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IMAGE-BASED CLASSIFICATION OF HOARDING

CLUTTER USING DEEP LEARNING

ZHENGHAO SUN

ABSTRACT

Hoarding disorder (HD) is characterized by difficulty letting go of items in living

space resulting in excessive clutter, which can lead to significant health and safety

risks. Traditionally, HD is assessed in an interview with a practitioner, but can be

complemented by evaluating room clutter from pictures. To formalize the assessment

of room clutter, a numerical scale was developed, called the Clutter Image Rating

(CIR) scale: CIR = 1 corresponds to an uncluttered room, while CIR = 9 corre-

sponds to a fully-cluttered room. CIR assessment is performed by social workers or

other trained health or human-service professionals, which is time-consuming (and,

therefore, costly), subjective, and can lack consistency in its repeatability. To address

these challenges, deep-learning methods have been developed to automatically assess

CIR from pictures, achieving up to 81% accuracy in estimating CIR on a dataset of

1,233 images of room clutter. However, this is a relatively small dataset for training

large deep-learning models, and its CIR-class composition is imbalanced.

This thesis focuses on issues associated with the dataset size and imbalance, and

also adopts a new deep-learning architecture for CIR scoring. First, data augmenta-

tion is applied to enlarge the training dataset and a novel weighted loss function is

introduced to combat the dataset imbalance. Jointly, these two techniques improve

the CIR scoring accuracy by 1% point compared to a ResNet-18-based method previ-

ously developed by Tezcan et al. Secondly, a Vision Transformer (ViT) architecture is

adopted for CIR scoring, resulting in additional 5% points improvement in accuracy
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over ResNet-18. Thirdly, in order to further address the dataset imbalance, DALL.E,

a generative AI tool, is employed to synthesize new images with room clutter based

on existing natural images in the dataset. This can be considered a novel type of

data augmentation - AI-driven. New images are generated for underrepresented CIR

classes in order to minimize the dataset imbalance. This also increases the overall

dataset size which is beneficial for training the ViT model. Extensive experiments

conducted using ResNet-18 and ViT models demonstrate that augmenting the original

training dataset by AI-generated images enhances the performance for most under-

represented classes but that the overall CIR-estimation accuracy is not improved.

A detailed analysis of AI-generated clutter images against natural images from the

dataset performed using t-SNE visualization suggests that for some CIR classes the

new images exhibit outlying properties compared to the natural images, which likely

affects the trained model’s performance. While the novel idea of AI-driven data aug-

mentation is beneficial for improving performance for some CIR classes, more research

is needed to extend these gains across all classes.
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Chapter 1

Introduction

Hoarding disorder (HD) is a complex and impairing mental health and public health

problem. Its characterized by persistent difficulty and distress associated with dis-

carding ordinary items regardless of their value, resulting in clutter in the living

space (Tezcan et al., 2018; American Psychiatric Association, 2013). In some cases,

the clutter extends beyond the active living areas and interferes with the use of other

spaces, such as vehicles, front and back yards, the workplace, and relatives’ homes.

In severe cases, hoarding can pose a range of health risks, including fire, falling, and

poor sanitation (Frost et al., 2000). It can also increase the risk of death from a house

fire, or from being trapped under a “clutter avalanche.” In general, the quality of life

of a person with HD is substantially negatively affected (Saxena et al., 2011), and

family relationships are often strained (Tolin et al., 2008). In the United States, HD

affects about 5% of adult population (Iervolino et al., 2009; Samuels et al., 2008) and

is a serious social issue.(Tolin et al., 2008)

HD is usually identified through a detailed psychological interview with the indi-

vidual involved, preferably carried out in their home to properly evaluate the clutter

and how it affects their life (Mataix-Cols, 2014). In 2008, a novel method, called

”Clutter Image Rating” (CIR), was introduced (Frost et al., 2008). It utilizes a set

of reference images with different levels of clutter to help assess the severity of hoard-

ing and clutter. The CIR method allows individuals with hoarding challenges, their

family members, trained experts, or independent evaluators to measure the clutter in
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a patient’s living space, such as living room, bedroom, or kitchen, utilizing a series

of nine standardized images that showcase various levels of clutter (CIR = 1 cor-

responds to an uncluttered space, whereas CIR = 9 corresponds to a fully-cluttered

space). However, this approach is time-consuming (and, therefore, costly), subjective,

and can lack consistency in its repeatability.

Over the last decade, the surge in available computational power has dramatically

advanced the application of Machine Learning (ML) and Deep Learning (DL) in

tackling complex regression and classification tasks across various domains. Since

the CIR method is basically a classification task (CIR = 1, 2, ..., 9) performed by

humans, it is only natural to leverage ML and DL techniques to estimate the CIR

value automatically. A computer-based CIR assessment would be instantaneous,

objective (not dependent on assessor’s mood, subjectivity, etc.) and repeatable (the

same image would always result in the same CIR value).

Prior research at Boston University has resulted in two automated CIR assess-

ment algorithms. Tooke et al. (Tooke et al., 2016) introduced a method combining

Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) feature extractor

with Support Vector Machine (SVM) classifier to assess CIR value from an image.

On a set of 620 images of hoarding clutter collected on-line and rated by trained pro-

fessionals specializing in hoarding disorder, they achieved 72% accuracy in assessing

CIR value within ±1 off the ground truth using 4-fold cross-validation. Subsequently,

Tezcan et al. (Tezcan et al., 2018) proposed to use ResNet-18 deep-learning model in

combination with a novel loss function combining traditional single-label loss with a

3-label loss to afford ±1 departure from the ground truth. Since ResNet-18 requires

much more training data than the HOG+SVM approach, the study team collected

additional clutter images bringing the dataset size to 1,233 images. Using a ResNet-

18 model pre-trained on ImageNet dataset (He et al., 2016), they fine-tuned and
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tested the model in 4-fold cross-validation on the new, expanded dataset achieving

81% accuracy within ±1 off the ground-truth CIR. This was a significant result since

the HOG+SVM approach of Tooke al. re-tested on the new dataset achieved only

60%. These findings underscore the feasibility of employing ML and DL methods to

accurately assess the degree of room clutter from images. Although some progress

has been made, the accuracy of assessing the severity of clutter in real-world scenarios

is still insufficient; there exists considerable room for improvement.

As discovered by Tezcan et al., the primary challenge in enhancing accuracy of

CIR classifiers is data scarcity. The most recent clutter-image dataset comprises

merely 1,233 images for training and 90 images for testing. This size is inadequate

for training recent large DL models effectively. A sufficient volume of data is crucial

for such models to avoid simply memorizing specific training examples, but instead

to learn the underlying patterns. Models struggle with generalizing to new, unseen

data if they don’t have access to enough diverse training examples, resulting in poor

performance.

Additionally, the distribution of the current 1,233 images across CIR classes is

highly imbalanced. For instance, the number of images in CIR class 7 is more than

double that found in classes 4 and 9. Such imbalance can lead to model bias to-

wards classes with more samples, consequently resulting in diminished performance

on classes with fewer samples. The limited data available for these less-represented

classes can make it challenging for the model to learn effectively and predict accu-

rately.

To address the challenge of a limited dataset, this thesis first proposes employ-

ing diverse data augmentation techniques to enhance training. Next, to mitigate

the adverse effects of dataset imbalance, a novel class-weighted loss function is intro-

duced. A combination of these two techniques incorporated into the original ResNet-
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18 framework yields measurable but modest improvements in accuracy. Given the ris-

ing prominence of Large Language Models (LLMs) and the demonstrated effectiveness

of multi-head architectures in handling image-related tasks, this thesis subsequently

explores the Vision Transformer (ViT) (Dosovitskiy et al., 2020) whose classification

performance surpasses that of ResNet-18. Although data augmentation and the new

class-weighted loss function help mitigate some deficiencies of the dataset, neither

approach adds new content to the dataset. In order to truly expand our dataset, this

thesis proposes to leverage the power of generative AI methods, that have recently

gained wide recognition, and adopts a new generative AI tool DALL.E for creating

clutter images. To ensure that the generated images are consistent with the CIR rat-

ings of their reference samples and that their content is realistic, we seek assistance

from professionals specializing in hoarding disorder. We task them with verification

whether the AI-generated images maintain the CIR rating of the reference sample,

and revising the rating if need be. We also ask them to remove image samples that in

their judgement are unrealistic (too cartoonish, overly sterile, etc.) We incorporate

the retained AI-generated images into CIR-matching classes of the dataset, thereby

expanding our training data.

This thesis is structured as follows. Chapter 2 reviews relevant literature and

prior work in the field. Chapter 3 details data-augmentation methods proposed in

this study and formulates a novel class-weighted loss function to address class im-

balance in the current dataset. Chapter 4 outlines our implementation of the Vision

Transformer for CIR classification of clutter images. Chapter 5 explores the appli-

cation of generative AI tools to expand our dataset and details a methodology for

evaluating the newly-generated images. Chapter 6 summarizes main contributions of

the thesis, draws conclusions and proposes some ideas for future work.
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Chapter 2

Relevant Work

Research into developing hoarding-specific assessments and diagnosing the severity

of HD has increased over the past 20 years. This chapter begins by discussing an

auxiliary method for HD assessment called ”Clutter Image Rating” (CIR), that com-

plements traditional environmental observation and clinical interview with a patient.

Subsequently, evaluation metrics, needed to assess performance of automated CIR

estimation algorithms, are introduced. This is followed by a description of two re-

cent, automated methods for CIR estimation, one using machine-learning methods

and one using deep-learning models. Finally, the last section discusses Large Lan-

guage Models (LLMs) that have recently gained widespread prominence, and, more

specifically, transformer models that have been adopted for image classification and

we adopt here for CIR estimation.

2.1 Clutter Image Rating (CIR)

In 1993, Frost and Gross explicitly proposed the definition of hoarding for the first

time (Frost and Gross, 1993), primarily encompassing three symptoms or behaviors:

(1) excessive acquisition and inability to discard a large number of items that appear

useless or of no value; (2) living spaces so cluttered that they can’t be used for their

intended purposes; (3) significant distress caused by hoarding, leading to impairment

in psychological and behavioral functioning (Frost and Hartl, 1996). Traditionally,

the symptoms of hoarding were mainly identified through interviews, self reports,
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and home visits by a practitioner (e.g., social worker) or human-service personnel. In

order to diagnose the severity of a patient’s HD, researchers have dedicated significant

efforts to developing various criteria to assist the health professional in assessing the

patient’s condition, for example: the “Saving Inventory - Revised” or SI-R (Frost

et al., 2004; Kellman-McFarlane et al., 2019), the “Hoarding Rating Scale-Interview”

or HRS-I (Tolin et al., 2010; Tolin et al., 2018), and the “UCLA Hoarding Severity

Scale” or UHSS (Saxena et al., 2015).

A novel pictorial assessment method using images, called ”Clutter Image Rating”

(CIR), was introduced as an auxiliary approach (Frost et al., 2008). It provides a

visual scale for evaluating the severity of clutter within homes, allowing for ratings to

be given by the individuals with clutter, their family members, healthcare profession-

als, or external evaluators. The CIR image set consists of nine carefully-generated

photographs that show varying levels of clutter across three primary living spaces:

the living room, kitchen, and bedroom (Figure 2·1). Each photo set is designed to

illustrate a continuum of clutter for each respective room: CIR = 1 corresponds to

no clutter while CIR = 9 corresponds to fully-cluttered space. The development of

the CIR aimed to mitigate the inaccuracies often found in self-reported assessments

of clutter, offering a more objective measure.

2.2 Evaluation Metrics

In order to evaluate performance of a CIR-estimation algorithm, quality metrics are

needed. The first automated CIR assessment method proposed by Tooke et al. (Tooke

et al., 2016) approached the problem in two ways: as an estimation problem and as

a classification problem. In the first case, the authors proposed to use the Mean-

Absolute Error (MAE) metric between estimated CIR values, denoted ŷ1, ŷ2, ..., ŷN ,

and the corresponding ground-truth values, denoted y1, y2, .., yN , where N is the num-



7

(1) CIR=1 (2) CIR=2 (3) CIR=3

(4) CIR=4 (5) CIR=5 (6) CIR=6

(7) CIR=7 (8) CIR=8 (9) CIR=9

Figure 2·1: Reference bedroom images proposed by Frost et al. for
image-based assessment of hoarding clutter according to CIR scale
(Frost et al., 2008). Numbers shown below images are the assigned
CIR values.

ber of computed estimates (i.e., the number of images for which CIR is assessed). In

the second case, similarly to Tezcan et al. (Tezcan et al., 2018), they treated CIR as-

sessment as a classification problem, where classification accuracy is a more appropri-

ate metric. Typically, this can be measured by computing the Correct Classification

Rate (CCR) as follows:

CCR =
1

N

N∑
k=1

1(|yk − ŷk| = 0), (2.1)
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where 1(x) is an indicator function that equals 1 if x is true and 0 if x is false. We

adopt the CCR as one of evaluation metrics used in this thesis.

However, in the case of CIR assessment, even trained professionals have difficulty

when deciding between close CIR values. Therefore, CIR variations within ±1 are

deemed acceptable, leading to a modified version of CCR, called CCR-1 (Tooke et al.,

2016), and defined as follows:

CCR1 =
1

N

N∑
k=1

1(|yk − ŷk| ≤ 1). (2.2)

2.3 CIR assessment using traditional machine learning

In traditional machine learning, feature extraction is typically followed by estimation

or classification of the target based on these features. Since rooms of patients with

HD are filled with physical clutter (e.g., piles of boxes, newspapers, clothing), which

corresponds to “busy” image areas with a high density of edges, Tooke et al. (Tooke

et al., 2016) proposed to use the Histogram of Gradients (HOG) (Dalal and Triggs,

2005) as the feature extractor in conjunction with either Support Vector Regression

(SVR), treating CIR assessment as an estimation problem, or Support Vector Clas-

sification (SVC), treating the assessment as a classification problem.

They used their own dataset of 620 hoarding images collected on-line and CIR-

rated by trained professionals specializing in hoarding disorder. After re-sizing each

image to 320×240-pixel resolution, they used Prewitt operator for gradient calcula-

tions, 20×20-pixel cells, 2×2-cell blocks and 4-bin histograms (0◦, 45◦, 90◦, 135◦) to

capture the angle of gradients. After suitable normalization, a 16×12×4=768-long

feature vector was associated with each image. Subsequently, they applied either

estimation, using SVR, or classification, using SVC, to predict CIR values.

Since the dataset was relatively small, they implemented data augmentation as
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follows. From each training image, they extracted 16 sub-images of size 300×225 by

randomly shifting them by 0, 5, 10 or 15 pixels in both the horizontal and vertical

directions, and performing a horizontal flip.

In a 4-fold cross-validation on this 620-image dataset, they achieved CCR-1 of

67% by means of estimation (SVR approach) and 72% by means of classification

(SVC approach).

2.4 CIR assessment using Convolutional Neural Networks

While neural networks have been researched for several decades, only in the last

decade have they gained widespread adoption owing to the rapid growth of computing

power and availability of large datasets. Among such networks, Convolutional Neural

Networks (CNNs) have demonstrated huge gains over state-of-the-art model-based

methods in various image classification tasks (Krizhevsky et al., 2012). The objective

of CIR assessment aligns well with the type of classification challenges that CNNs

excel at solving. In this context, building upon Tooke et al.’s foundational research,

Tezcan et al. (Tezcan et al., 2018) adopted ResNet-18 CNN (He et al., 2016) for CIR

assessment, treating it as a classification problem.

The adoption of ResNet-18 for CIR assessment was not accidental. ResNet-18 is

a deep CNN composed of 18 layers. Its core characteristic is the concept of residual

learning, which directly adds the input to subsequent layers through the so-called

short-circuit (or skip) connections, thereby solving the gradient disappearance and

gradient explosion problems in deep-network training. This allows the network to

learn more efficiently (He et al., 2016). Such a design endows ResNet-18 with a

relatively small model size and high efficiency, ensuring its effective performance under

real-time constraints or when resources are limited.

A unique contribution of Tezcan et al.’s study was the introduction of a weighted
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combination of two loss functions: one aiming to maximize CCR (single-label clas-

sification) and the other striving to maximize CCR-1 (3-label classification allowing

±1 departure from the ground truth). This allows to tune the focus of ResNet-18

towards either goal.

As the single-label loss function aiming to maximize CCR, they used traditional

cross-entropy as follows:

LSL
k = −

C∑
i=1

y1
k[i] log

exp(ŷk[i])∑C
j=1 exp(ŷk[j])

, (2.3)

where C is the number of classes (C = 9 in CIR assessment), y1
k is a one-hot encoded

vector of the ground-truth CIR value for image number k (i.e., y1
k[i] = 1 and otherwise

0, if the CIR value for image number k equals i), and ŷk is the output of the last

layer of the network (before softmax). This loss function is designed to train a CNN

with the goal of achieving high accuracy in exactly matching the ground-truth value.

They also used a multi-label, binary cross-entropy loss function between the sig-

moid output of ResNet-18’s last layer and a three-hot encoded ground truth. This

loss aims to maximize CCR-1 and is formulated as follows:

LML
k = −

C∑
i=1

(
y3
k[i] log

1

1 + exp(−ŷk[i])
+ (1 − y3

k[i]) log
exp(−ŷk[i])

1 + exp(−ŷk[i])

)
, (2.4)

where y3
k[i] is a three-hot encoded vector of the ground truth, i.e., y3

k[i] equals 1 for

i corresponding to the ground truth or within ±1 off the ground truth.

While targeting a high CCR-1 aligns well with the objective of CIR assessment,

achieving a high CCR (exact match) is equally important. Designing a CNN solely

for CCR-1 might lead to the network largely ignoring the boundary labels (i.e., class

1 and class 9). To mitigate this scenario, Tezcan et al. combine both loss functions
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by assigning different weights to LSL
k (2.3) and LML

k (2.4) as follows:

LCIR
k = (1 − λ)LSL

k + λLML
k , (2.5)

where λ is a weight parameter that can be used to control performance. This approach

aims to meet the requirements for improved CCR-1 outcomes while preventing the

scenario where the exact match rates for boundary classes are extremely low. The

overall loss function for the whole training set of N images is the sum of the individual

loss functions, i.e., LCIR =
∑N

k=1 LCIR
k .

Tezcan et al. have also expanded the clutter-image dataset. Unlike in Tooke et

al.’s study, which utilized 620 images, the new expanded dataset comprised 1,233

images for training and 90 images for testing. However, even this double-size dataset

is still considered insufficient for training ResNet-18. Consequently, Tezcan et al.

employed the same data augmentation as proposed by Tooke et al. (Tooke et al.,

2016).

The use of ResNet-18 with a weighted loss function resulted in a significant perfor-

mance boost. The HOG+SVM approach of Tooke et al. (Tooke et al., 2016) re-tested

on the new 1,233-image dataset via 4-fold cross-validation produced CCR-1 of only

60% while ResNet-18 with λ = 0.9 resulted in CCR-1 of 81%.

2.5 Self-attention mechanism in deep-learning models

In 2017, Google’s machine-translation team introduced seminal work on the use of

attention mechanism (Vaswani et al., 2017). This revolutionized machine translation

by replacing Recurrent Neural Networks (RNNs) and Convolutional Neural Networks

(CNNs) with an attention mechanism. This approach excels in modeling dependencies

within sequences, irrespective of the elements’ separation, capturing intricate and

long-range patterns crucial for complex data like text or time series. As a result,
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its effectiveness in Natural Language Processing (NLP) led to the rapid adoption of

attention in leading models such as BERT, GPT, and Transformer.

The introduction of attention mechanism has also impacted other fields of ap-

plication, beyond NLP. In 2020, Google adapted the Transformer architecture and

self-attention mechanism to computer vision by introducing the Vision Transformer

(ViT). ViT divides an image into a series of fixed-size patches, treats each patch as

an input token similar to words in a sentence, and then processes these patches with

the Transformer’s self-attention mechanism (Dosovitskiy et al., 2020). This approach

allows ViT to consider the global context of the entire image, making it highly ef-

fective for image classification tasks. The success of ViT has been validated by its

impressive performance on standard image classification benchmarks, demonstrating

the versatility and power of self-attention schemes beyond text-based applications.

In this thesis, we adopt the ViT model as a replacement for ResNet-18 in order

to seek further performance gains in automated CIR assessment.
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Chapter 3

Enhanced Data Augmentation and

Class-Weighted Loss Function

In this thesis, we consider Tezcan et al.’s study (Section 2.4) as the baseline algorithm

upon which to improve. In this chapter, we start by proposing more extensive data

augmentation during training and a novel weighted loss function to address class

imbalance in our clutter-image dataset.

3.1 Extension of data augmentation

Tezcan et al. (Tezcan et al., 2018) used a dataset that consists of 1,233 training images

and 90 test images (Table 3.1), all with CIR ratings assigned by trained professionals

specializing in hoarding disorder. This dataset was an expanded version of the dataset

used by Tooke et al. (Tooke et al., 2016).

Table 3.1: Number of training and test images in each CIR class used
by Tezcan et al. (Tezcan et al., 2018).

CIR 1 2 3 4 5 6 7 8 9 All

Training 118 153 117 97 146 181 215 119 87 1,233

Testing 10 10 10 10 10 10 10 10 10 90

Total 128 163 127 107 156 191 225 129 97 1,323

Due to a relatively small dataset size, both studies applied data augmentation by

means of horizontal and vertical shifts of 5, 10, or 15 pixels, and a horizontal “flip”.
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However, the maximum shift of 15 pixels is rather small for 224×224 images accepted

by ResNet-18, so very little visual information is changed. To allow more significant

visual “jitter”, we increased the maximum range of shifts to 30 pixels while keeping 5-

pixel increments, and also applying a horizontal “flip”. Furthermore, since the camera

angle, when taking a picture, does not need be aligned with room’s features (doors,

window frames, etc.), we added an additional geometric augmentation by means of

clockwise or anti-clockwise image rotation by 0, 3, 6, or 9 degrees. Finally, because of

the diversity of cameras that can be used as well as wide range of possible illumination

conditions, we also applied color-jitter augmentation. This method increases data

diversity by randomly altering the visual attributes of images, such as brightness

and contrast, as well as color saturation and hue, thereby aiding the model in better

generalizing to unseen data. Figure 3·1 shows one example for each type of data

augmentation.

(1) Original (2) Shift down (3) Shift left

(4) Rotation (5) Flip (6) Color jitter

Figure 3·1: Examples of data augmentation applied during training.
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3.2 Novel class-weighted loss function

Tezcan et al. developed a weighted loss function to strike balance between maximizing

CCR and CCR-1 performance metrics (Section 2.4). However, this does not address

the dataset imbalance clearly visible in Table 3.1. The number of samples for CIR

= 4 and CIR = 9 is less than 100, while there are 215 samples for CIR = 7. In this

case, if we perform 4-fold cross-validation with non-overlapping splits, the number

of samples from a majority class in each fold will be significantly higher than that

from a minority class. This will lead to the model’s predictive ability being biased

towards majority classes, with poor recognition capability for minority classes. This

is because the model finds it easier to improve overall accuracy by focusing on the

more frequently-occurring data samples. However, our goal is to accurately assess

CIR across all CIR classes, and avoid poor performance for the minority classes.

To address this issue, we propose to employ a cost-sensitive learning approach,

assigning higher mis-classification cost to minority classes. By adjusting the loss

function to include a weighted mis-classification cost for each class, we aim to more

severely penalize mis-classifications of the minority classes. The equation for calcu-

lating weight wi for class i is as follows:

wi = C ×
1
ci∑C
j=1

1
cj

, i = 1, ..., C, (3.1)

where C is the number of classes and ci is the number of samples in class i. Thus,

weight wi is inversely proportional to the frequency of occurrence of samples from

class i, and the sum of all weights equals the total number of classes. This ensures

that different attention is given to classes of different sizes within the dataset.

We apply weights wi (3.1) to the multi-class, single-label loss function (2.3), that
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maximizes CCR, as follows:

LWSL
k = −

C∑
i=1

wi · y1
k[i] log

exp(ŷk[i])∑C
j=1 exp(ŷk[j])

. (3.2)

It is also essential to incorporate weights into the loss function for multi-label

CIR classification (2.4). Considering the ±1 error margin in CCR-1, each prediction

necessitates the application of three weights. However, in the context of cluttered-

image classification, boundary categories can only utilize two weights; for instance, the

first category involves CIR classes 1 and 2, while the last category involves CIR classes

8 and 9. Consequently, this study adopts an average-weight approach for multi-label

scenarios. Based on the previously-calculated weights for each class (3.1), we also

take into account the weights of adjacent classes within ±1 range. An arithmetic

mean of three weights (or two weights for edge categories) is computed as follows:

w̄i =
wmax(i−1,1) · 1{i>1} + wi + wmin(i+1,C) · 1{i<C}

1{i>1} + 1 + 1{i<C}
(3.3)

where 1{condition} is an indicator function that equals 1 when condition is met, and 0

otherwise.

We apply the average weights w̄i (3.3) to the multi-label loss function (2.4) that

maximizes CCR-1, as follows:

LWML
k = −

C∑
i=1

w̄i

(
y3
k[i] log

1

1 + exp(−ŷk[i])
+ (1−y3

k[i]). log
exp(−ŷk[i])

1 + exp(−ŷk[i])

)
(3.4)

Combining loss functions (3.2) and (3.4), as proposed by Tezcan et al. (2.5), the

final loss function for an image-CIR pair number k is as follows:

LCIR
k = (1 − λ)LWSL

k + λLWML
k . (3.5)
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3.3 Experimental results

In order to gauge improvements offered by the proposed enhanced data augmentation

and new class-weighting mechanism against the baseline method, we performed an

ablation study using all 1,323 images available in the original dataset (Table 3.1),

that is we combined all training and testing images into one set.

We applied 4-fold cross-validation with non-overlapping splits to ensure robust

performance evaluation. To generate precise performance metrics, this procedure was

repeated 10 times, with each iteration running over 50 epochs for every fold. Within

the last 10 epochs of each run, the highest and lowest CCR-1 value was recorded, along

with the corresponding CCR value (not necessarily highest or lowest). This helps

us understand the range of variability in our model’s performance due to random

initialization and other factors influencing the outcomes of each run. In Table 3.2

and other tables in this thesis, we report the maximum and minimum CCR-1 value

recorded over the last 10 epochs in all 10 runs (last column: “[Max/Min]”). We also

report the average of 10 maximum CCR-1 values recorded in 10 runs (last column:

“Average Max”). Finally, we report the average of 10 CCR values recorded along

with the maximum CCR-1 values (CCR column: “Average”), but we caution that

CCR Average is not necessarily the average of 10 maximum CCR values recorded in

the last 10 epochs in each of the 10 runs.

Table 3.2 shows the performance of ResNet-18 using various combinations of data

augmentation and class-weighted loss function. The baseline method of Tezcan et al.

(Tezcan et al., 2018) reported in the second data row, slightly improves the Average

Max CCR-1 value compared to no augmentation at all (first data row). Although

CCR value slightly suffers, as already mentioned this value may not correspond to the

best average CCR value. Adding the proposed class weighting, slightly boosts per-

formance in all metrics. The proposed enhanced data augmentation further improves
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Table 3.2: ResNet-18 performance in CIR classification for various
combinations of data augmentation and class-weighted loss function.

Class-
Weighted

Loss

Data
Augmentation

CCR
Average

CCR-1
Average Max [Max/Min]

No No 0.4376 0.8121 [0.8347/0.7994]

No Baseline 0.4341 0.8176 [0.8293/0.7867]

Yes Baseline 0.4446 0.8183 [0.8383/0.7964]

No Enhanced 0.4551 0.8216 [0.8383/0.7754]

Yes Enhanced 0.4723 0.8299 [0.8503/0.8144]

performance against the baseline method. Finally, combining the enhanced augmen-

tation with class-weighted loss achieves the most significant performance gain; CCR

value increased by almost 0.04 to 0.4723 compared to the baseline method and the

Average Max CCR-1 values improved by 0.0123 to 0.8299. For CCR-1 expressed in

percent, this would be a 1.23% point increase to almost 83% compared to the baseline

method.

Our proposed enhanced data augmentation and class-weighted loss improve ResNet-

18 performance compared to the Tezcan et al.’s baseline. However, the improvements

brought about by these two methods are quite limited. In the next chapter, we study

another deep-learning model hoping to further improve CIR classification accuracy.
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Chapter 4

CIR Classification using the Vision

Transformer

4.1 Vision-transformer architecture

In the Vision Transformer (ViT) (Dosovitskiy et al., 2020), each input image is di-

vided into fixed-size patches (typically, 16×16). Subsequently, each patch (block)

is projected into a fixed-length vector to form the input to the encoder, along with

block-position information and a learnable embedding with the class label of the im-

age. Subsequent encoding operations are identical to those in the original Transformer

model developed for language applications.

A diagram of the ViT is shown in Figure 4·1. Assuming image X of width W

and height H with C color components (channels) is the input to ViT, below we

summarize the key steps performed by ViT.

• Preprocessing: ViT transforms image X ∈ RH×W×C into a sequence of “flat-

tened” 2D patches, resulting in a structure Xp ∈ RN×(P×P×C), where P × P is

the spatial size of each patch and N is the number of patches.

• Patch embedding: The Transformer Encoder expects a two-dimensional ma-

trix as input: Xinput ∈ RN×D, where N is the length of the sequence, and D

(usually 256) is the dimension of each vector in the sequence. In order to map

Xp ∈ RN×(P×P×C) to Xinput ∈ RN×D, usually a linear transformation (e.g., fully-

connected layer) is applied to each vector, to reduce vector length (P ×P ×C)
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Figure 4·1: ViT model overview. Each image is first divided into
blocks, that are reshaped into vectors and position information of each
block is added. Then, these reshaped blocks are fed into an encoder.
To allow classification, an additional trainable ”classification token” is
added to the sequence. Diagram from (Dosovitskiy et al., 2020).

to D. This is referred to as patch embedding.

Since the Transformer Encoder does not explicitly allow for image-class label,

this is performed implicitly as shown in Figure 4·1. An additional vector (with

label 0 in the diagram) is artificially added before applying positional embed-

dings and feeding into the transformer. This added vector is a learnable em-

bedding, that represents the comprehensive information of the entire sequence

(in this context, the whole image), thus providing a basis for classification.

• Positional encoding: For a transformer architecture to be effective in classi-

fying images, all blocks must be jointly considered along with information about

their location (e.g., blue sky at the top of the image). The Transformer Encoder

uses a self-attention mechanism to analyze the relationships between individual
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blocks, but it lacks capacity to leverage the order of blocks in the sequence. This

affects the understanding of image structure. By adding positional encoding to

each block, this model can capture the placement of blocks within the image,

improving its understanding of image content and structure.

• MLP head: After a series of self-attention and feed-forward network layers, the

model generates a set of high-dimensional feature vectors. These vectors contain

information that the model has learned from the input image. The vectors first

pass through one or more fully-connected layers, which constitute the Multi-

Layer Perceptron (MLP). If there are multiple layers, activation functions (such

as ReLU) are typically used to introduce non-linearity, helping the model to

better capture more complex features. The output of the final fully-connected

layer is mapped to a dimension that matches the number of categories (9 in CIR

classification). Each element of the output vector represents the probability that

the image belongs to the corresponding class.

4.2 Implementation of ViT-based classification

Since ViT is a large model (ViT used in our experiments has parameter size of 330

MB), training it from scratch with a dataset of only 1,323 images is counterproduc-

tive. To address this challenge, we employ a transfer-learning approach. We use

vit base patch16 224 model from the timm library (Wightman, 2022) initialized

with weights pre-trained on the ImageNet dataset (Deng et al., 2009). We adapt this

pre-trained model to our task by setting the number of output classes to 9, and fine-

tuning the MLP head using our clutter-image dataset while keeping the transformer

unchanged.

To optimize the ViT performance for our dataset, we performed grid search to find

optimal training parameters. We explored various combinations of the learning rate
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(0.0001, 0.001, 0.01), and of its decay period (5, 7, 9 epochs). We used the stochastic

gradient descent (SGD) for training and found out that the learning rate of 0.001

that drops by half after every 5 epochs, performs best. For consistency with Tezcan

at al.’s experiments, we adopted a momentum of 0.9, mini-batch size of 32 and their

single-/multi-label loss function with our class-weight modifications.

4.3 Experimental results

Similarly to Section 3.3, we performed an ablation study using all 1,323 images avail-

able in the original dataset (Table 3.1). Table 4.1 shows ViT performance against

ResNet-18 for various combinations of data augmentation and class-weighted loss

function. The bottom part of the table repeats ResNet-18 results from Table 3.2 for

ease of comparison.

The ablation study of ViT reveals similar patterns as those observed for ResNet-18.

The baseline augmentation minimally improves the Average Max CCR-1 but slightly

reduces CCR compared to no augmentation at all. The inclusion of class-weighted

loss along with baseline augmentation slightly improves both metrics. The enhanced

data augmentation improves the performance further. Finally, the combination of

enhanced data augmentation and class-weighted loss gives the best performance, out-

performing the method without data augmentation and no class-weighted loss by

0.0514 (over 5% points) in CCR and by 0.0256 (over 2.5% points) in Average Max

CCR-1.

We observe that our ViT model, employing the same combination of data aug-

mentation and class-weighted loss as ResNet-18, results in significant improvements

in both CCR and CCR-1 metrics. For example, the corresponding improvements

in CCR range from 0.0170 (1.7% points) to 0.0554 (5.54% points). Similarly, the

corresponding improvements in the Average Max CCR-1 range from 0.0391 (3.91%
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Table 4.1: Comparison of ViT and ResNet-18 performance for various
combinations of data augmentation and class-weighted loss function.

ViT

Class-
Weighted

Loss

Data
Augmentation

CCR
Average

CCR-1
Average Max [Max/Min]

No No 0.4546 0.8558 [0.8862/0.8293]

No Baseline 0.4532 0.8567 [0.8832/0.8234]

Yes Baseline 0.5000 0.8575 [0.8892/0.8234]

No Enhanced 0.5058 0.8793 [0.8982/0.8563]

Yes Enhanced 0.5060 0.8814 [0.9012/0.8623]

ResNet-18

Class-
Weighted

Loss

Data
Augmentation

CCR
Average

CCR-1
Average Max [Max/Min]

No No 0.4376 0.8121 [0.8347/0.7994]

No Baseline 0.4341 0.8176 [0.8293/0.7867]

Yes Baseline 0.4446 0.8183 [0.8383/0.7964]

No Enhanced 0.4551 0.8216 [0.8383/0.7754]

Yes Enhanced 0.4723 0.8299 [0.8503/0.8144]

points) to 0.0577 (5.77% points). Most importantly, however, the ViT model with

enhanced data augmentation and class-weighted loss achieves 0.8814 in Average Max

CCR-1 compared to 0.8176 for the baseline method of Tezcan et al. (Tezcan et al.,

2018), a very significant gain of 0.0638 (6.38% points). The gain in CCR is even more

impressive, from 0.4341 to 0.506, a difference of 0.0719 (7.19% points).

Clearly, the replacement of ResNet-18 by ViT significantly improves the CIR

classification performance, and its combination with enhanced data augmentation

and class-weighted loss brings CCR-1 fairly close to 90%, a very desirable accuracy.
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Chapter 5

AI-Driven Data Augmentation

Thus far, we showed that data augmentation, by creating more diverse data samples,

helps a model learn more generalized feature representations enabling it to perform

better on unseen images.

In this chapter, in addition to traditional data augmentation, we introduce AI-

driven data augmentation. This method leverages Generative AI tools to produce

new, synthesized images that are similar to natural images in our current dataset,

but that are visually distinct. This AI-driven data augmentation essentially acts as

an expansion of our current dataset.

5.1 Generation of room-clutter images using DALL·E

As the Generative AI tool of choice, we opted for DALL·E (Ramesh et al., 2021).

DALL·E is an advanced deep-learning model developed by OpenAI, specifically de-

signed for image generation. It builds on GPT-3, a large-scale language-processing

model, enabling the creation of images from natural-language descriptions. It can gen-

erate highly-relevant and diverse images from specific, complex text prompts. Con-

sidering the difficulty in acquiring real-life images of hoarding-related room clutter

with a CIR rating above 7, using DALL·E to generate images with equivalent ratings

could potentially prove beneficial for addressing class-imbalance in our dataset.

Currently, the two commonly-used versions of DALL·E are: DALL·E-2 which can

generate images from image prompts and DALL·E-3 which can generate images from
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text prompts. Below is a brief introduction to these two models.

• DALL·E-2: Unlike DALL·E-3, which only supports text-based image genera-

tion, DALL·E-2 includes a variation function. This function enables the direct

creation of variations from an existing image, thereby avoiding information loss

that can occur during the conversion between image and text. Figure 5·1 shows

an original image from our dataset and its two variations generated by DALL·E-

2 using the variation function.

• DALL·E-3: Compared to DALL·E-2, DALL·E-3 significantly improves the pro-

cess of generating images from text captions, greatly improving the realism and

visual appeal of the synthesized images. However, currently DALL·E-3 can only

handle text inputs; it does not support direct image inputs. Therefore, we must

first use GPT-4-vision-preview API (Cai et al., 2023) to understand an im-

age and generate a caption, before using the DALL·E-3 to create a new image

from the obtained text. Effectively, to generate a new, synthesized image from

a natural image, we follow an Image-to-Text-to-Image sequence of steps. This

can lead to a considerable misrepresentation or loss of image content in the

transition from image to text, particularly problematic if we want to generate

an image with CIR value identical to that of the original image. Figure 5·2

shows an original image from our dataset and two images generated by GPT-4

and DALL·E-3 using such steps. For more examples of DALL·E-3-generated

images, see Appendix A.

As is evident from Table 3.1, classes 1, 3, 4, 8, and 9 have significantly fewer image

samples than other classes. To mitigate effects of this imbalance, we propose to use

DALL·E to generate enough images to ensure that each class has approximately 160

samples. In order to test the impact of text-based and image-based image genera-

tion on CIR-classification performance, we study both approaches, DALL·E-2 and
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Original image from the dataset.

Variation 1 generated by DALL·E-2. Variation 2 generated by DALL·E-2.

Figure 5·1: Comparison of an original (natural) image from the
dataset with its two variations generated by DALL·E-2.
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Original image from the dataset.

Image 1 generated by DALL·E-3. Image 2 generated by DALL·E-3.

Figure 5·2: Comparison of an original (natural) image from the
dataset with two images generated by DALL·E-3 by means of inter-
mediate caption generation by GPT-4.
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Table 5.1: Number of images per CIR class in the new, expanded
dataset. The original dataset of training and testing images is comple-
mented by images generated by DALL·E to improve class balance.

CIR 1 2 3 4 5 6 7 8 9 All

Training 118 153 117 97 146 181 215 119 87 1,233

Testing 10 10 10 10 10 10 10 10 10 90

Generated 32 0 34 50 0 0 0 34 60 210

Total 160 163 161 157 156 191 225 163 157 1,533

DALL·E-3, and generate an equal number of images by each method. These gener-

ated images are combined with the original dataset to form a new, expanded dataset.

Table 5.1 lists class distribution of the original dataset and the number of new images

that we generate by both approaches for CIR classes 1, 3, 4, 8, 9.

5.2 Challenges in AI-driven data augmentation

To address the class-imbalance problem in the original dataset, we use two AI-driven

data-augmentation methods described in Section 5.1. We generate new images only

for the under-represented CIR classes 1, 3, 4, 8, and 9. The number of images gener-

ated in each class is shown in Table 5.1. The same number of images are generated

by each method, DALL·E-2 and DALL·E-3.

5.2.1 Impact of unverified DALL·E-generated images

We aim to explore whether the proposed AI-driven data augmentation leads to im-

proved performance for the underrepresented classes. In this test, for simplicity,

rather than performing 4-fold cross-validation (applied in Sections 3.3 and 4.3), we

perform training on the union of 1,233 original images and 210 DALL·E-generated

images (1,443 images in total), and perform testing on the original test set of 90

natural images (Table 5.1).
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We conducted experiments by using three distinct training sets:

• Original: 1,233 images,

• Original + DALL·E-2: 1,443 images,

• Original + DALL·E-3: 1,443 images,

but always testing using the same 90 test images. In all cases, we used the best-

performing ViT model from Table 4.1 (with enhanced data augmentation and class-

weighted loss), the same learning rate, momentum and mini-batch size, and repeated

the training process 10 times, running the model for 50 epochs each time.

Table 5.2 reports the overall results across all CIR classes using the same metrics

as used in Sections 3.3 and 4.3, namely Average CCR, Average Max CCR-1 and

Maximum/Minimum CIR-1 across 10 last epochs of 10 runs. The ViT model’s overall

performance reported is similar to that reported in Table 4.1 although slightly lower

(Average CCR of 0.4811 compared to 0.5060 and Average Max CCR-1 of 0.8711

compared to 0.8814). The difference is due to testing on 90 images instead of 4-fold

cross-validation as explained earlier. Training on the “Original + DALL·E-2” dataset

slightly improves performance; average CCR increased to 0.4878 and Average Max

CCR-1 improved to 0.8767. The best performance, however, is accomplished by

training on the “Original + DALL·E-3” dataset, increasing the metrics to 0.5156 and

0.8911, respectively.

Table 5.3 reports performance for each CIR class by using slightly different metrics.

For each class, we recorded the maximum and minimum CCR-1 value in the last 10

epochs of all 10 runs and calculated the average of these maximum and minimum

CCR-1 values, shown as “[Average Max/Average Min]” pair of numbers in Table 5.3.

Note that we are not showing the maximum and minimum values recorded over the

last 10 epochs in all 10 runs, that were shown as “[Max/Min]” in Tables 3.2 and
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Table 5.2: Impact of AI-driven data augmentation (unverified images)
on the overall performance of the ViT model tested on the original test
set of 90 natural images.

Training Set
Training
Set Size

CCR
Average

CCR-1
Average Max [Max/Min]

Original 1,233 0.4811 0.8711 [0.9111/0.8556]

Original + DALL·E-2 1,433 0.4878 0.8767 [0.9111/0.8556]

Original + DALL·E-3 1,433 0.5156 0.8911 [0.9111/0.8511]

4.1, to simplify the table. We note that performance for individual classes is not as

consistent as the overall performance across all classes. For instance, by training on

the “Original + DALL·E-3” dataset, the performance for CIR classes 4 and 8 improved

significantly, remained roughly unchanged for class 9, but slightly decreased for class

3. One possible reason for the improvement not extending to all underrepresented

classes is that the CIR value of some DALL·E-generated images may be inconsistent

with that of their source images, and therefore may create bias during training. We

address this issue in the next section.

Table 5.3: Impact of AI-driven data augmentation (unverified images)
on the per-class performance of the ViT model tested on the original
test set of 90 natural images. The reported pairs of numbers are “[Av-
erage Max/Average Min]” CCR-1 values explained in detail in the text.

Training Set CIR = 1 CIR = 2 CIR = 3 CIR = 4 CIR = 5

Original [1.00/1.00] [1.00/1.00] [1.00/0.96] [0.91/0.84] [0.81/0.67]

Original + DALL·E-2 [1.00/1.00] [1.00/1.00] [1.00/1.00] [0.96/0.92] [0.82/0.75]

Original + DALL·E-3 [1.00/1.00] [1.00/1.00] [0.98/0.96] [1.00/0.98] [0.73/0.62]

Training Set CIR = 6 CIR = 7 CIR = 8 CIR = 9

Original [0.75/0.65] [1.00/0.98] [0.80/0.63] [0.63/0.55]

Original + DALL·E-2 [0.80/0.68] [1.00/0.96] [0.78/0.78] [0.59/0.51]

Original + DALL·E-3 [0.83/0.72] [1.00/0.99] [0.91/0.75] [0.61/0.48]
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5.2.2 Impact of verified DALL·E-generated images

In order to make sure that DALL·E-generated images are associated with CIR ratings

consistent with their respective source images, we have asked trained professionals

specializing in hoarding disorder to review the synthesized images in terms of their

CIR rating and visual realism. Their task was three-fold:

• confirm that the CIR value inherited by a DALL·E-generated image from its

source image is correct, or

• change the CIR value inherited by a DALL·E-generated image from its source

image to a new value, or

• reject a DALL·E-generated image because of its poor visual quality, “cartoon-

ish” look, lack of realism, etc., thereby removing it from the dataset.

Since in Section 5.2.1 we found that data augmentation using DALL·E-3 outperforms

that of DALL·E-2, from now on we focus only on the DALL·E-3-enhanced dataset.

As shown in Table 5.4, out of 210 images generated by DALL·E-3 (Table 5.1) only

128 images were retained after review. Clearly, many images were removed due to

sub-par quality and/or lack of realism. Also, many of them were assigned a new CIR

value. The most affected was CIR class 9 (extreme clutter) where only 4 DALL·E-

3-generated images were considered of acceptable quality and realism, and whose

depiction of extreme clutter was accurate enough to be retained at level 9. Although

this effort has largely reduced class imbalance, CIR class 9 continues to be highly

underrepresented. This is consistent with observations made by Tooke et al. (Tooke

et al., 2016) and by Tezcan et al. (Tezcan et al., 2018) regarding huge difficulty with

on-line collection of natural images with extreme clutter.

We performed a similar evaluation to that reported in Section 5.2.1, but instead we

used 1,361 training images by combining the original natural training images (1,233)
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Table 5.4: Number of images per CIR class in the new, expanded and
verified dataset. The original dataset of training and testing images is
complemented by images generated by DALL·E-3 and verified for CIR
accuracy by trained professionals.

CIR 1 2 3 4 5 6 7 8 9 All

Training 118 153 117 97 146 181 215 119 87 1,233

Testing 10 10 10 10 10 10 10 10 10 90

Generated/verified 23 0 31 49 0 0 0 21 4 128

Total 151 163 158 156 156 191 225 150 101 1,451

with 128 images generated by DALL·E-3 and verified by professionals, and performed

testing on the 90 natural test images as before.

Table 5.5 shows the overall performance in terms of CCR and CCR-1. The ver-

ification/revision of CIR value and pruning of unrealistic images resulted in a small

drop of CCR to 0.5022 and a very small increase of Average Max CCR-1 to 0.8944.

In terms of “[Min/Max]” values, while the maximum CCR-1 over the last 10 epochs

of all runs remained unchanged at 0.9111 for all scenarios, the minimum CCR-1 in-

creased considerably to 0.8778 when using verified images. Despite the reduction of

available augmentation images from 210 to 128, the range of CCR-1 values when the

algorithm is close to convergence became narrower.

Table 5.5: Impact of AI-driven data augmentation (verified images)
on the overall performance of the ViT model tested on the original test
set of 90 natural images.

Training Set
Training
Set Size

CCR
Average

CCR-1
Average Max [Max/Min]

Original 1,233 0.4811 0.8711 [0.9111/0.8556]

Original + DALL·E-3 1,433 0.5156 0.8911 [0.9111/0.8511]

Original + verified DALL·E-3 1,361 0.5022 0.8944 [0.9111/0.8778]

The per-class performance is shown in Table 5.6. In most of CIR classes, the
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average maximum and minimum CCR-1 values shown in brackets have changed very

little. However, there is a significant improvement for CIR class 9, likely due to the use

of verified images, despite the fact that only 4 generated images were retained in this

class after verification. Another significant improvement is for CIR class 5, although

no AI-generated images were added to this class. Most likely, AI-generated images for

class 4 have affected the learning of ViT model parameters and performance for class

4. On the flip side, performance markedly dropped for CIR class 8 in which 21 images

were generated and verified. It seems that the decision boundary between classes 8

and 9 is quite fluid because of the similarity of the two clutter scenarios and even

slight changes in model parameters may lead to a substantial change in performance

for these two classes. Overall, however, per-class performance is excellent (CCR-1

close to 1.0) for classes 1, 2, 3, 4, 7, is good (CCR-1 0.7-0.8) for classes 5, 6 and 8,

but only passable (CCR-1 of 0.6-0.7) for class 9.

Table 5.6: Impact of AI-driven data augmentation (verified images) on
the per-class performance of the ViT model tested on the original test
set of 90 natural images. The reported pairs of numbers are “[Average
Max/Average Min]” CCR-1 values explained in detail in the text.

Training Set CIR = 1 CIR = 2 CIR = 3 CIR = 4 CIR = 5

Original [1.00/1.00] [1.00/1.00] [1.00/0.96] [0.91/0.84] [0.81/0.67]

Original + DALL·E-3 [1.00/1.00] [1.00/1.00] [0.98/0.96] [1.00/0.98] [0.73/0.62]

Original + verified DALL·E-3 [1.00/1.00] [1.00/1.00] [0.99/0.94] [0.99/0.96] [0.85/0.68]

Training Set CIR = 6 CIR = 7 CIR = 8 CIR = 9

Original [0.75/0.65] [1.00/0.98] [0.80/0.63] [0.63/0.55]

Original + DALL·E-3 [0.83/0.72] [1.00/0.99] [0.91/0.75] [0.61/0.48]

Original + verified DALL·E-3 [0.82/0.75] [1.00/0.99] [0.82/0.71] [0.70/0.62]
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5.3 Cross-validation using AI-enhanced datasets

In the previous section, we demonstrated that augmenting the original dataset with

DALL·E-3-generated and professionally-verified images can lead to a small perfor-

mance gain in CCR-1, which is more relevant than CCR due to the difficulty trained

professionals have with the exact assignment of CIR value. However, that evaluation

was performed only on the test set of 90 natural images. Here, we perform an evalua-

tion using four-fold cross-validation using all available images in 3 scenarios described

below. In order to facilitate a direct comparison with results reported by Tezcan et al.

(Tezcan et al., 2018), we use 1,323 natural images from the original dataset’s training

and test sets (Table 5.4), and 128 DALL·E-3-generated and verified images.

1. Four-fold cross-validation on the original dataset (scenario #1): This is

our baseline scenario involving four-fold cross-validation on the original dataset

of 1,323 = 1,233 + 90 images. Results using this cross-validation scenario were

reported in Tables 3.2 and 4.1.

2. Four-fold cross-validation using AI-generated images only in training

(scenario #2): In this scenario, the original 1,323 training/test natural images

are combined with 128 AI-generated and verified images for the total of 1,451

images. All these images are divided into 4 folds. While in each run 3 folds

are used for training, during evaluation of the 4-th (test) fold all AI-generated

images are excluded. This ensures that evaluation is performed solely on original

(natural) images, thereby allowing direct comparison with baseline results. The

AI-generated images are only used to enhance training, but are not evaluated.

3. Four-fold cross-validation using AI-generated images in training and

testing (scenario #3): This scenario involves standard four-fold cross-validation

on a mixed set of 1,451 images used in the second scenario above, but without
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excluding AI-generated images from the test fold. The AI-generated images are

used to enhance training and are also evaluated in the test fold.

In each of these cross-validation scenarios, we examine performance of both ViT

and ResNet18 models in configurations that achieved the best performance in Ta-

ble 4.1 (enhanced data augmentation and class-weighted loss function). We use the

same performance metrics as in previous tables reporting the overall results (not

class-specific), namely Average Max CCR-1 and the corresponding Average CCR,

and Maximum/Minimum CCR-1 over the last 10 epochs in 10 runs.

Table 5.7: Impact of AI-driven data augmentation (verified images)
on the performance of ViT and ResNet-18 models in 3 scenarios of four-
fold cross-validation.

Cross-Validation
Scenario

Model
CCR

Average
CCR-1

Average Max [Max/Min]

Scenario #1:
4-fold cross-validation
on the original dataset

ViT 0.5060 0.8814 [0.9012/0.8623]

ResNet-18 0.4723 0.8299 [0.8503/0.8144]

Scenario #2:
4-fold cross-validation

using AI-generated images
only in training

ViT 0.4900 0.8839 [0.9129/0.8529]

ResNet-18 0.4389 0.8313 [0.8559/0.8168]

Scenario #3:
4-fold cross-validation

using AI-generated images
in training and testing

ViT 0.5157 0.8887 [0.9044/0.8689]

ResNet-18 0.4745 0.8397 [0.8716/0.8197]

Table 5.7 shows the performance of ViT and ResNet-18 for 3 cross-validation

scenarios described earlier. Scenario #2 compared to scenario #1 (baseline) shows

a slight increase in CCR-1 for both the ViT and ResNet-18 models. In scenario #2,

ViT achieves Average Maximum CCR-1 of 0.8839 compared to 0.8814 in scenario #1,

and similarly for ResNet-18 the improvement is from 0.8299 to 0.8313.
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Figure 5·3: T-SNE visualization of image embeddings jointly for
the original dataset of 1,233 natural images (black digits denote CIR
classes) and 128 clutter images generated by DALL·E-3 and verified
(red digits denote CIR classes).

However, both models exhibit a decline in CCR performance, with ViT dropping

by 0.0160 (from 0.5060 to 0.4900) and ResNet-18 dropping more significantly by

0.0343 (from 0.4723 to 0.4389). To gain insight into these unexpected results, we

conducted a joint t-SNE distribution analysis of the original (natural) dataset and the

AI-generated and verified dataset. The t-SNE visualization in Figure 5·3 reveals that

the majority of the newly-generated images in categories 4, 8, and 9 do not overlap

the original dataset (see Appendix B for more t-SNE visualizations of the generated

images against dataset images in each CIR class separately). This indicates that AI-

generated images bring new information to the training step. However, because these

generated images are excluded from the test set, the newly-introduced information
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may actually interfere with the model’s ability to make correct predictions, thus

causing a decline in CCR and only a very small gain in CCR-1.

In contrast to scenario #2, where we observed a small increase in CCR-1 but an

appreciable decrease in CCR compared to scenario #1, scenario #3 shows a different

pattern. When the verified AI-generated images are also included in the test folds

in scenario #3, both CCR and CCR-1 for ViT and ResNet-18 improve relative to

scenario #1 (baseline). Specifically, ViT shows an increase of 0.0073 in Average

Maximum CCR-1 value and ResNet-18 shows an increase of 0.0098. In terms of

CCR, ViT shows an increase of 0.0097 and ResNet-18 shows an increase of 0.0022.

The increase in CCR value in this scenario can be attributed to the inclusion of

AI-generated images in the training phase, which enabled the models to more easily

achieve correct CIR predictions on AI-generated images, now present in the test folds,

thereby improving the overall CCR performance.
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Chapter 6

Conclusions and Future Work

6.1 Thesis Summary and Conclusions

Building on earlier research by Tooke et al. (Tooke et al., 2016) and Tezcan et al.

(Tezcan et al., 2018), in this thesis we have proposed several advanced strategies to

enhance the classification accuracy of clutter images using deep learning. We briefly

summarize the main contributions of this thesis below.

6.1.1 Enhanced Data Augmentation and Class-Weighted Loss Function

In Chapter 3, to address the issue of insufficient size of clutter-image datasets, we

proposed an enhanced data-augmentation method. This method doubles the max-

imum range of horizontal and vertical image shift, adds rotation, and incorporates

color-jitter transformation, thus significantly diversifying the original dataset. Fur-

thermore, we proposed a class-weighted loss function to mitigate the impact of class

imbalance in the original dataset. By assigning weights that are inversely-proportional

to the number of samples in each class, this approach ensures equitable learning across

all classes. These enhancements led to an improvement in CCR by 3.82% points and

in CCR-1 by 1.23% points compared to the baseline method of Tezcan et al. (Tezcan

et al., 2018). Clearly, increasing dataset size by additional data augmentation and

addressing class imbalance by modifying the loss function has brought substantial

performance gains.
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6.1.2 Replacement of ResNet-18 by Vision Transformer

Chapter 4 explored the implementation of the Vision Transformer model, as a re-

placement for the ResNet-18 model proposed by Tezcan et al. (Tezcan et al., 2018).

Employing ViT with the aforementioned data augmentation and class-weighted loss

function resulted in a 7.19% points improvement in CCR and a 6.38% points improve-

ment in CCR-1 compared to ResNet-18 with baseline augmentation. These are very

large performance gains resulting from using a completely different deep-learning ar-

chitecture, originally developed for language applications. The main question is what

other architectures can be considered to further boost the CIR classification perfor-

mance.

6.1.3 AI-Driven Data Augmentation

In Chapter 5, we proposed AI-driven data augmentation to further expand our

dataset. We evaluated the impact of image generation by DALL·E-2 and DALL·E-3

on classification of a 90-image dataset using ViT and ResNet-18 and concluded that

DALL·E-3-generated images offer a substantial performance advantage over DALL·E-

2-generated images. Interestingly, this improvement occurred despite some images

being unrealistic and even corresponding to an incorrect CIR value (clutter appear-

ance was changed during AI-based image generation). Therefore, with help from

professionals specializing in hoarding disorder, we revised the AI-generated images

by either accepting them as is, changing their CIR value or removing them. This

reduced their number by about half. Unfortunately, the revised AI-generated dataset

did not result in further improvement of performance - CCR dropped by over 1%

point but CCR-1 increased by about 0.3% points. In a final test, we assessed the im-

pact of DALL·E-3-generated images on classification performance using three 4-fold

cross-validation scenarios. Unfortunately, the results were not what we hoped for.
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Expanding only the training folds by AI-generated and verified images resulted in a

slight increase in CCR-1 but appreciable drop in CCR. We believe that the new AI-

generated images bring new characteristics into the dataset (visualized using t-SNE),

that skew the learning process and lead to performance drop. Still, AI-based dataset

augmentation seems to be a promising direction, but requires further research.

In conclusion, this thesis introduced enhanced data-augmentation techniques, a

novel class-weighted loss function, and replaced a traditional ResNet-18 model with a

more advanced ViT model. These modifications significantly improved performance

metrics of clutter-image classification, elevating CCR-1 from a baseline of 0.8176 to

0.8814, and CCR from 0.4341 to 0.5060. An additional AI-driven data augmentation

further increased CCR-1 to 0.8839, but dropped CCR to 0.4900, suggesting a further

exploration of this direction of study.

6.2 Future Work

There exist several directions that may further improve the proposed methodologies:

• Dataset Expansion: While this work proposes to mitigate the impact of small

and unbalanced datasets through data-augmentation methods, a significant ex-

pansion of the original dataset is necessary to fully address these issues.

• Mobile Integration: The ultimate goal of automatically rating CIR is de-

ployment in the field with social workers and other health and human service

professionals who would use a mobile device for real-time clutter-image classi-

fication. Selecting a new model that is faster, more accurate, and lighter than

ViT, such as EfficientFormer (Li et al., 2022), is needed for practical adoption

of the proposed methodology at the edge.

• Enhancing Model Robustness with Regularization: To prevent overfit-
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ting when training larger models on limited datasets, future research should

explore integrating L1 and L2 regularization techniques into the training pro-

cess. Regularization helps reduce model complexity and ensures generalization

by penalizing large weights, thereby enhancing the model’s practical usability

and reliability.
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Appendix A

DALL·E-3 Image-Generation Examples

On the next 5 pages, we show sample images of room clutter generated by DALL·E-3

by means of Image-to-Text-to-Image sequence of steps for CIR classes 1, 3, 4, 8, 9.

First, the original (source) image from our dataset is fed into GPT-4 to generate a

caption. Then, this caption is fed into DALL·E-3 to produce an image. For each

value of CIR we show two sample images produced by DALL·E-3.
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Original image from the dataset: CIR = 1.

Caption: The image shows a tidy and comfortably arranged bedroom. The room’s design suggests
a modern aesthetic with a neutral color palette. Here are the key features of the room: A large
bed with a wooden headboard is centered against the main wall. It is neatly made with crisp white
linens and a decorative comforter that has a pattern of leaves or vines. There are multiple pillows
arranged at the head of the bed: two large white pillows at the back, two medium-sized pillows, and
two smaller black decorative pillows at the front. Above the bed, the wall inclines upward, revealing
that the room is likely on the top floor with a sloped ceiling, a feature often seen in attic conversions
or rooms with dormer windows. Skylights are installed in the sloped ceiling, letting in natural light
and likely offering views of the sky. On the left side of the bed, there is a nightstand with a lamp
and what appears to be a photo frame or small artwork.

Image generated by DALL·E-3. Image generated by DALL·E-3.

Figure A·1: Original image, its generated caption and DALL·E-3-
generated images for CIR = 1.
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Original image from the dataset: CIR = 3.

Caption: This image depicts a residential kitchen with a cluttered countertop. It gives the impres-
sion of being in a state post-meal preparation or cooking, with a variety of utensils and ingredients
left out. On the left, there’s a white refrigerator adorned with various magnets, notes, and what
looks like a collection of children’s drawings. The fridge is situated next to wooden cabinetry that
extends around the kitchen. The countertop is covered with an assortment of kitchen items: there
are several stainless steel pots and lids, a colander, mixing bowls, and a measuring cup. Also visible
are a pepper mill, salt shaker, some glass bottles (one being a clear soda bottle), a white coffee
maker, and a small stack of white plates. Other items like a whisk, a spatula, kitchen towels, a box
of plastic wrap, and numerous other containers and utensils are scattered across the countertop.
In the back, open shelves store more kitchenware, including plates, cups, and bowls. Through the
window above the counter, one can see a glimpse of the outdoor area, suggesting the kitchen has
plenty of natural light during the day. The room appears lived-in and functional, with a warm and
casual atmosphere, possibly reflecting everyday family life.

Image generated by DALL·E-3. Image generated by DALL·E-3.

Figure A·2: Original image, its generated caption and DALL·E-3-
generated images for CIR = 3.
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Original image from the dataset: CIR = 4.

Caption: The image depicts a cluttered room, which appears to be a living space that is quite
messy and disorganized. In the foreground, there is a bed with crumpled white bedding, and no one
is visible on the bed. The floor is covered with various items such as clothing, bags, boxes, papers,
and other miscellaneous objects, which give the impression of disarray. Towards the center of the
room, there is a wooden TV stand with a CRT television on top and some home decor items, such
as vases and picture frames. To the left of the TV stand is another wooden furniture piece, possible
a cabinet or kitchenette area, with appliances on top, including what looks like a microwave and
a toaster. The counter space seems to be occupied by various kitchen items, and a glimpse of the
sink area suggests it is full as well. The room extends further back, with a partially visible shelf
holding books or other items. On the right, you can see an open door that leads to another room,
where some clothes and additional items are visible. The walls are adorned with posters, pictures,
and other hanging items, adding to the personal touch of the living space.

Image generated by DALL·E-3. Image generated by DALL·E-3.

Figure A·3: Original image, its generated caption and DALL·E-3-
generated images for CIR = 4.
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Original image from the dataset: CIR = 8.

Caption: This image shows an extremely cluttered room with a vast array of items haphazardly
strewn about, indicating a severe case of hoarding. There are many cardboard boxes, some labeled
with the word ”DINEX,” suggesting they may have originally contained dinnerware or kitchen items.
The room appears to be filled to capacity with an assortment of objects, including books, bags, a
wicker basket, clothing, and what looks like a chandelier on the floor among the chaos. In the middle,
there’s a brown chair piled with various items, making it unusable. A wide assortment of items can
be seen, suggesting that the space serves multiple purposes, or that items have simply been placed
without any organizational system. Among the visible items, there are also what appear to be yarn
balls, possibly indicating that someone in the home may have knitting as a hobby. The lighting in
the photo is dim, which might imply that the room lacks proper lighting or that the windows are
obstructed, which is common in hoarding situations. Overall, the state of the room suggests a living
space that has become dysfunctional due to excessive clutter.

Image generated by DALL·E-3. Image generated by DALL·E-3.

Figure A·4: Original image, its generated caption and DALL·E-3-generated
images for CIR = 8.
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Original image from the dataset: CIR = 9.

Caption: The image depicts a cluttered and disorganized indoor space, seemingly a kitchen that
is overwhelmed with various items, suggesting a severe case of hoarding. Here are the key elements
observed: appliances and Furniture There is a white refrigerator on the left side with its door barely
visible due to the clutter. On top of the refrigerator, there are more stacked items, mostly small
boxes and loose pieces of paper. In front of the fridge, there is a gas stove, with its surface covered
by various items, including what appears to be a blackened pot. The right side of the photo shows
a part of a gray plastic storage container. The bulk of the image shows an enormous amount of
clutter. Piles of cardboard boxes, both intact and broken down, are strewn about. There are also
visible plastic containers, several bottles, and cans that appear to be food items or condiments. The
mess covers the floor, making it difficult to distinguish a clear pathway. A variety of items can be
seen amidst the chaos, such as kitchen utensils, food packaging, a striped piece of fabric.

Image generated by DALL·E-3. Image generated by DALL·E-3.

Figure A·5: Original image, its generated caption and DALL·E-3-generated
images for CIR = 9.
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Appendix B

T-SNE Distribution Visualization for

Individual CIR Classes

In Figure 5·3, we visualized a joint t-SNE distribution of image embeddings of the

dataset of 1,233 natural images and of 128 images generated by DALL·E-3 and ver-

ified by professionals specializing in hoarding disorder. Since that visualization is

quite dense, it is difficult to discern overlap patterns of symbols. Therefore, in Fig-

ures B·1-B·9 in this appendix, we show visualizations of t-SNE distributions of image

embeddings of 128 DALL·E-3-generated and verified images (for CIR classes 1, 3, 4,

8, 9) jointly with the embeddings of natural images from a single CIR class from our

dataset at a time. This allows easier interpretation of results.

It is clear from Figure B·1 that the generated images with CIR class 1 (red symbols

“1”) have substantial overlap with CIR class 1 images from the dataset (black symbols

“1”); with few exceptions the red symbols “1” are located among the black symbols

“1”. However, there is minimal overlap between the generated images with CIR class

3 and natural images with the same class (Figure B·3), and almost no overlap for

generated images with classes 4, 8 and 9 (Figures B·4, B·8 and B·9). Finally, as

expected, the 128 generated images with CIR classes 1, 3, 4, 8, and 9 have effectively

no overlap with natural images from the dataset for classes 2, 5, 6, 7. This observation

aligns with our conjecture in Section 5.3, suggesting that the newly-generated images

indeed introduce new content. Consequently, this leads to skewed results when the

generated data are used only during the training process but not during testing.
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Figure B·1: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 1 (118 natural images shown as black digits “1”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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Figure B·2: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 2 (153 natural images shown as black digits “2”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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Figure B·3: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 3 (117 natural images shown as black digits “3”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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Figure B·4: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 4 (97 natural images shown as black digits “4”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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Figure B·5: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 5 (146 natural images shown as black digits “5”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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Figure B·6: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 6 (181 natural images shown as black digits “6”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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Figure B·7: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 7 (215 natural images shown as black digits “7”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).



56

Figure B·8: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 8 (119 natural images shown as black digits “8”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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Figure B·9: Joint t-SNE visualization of embeddings for dataset im-
ages with CIR class 9 (87 natural images shown as black digits “9”)
and 128 DALL·E-3-generated and verified images (red digits denoting
CIR classes).
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