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ABSTRACT

Video cameras are commonly used today in surveillance and security, autonomous
driving and flying, manufacturing and healthcare. While different applications seek
different types of information from the video streams, detecting changes and finding
people are two key enablers for many of them. This dissertation focuses on both
of these tasks: change detection, also known as background subtraction, and people
detection from overhead fisheye cameras, an emerging research topic.

Background subtraction has been thoroughly researched to date and the top-
performing algorithms are data-driven and supervised. Crucially, during training
these algorithms rely on the availability of some annotated frames from the video
being tested. Instead, we propose a novel, supervised background-subtraction algo-
rithm for unseen videos based on a fully-convolutional neural network. The input
to our network consists of the current frame and two background frames captured
at different time scales along with their semantic segmentation maps. In order to
reduce the chance of overfitting, we introduce novel temporal and spatio-temporal
data-augmentation methods. We also propose a cross-validation training/evaluation

strategy for the largest change-detection dataset, CDNet-2014, that allows a fair
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and video-agnostic performance comparison of supervised algorithms. Overall, our
algorithm achieves significant performance gains over state of the art in terms of F-
measure, recall and precision. Furthermore, we develop a real-time variant of our
algorithm with performance close to that of the state of the art.

Owing to their large field of view, fisheye cameras mounted overhead are becom-
ing a surveillance modality of choice for large indoor spaces. However, due to their
top-down viewpoint and unique optics, standing people appear radially oriented and
radially distorted in fisheye images. Therefore, traditional people detection, track-
ing and recognition algorithms developed for standard cameras do not perform well
on fisheye images. To address this, we introduce several novel people-detection al-
gorithms for overhead fisheye cameras. Our first two algorithms address the issue
of radial body orientation by applying a rotating-window approach. This approach
leverages a state-of-the-art object-detection algorithm trained on standard images and
applies additional pre- and post-processing to detect radially-oriented people. Our
third algorithm addresses both the radial body orientation and distortion by apply-
ing an end-to-end neural network with a novel angle-aware loss function and training
on fisheye images. This algorithm outperforms the first two approaches and is two
orders of magnitude faster. Finally, we introduce three spatio-temporal extensions of
the end-to-end approach to deal with intermittent misses and false detections. In or-
der to evaluate the performance of our algorithms, we collected, annotated and made
publicly available four datasets composed of overhead fisheye videos. We provide a
detailed analysis of our algorithms on these datasets and show that they significantly

outperform the current state of the art.
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Chapter 1

Introduction

While surveillance and security cameras have been prevalent for decades, with the
latest advances in big data and machine learning their usefulness has grown tremen-
dously leading to diverse applications ranging from public safety to animal-behavior
analysis. In most of such applications, the data are recorded continuously for long
periods of time, even 24/7 in many cases, and making sense of these vast visual data
is a huge challenge. One of the commonly-used mechanisms to filter out unnecessary
information is to detect changes in video data. This is usually accomplished by the
so-called background subtraction (BGS). In BGS, the aim is to separate foreground
areas of a video frame from the background. Since most of the critical information is
associated with the foreground (e.g., people, cars), BGS turns out to be a very useful
pre-processing tool for many applications. For example, in surveillance and security;,
one may be interested in detecting suspicious activities (e.g., a person entering a re-
stricted area); a detected foreground is useful for this task. Similarly, in autonomous
driving, it is critical to detect the nearby pedestrians and cars; both are usually ap-
pear in the foreground. A less known application of BGS is animal-behavior analysis
where several cameras help monitor animal activity patterns by detecting changes
between video frames.

Another critical video-analysis task is the detection of people. It is often the very
first step in recognition, counting and tracking of people and their actions. In outdoor

environments, the detection and tracking of pedestrians is critical for autonomous



driving; a successful tracking algorithm can locate pedestrians and even predict their
near-future locations thus helping avoid accidents. In indoor environments, counting
people throughout a building is essential for next-generation heating, ventilation, and
air conditioning (HVAC), safety and security as well as space management. Today,
HVAC systems operate in a binary fashion — they provide a minimum air flow when a
room is empty and a maximum air flow even if a single person enters. Obviously, this
results in huge energy waste. This waste can be significantly reduced by automatically
counting people in a room and controlling the HVAC system as a function of the
occupancy level. Knowing how many people are in a building and where is critical
for emergency situations, such as fire, chemical hazard, active-shooter scenario, etc.
Finally, a long-term analysis of occupancy patterns in a building can help optimize
space usage and reduce rental costs.

In this dissertation, we focus on both problems — background subtraction and
people detection — using supervised algorithms and provide solutions suitable for

unseen videos with various real-life challenges.

1.1 Background Subtraction

Background subtraction aims to segment an input video frame into regions corre-
sponding to either foreground (e.g., motor vehicles) or background (e.g., highway
surface). It is frequently used as a pre-processing step for higher-level tasks such as
object tracking, people and motor-vehicle recognition, human activity recognition,
etc. Since BGS is often the first pre-processing step, the accuracy of its output has
an overwhelming impact on the overall performance of subsequent steps. Therefore,
it is critical that BGS produce as accurate a foreground /background segmentation as
possible.

Traditional BGS algorithms are unsupervised and rely on a background model



to predict foreground regions [Stauffer and Grimson, 1999, Elgammal et al., 2002,

[Zivkovic, 2004, Mittal and Paragios, 2004, Barnich and Van Droogenbroeck, 2011

St-Charles et al., 2015a,|St-Charles et al., 2015b|Isik et al., 2018, Lee et al., 201§].

Pixel-based Adaptive Word Consensus Segmenter (PAWCS) [St-Charles et al., 2015a],

Sliding Window-based Change Detection (SWCD) [Isik et al., 2018] and WisenetMD

[Lee et al., 2018] are currently considered to be state-of-the-art unsupervised BGS

algorithms. However, since they rely on the accuracy of the background model, they
encounter difficulties when applied to complex scenes. Ensemble methods combine the
results produced by several BGS algorithms by means of genetic programming
or convolutional neural networks (CNNs) |[Zeng et al., 2019b] and have

been shown to significantly outperform traditional algorithms.

The success of deep learning in computer vision did not bypass BGS research

[Bouwmans et al., 2019]. A number of supervised deep-learning BGS algorithms have

been developed [Braham and Van Droogenbroeck, 2016, Wang et al., 2017, |Sakkos|

let al., 2018 Babace et al., 2018, |Bakkay et al., 2018||Zeng and Zhu, 2018, Lim and

Keles, 2018a),[Lim and Keles, 2018b] with performance easily surpassing that of the

traditional methods. However, these algorithms have been tuned to either one specific
video or to a group of videos similar to the test video, and their performance drops
significantly when applied to unseen videos. Clearly, they are not suitable for real-
world applications.

To address this problem, we introduce Background Subtraction for Unseen Videos
(BSUV-Net). BSUV-Net is a video-agnostic supervised BGS algorithm that can be
applied to unseen videos with no or little loss of performance. A key feature of BSUV-
Net is that the training and test sets are composed of frames originating from different
videos. This guarantees that no ground-truth data from the test videos have been

shown to the network in the training phase. Figure depicts the training/testing



regimes used in video- or wvideo-group-optimized algorithms versus wvideo-agnostic al-
gorithms for 4 videos from CDNet-2014 |Goyette et al., 2014]. Clearly, the training
and test sets used by wideo- or video-group-optimized algorithms share lots of similar-
ities (e.g., very similar background and foreground objects in Figure that the
network can memorize. However, memorization can reduce the performance of these
algorithms significantly on unseen videos. On the other hand wvideo-agnostic algo-
rithms use completely different videos in their training and test sets (see Figure
which forces them to generalize better to unseen videos.

Another key feature of BSUV-Net is the composition of network input. By employ-
ing two reference backgrounds at different time scales, BSUV-Net addresses two chal-
lenges often encountered in BGS: (i) varying scene illumination and (ii) intermittently-
static objects that tend to get absorbed into the background. We also propose a
novel temporal data augmentation strategy that further improves the method’s per-
formance under varying illumination. Furthermore, motivated by the work of Braham
et al. on the use of semantic segmentation in BGS |[Braham et al., 2017], we improve
our method’s accuracy by complementing the reference backgrounds and the current
frame on input with a semantic segmentation for each of them.

One of the most successful approaches for increasing the generalization capacity of
computer vision algorithms trained with limited data is the use of data augmentation.
Spatial data augmentations, such as random crops, rotations, color changes, noise etc.
have proved very successful in image-related tasks |[Taylor and Nitschke, 2017, Shorten
and Khoshgoftaar, 2019]. The simple temporal data augmentation mechanism, that
we introduced in BSUV-Net to handle illumination differences between videos, re-
sulted in a significant performance improvement. Motivated by this, we propose a
com