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PROBABILISTIC METHODS FOR ADAPTIVE BACKGROUND

SUBTRACTION

J. MIKE MCHUGH

ABSTRACT

Visual surveillance applications such as object identification, movement tracking, and ac-

tivity monitoring require reliable moving object detection as an initial processing step. The

process that segments moving objects from the stationary scene is termed background sub-

traction. In the past, the most effective background subtraction methods have been those

that employ probabilistic modeling of the background. In this thesis, we present three

adaptive detection modalities that apply generally to any pixel-based probabilistic back-

ground model. Formulated within the classical binary hypothesis framework, a method for

explicit foreground modeling is proposed, which refines the decision process wherever mov-

ing objects are present and reduces the miss rate. Also, by modeling the detection mask

as a Markov random field, we present a method that adapts spatially to impose continuity

on the detection result. In addition, we apply a multiple comparisons procedure known

as false discovery rate control. The result is a temporally variable thresholding strategy

that adapts to object sparsity. The new methods offer a clear qualitative improvement in

real scenarios as well as a measurable performance gain over non-adaptive techniques when

tested on synthetic sequences.
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Chapter 1

Introduction

Background subtraction is a general term for a process which aims to segment moving fore-

ground objects from a relatively stationary background. As it has been noted in (Migdal

and Grimson, 2005) and (Radke, 2005), we point out that that there is an important dis-

tinction between the background modeling and background detection stages, which comprise

the whole subtraction process. As illustrated in Figure 1.1, these two stages are often in-

terrelated and sometimes overlapping. The modeling stage creates and maintains a model

of the background scene. The detection process is responsible for segmenting the current

image into moving (foreground) and stationary (background) regions based on the current

background model. The resulting detection masks may then be fed back into the modeling

process in order to avoid corruption of the background model by foreground objects.

E
Background

Detection

Background
Modeling

Video
Source

B

I

Figure 1.1: A video source produces images I. The modeling stage uses
previous video frames and detection results to maintain background model
B. The detection stage compares the current frame to the current model
to produce a detection mask E.

It’s worth noting that the task of background subtraction is different from other types

of image change detection that compare two images taken at different times. Examples
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of the latter may include object based video coding, remote sensing, or biomedical image

applications. In our case, the scenario is visual surveillance with many images arriving

at a high rate (around 25 frames per second typically). Generally, the setup involves a

stationary surveillance camera monitoring some scene, which is traversed by objects such

as cars on a road or pedestrians on a sidewalk. For any type of image change detection

task, one aims to detect ‘interesting’ changes and to ignore ‘uninteresting’ ones (Radke,

2005). For background subtraction, the types of changes we wish to detect are those which

correspond to moving objects - e.g., a car occupies a region that is normally the road.

The types of ‘uninteresting’ changes, which we wish to be robust to, include global motion

due to camera shake; gradual illumination change arising from cloud cover, for example;

and small amplitude, local motion of non-stationary background scenery such as foliage

or water. The background subtraction process may be inherently robust to these sorts of

changes. Since the scope of uninteresting changes is far wider than that of the type we

wish to detect, it is difficult for any one method to be robust to all of them. Consequently,

separate pre-processing or post-processing stages may be required to handle some of them.

1.1 Applications for moving object detection

Background subtraction is generally considered a lower level image processing task. The

segmentation result of the background subtraction stage is then fed into some higher level

application, which aims to understand something about the scene. One such application is

that of identifying and classifying moving objects based on their appearance. For reliable

classification, the object must be described in a compact and robust fashion. The descrip-

tion may include its color distribution, size, shape, and textural information. In order

for the description to be characteristic of the true object, a reliable segmentation must be

provided. Otherwise, errors in the detection stage will give rise to misrepresentation, which

may result in misclassification.

Understanding surveilled activity encompasses an array of interesting and challenging

problems. Consider the task of object motion tracking, whereby we wish to determine the
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position of the same object across time. When there are multiple objects present in the

scene, there must be some way of ensuring that tracks correspond to the same object. As

in the object recognition problem, an appearance descriptor may be used to measure the

similarity of segmented objects in different frames. Again, reliable detections will increase

the confidence in matches. Another set of activity understanding problems are human pose

and gait recognition, i.e., identifying and distinguishing between a person’s orientation like

sitting, standing, or crouched, and a person’s movements like running, jogging, or walking.

These types of tasks require not only good initial object detection, but reliable body part

segmentation as well.

Most of these higher level algorithms are designed so that they are robust to a certain

level of error in the detection masks. Those which are more sensitive will require image

pre-processing or some kind of post-processing of the masks themselves, as is commonly

seen. Clearly, improving the background subtraction task itself must transitively improve

the higher level applications which it serves.

1.2 Goals of this work

In most of the background subtraction literature to-date, the methods described utilize

some kind of pixel-based probability assignment. For this work, the primary method for

modeling the background is via the method proposed in (Elgammal et al., 2000). This

method was chosen because of it’s accuracy, generality, and simplicity. The main contribu-

tions presented in this thesis are within the realm of background detection and they apply

generally to many existing background modeling methods.

Our goals in this research were to improve the accuracy of the background subtraction

method described in (Elgammal et al., 2000). While the authors of that work do describe a

post-processing stage to improve the detection results, the method is poorly presented and

it is formulated in a seemingly ad-hoc fashion. We aimed to find solutions that apply more

generally. We have done this by recasting the problem in the classical binary hypothesis

testing framework. In doing this, the detection modality, which has traditionally been a
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simple fixed thresholding, may be refined by intelligently modeling other image statistics.

In addition, by transforming the background modeling process into the statistical signifi-

cance domain, we are able to achieve bounded error rates. This alleviates the algorithm

designer from having to choose a threshold heuristically.

These new detection strategies become adaptive to different aspects of the scene. They

do not, however, ignore the background statistics as morphological post processing does.

That is to say, any strong evidence in the background data to support the assignment of

a particular label will not be suppressed unless it is offset by stronger evidence elsewhere

supporting the opposite assignment. Many of the commonly used post-processing methods

that aim to improve detection results, such as morphological operations, cannot make this

claim.

In addition, we require that our methods be robust to slowly changing scenes, i.e., the

background model must update over time. We are also particularly interested in robust-

ness to camera shake, which is a common difficulty encountered with outdoor surveillance

cameras. As with any processing algorithm, it would be to our benefit to have methods

that are relatively simple to implement and light on memory. While these are not strict

requirements, details on the algorithm’s implementation are noteworthy.

1.3 Thesis overview

The remainder of this thesis is organized as follows. A review of current background

subtraction techniques is provided in Chapter 2. Next, some preliminary mathematical

concepts that are utilized throughout the thesis are described in Chapter 3. Chapter 4

describes in detail the manner in which we model the background. In particular, three

different models are presented and compared. Following the discussion of background

modeling methods, Chapter 5 turns to background detection. Two spatially adaptive

thresholding strategies are presented which help to suppress false detections and improve

the results. The first, refines the decision process by explicitly modeling the foreground in

addition to the background. The second strategy, posed as an inverse problem, relies on
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modeling the detection mask as a Markov random field. In Chapter 6, we apply a multiple

comparison procedure (MCP) known as false discovery rate control, which is common in

the bio-statistical communities, to the task of background subtraction. The result is a

thresholding strategy that not only ensures bounded error rates, but also adapts to the

density of moving objects over time. Finally, Chapter 7 offers concluding remarks and

points out areas for future research.
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Chapter 2

A review of prior work

Moving object detection algorithms for video have existed for some time. Despite the years

of work on this topic, research still continues because it is very difficult to obtain reliable

detection masks. Also, considering the huge space of all possible scenes and the variety

of challenges they may present - global illumination change, camera jitter, camouflaging,

small local motion of background structures, etc. - it is no wonder that a single, universally

applicable method has yet to be found. In this chapter, we survey the state of the art in

background subtraction to provide context for the subsequent presentation of our methods.

2.1 Literal background subtraction

In the simplest of interpretations, the task of background subtraction entails estimating

an actual background image, B, and subtracting it from the current video frame I. The

absolute value of the difference can be thresholded to find the detection mask, e. The

decision at each pixel, n becomes

|I[n] − B[n]|
F
≷
B

φ. (2.1)

The threshold can be tuned to account for camera noise, which is often modeled as additive

white Gaussian noise. When the scene is truly stationary and the only variation arises from

camera noise and moving objects, this simple method of subtracting the background can

perform rather well. Accurate estimation and maintenance of the background image is

crucial for this method to work, however. Simply taking a single training frame free of

moving objects as the estimate for B is generally not sufficient. Firstly, the single frame is
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the true B plus the realization of some random, zero-mean noise process, so the estimate

is poor. Also, using only a single frame does not allow for any updating.

The 1-D temporal average will provide a good estimate of B when a training sequence (a

segment of video with no object motion) is available. Outliers corresponding to foreground

objects will corrupt this estimate. This immediately poses a problem when one wishes to

update the estimate on-line. A selective filter which updates the background image with

only stationary regions of the observed scene may be an attractive alternative:

B[n, k + 1] =





ρI[n, k] + (1 − ρ)B[n, k] if e[n] = B

B[n, k] if e[n] = F
(2.2)

where e[n] denotes the current detection mask at pixel n and the parameter ρ controls

the update speed: ρ of about 10% is usually reasonable. Notice that the top line of

(2.2) is a simple temporal auto-regressive estimate, as opposed to the moving average.

This representation of the background is recursive, meaning that all previous images are

embedded in B, not just recent ones. This can potentially be harmful if the background

scene changes significantly. Introducing a certain amount of ‘forgetfulness’ in the model

by increasing the update speed, ρ, can allow the model to adapt to such changes. From a

filtering viewpoint, increasing the parameter ρ will shorten the effective impulse response

length. For reference, ρ = 10% has a “memory” of about 44 frames after which there is no

significant contribution (less than 0.1%) from previous frames; ρ = 5% will “remember”

about 77 frames.

Alternatively, a non-recursive, or sliding window, approach may be taken which consid-

ers only recent frames. Implicitly, a non-recursive approach incurs a memory cost to the

algorithm since a frame buffer is required. In place of the temporal mean, which is suscep-

tible to outliers, the temporal median is commonly used. In (Cutler and Davis, 1998), the

median across 50-200 recent frames is used to estimate the background image, with the

assumption that over this span of time, a pixel is occupied by background at least 50% of

the time. Alternatively, in (Jodoin et al., 2006a) B[n] is computed by taking a temporal
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median across only 5 frames, spaced apart in time. This is advantageous because the size

of the buffer is much smaller. Also, since the frames are non-consecutive, it is unlikely

that a non-background outlier will appear in the same location in multiple frames so the

median is still a robust estimate.

A recursive median estimate is used in (McFarlane and Schofield, 1995); the running

estimate of the median is incremented by one if the current observation is greater than the

previous estimate, and decremented by one if it is less. Each pixel in B then eventually

converges to a value such that 50% of observed values are above it and 50% are below -

i.e., the median. This clearly has the advantage of being both very simple and memory

light, since no buffer is required. The detection performance with this method, however, is

poor compared to the sliding window median.

In (Cucchiara et al., 2003), an object-based approach is taken whereby moving objects,

so-called “ghosts”, and shadows thereof are detected based on a number of features of

detected foreground regions (size, optical flow, intensity, etc.). The background model is

first estimated with a temporal median and then it is updated with knowledge of previous

object segmentations, similar to (2.2). This can be thought of as a hybrid between a video

processing and an understanding algorithm whereby information from the higher level of

classification is fed back into the lower level task of background subtraction.

2.2 Pixel-based probabilistic models

Although simple subtraction of a background frame will work when the scene is well be-

haved, generally, this is not the case. Consider, for instance, when there is small local

motion in the scene, due to camera jitter or from non-stationary background structures

such as foliage, water, or rain. In these more difficult situations, a single image cannot

sufficiently describe the complex behavior of the scene. It is more common to model the

background with a probability density function (PDF) at each pixel in cases like these.

Such a probabilistic approach is more general and is able to better characterize complex

scene behavior.
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Literal background subtraction, according to Equation (2.1), can be thought of as

modeling each pixel with a Gaussian PDF - essentially, the PDF of the noise process

shifted by some amount, B[n]. Consider a case when a region of the background is not

entirely stationary, i.e., there is some small local motion. A single pixel will take on a

range of intensities (colors) over time, thus a more accurate probability model would be

multimodal.

Many of the pixel based PDF methods in the literature are of the mixture-of-Gaussians

(MoG) variety; each pixel’s intensity is described by a mixture of K Gaussian distributions

where K is usually a small number. The MoG model can be described by the parameters

for each component, the mean µk, the variance σ2
k, and a weight wk. These parameters may

be estimated using an expectation maximization (EM) algorithm with recently observed

data. This is rather costly computationally and a recursive approach is commonly taken

instead. For example, an incremental EM approach is taken in (Friedman and Russell,

1997) whereby the MoG parameters are updated at each time instance. This poses a slight

problem, however, since it is not clear how to initialize the model or how to choose an

appropriate number of mixture components to begin with.

An on-line K-means approach is taken by (Stauffer and Grimson, 2000). In this ap-

proach, each incoming pixel is matched to a cluster if it is within 2.5 standard deviations

from the cluster mean. The parameters for that cluster are then updated with the new

observation. Repeated similar pixels will drive the weight of their cluster up and simulta-

neously reduce the cluster variance, indicating a higher selectivity. If no match is found,

the observation becomes a new cluster with an initially low weight and wide variance. The

quantity wk/σ
2
k is in essence a measure of the confidence that a given cluster is background.

The clusters which are included in the background PDF are then chosen by sorting each

cluster according to wk/σ
2
k and selecting the first M of them:

M = arg min
m

(
m∑

k=1

wk > T

)
.

with T being some predetermined proportion of the clusters. When T is small, M = 1 and
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the resulting PDFs will be unimodal. When T is allowed to increase, M ≥ 1 can give rise

to multimodal PDFs. Note that the weights of the clusters in the K-means algorithm are

not the same as the weights of the MoG mixture components. The M MoG weights must

be renormalized so that they sum to 1.

Even this lighter, on-line technique requires a good deal of processing and memory, since

the above process must be done for each pixel and must be reiterated for every frame. To

speed up this algorithm, a fast variant dubbed the “group of clusters” method is presented

in (Butler et al., 2003). In this variant, the clusters are parameterized by only the weight

wk and the centroid ck, which can each be updated quickly. An incoming observation,

x, is matched to the cluster whose centroid that is closest by Manhattan distance; the

matched weight is labeled w∗. Background clusters will have large weights and outliers

corresponding to foreground objects will fall in smaller clusters. The probabilities that the

current observation is either background or foreground are estimated as

Pr {x belongs to B} =
∑

wk≤w∗

wk

Pr {x belongs to F} =
∑

wk>w∗

wk .

While fast, this pixel-based probability estimate is coarse and the authors concede that

post-processing is necessary to fix misclassifications.

As an alternative to the MoG PDF, the authors of (Elgammal et al., 2000) present

a non-parametric approach. Instead of modeling each background pixel by a Gaussian

mixture model, a PDF estimate is found using a Gaussian kernel function applied to a

recent history of observations at each pixel. Essentially, the PDF estimate is a normalized

histogram of the previous observations, filtered by the Gaussian kernel. This approach is

attractive for a number of reasons. Firstly, the non-parametric density can be unimodal

or multimodal thus it adequately models stationary and dynamic background areas of

the scene. In contrast to the MoG approach, there is no ambiguity as to the appropriate

number of modes and there are no parameters that need to be estimated on-line. Moreover,
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determining the probability of an observation according to the non-parametric PDF can

be computed very quickly. The main drawback of this method compared to the methods of

(Friedman and Russell, 1997) and (Stauffer and Grimson, 2000) is that it is non-recursive

and so it requires a frame buffer. Less this minor drawback, for the same modeling ability

of MoG, the kernel-based method is far simpler and faster.

Although there are many more methods which fall under the pixel-based probabilistic

heading, we highlight one more which is of particular interest. The aforementioned on-line

MoG and kernel-based methods inherently adapt the pixel PDF in time. In (Jodoin et al.,

2006a), a framework based on spatial distributions is proposed. There, the principle of

ergodicity is exploited. The main assumption is that when small local motion is present in

the background scene, the statistics of pixel content observed in a small spatial region will

resemble those observed over time. Instead of training and maintaining the background

PDF with incoming observations, local content from a background image B serves to

characterize the background. This background model results in an inherent robustness

to small local motions due to camera jitter and textured scenes. The authors apply this

spatial framework with both the MoG and kernel methods previously mentioned.

2.3 Other methods

Some other methods, which are not intrinsically pixel-based PDF models, have been pre-

sented in the literature.

Similar in principle to the spatial modeling of (Jodoin et al., 2006a), a technique based

on a region descriptor dubbed the “local kernel color histogram” is proposed in (Noriega

et al., 2006). In that paper, an image is described by color histograms that are smoothed by

a Gaussian kernel, much like the non-parametric approach. Unlike (Jodoin et al., 2006a),

however, a spatial kernel is also used which ascribes greater influence to nearer pixels.

Square 12 × 12 regions of the image, which overlap, are each described by a histogram.

The authors propose applying this region descriptor to the task of background subtraction.

Histograms are calculated for both a background image B and the current image I. A
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local distance measure is computed as the Bhattacharyya distance between corresponding

histograms. That is, the distance

d =
∑

k

√
hB

k · hI
k

is computed for each pair of histograms (hB, hI) in the images.

Since the regions are overlapping, a pixel will fall into multiple histograms. The pixel

is therefore assigned a probability based on the spatial kernel and the computed distances

of the histograms to which it belongs. This pixel probability is thresholded to obtain a

change detection mask. Although a probability is assigned to each pixel, this method

is intrinsically region-descriptor based. This implies that the detections will be largely

insensitive to small local motions. It also means that the change detection masks will be

very smooth and will lack detail, which is evident from the reported results. Additionally,

since many local histograms need to be computed and stored as well as the corresponding

Bhattacharyya distances, this method will be slow and require a large amount of memory.

Another interesting approach to background subtraction is through the calculation of

“eigenbackgrounds” as in (Oliver et al., 2000). Each of N training images (i.e., containing

only background) are represented as vectors: if the images are natively (H ×W ) in dimen-

sion, the vector representation is (HW × 1). The mean of each pixel and the covariance

matrix is determined from these N frames. An eigenvector decomposition of this, very

large (HW × HW ) covariance matrix is performed and M of the vectors with the largest

eigenvalues, also known as the principle components, are kept in a matrix ΦM . The M vec-

tors in ΦM correspond to the so-called “eigen”-background images; their mean denoted µb.

Incoming images are mean subtracted and projected onto this low dimensional subspace.

The residual reconstruction error, or “difference from feature space” (DFFS), defined as

ε2(I) = ||I − µb||2 −
M∑

m=1

ΦT
M (I − µb)

is thresholded to detect motion (Moghaddam and Pentland, 1997). The authors of (Oliver
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et al., 2000) cite that the eigenbackground approach has lighter computational load than

an MoG type of description. However, they also rely on a morphological post processing

to produce their final blob segmentations of pedestrians before higher level processing is

performed.

The “Wallflower” algorithm, designed for body part segmentation and gesture recogni-

tion for is presented in (Toyama et al., 1999). The initial phase of background subtraction

in that work was based on a temporal Wiener filter at each pixel. Based on 50 previous

observations, a linear prediction of the current observation is computed. Using a history

of observations, the Wiener filter is able to capture periodic time-varying behavior of the

background under Gaussian noise. The difference between the prediction and the actual

observation is thresholded to detect foreground objects. Foreground objects themselves

can corrupt the recent history, however. The solution offered by the authors is to apply

a second Wiener filter to, not the observed values, but the predicted values of the first

Wiener filter. This clearly doubles the required computation.
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Chapter 3

Preliminaries

Before delving into the background subtraction methods of this paper, it is necessary to

introduce some concepts and notation which will be used throughout.

In this paper our presentation is based on grayscale intensity image sequences denoted

I[n, k]. The second index, k denoting the time or frame number in the sequence, is used

minimally here and will often be omitted in the text to simplify notation. The spatial index

is indicated by the vector (boldface) n = [n1 n2]
T and exists on an orthogonal lattice:

n ∈ Λ ∈ R
2

Intensity values are quantized to integers in the range [0, 255]. Although we consider only

grayscale, extensions to higher spaces of color are straightforward.

The detection result of background subtraction is a binary detection mask, or label

field. Throughout this thesis, the detection mask at pixel n shall be denoted with the

symbol e[n]: e[n] = 0 if pixel n is determined to arise from the background and e[n] = 1

if it belongs to the foreground.

3.1 Binary hypothesis testing

Performing background subtraction on an image I[n] entails applying a label, either B

or F , to each pixel by comparing the current image to some background model. The

problem can be formulated as hypothesis testing (Theodoridis and Koutroubas, 2006). In
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the common fashion, the decision is framed thusly:

Pr
{
I[n] = I[n]

∣∣ B
}

Pr
{
I[n] = I[n]

∣∣ F
}

B
≷
F

η
πF

πB
. (3.1)

The probabilities on the left hand side denote the probability of observing the intensity

value I[n] (the realization of the random field I[n]) given that it is the projection of ei-

ther the background scene or a foreground object. To simplify notation, the probability

Pr
{
I[n] = I[n]

∣∣ B
}

will henceforward be denoted more compactly as PB(I[n]), and like-

wise for PF (I[n]). The functions PB and PF are probability density functions (PDFs)

which shall be discussed in more detail in Section 3.3. The ratio of these probabilities is

known as the likelihood ratio and the (3.1) is called a likelihood ratio test (LRT). The right

hand side contains the prior probabilities of observing background πB or foreground πF

and a cost term η. The prior ratio biases the decision based on the the a priori probability

of observing each outcome. The cost term can be designed to incur unequal penalty to the

four decision/truth scenarios: B/B, B/F , F/F , and F/B.

3.2 Multiple comparisons procedures

In a binary hypothesis test, there is one test which results in one of two possible outcomes.

This deterministic decision rule maps an observation onto the 2-element decision space,

commonly denoted by {H0, H1} corresponding to the null and positive hypotheses respec-

tively; equivalently {B,F} in our treatment. In the context of background subtraction,

this test is being performed at every pixel in an image, thus we have many such binary

tests.

The framework of so-called multiple comparisons procedures (MCP) is essentially the

same; there are M binary tests each with a unique probability distribution under the null

hypothesis. A decision rule maps each of M observations into a decision of either H0 or

H1 (B or F). To facilitate further discussion, we now introduce some new terminology

relevant to MCP. Table 3.1 illustrates the definitions of random variables which denote

quantities of trials; that is, each takes an integer value in the range [0, M ]. In general, U,
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V, T, and S are unobservable random variables while R is observable (as is the quantity

M − R, naturally).

Table 3.1: Definition of random variables for MCP.

# declared H0 # declared H1

# true H0 U V

# true H1 T S

Total M − R R

With these random variables defined, we may now define error rates which are of

particular importance. The global false positive rate (FPR) and false negative rate (FNR)

are defined thusly:

FPR = E {V} /M (3.2)

FNR = E {T} /M (3.3)

where E {·} denotes the expectation operator. Additionally, the total error rate (TER) is

simply the sum of these two individual error types:

TER = E {V + T} /M. (3.4)

For our purposes, these quantities suffice to qualify a particular detection strategy and of

course our general aim is to reduce all error rates. In addition, the so-called false discovery

rate becomes a quantity of interest in Chapter 6. It is defined as the expected proportion

of H1 declarations which are erroneous:

FDR = E {V/R} . (3.5)

When the ground truth is known, the realizations of all quantities in Table 3.1 are

observable. The error rates can be estimated by averaging observed quantities v, t, and r

over multiple trials.
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3.3 Non-parametric PDF estimate

The background modeling stage consists of characterizing the typical intensity values that

each pixel takes. In other words, a probability density function is estimated at each lo-

cation. As discussed in Chapter 2, there are a number of ways that this can be done.

Following the example of (Elgammal et al., 2000; Elgammal et al., 2002), this work consid-

ers models of the non-parametric type. The non-parametric estimate is attractive because

it converges to the true underlying PDF with an appropriately selected kernel function

(Theodoridis and Koutroubas, 2006). Let the kernel functions, K, be zero-mean Gaussians

parameterized by variance σ2:

K(x) =
1√

2πσ2
exp

(
x2

2σ2

)

A technique for adaptively estimating the kernel bandwidth (variance) at each pixel is

presented in (Elgammal et al., 2000; Elgammal et al., 2002). In this work, however, a

constant kernel variance for the entire image is used for simplicity and ease of computation.

This is sufficient because any observed variability in the intensity that is not caused by

movement or change in the scene itself arises from camera noise. Our assumption is that

the camera noise is consistent across the entire image. The PDF is constructed from sample

data y by summing shifted copies of the kernel:

P (x) =
1

|M|
∑

y∈M

K(x − y). (3.6)

The set M, denoting the particular model, is comprised of intensity values y. The manner

in which pixels are added to the model will be discussed in Chapter 4.

The intensity values (x, y, and I[n]) are discretized to integers in the range [0, 255].

P (x) may alternatively be viewed as the histogram of y ∈ M, normalized by |M| and

filtered by K(x).

The following examples serve to clarify the point. We have generated 100 random

observations (black x’s) from two known underlying PDF’s (blue curves), one unimodal
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and one multimodal. The non-parametric density estimate built from the observed data is

shown (green curves).
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Figure 3.1: Examples of two non-parametric PDF estimates. The true
underlying PDF is shown in blue. Samples generated from this distribution
are denoted with black x’s and the non-parametric density estimate built
from these samples is shown in green.

From an implementation perspective, computing an entire density function at each pixel

is costly and requires a significant amount of storage. Thankfully, it is also often unneces-

sary. Since we only wish to classify the current observation as background or foreground,

we only need the probability of the current observation according to the given distribu-

tion: the value PB(I[n]). This can be exploited when implementing the modeling process.



19

Since good background models are adaptive, the PDF is constantly changing. Regularly

updating the entire PDF (i.e., all 256 values) for every pixel can be very computationally

intensive. Even when the PDF updating scheme is intelligent - discard only old samples

and incorporate only new samples as opposed to rebuilding from scratch each time - com-

puting a single value has a large advantage over computing 256 values. With x replaced

by I[n] in (3.6), the summation can be viewed as aggregating the similarity of each model

pixel y with the current observation. Since the kernel function is symmetric and decreasing

in the absolute value of the argument, small absolute differences contribute largely to the

similarity measure, while large absolute differences will only contribute slightly. Further-

more, since the density functions are discretized, the values of K(|x|) can be precomputed

then looked up from a list at run time.

3.4 Simplified background detection

In the forthcoming chapter, several background modeling methods are presented and com-

pared. To frame the discussion as background subtraction, a particular detection modality

must be defined. Within the framework of (3.1), a simple detection method is herein

derived. Later, in Chapters 5 and 6, the detection process will become more sophisticated.

In many hypothesis testing problems, it is common to translate the decision rule of

(3.1) into the observation space. Here, it is more convenient to stay in the probability

space. The simplest background detection process involves comparing a value of PB(I[n])

to some threshold, θ. A pixel is thereby labeled as F if the probability is sufficiently small,

i.e., the observed value is unlikely to have come from the background. Consider this in

terms of the framework of (3.1). The probability of observing a particular intensity value

I[n] when the pixel is occupied by a moving object is uncertain. Since a moving object’s

presence in the scene is transient, it is appropriate to assume that it’s intensity (color)

distribution is unknown. PF (I[n]) is therefore considered to be uniformly distributed over

all intensity values. Taking on a constant value, PF (I[n]) can be collected with the other
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constants, πB,πF , and η, on the right-hand side to arrive at a fixed threshold test:

PB(I[n])
B
≷
F

θ (3.7)
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Chapter 4

Background modeling

We now turn our attention to the background PDF PB. Here I define three different

background models which may all be described by the non-parametric PDF discussed in

Section 3.3. This method of modeling the background is advantageous because it can

describe complex scenes that are not completely static. Also, the implementation is very

fast and straightforward since determining the value PB(I[n]) requires only additions and

list lookups (since the intensity data are quantized to integers). Also, unlike an MoG

background model, there are no parameters that need to be estimated.

Each of the three models presented in this chapter differ in the composition of the set

of model pixels, M. Therefore, the three models will be referred to as Mi with i = 0, 1, 2.

The ‘zeroth’ model, so dubbed because it is a degenerate case, corresponds to a literal

subtraction of a background image from the current frame. The next model is comprised

of a set of recently observed pixels. This was originally proposed in (Elgammal et al.,

2000) and is the basis for much of this work. The third model considered in this thesis

was originally proposed in (Jodoin et al., 2006b) and is based on pixels observed locally in

space, rather than pixels observed locally in time.

These three background models provide different ways to describe a particular scene.

As with many engineering problems, there is not necessarily one universally best method.

Over a range of scenarios, tradeoffs must be made between model accuracy, memory re-

quirements, and processing time. These issues become pertinent when we evaluate the

detection methods presented in Chapter 5.
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4.1 Background frame: M0

4.1.1 Definition

In the most literal interpretation of “background subtraction” a background image B[n]

is pixel-wise subtracted from the current frame and the absolute difference is compared

to a threshold. This can be thought of as modeling the pixel by a Gaussian PDF with

mean B[n] and variance σ2 which accounts for camera noise. The similarity is illustrated

in Fig. 4.1. A threshold in terms of the probability, θ, transforms directly to a threshold

in terms of the absolute difference, φ, via the Gaussian function:

1√
2πσ2

exp

(−(x − µ)2

2σ2

)
B
≷
F

θ

|x − µ|
F
≷
B

φ ≡
√
−σ2 ln (2πσ2θ2)

In terms of the non-parametric density of (3.6), the single Gaussian model is a degen-

erate case. Nevertheless, let the model for pixel I[n, k] be defined as

M0(I[n, k]) =
{
y
∣∣ y = B[n]

}
. (4.1)

Thresholding the intensity difference is more straightforward in terms implementation.

However, when this simple method is abstracted out to a probabilistic framework, it aligns

nicely with the other models discussed in the following sections.

4.1.2 Issues

As discussed in Chapter 2, there are a number of ways in which the background frame may

be updated. One may recursively update B by blending non-detected regions of incoming

frames, or take a temporal mean or median over a set of buffered frames. These methods

fail however when the camera jitters, causing frames to become misaligned, as shown in

Fig. 4.2. Currently, wind load causes our outdoor surveillance cameras to sway and shake,

sometimes violently. To combat camera shake, frames are preregistered with a technique

called phase correlation, or PC. The method itself is described in detail in Appendix A.
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Figure 4.1: Probabilistic interpretation of literal background subtraction.
When the background PDF is symmetric, e.g., a single Gaussian (µ =
120 and σ2 = 6 here), comparison to a threshold θ yields decision regions
equivalent to those achieved by thresholding the absolute difference |x−µ|.

Even when frames are preregistered using PC, small residual misalignments will cause false

detections along high contrast edges, as can be seen in Fig. 4.3.

Another difficult case for literal background subtraction is a textured background that

moves slightly, e.g., foliage or water. In these cases, a background pixel will commonly take

on a range of intensity values which the simple model of M0 cannot capture. In parts of

the scene that are static, like the highway in Fig. 4.4, the simple background frame model

performs rather well. When the background is not entirely stationary however, literally
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Figure 4.2: When the camera shakes, simply subtracting the background
is clearly insufficient. The background frame itself (top) is distorted as a
result of ρ-blending misaligned frames together.

subtracting a background image is insufficient. To deal with the difficulties discussed, more

sophisticated models must be employed.

4.2 Local-in-time model: M1

4.2.1 Definition

The background model denoted M1 is constructed in the manner described in (Elgammal

et al., 2000; Elgammal et al., 2002). At each location n, the model consists of a recent

history of N intensity values at that location.

M1(I[n, k]) =
{
y
∣∣ y = I[n, k − l]

}

l = 1, 2, . . . , N

(4.2)

The number of recent frames, N , is usually around 50-100, which corresponds to few

seconds of video (the frame rate is around 25 frames per second).
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Figure 4.3: Realigning the frames before performing detection substan-
tially improves the detection performance when using M0 as well as the
quality of the background image (top). False positives along high contrast
edges are still present however. Details of the realignment technique used
can be found in Appendix A.

Figure 4.4: Although the cars on the highway below are well detected, the
trees in this frame, whose leaves and shadows thereof displace slightly, are
incorrectly detected as moving objects using model M0.

In Fig. 4.5 the recent history at a single pixel is shown along with the resulting PDF.

Notice that outliers in the history (in this case corresponding to moving objects) will cause
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the model to characterize non-background. If the number of outliers is small compared

to the total number of samples, the effects are minimal. Notice the transient state of the

pixel intensity in Fig. 4.5 contributes a non-background peak to the PDF. Clearly, this can

lead to misses if another object of similar intensity (color) occupies this pixel in the near

future. For this reason, it is wise to selectively update the background model, i.e., only

add a new pixel to the model if it has previously been declared background. In contrast,

the simple updating technique whereby pixels are added to the model regardless of their

previous label is termed a blind update (Elgammal et al., 2002).

4.2.2 Sample detection results

The local-in-time (LIT) background modeling method has long been favored for its effec-

tiveness and simplicity, and it is the basis for much of this work. The moving nature of this

model in time means that it is inherently adaptive to gradual scene changes. Furthermore,

it was designed to be able to characterize difficult, non-stationary scenes: e.g., an outdoor

scene with a tree in the background whose leaves and branches move with the wind. A

pixel that is occupied by more than one object over time (e.g., a leaf, a branch, and the

sky) can effectively be modeled by a multimodal distribution using the non-parametric

density estimate.

To some extent, the model can also handle slight camera jitter. When the shakiness

of the camera is substantial, which it happens to be in our particular case, the model

will fail as illustrated in Fig. 4.7. Notice that many errors are present, especially along

high contrast edges. When the frames have been aligned with the PC preprocessing step

(see Appendix A), the detection is much better. The PC method we use determines

a global displacement to within single pixel accuracy. While it is possible to perform

subpixel registration with this same method, redrawing a frame with a fractional offset

requires interpolation, which has an undesired lowpass smoothing effect. Occasionally,

a slight misregistration can cause detection errors, as illustrated in Fig. 4.8. Since the

registration is accurate to within one pixel, these specific types of errors tend to manifest
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Figure 4.5: Frame from a test sequence with two pixels highlighted. One
pixel corresponds to the stationary road (first row of graphs), the other
pixel is occupied both a moving branch and the wall of a building (second
row of graphs). The pixels’ intensity values over a recent time period which
comprise M1 and the probability density functions are shown.

as single-pixel-wide lines along edges.
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Figure 4.6: The trees in this sequence move slightly with the wind, however
M1 is able to sufficiently model the dynamic background. The resulting
detection mask highlights the moving object of interest, the car, and not
the unimportant motion of the trees.

Figure 4.7: When camera shake is present, the background subtraction
result can have a high number of false detections when using M1 (left).
Performing realignment on the frames before modeling takes place mitigates
most of these errors (right). Details of the realignment technique used can
be found in Appendix A.

4.3 Local-in-space model: M2

4.3.1 Definition

The local-in-space (LIS) model was proposed in (Jodoin et al., 2006a; Jodoin et al., 2006b)

as a memory-light alternative to LIT type models. Instead of training the background
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Figure 4.8: Although image preregistration will greatly improve the de-
tection performance using M1, occasional misregistration may still result
in detection errors along edges.

model on recent frames as for M1, nearby pixel content from a single background frame is

used to characterize the model. The definition for the LIS model is

M2(I[n, k]) =
{
y
∣∣ y = B[m]

}

m ∈ N (n)

(4.3)

where N (n) denotes a spatial neighborhood around pixel n (e.g., a 9 × 9 square region

centered at n). Figure 4.9 illustrates an example of a PDF built from spatially local

content.

This method exploits the principle of ergodicity. That is, the statistics of pixel content

observed over time, as in the LIT model, should be similar to pixel content observed in a

small spatial region. This is especially true when small local motion is present.

4.3.2 Sample detection results

The first advantage of the LIS model over the LIT version is that it only requires a sin-

gle frame to characterize the background, meaning that this model is light on memory.

Secondly, the LIS model is much less susceptible to errors due to camera shake. Since

local pixels are included in the model, small spatial displacements do not manifest as false

detections as they would with M1. In Fig. 4.10, sample detection results are presented

on two very shaky image sequences. The commonly seen errors due to camera shake are
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Figure 4.9: Pixels in a small region in the background frame, B, comprise
the model M2 for the pixel at the center of the region. The probability
density function built from this model is shown below.

mitigated by using this background model without the need for any preprocessing.

A drawback of using spatially local information to describe a single pixel is that the

PDFs will characterize background regions and can be wide in inhomogeneous regions. This

can result in increased misses due to camouflaging. Notice in Fig. 4.11 the large missed

region at the roof of the van. This can be attributed to the similarity of the foreground

object with a nearby region of the background.
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Figure 4.10: The LIS non-parametric model (M2) performs well on un-
registered images even under substantial camera shake.

Figure 4.11: Describing a pixel by the content of a region can ‘over-model’
the background in some cases, resulting in large missed foreground regions.
A portion of the roof of the van is incorrectly labeled as background with
M2 because it resembles a nearby region of the scene.

4.4 Discussion

Three background modeling methods which apply to a non-parametric PDF estimate have

been presented. While the simple subtraction of a background frame works relatively well

when the scene is static, small motions are better handled by the LIT and LIS models.
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In our particular case, the cameras themselves and scenes of interest are outdoors thus

camera shake and dynamic background structures are often present. Comparing the three

methods, we’ve found that LIT with pre-registration is the best solution in most cases. It

provides an accurate model of the scene and it does not suffer from unnecessarily over-

modeling the background as the LIS model can. In terms of memory requirements, M1 is

the heaviest. The LIT model requires a large frame buffer, whereas the background frame

and LIS models are lighter on memory since they require only a single frame to characterize

the scene. Model M1 also requires the pre-processing step to handle camera jitter, which

M2 does not.

One difficulty with all of these techniques is that they are prone to exhibit randomly

scattered false positives, even with a low threshold. In addition, residual misalignment from

image preregistration can also give rise to false positives, especially along high-contrast

edges as we have shown. Again, lowering the global threshold is not a desirable solution

since this will increase the miss (false negative) rate. Another very difficult situation is that

of camouflaging - when the moving object resembles the modeled background. In the LIT

case, this can be the result of outliers in the background history that have been erroneously

added to the model. In the LIS case, the camouflage may be due to over modeling the

pixel with data from an inhomogeneous region, as we have seen.

In the following chapter, we present methods whereby the detection threshold is biased

spatially according to new image statistics. Our goal is to discourage both types of errors

simultaneously resulting in more reliable and more natural looking detection masks.
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Chapter 5

Spatially adaptive background detection

Upon inspection of the detection results presented in Chapter 4, one notices that even with

good background modeling there is still room for improvement. In almost all cases, there

tend to be false positives scattered randomly across the image. Furthermore, false negatives

manifest as incompletely detected objects and jagged object boundaries. In some higher

level vision applications when relatively infrequent or inconsistent errors can be averaged

out or ignored, this may be acceptable. Applications of behavior modeling or average

motion monitoring may fall into this regime. More commonly however, in tasks involving

object tracking or identification for example, reliable object detection is paramount. In

either case, improving the performance of the background subtraction task will benefit the

higher level application.

It is possible to perform post-processing on the detection masks in order to suppress

false detections. For example, median filtering can reduce the so called salt-and-pepper

noise that is characteristic of randomly scattered errors. Morphological processing, such as

region growing and shrinking, could also be employed in an effort to fill in missing regions.

While these methods can be effective in some cases, they operate only on the detection

mask, ignoring the original image statistics. Contrarily, the detection methods described

herein remain within the general probabilistic framework described by the LRT (3.1) and

aim to intelligently refine the decision process itself. The proposed methods apply generally

to any background probability measure PB(I[n]), not only those discussed in Chapter 4.

Recall that in the previous discussion, the background detection modality was com-

parison of the background probability to some fixed threshold: PB ≷ θ. By adjusting the

global threshold, θ, performance in terms of error rate will improve for one error type but
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will suffer for the other; e.g., by lowering the threshold, the false positive rate will decrease

but the miss rate will increase. With this simple fixed-thresholding detection strategy,

constancy of the foreground distribution and prior terms is implicit. This thesis describes

how these terms can be statistically modeled and exploited in order to improve the detec-

tion performance. By adapting the threshold spatially over the image, in accordance with

probabilistic models for πB, πF , and PF , we can selectively discourage both types of errors

simultaneously.

In this chapter, two adaptive background detection methods are presented. Each can be

viewed as a spatially variable threshold biasing strategy. Section 5.1 describes a method for

estimating the foreground probability distribution PF (I[n]) from locally detected pixels.

Next, a method for controlling the prior weights πB and πF is presented in Section 5.2

whereby the detection mask is modeled as a Markov random field. Comments about

combining these methods are offered in Section 5.3. The final section of this chapter

provides a numerical performance comparison.

5.1 Explicit foreground object modeling

In the previous chapter and in most background subtraction algorithms to-date, back-

ground detection considers only statistics of the background model. As discussed in Sec-

tion 3.4, the foreground probability density is usually considered to be uniform. By esti-

mating foreground statistics more precisely, one may expect greater discrimination ability.

In some specific applications, such as body part segmentation, foreground object region

growing has been done. In (Wren et al., 1997) and in (Elgammal et al., 2002), foreground

regions are morphologically grown according to specific shape and color models of the head,

torso, and extremities. In both of these works however, the foreground blob modeling is

entirely separate from the foreground detection process itself. In the “Wallflower” algo-

rithm presented in (Toyama et al., 1999), foreground regions corresponding to arbitrary

objects, not necessarily body parts, are grown based on color histograms. Again, however,

the foreground region growing is performed as a secondary step in which the background
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statistics are ignored. This means that nearby background content that resembles the ini-

tially detected foreground is likely to become erroneously included in the grown foreground

blobs.

The method proposed in this thesis is distinct from these previous works in that the

foreground statistics are estimated and included in the background subtraction task itself,

which includes the already learned background statistics. Also, no prior shape or orienta-

tion of the foreground is explicitly assumed in our method. Details of the proposed method,

implementation notes, and some experimental results are presented in this section.

5.1.1 Proposed method

Our aim is to replace the naive, uniform foreground PDF model with a more accurate

estimate based on the appearance of the actual object. Similar to the formulation for

PB in Chapter 4, the foreground probability PF is constructed via a Gaussian kernel,

non-parametric density estimate. The intensity (color) distribution of foreground objects

may be unimodal but it will likely be multimodal. A non-parametric density is therefore

appropriate for modeling and arbitrary object and it is desirable over an MoG approach

for the same reasons discussed in Chapters 2 and 4.

Since the location of moving objects is time varying, a model consisting of recent pixels

at a single location will not suffice for PF . Instead, pixels detected in a small spatial locality

in the current frame are used, similar to the LIS background model. The proposed method

is detailed as follows.

Let e[n] denote the detection label field at pixel n; e[n] = 0 if pixel n belongs to

the background and e[n] = 1 if it belongs to the foreground. Using the naive uniform

foreground model and the simplified LRT of (3.7), an initial detection mask is found,

denoted e0[n]. Next, we define a set of locally detected pixels as

NF = {m ∈ N (n) : e0[m] = 1}

where N (n) denotes a local neighborhood around n - e.g., a 7 × 7 window centered at
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n. The foreground PDF is then estimated using the same kernel-based approach as before

from pixels of the current frame at the locations specified by NF .

PF (I[n]) =
1

|NF |
∑

m∈NF

K(I[n] − I[m]) (5.1)

If there are no detected pixels in the neighborhood of n (resulting in NF (n) = ∅), there

is presumably no foreground object at n to model and we revert to the naive assumption

that PF is uniform and takes on a constant value.

Using the stored values of PB(I[n]) and with PF (I[n]) computed at every n, the refined

likelihood ratio can be retested to obtain a new label field e1 as follows:

PB(I[n])

PF (I[n])

B
≷
F

η (5.2)

Note that the threshold on the right-hand side of (5.2) is related to the original θ of (3.7),

which implicitly includes the constant value of the naive uniform PDF

η · (1/256) = θ.

Since we have assumed nothing a priori about the label e[n] thus far, we allow πF/πB = 1.

That is, both assignments are equally likely.

From (5.2) it can be seen that PF (I[n]) defined for all n acts as a spatially variable

threshold biasing term, as we illustrate in Fig. 5.1. If for a particular intensity I[n] its

foreground probability PF (I[n]) is lower, then the effective threshold η ·PF (I[n]) is reduced

thus encouraging assignment of the background label. To the contrary, a higher value of

PF (I[n]) will encourage assignment of the foreground label.

5.1.2 Notes on implementation

The test (5.2) can be reiterated with the new label field e1 used to determine NF and

corresponding PF , and repeated in this fashion. We have noticed, however, that the process

is slow to converge. Fortunately, the most significant gains occur within the first few
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Figure 5.1: Sample frame I[n] (top left) and background probability image
PB(I[n]) (top right). The initial detection mask (bottom left) is used to
compute the foreground probability image PF (I[n]) (bottom right) which
acts as a spatially variable threshold biasing term. Red regions indicate
high probability while blue denotes low probability.

iterations and thus the process may be terminated in a reasonable amount of time. This

is illustrated in Fig. 5.2. The first detection mask shown was derived by thresholding PB

alone. Once the PF estimate is incorporated, there are far fewer false negatives, however

the subsequent iterations offer very little additional improvement.

Figure 5.2: Several iterations of background subtraction with foreground
modeling. Note a significant reduction of false negatives after the first
iteration and minimal improvements afterwards.

Care must be taken with this approach since it induces positive feedback into the
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detection process. A high number of false positives in e0 will be greatly detrimental to

the process since they will cause PF to characterize the background and the errors will

quickly compound. On the other hand, false negatives will tend to be corrected as long as

at least some similar neighbors are correctly detected initially. It is therefore important

that the initial threshold be set to discourage false detections at the expense of allowing

some misses. Looking ahead, we present a method which ensures this in Chapter 6 but for

now, the threshold is determined heuristically.

5.1.3 Example results

The intent of incorporating the foreground model is to grow detected regions correspond-

ing to true moving objects. Misses after thresholding PB alone can be the result of either

camouflaging or outliers in the background model (e.g., a previously missed pixel is acci-

dentally added to M). With a decent estimate for PF , we are able to better discriminate

in these difficult situations.

Figures 5.3 and 5.4 depict detection results from two testing sequences. In each, the

LIS background model was used to construct PB and frames were registered with the PC

preprocessing step. The improvements of this method over fixed thresholding are clearly

visible. Some regions that were badly missed initially have been successfully filled in. The

man to the left in Fig. 5.3 and the vehicles in the top right and bottom left of Fig. 5.4

most notably. Not unnoticed is the effect of an increased number of false positives. The

random speckle noise present in e0 is, as mentioned, detrimental to this detection strategy.

These errors can be suppressed with further processing, however, as we show in the coming

sections of this chapter.

5.2 Markov modeling of detection mask

Inspecting the results presented thus far one notices that the detection masks still have a

somewhat unnatural look to them, even after the foreground probability refinement step.

Most disturbing visually are the false positives, which tend to be randomly spread out
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Figure 5.3: A single frame from the testing sequence sidewalk (realigned
from a shaky camera) and detection results below. The initial detection
result after thresholding PB (LIT model) on the left and the effect of utilizing
foreground modeling in the detection process to the right.

across the image. Intuitively, it would seem wise to discourage these types of errors by

inspecting neighboring labels. Formally, the dependence on neighboring labels can be

expressed through a Markov random field (MRF) model.

Markov random field models have been used in image and video processing in a variety

of applications. In (Aach et al., 1993) and (Aach and Kaup, 1995), MRF models are

applied to change detection masks of image pairs: e.g., subsequent frames in video. In

those treatments, the test statistics were based on pixel-wise image differences. In this

thesis, we apply similar methods to background subtraction in a video surveillance scenario

where we have arbitrary background and foreground PDFs available, not just observations

from two images as those authors had.

The fixed-threshold detection (3.7) considers each pixel independently, i.e., each label

is computed regardless of neighboring labels. In other words, the a priori probabilities πB



40

Figure 5.4: A single frame from the testing sequence highway and detection
results below. The initial detection result after thresholding PB (LIT model)
on the left and the effect of utilizing foreground modeling in the detection
process to the right.

and πF are fixed and do not change as the detection process evolves. We propose to model

the detection mask by a Markov random field E, with realization e. The main idea behind

the new model is the assumption that moving (foreground) objects are usually smooth

connected regions. By incorporating local labels in the decision process, we expect to see

far fewer scattered false detections as well as smoother moving region boundaries.

5.2.1 Derivation of technique

Here, the background subtraction task is posed as in inverse problem. That is to say, a

restriction is imposed on the quantity that we are trying to determine. Specifically, we

require the label field e, which is the result of background detection, to be Markovian. By

assuming this specific structure a priori, we are able to achieve detection results which are

much more natural looking than those attainable with previously described methods.

Suppose that the label field realization e[m] is known for all m except n. This as-
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sumption is reasonable since the estimation process is usually iterative. The background

detection task is thus reduced to deciding a label for e[n] only. Let eB denote the label

field produced when e[n] = 0 and let eF denote the case when e[n] = 1. Accounting for a

priori probabilities of the label at n, the decision rule for the configuration of e is then

Pr
{
I = I

∣∣ eB
}

Pr
{
I = I

∣∣ eF
}

B
≷
F

η
Pr
{
E = eF

}

Pr {E = eB} . (5.3)

Note that Pr
{
I = I|eB

}
is the probability that the whole random field I assumes realiza-

tion I, given label field realization eB, and similarly for for Pr
{
I = I|eF

}
. The ratio of

these joint probabilities can be simplified if we allow the intensities, while dependent on

the label field, to be mutually independent spatially. That is,

Pr
{
I = I

∣∣ e
}

=
∏

m

Pr
{
I[m] = I[m]

∣∣ e[m]
}
. (5.4)

Since Pr
{
I = I|eB

}
and Pr

{
I = I|eF

}
differ only at n, common marginal terms in (5.4)

corresponding to m 6= n cancel out and the left-hand side of (5.3) reduces to

Pr
{
I = I[n]

∣∣ eB
}

Pr
{
I = I[n]

∣∣ eF
} ≡ PB(I[n])

PF (I[n])
.

Now we focus on the right-hand side of (5.3). Since E is a Markov random field, the a

priori probabilities are Gibbsian of the following general form (Geman and Geman, 1984):

Pr {E = e} =
1

Z
exp

(
−1

T

∑

c∈C

V(c)

)
(5.5)

where Z and T are normalization and natural temperature constants respectively. While

Z gets canceled in the prior ratio, T is a parameter to be set by algorithm designer. The

potential function, V(c), operates on cliques, c, in the set of all cliques in the image,

C. In this work, we take C to include all 2-element cliques of the second-order Markov

neighborhood. Since the potential function operates on 2-element cliques only, we may use
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the notation
∑

c∈C

V(c) ≡
∑

{m,n}∈C

V(m, n). (5.6)

With this clique structure defined, the sites m in (5.6) correspond to the eight immediate

neighbors of n. Extensions to higher neighborhood orders are straightforward, however,

this structure leads to a very simple implementation, as we shall show shortly.

Choosing a suitable potential function, V(n, m), is crucial to the model’s effectiveness.

The potential should be low when the label field e exhibits continuity, resulting in a high

probability. Conversely, severe fragmentation of the label field e should incur high values

of the potential, driving the probability down. Since the labels are binary, we choose to

use the Ising potential function (Geman and Geman, 1984)

V(n, m) =





0 if e[n] = e[m]

1 if e[n] 6= e[m]

In effect, a penalty of 1 is incurred if the label at site m label differs from that at site n.

With Z canceled, the ratio of Gibbs priors in (5.3) becomes

exp





1

T


 ∑

{n,m}

V(n, m)




eB

− 1

T


 ∑

{n,m}

V(n, m)




eF



 .

Since eF and eB differ only at n by definition, all terms in the above summations are

identical except for those including n. With the potential function as defined, these two

summations count the number of dissimilar neighbors of n for each case. The number of

stationary (background) and moving (foreground) neighbors shall be denoted NB[n] and

NF [n] respectively. The new hypothesis test becomes:

PB(I[n])

PF (I[n])

B
≷
F

η · exp

(
1

T
(NF [n] − NB[n])

)
(5.7)

The effect of incorporating the new prior information into the likelihood ratio test

is readily apparent. Detected moving neighbors bias the threshold toward declaring F
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whereas stationary neighbors bias the threshold toward declaring B. Again, this procedure

may be viewed as a spatially variable thresholding strategy, as illustrated in Fig. 5.5. The

constant 1/T can be thought of as a threshold variance (termed loosely), which in our

experiments is set to about 1.5.

Figure 5.5: Sample frame I[n] (left), initial detection result e0[n]) (center),
and log of MRF prior (right). Light regions indicate high probability and a
bias towards declaring F and dark regions denote the converse.

5.2.2 Notes on implementation

The detection process of (5.7) takes an existing label field as input and the result is op-

timized iteratively according to the Markov prior weighting function. The initial field

represents our initial “best guess” of the true result. In this work, we have used a deter-

ministic relaxation method to optimize the detection result known as iterated conditional

modes (ICM) (Besag, 1986). An alternative approach would be to use a stochastic relax-

ation technique, such as simulated annealing, which will converge to the true result with

high likelihood (Geman and Geman, 1984). This is the approach taken in (Migdal and

Grimson, 2005) where the detection is formulated as a maximum a posteriori (MAP) esti-

mation problem. Stochastic relaxation techniques are generally slow to converge, however.

We opted to use ICM because it is fast, simple, and it provides very good detection results.

We have noticed that the MRF detection result tends to converge quickly - usually in less

than ten iterations.

The optimization consists of counting NF [n] and NB[n] according to the current la-
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bel field and calculating the prior weight, exp
(

1
T

(NF [n] − NB[n])
)
. With the quantities

PB(I[n]) and PF (I[n]) already stored from previous steps, the test described by (5.7) is

carried out and the new label is assigned to e[n]. The test then moves to the next pixel and

repeats. The label field is updated “in-place”, which increases the speed of convergence.

The scanning paths alternate to prevent a biased propagation of the label field in one of

the scanning directions.

5.2.3 Detection improvement with MRF

The new model penalizes local dissimilarities in the detection mask which are characteristic

of random scattered false positives and jagged object boundaries. When we apply (5.7) to

the background subtraction results of Chapter 4 (still assuming that PF is constant) we

notice a substantial visual improvement. Figures 5.6 and 5.7 illustrate this.

Figure 5.6: A single frame from the testing sequence sidewalk (realigned
from a shaky camera) and detection results below. The initial detection
result after thresholding PB (left) and the effect of incorporating Markov
prior (right).
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Figure 5.7: A single frame from the testing sequence pike 1 and detection
results below. The initial detection result after thresholding PB (left) and
the effect of incorporating Markov prior (right).

5.3 Incorporating both methods

As the results in the previous sections have demonstrated, probabilistic modeling of the

parameters πB, πF , and PF can offer an improvement in the background subtraction task.

We can discourage misses by incorporating an explicit foreground object model, and false

positives can be suppressed by modeling the detection mask as an MRF. It would be

desirable to use both models to our advantage. Initially, however, there is a slight ambiguity

as to how to incorporate both methods simultaneously.

As (5.7) might indicate, both the foreground probability and the prior weight could both

be determined and then tested simultaneously and the process iterated. The difficulty we

have noticed with this approach however is that, like the foreground modeling stage itself,

the result does not tend to converge quickly. Recall that in Section 5.1.2 it is suggested
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that the foreground model refinement process be stopped after only a few iterations. When

the two probabilities are estimated and tested in the same step, the MRF stage does not

work as designed. The label field should be allowed to converge with the MRF process

before a new probability (likelihood ratio) is tested.

Consequentially, we are inclined to separate the methods and perform them serially

rather than in parallel. Again from the discussion of Section 5.1.2, recall that the estimate

of PF will erroneously characterize the background when there are false detections present

and that this should be avoided. We have seen that the MRF stage will suppress many false

positives and one may be inclined to perform this stage first. Alternatively, the operations

may be performed in the reverse order; first the LR is refined, then the resulting detection

mask is ‘smoothed’ by the MRF prior to obtain the final result.

Through experimentation and comparison of the three methods described - jointly

updated, MRF followed by foreground model, and foreground model followed by MRF -

it was observed that the latter approach consistently performed better than the others.

This should be intuitively satisfying. Since the MRF process is formulated specifically as

an inverse problem, as a constraint on the final result, it makes sense that it should be

invoked last.

In the following sets of images, the effects of incorporating both detection modalities are

presented. In Figures 5.8 an 5.9, a sample frame from an image sequence is shown alongside

the initial detection result, the result of the second stage (foreground model), and the final

result (after MRF step). Notice that although the number of false detections is increased

after the second stage, the nature of them is the same. That is, the false detections still

tend to be randomly scattered as opposed to being tightly clustered. Thankfully, since the

imposition of Markovianity upon the detection mask suppresses this type of behavior, the

final result is free of false detections for the most part.
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Figure 5.8: Background detection result on highway sequence. Threshold-
ing of PB (LIT model) alone (top right), inclusion of PF (bottom left), and
final MRF step (bottom right).

Figure 5.9: Background detection result on sidewalk sequence. Threshold-
ing of PB (LIT model) alone (top right), inclusion of PF (bottom left), and
final MRF step (bottom right).
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5.4 Performance evaluation on synthetic sequences

In order to objectively evaluate the methods proposed, receiver operating characteristic

(ROC) profiles were determined empirically. The ROC curve displays the decision rule’s

performance in terms of the error rates FPR and FNR (Section 3.2). With a very low

threshold, there tend to be few false alarms but many misses; the converse is true for a

very high threshold. Generally, neither scenario is desirable. The ROC curve characterizes

the behavior of the classifier as the threshold parameter is swept between the two extremes.

In order to quantify the false alarm and miss rates of each detection method, one must

know the ground truth. It is possible to segment real sequences by hand however, it is

unrealistic to do so for more than a few frames. In the evaluation we have conducted, the

reported error rates are average rates observed over 100 frames. A more practical way to

obtain ground truth data for such a large number of frames is to generate synthetic image

sequences.

The aim of this evaluation is to characterize the newly posed detection methods irre-

spective of the scene or background model. To this end, three synthetic sequences were

created. Each was designed for use with one of the background models described in Chap-

ter 4. The three testing sequences will be briefly described forthwith, and this chapter will

conclude with the experimental results.

5.4.1 Synthetic sequences

Static background - M0

The first synthetic sequence, dubbed synth M0, was designed for use with the simplified

background model M0. A sample frame and its corresponding ground truth detection mask

are provided in Fig. 5.10. A single frame from a real sequence was repeated 100 times with

noise to emulate a truly static background captured by one of our surveillance cameras.

The additive Gaussian noise is white (independent and identically distributed) with a mean

µn = 0 and variance σ2
n = 6. After the addition of noise, the image was quantized to the

range [0, 255]. Superimposed upon this background are five textured blobs, the locations
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of which were randomly generated. By randomly disbursing the blobs across the textured

background, varying degrees of camouflaging and overlapping were achieved.

Figure 5.10: Sample frame from synthetic sequence synth M0 and ground
truth label field.

Dynamic background - M1

The next sequence, synth M1, was built with the same testing data used in (Elgammal

et al., 2000). A real video, barren of foreground objects, was used as the background

for this sequence. Trees and bushes in the background exhibit texture and move slightly

with wind. Three foreground objects, a pedestrian, a truck, and a traffic barrel, were

superimposed on the last 100 frames. The first 100 frames were left barren in order to

train the model M1. A sample frame from the synthetic sequence and its corresponding

true detection mask are provided in Fig. 5.11.

Shaky background - M2

The third and final testing sequence, synth M2, was designed for use with the LIS back-

ground model. Similar to the previous scenario, this synthetic sequence consists of 100

frames of a real video sequence barren of foreground objects with a truck superimposed.

The real sequence was captured with an outdoor mounted camera with a high level of

zoom, resulting in a substantial jitter between frames. To estimate the background image

B, which M2 relies on, the following approach was taken. Using the phase correlation

method described in Appendix A, the relative displacement among frames was determined
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Figure 5.11: Sample frame from synthetic sequence synth M1 and ground
truth label field.

Figure 5.12: Sample frame from synthetic sequence synth M2 and ground
truth label field.

to within single pixel accuracy. We identified a subset of the 100 frames with the median

horizontal and vertical displacement, i.e., the most centered frames in the sequence. A 1-D

temporal median was applied to the frames in this subset to arrive at the estimate for B.

5.4.2 Results and discussion

As previously mentioned, the ROC curve summarizes each method’s detection performance

in terms of FPR and FNR as the threshold parameter is varied. We have compared

the three spatially adaptive thresholding strategies - foreground object modeling, MRF

detection mask modeling, and foreground followed by MRF - against non-adaptive, fixed

thresholding.
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To illustrate the insensitivity of these methods to the particular scene or background

PDF, three separate experiments were performed using the three background models pre-

sented in Chapter 4: the simple background frame model, M0, is applied to synth M0; the

LIT model, M1, is applied to synth M1; and the LIS model, M2,is applied to synth M2.

For the models that require a background image to perform detection, M0 and M2, a

single image is provided and no updating takes place over the 100 frames. This of course

means that in a real setting, any errors in estimating B would worsen the performance.

For background model M1, which inherently adapts in time, a selective updating scheme

was used. That is, pixels detected as moving are not added to the background model.

The error rates for each of the four detection methods and for each of the three synthetic

sequences are presented in Figures 5.13, 5.14, and 5.15. What we notice from these plots

is that, regardless of the scene and the background model used, the adaptive detection

methods presented in this thesis will outperform fixed thresholding (blue). Over a range

of thresholds, the ROC curves corresponding to the adaptive methods are closer to the

FPR and FNR axes. The combined foreground-Markov method (cyan) performs the best

overall, with Markov alone (red) in a close second place.

The total error rate (TER) plots verify what we might expect. That is, for higher values

of threshold, the foreground biased detector (green) will have higher error rates than fixed

thresholding since false positives will compound. The cyan curves however reinforce the

fact that these compounded errors will tend to be randomly scattered, and they can be

aptly suppressed by the MRF stage.

A sample frame from each sequence, along with the ground truth and four detection

results, are provided in Figures 5.16, 5.17, and 5.18.
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Figure 5.13: Empirical ROC and TER curves for sequence synth M0 with
background model M0.
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Figure 5.14: Empirical ROC and TER curves for sequence synth M1 with
background model M1.
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Figure 5.15: Empirical ROC and TER curves for sequence synth M2 with
background model M2.
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Figure 5.16: Sample detections for sequence synth M0 with background
model M0. Top row: frame and ground truth; middle row: fixed threshold
and foreground-biased detections; bottom row: MRF prior applied to fixed
and foreground-biased detections
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Figure 5.17: Sample detections for sequence synth M1 with background
model M1. Top row: frame and ground truth; middle row: fixed threshold
and foreground-biased detections; bottom row: MRF prior applied to fixed
and foreground-biased detections
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Figure 5.18: Sample detections for sequence synth M2 with background
model M2. Top row: frame and ground truth; middle row: fixed threshold
and foreground-biased detections; bottom row: MRF prior applied to fixed
and foreground-biased detections
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Chapter 6

Temporally adaptive detection via FDR control

In terms of detection, we have thus far presented two thresholding procedures which are

adaptive in space. Now, we shall present a complementary detection method which adapts

in time. The method is a multiple comparisons procedure (MCP) that controls the so-

called false discovery rate (FDR) (Benjamini and Hochberg, 1995). The false discovery

rate is defined as the expected proportion of false alarms to total positive declarations.

Recall from Section 3.2 the definition in terms of the random variables V and R is

FDR = E {V/R} .

Preceding the presentation of the technique in Section 6.2, it is necessary to familiarize the

reader with the concept of statistical significance which is pertinent to the method. This

chapter concludes with experimental results on synthetic and real video sequences as well

as numerical and qualitative evaluations thereof.

6.1 Statistical significance

In MCP formulations, it is common to perform what is known as significance testing. In

short, by assigning a significance score to each observation, which shall be henceforward

designated as its p-score, the observations can be classified as either significant or insignif-

icant.

6.1.1 Definition

The common definition of a p value from the Neyman-Pearson statistical testing viewpoint

is the probability that a less likely outcome than the current observation could occur given
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a null hypothesis (Lehmann, 1986). In our treatment, this general definition is followed

faithfully. Interpreted mathematically, this translates to

p = f(x) =

∫

R1(x)

P0(y)dy

R1(x) = {y
∣∣ P0(y) ≤ P0(x)}.

(6.1)

This definition is illustrated in Fig. 6.1.
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Figure 6.1: Definition of a significance score. The highlighted (green) area
corresponds to the probability of a less likely occurrence than the current
observation (91).



60

6.1.2 Properties

Being a deterministic function of the random variable X, the significance score is itself a

random variable; we shall denote the random quantity as P with p being it’s realization.

From the definition (6.1) it can be readily seen that the significance score p is in fact a

probability, and therefore it must exist on the interval [0, 1]. Notice that the state space is

not intensity as it is for x (or I[n]). A crucial property of a significance score is that it is

uniformly distributed under the null hypothesis. That is, when X ∼ P0(x) it must follow

that P ∼ Unif[0, 1]. This proof of this property is given below in (6.2).

CDF(p) = Pr {P ≤ p} (6.2a)

= Pr {f(X) ≤ f(x)} (6.2b)

= Pr {P0(X) ≤ P0(x)} (6.2c)

= Pr {X ∈ R1(x)} (6.2d)

=

∫

R1(x)

P0(y)dy (6.2e)

= f(x) = p � (6.2f)

Lines (6.2a) and (6.2b) are by the definition of the cumulative density function (CDF) and

of the significance score; (6.2c) follows from the fact that if P0(x) decreases, f(x) must

decrease; (6.2d) follows directly from the definition of R1; and (6.2e) holds true if X is

in fact distributed on P0. Since the CDF, Pr {P ≤ p} = p, is linearly increasing over the

range [0, 1], the PDF is constant i.e., it is uniform.

There is one other property of the significance score which is important but not neces-

sary for FPR or FDR controlling procedures. That property is that under H1, the signifi-

cance scores be clustered around zero. Since it is not a strict requirement this property does

not warrant a rigorous proof, but it does deserve some consideration. It is easy to see that

when the true underlying PDFs are well separated, observations that are highly probable

according to P1 will have low p-scores. However, when P0 and P1 overlap considerably,
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observations which truly arise from source H1 may elicit p-scores which are not clustered

around zero. In terms of background subtraction, this may occur when a foreground object

closely resembles the background - when camouflaging is present.

6.1.3 Relation to PDF thresholding

Now, let us apply the idea of significance testing to the background subtraction methods

we have already presented in this thesis. Notice that the definition of the significance score

depends only on the PDF of the null hypothesis, P0. This is analogous to the simplified

LRT whereby the background PDF is compared to a threshold: PB ≷ θ. The significance

score as defined in (6.1) has a profound meaning in this context. It is exactly the false

alarm probability when the threshold θ is set equal to P0(x). When θ = P0(x), it is clear

that R1 denotes the region where H1 is declared - its complement, the region where H0 is

declared. The integral (6.1) therefore corresponds to

Pr
{
declare H1

∣∣H0 true
}

= FPR.

Herein lies the power of statistical significance testing. The error rate (FPR) and signifi-

cance scores are intimately related. To control the global FPR to be within some level α,

declare all observations H1 for which p(x) ≤ α.

In this thesis, the antecedent framework has been binary hypothesis testing at each

pixel. According to (3.7), a global threshold θ is applied to every test, regardless of the

probability distribution PB. In general, each null hypothesis will have a different PDF.

This implies that thresholding the PDFs with a global, θ, will not have any direct effect on

the overall error probability. In MCP terms this is known as uncorrected testing (Lehmann,

1986). That is, the error probability is not controlled for each individual test. By testing in

the significance domain rather than in the traditional probability domain, tighter control

of the error rate is possible.
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6.1.4 Special case: M0

As we have just mentioned, the transformation between the probability and significance

domains is space variant. This is because the background PDF will have a different shape

at each pixel. For an arbitrary PDF such as a non-parametric density there is no compact

functional form for p = f(x). Absent a closed form expression, we must revert to calculating

the integral of (6.1) explicitly. This requires that we compute all 256 values of P0 and sum

those that fall below the current observation.

The case of M0 is special, however, in that although PB is different at each pixel, it

has exactly the same shape everywhere. Recall that for M0, PB is distributed normally

with variance σ2 and mean B[n]. For now, allow the argument x to represent the absolute

difference |I[n] − B[n]|, i.e., the mean is subtracted from each observation. In the case of

the zero mean Gaussian, the function that defines the significance score, f(x), translates

to the area under both tails of the distribution. In terms of the zero mean Gaussian CDF

this takes the form

p = f(x) = 2 (1 − CDF(x))

= erfc
(
x/

√
2σ2
) (6.3)

where erfc denotes the complementary error function. In practice, the values of f(x) can

be precomputed according to (6.3) for positive integral values of x and looked up in a list

in the same manner that the PDF kernel function values were in previous chapters.

For the simple background model, M0, there is a space-invariant relationship between

a global threshold, θ, and a global significance, p (FPR). Explicitly, the relationship is

θ =
1√

2πσ2
exp

(
−(erfc-1 p)2

)

p = erfc

(√
−1
2 ln (2πσ2θ2)

) (6.4)

where erfc-1 denotes the inverse complementary error function.
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6.2 Controlling the false discovery rate

As we have seen in Section 6.1.3, the significance domain is convenient since controlling the

global error rate is straightforward. Recall that controlling the global false positive rate to

some level, i.e.,

FPR = E {V} /M ≤ α

generally requires controlling the individual false alarm thresholds at each trial such that

Pr
{
declare H1

∣∣H0

}
≤ α.

Such types of decision rules can lead to a large number of false detections. The FPR cannot

be made arbitrarily small, however, since doing so will increase the false negative rate.

The concept behind the FDR controlling procedure is to control the expected proportion

of positive detections that are falsely declared, i.e.,

FDR = E {V/R} ≤ α

It is clear that any method which controls the FDR must also control the FPR since R ≤ M ,

thus E {V} /M ≤ E {V/R}. The procedure for controlling the FDR is as follows (Benjamini

and Hochberg, 1995).

1. Assign a p value to each observation.

2. Sort all p values in ascending order, p1, p2, . . . , pM

3. Find the largest index, i, such that pi ≤ i
M

α. Call the value corresponding to this

index p∗.

4. Declare observations pi significant for all pi ≤ p∗.

For the proof of this method, we refer the reader to the original article (Benjamini and

Hochberg, 1995).

The power and the adaptive nature of the procedure can be seen in Fig. 6.2. The

ordered p-scores are plotted in blue and the FDR and FPR thresholds are shown as dashed
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lines. The flat section of the graph, where the p-scores are low, corresponds primarily to
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Figure 6.2: Illustration of FDR procedure with varying H1 density - ap-
proximately 16% (top) and approximately 1% (bottom). Detail in the low
significance region is provided in the graphs to the right. Here the parameter
α is set to 10% for illustrative purposes.

the low significance scores produced by true H1’s. The section that is linearly increasing

(approximately) from 0 to 1 corresponds primarily to the p-scores of true H0’s.

Clearly the FDR threshold will always declare fewer H1’s than the FPR threshold. This

follows intuitively from the definition of the false discovery rate: since R ≤ M ,

E {V} /M ≤ E {V/R} .

Thus, any method which controls the FDR to within α also necessarily controls the FPR

to be be less than α. Additionally, we can see that the FDR procedure will adapt to the

true density of H1’s. Again this is inherent because of the dependence on the quantity

R = V + S, which clearly incorporates the proportion of true H1 pixels (S).
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6.3 Results

The procedure described above maps nicely to the task of background subtraction. With

PB defined at every pixel (equivalent to P0 in Section 6.1) we wish to test each of our current

observations, i.e., the intensity values present in the current frame I. Significance scores

are determined for each trial (pixel) and the p-scores are sorted in a list. The significance

threshold, p∗, is then determined using the aforementioned procedure. Observations whose

p-score lie below the threshold are declared F (significant) and those above are declared B

(insignificant).

In this section the FDR controlling procedure is applied to synthetic and real image

sequences. From the results presented, one can clearly see the adaptivity and detection

power afforded by this technique.

6.3.1 Synthetic density experiment

For this experiment, we have created synthetic sequences similar to synth M0 as described

in Section 5.4.1. Three such sequences were synthesized, each with the same static back-

ground and with 100 frames containing randomly disbursed foreground objects. These

three new testing sequences vary from one another in the number of superimposed fore-

ground objects - i.e., the true density of H1. Sample frames from each of the three sequences

are presented in Fig. 6.3. By varying the density of true foreground objects, we illustrate

the advantages of the FDR controlling procedure over the non-adaptive FPR controlling

procedure.

Table 6.1: Error rates for controlled FPR and controlled FDR on synthetic
sequence with background model M0.

controlled FPR controlled FDR

# objects α FPR FNR median(p∗) FPR FNR

1 0.01 7.8 · 10−3 6.8 · 10−4 2.4 · 10−4 9.4 · 10−5 9.8 · 10−4

10 0.01 7.3 · 10−3 7.0 · 10−3 1.1 · 10−3 4.7 · 10−4 9.1 · 10−3

25 0.01 6.4 · 10−3 1.6 · 10−2 4.3 · 10−3 1.8 · 10−3 1.8 · 10−2

Table 6.1 summarizes the results of the experiment. In all cases, the parameter α is
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Figure 6.3: Sample frames and ground truth label fields from three syn-
thetic sequences for FDR experiment - 1 object (top), 10 objects (middle),
25 objects (bottom).

held constant at 1%; α corresponds to the false alarm rate for the fixed threshold test

and to the false discovery rate for the adaptive threshold test. The significance threshold

is exactly α in the fixed threshold case and p∗ for the adaptive case. The value p∗ can

vary from frame to frame. However, since the object density is relatively constant in each

experiment, the variation is only occasional. Therefore, the median value over the 100
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frames is reported for comparison. Notice that the FDR controlling procedure allows the

significance threshold to vary with object density.

The gain in detection power can be seen both in the reported error rates and in the

sample detection results presented in Fig. 6.4. While the false negative rates stay on the

same order for both FPR and FDR as the object density varies, the false alarm rate is

always lower for the FDR procedure - by as much as two orders of magnitude.

6.3.2 Application to real sequences

We have seen that with the FDR method, we can set a non-arbitrary parameter to achieve

a strictly bounded error rate. In the previous chapters, there was no clear “best” way to

select the detection threshold, θ. Recall too that the foreground biased detection strategy

presented in Section 5.1 requires a low false positive rate to begin with, otherwise non-

foreground regions may be erroneously grown. With this new technique at our disposal,

we can find an initial detection mask with a bounded false positive rate. Moreover, by

bounding the false discovery rate we are ensured an even lower FPR when the scene allows

(when the object density is low) without any substantial penalty in terms of misses.

Having shown the detection power of the FDR procedure on synthetic sequences, we

now wish to utilize the technique in real scenarios. There is a caveat when using this

method, however. As alluded to in Section 6.1.4, transforming between the significance

and probability domains is simple when the PDFs are the same shape everywhere as they

are in the M0 case. When the scene is truly static and M0 is a sufficient model of the

background, the FDR procedure can easily be used with the other detection methods

presented in Chapter 5. When the background PDFs at each pixel are arbitrary, however,

transforming between the two domains is not trivial.

For arbitrary background PDFs, determining the p-score of a given observation requires

explicit evaluation of the integral (6.1). Once these scores are determined for every pixel,

the FDR procedure can be used to determine a significance threshold p∗. Translating

this significance threshold back into a probability threshold, θ, is again not a trivial task.
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Figure 6.4: Sample detection results with FDR controlling procedure (left
images) and FPR controlling procedure (right images). Visually, the im-
provement is immediate.
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Essentially, one must determine the θ that corresponds to the decision region R1 such that

p∗ > f(θ) =

∫

R1(θ)

P0(y)dy.

For a non-parametric PDF, this requires a “water-filling” type of computation at each pixel

whereby R1 is grown until p∗ ≤ f(θ). These non-trivial transformations require not only

more memory to store the PDFs but also a substantial amount of time to compute (on

the order of minutes per frame in our initial MATLAB experimentation). For this reason,

extensive results are not provided for the more complex models M1 and M2.

An example of the FDR procedure applied to a real sequence is presented in Figures 6.5

and 6.6. The LIT non-parametric background model was used to determine PB at each

pixel and p-scores for each observation in the current image were computed according to

(6.1). Notice that, as expected, the number of false positives is lower when the FDR is

Figure 6.5: Frame from a real image sequence with medium object density.
Counter-clockwise from top left: frame; significance image; FPR detection
result; FDR detection result. (α = 1% for both).
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Figure 6.6: Frame from a real image sequence with low object density.
Counter-clockwise from top left: frame; significance image; FPR detection
result; FDR detection result. (α = 1% for both).

controlled as opposed to the FPR itself. Additionally, the FDR controlled result improves

noticeably when the true density of foreground objects is low whereas the FPR controlled

result does not.

Figure 6.7 shows a frame from a testing sequence with a static background and the evo-

lution of the detection process. Only part of the entire frame was used since the top portion

contains trees which the background model (M0) cannot describe well. First, we deter-

mined the significance threshold p∗[k] for the current frame (k denoting the time index) by

computing p at every pixel according to (6.3) and then applying the FDR procedure. This

FDR controlled significance threshold is then transformed to the probability space by (6.4)

and an equivalent FDR controlled θ∗[k] is determined. With this time varying threshold,

we apply the foreground and Markov modeling techniques presented in Chapter 5, which

adapt the decision process spatially. Figure 6.8 shows how the base detection threshold,
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Figure 6.7: A sample frame and detection results after three phases. Top
to bottom: thresholding PB with FDR controlled, time varying θ∗[k]; inclu-
sion of explicit foreground model PF ; final detection mask with inclusion of
MRF prior.

θ∗[k] adapts in time to object density.
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Chapter 7

Concluding remarks and future research potential

7.1 Discussion of results

In this work, multiple probabilistic modeling methods have been applied to background

subtraction and their efficacies have been analyzed and interpreted. With the background

subtraction task posed as a classical hypothesis testing problem, we were able to refine

estimates for the commonly overlooked parameters - PF and the a priori probabilities - with

evidence from the data. Also, by considering the original detection task in the statistical

significance domain, we are able to set an initial detection threshold that explicitly controls

the error rate. Furthermore, the framework and methods we’ve presented provide a general

basis for further extensions.

Inspired by the work of A. ElGammal et al., non-parametric PDF estimates were uti-

lized for their simplicity and their accurate modeling ability. Three background modeling

methods based on locally observed content - background frame, local-in-time, and local-in-

space - were presented and contrasted. What we have observed is that the LIT background

model is the most accurate of the three for many common scenes, provided that inter-frame

misalignment can be handled. Although these specific background models were discussed

here, it is clear that an estimate for PB formulated in different manner will apply equally

to our detection methods.

Turning to background detection, two spatially adaptive methods were presented in

this thesis. Substantial gains, both visual and numerical, are afforded by incorporating the

MRF prior weighting technique. The newly developed foreground modeling procedure has

also been shown to be a more effective than fixed thresholding at suppressing misses when
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camouflaging is present. Furthermore, by joining the two methods we can achieve superior

detection performance in both the quantitative and qualitative senses. Admittedly, the

additional gains afforded by incorporating both detection techniques are modest compared

to those afforded by using the MRF stage alone. However, by incorporating the foreground

model at the cost of performing one additional computationally light processing step, the

detection performance can be improved, which is encouraging. Overall, our ability to

perform reliable background subtraction has been substantially increased by the inclusion

of processing steps which are very simple to implement.

Additionally, we have presented a means by which the algorithm designer may achieve

predictable performance in terms of error rate, without having to heuristically set a de-

tection threshold. Moreover, by applying the FDR controlling procedure to background

subtraction, we have a detector which adapts to the scene over time to further improve

performance.

With the three detection techniques presented in this thesis, we have developed a

background subtraction algorithm that is adaptive to three different characteristics of the

surveilled scene: the overall density of objects over time, the intensity (color) characteristics

of ephemeral moving objects, and the local spatial structure of the final detection mask.

In comparison to the traditional fixed thresholding detection modality, incorporating these

forms of adaptivity has been shown to offer substantial gains.

7.2 Further research areas

Because the detection methods in this thesis have been formulated in general frameworks,

many possible extensions to this work are possible.

An interesting study would be to examine the effect of these techniques in higher

feature spaces. In this work, only intensity features were considered but the non-parametric

modeling techniques easily generalize. It is well known that humans perceive variation

in intensity more acutely than color. Most color space transformations and video coding

exploit this by separating the luminance from chrominance channels (e.g., YUV, Lab, HSV,
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etc.) and quantizing the latter more coarsely. To the eye, luminance (intensity) appears

to be one of the most discerning image features. Incorporation of other image attributes

may offer better discrimination for object detection.

In (Elgammal et al., 2000; Elgammal et al., 2002), the extension to color space is

explicated and demonstrated. Allowing the color kernel of the non-parametric PDF to

be independent (i.e., vector Gaussian with a diagonal covariance matrix), implementing

background modeling is simple. It entails performing a sum of a product of table lookups:

PB(x) =
1

|M|
∑

[m,k]∈M

c∏

j=1

Kj(x − Ij [m, k])

where c is the number of color channels, Ij denotes the jth color channel, and each kernel

Kj is zero mean and parameterized by variance σ2
j .

This concept may be extended further to include other image features such as intensity

(color) gradients and edges which may offer greater discrimination. In (Lo and Velastin,

2001), for example, the input images to the background subtraction algorithm are first

fed through what the authors dub a “variance filter”. This feature extractor computes,

for each pixel, the variance of the pixels in a 3 × 3 window. The claim is that the local

variance is invariant to illumination, characterizes edge information, and preserves surface

textures.

The newly proposed foreground modeling technique presented in Section 5.1 may be

improved in a number of ways. In our formulation, we intentionally exclude any shape

models specific to particular types of objects. The inclusion of meaningful and general

object shape models may be advantageous. As mentioned, in (Wren et al., 1997) and

in (Elgammal et al., 2002), the authors are able to successfully grow foreground regions

corresponding to body parts by assuming their shape and orientation a priori. In the

“Wallflower” algorithm, the foreground region growing method proposed is constrained by

multiple characteristics of the initial detection mask. One characteristic of note is that

the regions to be grown are connected components with at least four pixels. A similar
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constraint in our formulation may reduce the exacerbation of speckle noise.

Another possible extension would be to incorporate a higher level scene understanding

application such as object tracking. With reliable tracks, one may be able to predict from

previous results where a moving object will likely be in the next frame. Provided that

the previous segmentations were reasonably accurate, object intensity (color) PDFs based

on those segmentations could be used for the next frame. Prior knowledge of the object’s

expected location and it’s intensity (color) distribution would likely assist the current

segmentation task.

In Chapter 6, we have demonstrated the power of performing detection in the statistical

significance domain. One substantial difficulty with this is that the transformation from

the probability and significance domains is generally not trivial and requires a large amount

of extra storage space and computation. With the simple background model, closed form

expressions for transforming between the two domains were derived. Finding similar closed

form transformations for more descriptive background PDFs would be greatly useful.

Additionally, development of similar techniques in the significance domain itself could

lead to very powerful detectors which strictly control multiple error rates. The authors

of (Benjamini and Hochberg, 1995) have noted that a procedure very similar to the FDR

controlling method could be developed which controls the false rejection rate: FRR =

E {U/(M − R)}. Implicitly, this would require knowledge of the PDF of the alternative

hypotheses, which can be estimated in the manner we have described; essentially this

significance-like domain would be tied directly to the false negative rate. Alternatively,

applying the “domain transformed FDR” (DTFDR) procedure described in (Ermis and

Saligrama, 2006) using our explicit models for PF could alleviate misses due to camouflag-

ing. The DTFDR procedure precedes the conventional FDR procedure with a step that

transforms the significance domain so that p-scores under H0 remain uniformly distributed

while p-scores under H1 become clustered around zero. Again, this would likely require a

large amount of computation unless closed form “domain transforms” for arbitrary PF ’s

can be found.
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Appendix A

Image realignment

Using cameras that are not completely stationary exacerbates the already difficult task of

performing background subtraction. The cameras used for this work are AXIS 213 pan-

tilt-zoom (PTZ) cameras mounted on the roof of a nine-story building (Fig. A.1). The

mounting of the camera allows for wind or vibration of the building to shake the camera.

The effect is noticeable even when the wind load is small and worsens when zoomed in on

a distant scene.

Figure A.1: Roof-mounted PTZ camera used to capture image sequences.

The background models considered in this work are pixel-based, i.e., each background

model PB(I[n]) corresponds to a pixel location n. When the video camera itself moves, the

location of objects in the scene (as projected onto the image coordinates) varies regardless of

whether they are moving or stationary. Constant camera shake greatly corrupts background

models that do not include local neighbors.
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A.1 Camera motion model

Typical camera motion consists of translation and rotation. Track, boom, and dolly des-

ignate left-right, up-down, and forward-backward translational motion respectively. Pan,

tilt, and roll designate rotation about the vertical, horizontal, and optical axes respec-

tively. Two-dimensional image motion models corresponding to these camera motions are

described in (Wang et al., 2002) and (Stiller and Konrad, 1999). The motion models are

essentially mapping functions that describe the displacement of all points in the image

resulting from camera motion.

A camera undergoing translation, scale (zoom), and rotation is characterized by the

geometric mapping, which is a special case of the affine mapping, and has the form


n′

1

n′
2


 =


c1 −c2

c2 c1




n1

n2


+


c3

c4




where [n1 n2]
T and [n′

1 n′
2]

T denote image coordinates before and after the motions.

The motion that our cameras undergo can be described by a combination of translations

and small rotations. Also, the imaged scene is far away from the camera. Because of

these two important factors, the affine model can be simplified and we can assume that the

imaged scene is displaced uniformly (Wang et al., 2002). That is to say, there is no rotation

or scale relationship between two images, only translation. With no other motion in the

scene, the relationship between any two frames of the video is then simply I ′[n] = I[n−d0].

A.2 Phase correlation

In order to realign images captured from the shaky camera, one must find the displacement

parameter d0. One relatively fast way to do this is to use the so-called phase correlation

(PC). This technique is used for block matching. It mitigates exhaustive searching using

the correlation criterion as opposed to a pixel-based error criterion (Konrad, 2005).
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The correlation between two images is denoted

C[d] =
∑

n

I1[n]I2[n − d] (A.1)

To clarify, the correlation is defined over d ∈ Γ ⊆ Λ ⊂ R
2 which is a discrete space domain

of delays or lags, whereas n ∈ Λ is the original image domain. The sampling lattice Γ may

be identically equal to Λ or it may be denser by an integral factor (see Figure A.2).
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Figure A.2: Example image pixel domain lattice, Λ, and correlation lag
domain lattice, Γ, with a factor of 2 scale.

The correlation has a very convenient form in the discrete 2D Fourier domain:

Ĉ[u] = Î1[u]Î∗2 [u] (A.2)

where the hat denotes the 2-D discrete Fourier transform (DFT) version of the signals and

the star superscript denotes the complex conjugate. This relationship can be shown rather
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easily using Fourier transform properties.

Ĉ[u] = DFT {C[d]} (A.3a)

= DFT

{
∑

n

I1[n]I2[n − d]

}
(A.3b)

= DFT

{
∑

n

I1[n]I2[−(d − n)]

}
(A.3c)

= DFT {I1[d] ∗ I2[−(d − n)]} (A.3d)

= Î1[u]Î∗2 [u] � (A.3e)

The star operator on line (A.3d) indicates 2D convolution. Normalizing this function by its

magnitude and taking the inverse discrete Fourier transform (IDFT) leads to a normalized

correlation function:

Ψ1,2[d] = IDFT

{
Ĉ[u]

|Ĉ[u]|

}

= IDFT

{
Î1[u]Î∗2 [u]

|Î1[u]Î∗2 [u]|

}
.

(A.4)

In the special case of global translation (i.e., I1[n] = I2[n−d0]), the normalized correlation

function becomes a Kronecker delta function at the location of the displacement vector.

This can be easily seen by manipulating the argument of the IDFT in expression (A.4).

Î1[u]Î∗2 [u]

|Î1[u]Î∗2 [u]|
=

|Î1[u]||Î2[u]| exp
(
j
(
∠Î1[u] − ∠Î2[u]

))

|Î1[u]||Î2[u]|
(A.5a)

= exp
(
j
(
∠Î1[u] − ∠Î2[u]

))
(A.5b)

= exp
(
j
(
∠Î1[u] − ∠Î1[u] − 2πu

T
d0

))
(A.5c)

= exp
(
−j2πu

T
d0

)
� (A.5d)

Thus the inverse DFT of Ψ̂1,2 produces δ[d − d0].

Since there is generally other, non-global movement in the scene by nature of the

application, less dominant peaks will arise in the correlation surface. Edge effects will also
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distort the estimate. To determine the displacement, one may take the following steps:

1. Choose one frame as I0, the frame to which we shall realign subsequent frames.

2. Take equally sized blocks (preferably square with 2n-length sides, e.g., 64 × 64) from

I0 and the current frame Ik, and take 2-D FFT of each.

3. Compute Ψ0,k using 2-D inverse FFT as in (A.4).

4. Search for coordinates of most dominant peak in Ψ0,k.

Subpixel registration accuracy to 1/sth-pixel can be achieved by zero padding Ψ̂0,k to

s×s its original size before taking the inverse FFT, effectively interpolating the correlation

surface. In itself, determining the displacement with subpixel accuracy clearly requires

more computation. Additionally, realigning Ik with a fractional offset requires interpolation

in the space domain which in addition to requiring still more computation has a lowpass

effect on the image. For most of the methods discussed in this thesis, full pixel accuracy is

adequate (i.e., Γ = Λ).

The current MATLAB implementation of the PC realignment stage requires less than

one tenth of a second per frame with single pixel resolution (i.e., no interpolation) and

with a block (FFT) size of 64 × 64.
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