested that have not been used in train-

ing the network. In stark contrast to the CNN features proposed in our work, the

covariance features proposed in (Wu et al., 2015) do not generalize well across ges-

tures, i.e., when gestures that are not part of the training set appear in the test set.

This can be seen most clearly by examining the CCE values for the “Compass” ges-

ture in Table 7.1. The CCE for covariance features is as high as 82.38% while it is

only 2.38% for our CNN features.

This cross-gesture generalization capacity of CNNs is also observed in the t-

SNE embeddings (Van der Maaten and Hinton, 2008) of the “full7” layer outputs

(Figures 7·3-7·5). In the two-dimensional t-SNE plots of the “full7” layer outputs

of CNNs, users tend to cluster together whereas gesture types are mixed within

each cluster. However, in the corresponding two-dimensional t-SNE plots of the

covariance features, gesture types tend to cluster together with users mixed within

each cluster. Figure 7·3(a) shows the feature embedding for our baseline, which fa-

2Due to the general lack of per-user samples in MSRAction3D (as it is a gesture-centric dataset),
results are not reported for authentication and leave-gesture-out for identification
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vors clustering by gesture type. Figures 7·3(b)-(d) show the feature embeddings for

our convolutional networks. In 7·3(b), the pre-trained embedding from ImageNet

tends to favor clustering points by gesture type. After fine-tuning for identification

in 7·3(c), clustering by user identity can be seen. Fine tuning for gesture recognition

in 7·3(d) causes even more compact clustering by gesture type.
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(a) HandLogin silhouette-covariance features (Wu et al., 2015)

(b) HandLogin pre-trained “full7” features (no fine tuning)

(c) HandLogin user identification fine-tuned “full7” features

(d) HandLogin gesture recognition fine-tuned “full7” features

Figure 7·3: 2-D t-SNE embeddings of features for the HandLogin
dataset. Left-column plots are color-coded by user, whereas those
in the right column are color-coded by gesture type. A single marker
represents a single gesture sequence. These figures show the t-SNE
embeddings of the last fully-connected layer’s output from our convo-
lutional networks, and those from our baseline, silhoutte-covariance
features.
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(a) BodyLogin silhouette-covariance features (Wu et al., 2015)

(b) BodyLogin pre-trained “full7” features (no fine tuning)

(c) BodyLogin user identification fine-tuned “full7” features

(d) BodyLogin gesture recognition fine-tuned “full7” features

Figure 7·4: 2-D t-SNE embeddings of features for the BodyLogin
dataset. For additional information, please see Figure 7·3. The cyan
marker denotes user-defined gestures where any motion is allowed;
it is not expected to cluster tightly.
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(a) MSRAction3D silhouette-covariance features (Wu et al., 2015)

(b) MSRAction3D pre-trained “full7” features (no fine tuning)

(c) MSRAction3D user identification fine-tuned “full7” features

(d) MSRAction3D gesture recognition fine-tuned “full7” features

Figure 7·5: 2-D t-SNE embeddings of features for the MSRAction3D
dataset. For additional information, please see Figure 7·3.
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There are, however, cases where our network does not generalize well across

gestures, e.g., the “Push” gesture. This lower performance may occur because the

trained gestures are significantly different in form and dynamics from the other

gestures. The “Push” gesture contains variations in scale whereas the other gestures

do not. The “Fist” gesture contains motion that completely occludes the shape of

the hand, which is not in the other gestures. The “Balancing” gesture includes leg

movements, not so for other gestures. For the most part, this type of result is to be

expected. It will always be difficult to generalize to a completely unknown gesture

that has little-to-no shared components with trained gestures.

For identification on MSRAction3D, there is a 0% classification error. Though

seemingly surprising, this result might be attributed to the dataset collection proce-

dure. In MSRAction3D, gesture samples from a user are extracted by partitioning

one long continuous video into multiple sample parts. Though not an issue for ges-

ture recognition (as the same user will never be in both training and test sets due

to “leave-persons-out” testing), this can result in biases for user recognition. This

bias stems from almost identical, partially-shared body postures across samples,

which the deep network learns very well. The aforementioned issue is avoided

in BodyLogin and HandLogin, as there is a “reset” procedure between samples,

since samples are not recorded from one long continous sequence (users leave and

re-enter the room between samples).

For authentication, the differences are far less dramatic, but CNN features still

yield a decent decrease in EER. In both scenarios, the smaller the value, the better

the performance (small EER and CCE is desired).

Across all our results, the temporal stream is complementary to the spatial

stream for user identification, authentication, and even gesture recognition. That

is, having a temporal stream weight wt 6= 0, will not degrade performance. The
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only exception to this, is when information is not seen in the training phase such as

in leave-gesture-out results for user identification in Table 7.1. The reduced per-

formance due to the inclusion of the temporal stream is not entirely surprising, as

there are body/hand motions in testing that have not been seen in training (unseen

optical flow vectors). As a result, this ends up generalizing poorly, whereas the

static poses from the spatial network still fare quite well. Across all experimental

results, a simplistic weighted average of (1
2
, 1
2
) is perhaps the best option.

Our experiments involving dynamics suppression in user identification (Ta-

ble 7.3) confirm that motion plays a crucial role; it can reduce the mis-identification

rate from 1 error in 100 attempts to 1 error in 2,000 attempts (for BodyLogin). This

conclusion is consistent across both methods evaluated.

In gesture recognition, our deep learning approach slightly outperforms the

non-CNN approach on BodyLogin, but is outperformed on the other datasets. This

could be due to the size of the dataset. Notably, BodyLogin is our largest dataset

with the most samples (≈4000 gesture sequences, ≈150 frames each), and can beat

our baseline. This is larger than both HandLogin (≈840 gesture sequences, ≈150

frames each) and MSRAction3D (≈600 gesture sequences, ≈35 frames each) com-

bined. As the CNN approach outperforms the baseline in all other experiments,

this perhaps suggests that with fewer samples it is easier to discriminate between

users, than it is to discriminate between gestures. Overall, we believe that on larger

datasets such as BodyLogin, deep learning will likely outperform the baseline.

7.5 Concluding Remarks

This chapter investigated the use of two-stream convolutional networks for learn-

ing user-specific gesture “styles” across gestures. Previous chapters as well as most

of the state-of-the-art work assume a single gesture password per user and per-
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form poorly when gesture types that are not encountered in the training set appear

during testing. The proposed CNN-based features are able to effectively generalize

across multiple types of gestures performed by the same user by implicitly learning

a representation that depends only on the intrinsic “style” of each user as opposed

to the specific gesture as demonstrated across multiple datasets.

A key practical outcome of this approach is that for authentication and identi-

fication there is no need to retrain a CNN as long as users do not use dramatically

different gestures. With some degradation in performance, a similar new gesture

can still be used for convenience.
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Chapter 8

Conclusions

In this chapter, we summarize contributions of this dissertation, and discuss po-

tential future research directions.

8.1 Contributions

This thesis explored the ins and outs of using body- and hand-based “gesture pass-

words” as a biometric. It was motivated by the desire to have a convenient, re-

newable, spoof-resistant biometric that could leverage recent advances in depth-

sensing cameras.

To evaluate the effectiveness of this modality, a framework based on both sil-

houette shape information and skeletal pose information was proposed.

To understand the importance of gesture dynamics, a technique was proposed

to decompose any gesture into posture, build, and dynamics components. Eval-

uation of this decomposition revealed that dynamic information is invaluable to

authentication performance, ranking highest among all 3 components if used indi-

vidually.

To test the robustness of the modality, possible real-life “threat” scenarios were

proposed and evaluated. Specifically, these scenarios investigated what happens to

biometric performance when the gesture sample becomes degraded (user having

personal effects, or re-using the system after a period of time), or a fake “spoof”

gesture sample is submitted instead. This study ended up showing that the frame-
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work is rather resistant to spoofing, and the greatest challenge is from the effect

of time (how easily a user can recall his/her own motion after a week or two). It

also showed that skeletal features tended to be more robust than silhouette-based

features against all degradations.

Finally, the performance gain that could be realized by including additional

cameras was explored as well.

This dissertation also explored an alternative approach to gesture biometrics

based on learning a user-specific gesture “style.” To this end, a framework lever-

aging deep convolutional neural networks was proposed. Drops in performance

when unseen gesture types and users were given as input to the network were also

investigated. Results indicate that the performance of such networks is rather re-

silient to variations in gestures that are similar in style. Finally, the user-specific

“style” representation was compared to the corresponding representation for ges-

ture recognition to reveal further insights into the inner workings of the network.

To support all these experiments, 4 datasets were collected, processed and eval-

uated, and eventually made available on-line.

Overall, the key contributions of this dissertation can be summarized as follows:

• The development of a novel framework for authentication or identification

of body- and hand- gestures (Chapter 3, 5, 6). This contribution has been

reported in the following works: (Wu et al., 2013; Wu et al., 2014a; Wu et al.,

2015).

• An extensive study of various strengths and weaknesses of body gestures as

a biometric (Chapter 5). This contribution has been reported in the following

works: (Wu et al., 2014a; Wu et al., 2014b; Wu et al., 2014c).
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• An exploratory analysis of learning a gesture “style” across a bank of known

gestures and a comparison to gesture recognition (Chapter 7). This contribu-

tion has been reported in the following works: (Wu et al., 2016).

• The creation of 4 novel datasets for identification and authentication, and

making them available on-line (Chapter 4). This contribution has been re-

ported in the following works: (Wu et al., 2014a; Wu et al., 2014b; Wu et al.,

2014c; Wu et al., 2015).

8.2 Future Work

Below, a couple of interesting directions that can be pursued by using the work

presented in this dissertation are briefly discussed.

Recurrent Neural Networks: Long Short Term Memory

Although dynamic information is leveraged in the two-stream convolutional neural

network approach, temporal relationships are not explicitly modeled in the archi-

tecture.

It may therefore be desirable to have an architecture that is capable of detecting

and learning informative short and long-term temporal relationships in sequential

data. Long short term memory (LSTM) type recurrent neural networks are capa-

ble of learning such complex temporal relationships. In action recognition, these

models have combined with convolutional neural networks to great success (Don-

ahue et al., 2015). For user recognition with gestures, it would be interesting to see

if modeling these temporal relationships can yield an improved biometric perfor-

mance.
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Learning Similarity Metrics via Siamese Networks

Learning a similarity metric for authentication/verification is another way to eval-

uate pairs of samples. Rather than using a fixed or hand-crafted similarity metric

(e.g., Euclidean distance, cosine distance, DTW distance, and so forth), a metric can

instead be learned directly from the data. This can be done by evaluating a large set

of sample pairs that have matching and non-matching labels. Here, the true label

of the user is not necessary.

A pair of convolutional neural networks whose weights are shared can be used

in a siamese architecture (Chopra et al., 2005) to learn this metric. The output of

both these networks can be combined through a contrastive loss function (Hadsell

et al., 2006) which emulates the function of a mechanical spring between pairs of

points. This loss function encourages a mapping that pulls similar pairs of samples

closer together in space, while pushing away dissimilar samples. A specific “spring

tension” is defined for a given contrastive loss function. This method has been

deployed to great success in face recognition in (Taigman et al., 2014) and (Sun

et al., 2014).

Another novel extension would be to use gesture-based convolutional networks,

such as the two-stream networks in a siamese architecture for verification. The

challenge, however, would be training such networks effectively over small datasets

such as those currently available for gesture biometrics. In contrast to gesture bio-

metric datasets which are small, face recognition datasets easily have hundreds to

thousands of unique users and their corresponding samples to train from. A possi-

ble solution to this lack of samples would be to pre-train the siamese network from

a relevant related problem à la domain adaption.
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