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ABSTRACT

This thesis addresses the ill-posed problem of estimating two-dimensional motion
in_time-varying images. The approach proposed here uses the theory of stochastic
processes at the formulation and solution stages. Independent Gaussian random
variables are used to model the relationship between motion fields and images,
and vector and binary Markov random fields are used to model motion and mo-
tion discontinuity fields, respectively. These models, combined using Bayes rule,
result in Gibbsian a posteriori probability distribution from which the Maximum A
Posteriori Probability (MAP) and the Minimum Expected Cost (MEC) estimation
criteria are derived. Optimization of these criteria is performed using stochastic
relaxation. The MAP estimation is extended to handle large displacements via
hierarchical approach. Deterministic approximations to some of the stochastic al-
gorithms proposed are derived and compared with their stochastic counterparts.
The colour information is incorporated into the estimation process. Numerous
experimental results are included. Two of the methods proposed are applied to

motion-compensated interpolation and shown to reduce certain type of errors.




SOMMAIRE

Le présent mémoire examine le probléme partiellement défini de I'estimation du
mouvement bidimensionnel dans les séquences d'images dynamiques. L’approche
proposée ici utilise la théorie des processus stochastiques aux étapes de la formu-
lation du probléme et de sa solution. Des variables aléatoires gaussiennes indépen-
dantes sont utilisées pour modéliser la relation entre les champs de déplacement
et les images, tandis que des champs aléatoires markoviens, vectoriels et binaires,
sont utilisés pour modéliser respectivement le champ de déplacement et le champ
de discontinuité du déplacement. Ces modéles, combinés en utilisant la regle de
Bayes, résultent en une fonction de répartition de probabilité a posteriori de type
Gibbs a partir de laquelle les critéres d'estimation de Probabilité A posteriori Max-
imale (PAM) et de Cofit Espéré Minimal (CEM) sont obtenus. L’optimisation de
ces critéres est accomplie par relaxation stochastique. A I'aide d'une méthode hiér-
archique, I'estimation PAM est généralisée aux situations ol les déplacements sont

grands. Des approximations déterministes 3 certains des algorithmes stochastiques

proposés sont obtenues et comparées aux méthodes stochastiques correspondantes.

L'information couleur est incorporée dans le processus d’estimation. Plusieurs ré-
sultats expérimentaux sont inclus. Deux des méthodes proposées sont appliquées
au probléme de {'interpolation d’images avec compensation pour le mouvement et

'on constate qu'elles réduisent certains types d’erreurs.
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Chapter 1 INTRODUCTION

1.1 MOTIVATION

This thesis addresses the problem of estimating 2-D motion from spatio-temporally
sampled image sequences. Such a problem is one of the two aspects of the widely used
term “motion estimation” in the field of computer vision. The other aspect is the so called
3-D motion, which aims at recovery of three-dimensional motion parameters of objects or
of an observer. There exist various approaches to estimating 2-D motion from dynamic
images, but they can usually be classified as either low-level or high-level computer vision
algorithms. The class of algorithms presented here belongs to the former group along with
such methods as block matching, spatio-temporal gradient or Fourier techniques, and is
characterized by computation of motion based only on simple low-level image descriptors
like intensity, colour, contrast etc. The high-level methods, not considered here, rely on
image analysis to extract high-level features of the data, such as edges, object boundaries
or complete objects, and use these features to solve the correspondence problem. Instead
of intensity or colour matching, contours or even items from a list are matched according

to some pre-specified syntax.

1.1.1 Importance of 2-D motion estimation

The goal of 2-D motion estimation is to obtain a sequence of dense motion fields,
also called optical flow, faithfully representing movements in a time-varying image. This

estimation problem has a wide range of applications such ac:

-1-




. r/‘“\\
L r ,-‘

Chapter 1

1. time-varying image processing: motion-compensated interpolation for
sampling structure conversion, motion-compensated filtering for noise
reduction,

2. image sequence compression: motion-compensated coding for bit rate
reduction,

2. computer vision (robotics): structure from motion for passive naviga-
tion, 3-D motion from 2-D motion for passive navigation and object
tracking.

1.1.2 Drawbacks of existing methods

Not surprisingly, since the problem is important, it is also difficult. The difficulty of
estimating dense 2-D motion fields is due to two factors: ill-posedness and complexity.
The problem is ill-posed since many different vector fields can explain the same data. The
complexity of the problem is dependent on its dimensionality, which is high since typically
several thousands of unknowns have to be computed simultaneously.

Simple estimation algorithms, like block matching, frequently fail to produce good

results. Such methods rely on the data (images) only and do not attempt to explicitly model

‘motion fields. Consequently, every motion vector is computed from local intensity values

without any regard to the motion of its neighbouring picture elements. To overcome this
deficiency global formulations have been proposed. Instead of minimizing a local objective
function, global functions over the complete motion field have been used. Horn and Schunck
[41] have formulated such a global criterion as a compromise between an error derived from
the motion constraint equation and a motion smoothness error. Hildreth [39] has used
the difference between the measured and the estimated velocity component orthogonal to
an intensity contour, and allowed smoothing only along such a contour. Nagel [69] has
exter;ded the Horn-Schunck method by using image structure in the smoothness term, thus
allowing space-variant smoothing.

All three approaches can be classified as regularization {of the original ill-posed cor-
respondence problem) where the smoothness term expresses a priori assumptions about
the properties of motion. The resulting cost functional is quadratic with respect to the

estimated quantity, and is usually minimized either by establishing necessary conditions for

-2.
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optimality and solving a set of linear equations (Gauss-Seidel relaxation in the Horn-Schunck
approach), or by directly applying a general optimization method (conjugate gradients in
Hildreth's approach). The major drawback of the Horn-Schunck method is that the mo-
tion vectors are confined to fixed spatio-temporal positions, hence to perform sampling
structure conversion through motion-compensated interpolation, motion fields have to be
interpolated too. Also, the formulation using the motion constraint equation requires the
evaluation of data derivatives, which is an ill-posed problem itself. Finally, the method fails
to work properly for large displacements as the assumption of locally linear variation of image
intensity is violated, especially since the purely temporal derivative is used in the algorithm.
These deficiencies frequently result in erroneous results, and in particular cause overesti-
mation of velocities of high-contrast intensity discontinuities. Due to the space-invariant
smoothing operation, the estimates also tend to be erroneous at the motion boundaries.
The major drawback of Hildreth's approach is the need to know intensity contours eg.,
edges, before performing motion estimation. Also it is not clear how to propagate the
boundary estimates, especially if the contours are not closed. Nagel's extension suffers,
like the Horn-Schunck algorithm, from fixed spatio-temporal positions of motion estimates,

however he used more elaborate Beaudet operators to compute image derivatives. He also

~suggested a modification to the Horn-Schunck algorithm to avoid computation of temporal

intensity derivative, although failed to give any justification for this modification. Nagel
reported an improvement over the Horn-Schunck method due to the “oriented smoothness”
(space-variant) operator, however his motion model disregards motion discontinuities and

still causes oversmoothing at the motion boundaries.

1.1.3 Muitidisciplinary problem

It is clear from the applications listed that 2-D motion estimation is a multidisciplinary

- problem. It may be used in time-varying image compression for video, in 3-D motion

recovery for passive navigation as well as in object tracking for traffic control. This first
application may be classified as a part of multidimensional digital signal processing, while
the other two belong to computer vision and robotics. The area of motion estimation can

benefit from theory developed in all these fields, however it is also constrained by them
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in the sense that the goals to be achieved are specified by applications. For example, in
video the image quality improvement is the ultimate goal, and velocity oversmoothing at a
low-gradient intensity edge may not degrade it, while in robotics precise motion boundaries
should be known to reliably recover structure from motion. Otherwise, a robot arm may
miss its target, or even destroy it.

Another area with which motion estimation intersects in this thesis is the theory of
stochastic processes, and in particular Markov random fields. Unlike the few proposed
probabilistic methods of estimating motion (to be reviewed in Section 2.3.5), this thesis
offers a broader view on stochastic modeling of motion and suggests stochastic solution

methods to solve such stochastic formulations.

1.2 STOCHASTIC APPROACH TO MOTION ESTIMATION

In the field of applied stochastic processes, the Markov random field models have been
successfully used for image modeling [92], [38]. Based on such models Geman and Geman
[26] have proposed a theoretical basis for image restoration using stochastic relaxation
methods, and have shown impressive results. Following the idea of Kirkpatrick et al. [52]
they have also formalized simulated annealing, proving three important theorems.

Taking into account the success of Markov random field modeling of images as well
as the drawbacks of the Horn-Schunck-type algorithms, this thesis approaches the 2-D
motion estimation problem from a point of view of stochastic process theory. A Bayesian
formulation of motion estimation is proposed, where the motion fields are modeled by a
vector Markov random field, and are related to the images through independent Gaussian
randgm variables. From these stochastic models a criterion for Maximum A Posteriori
Probability estimation is derived. Since this criterion is a non-quadratic function of the

estimates, and in general is multimodal, there exist many local minima and such methods

~ as conjugate gradients, steepest descent etc., will not find the global minimum unless started

sufficiently close to this global optimum. To locate the global minimum it is proposed in
this thesis to use simulated annealing [26]. This method, under certain conditions, is able to

find the global minimum regardiess of the initial state. Two versions of simulated annealing
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are derived: discrete state-space and continuous state-space. The discrete state-space
algorithm is a straightforward implementation of the Gibbs sampler as proposed by Geman
and Geman, and does not require data derivatives. It can be classified as a pel matching
algorithm with a smoothness constraint. For the continuous state-space MAP estimation,
however, it is possible to locally approximate the non-quadratic objective function by a
quadratic one. This results in a Gaussian transitional probability (instead of Gibbsian) for
which random deviates can be easily generated. This method belongs to a class of spatio-
temporal gradient techniques with a motion smoothness constraint. It is demonstrated
that this method is a stochastic generalization of Horn-Schunck-type algorithms. Also
another Bayesian formulation, based on the idea proposed by Marroquin [62], minimizing an
expected error, is investigated. Simplified to the Minimum Mean Squared Error estimation
it is solved by stochastic refaxation and averaging.

To handle large displacements efficiently the MAP estimation is extended by incor-
porating a hierarchy of resolution levels. In this way the computational effort is reduced
significantly. It is formally demonstrated for the 1-D space-invariant matching problem, that
low-pass filtering of the data results in low-pass filtering of the objective function. Hence it
can be concluded that multimodal objective functions can be “smoothed-out” to become
unimodal if sufficient low-pass filtering is provided. Consequently, minimization becomes a
trivial task, as is demonstrated on a 1-D example. This important result does not easily
extend to the 2-D space-variant motion estimation, but the general idea can probably be
extrapolated from the 1-D case, as seems to be confirmed by the practical examples.

The globally smooth motion fields are not sufficiently precise to describe motion in
typical TV images. Rigid body motion is characterized by a piecewise smooth motion field,
which includes discontinuities along smooth curves. A globally smooth field cannot accu-
rately represent such properties. The problem is even more pronounced for the hierarchical
approach, which tends to introduce oversmoothing at the motion boundaries. To accom-
modate a piecewise smooth description of motion fields, a motion model which explicitly
allows discontinuities in the motion field is adopted via the so called fine process (a coupled
binary Markov random field interleaved spatially with the vector Markov random field). This

two-layer model is shown to improve the estimates significantly.

-5.




Chapter 1

Throughout the course of research | found that quite frequently the motion cue from
luminance only is insufficient for reliable motion estimation, and that the results can be sig-
nificantly improved by incorporating other cues. Colour is investigated as such an additional
cue in the MAP context, and is shown to improve the estimates in some situations.

Since the stochastic motion estimation techniques proposed in this thesis are charac-
terized by increased computational effort, faster deterministic solution methods were also
investigated. [nstead of the discrete state-space MAP estimation, the iterated conditional
modes proposed by Besag [11] can be used. However this approximation is clearly inferior.
If instantaneous reduction of a temperature parameter to zero is applied (quenching) to
the continuous state-space MAP estimation, this method results in an update resembling
the Horn-Schunck approach with certain modifications. Those modifications are discussed
in detail, and their impact on the estimation process is demonstrated. Simulations per-
formed show superiority of stochastic relaxation compared to deterministic Horn-Schunck-
type methods for critical sequences. However, for less demanding (or ambiguous) data
the difference between the methods is significantly reduced, sometimes even unnoticeable.
This observation suggests that for more “bumpy” objective functions, the deterministic
algorithm is unable to escape local minima, while simulated annealing avoids them very
skillfully. The difference between estimates produced by the stochastic and deterministic
counterparts is reduced when they are implemented in a hierarchical manner. Clearly, a
smoother objective function incorporates fewer local minima, hence even a deterministic

algorithm has a better chance of finding the global minimum.

1.3 THESIS OVERVIEW

I‘n Chapter 2 some definitions and assumptions are presented, followed by the discussion
of the ill-posed nature of motion estimation and a survey of motion estimation methods.
Then, the hierarchical and regularization methods used in image processing and computer
vision are discussed, as well as the stochastic modeling and estimation. The chapter is
concluded with an example of 1-D space-invariant signal matching to demonstrate behaviour

of some optimization methods used in this thesis.

-6-




Chapter 1

Chapter 3 introduces the terminology, briefly summarizes Markov random fields and
Gibbs distributions, and proposes the Maximum A Posteriori Probability and the Minimum
Expected Cost estimation criteria. Subsequently, the necessary ingredients of such for-
mulation: the structural model, the observation model and the displacement field model,
are discussed, and the final form of the a posteriori probability is derived. Appendix 3.A
contains a derivation of the Minimum Expected Cost estimator.

In Chapter 4 the stochastic solutions to earlier formulations are presented. First, the
Monte Carlo methods are briefly described, and then more detailed analysis of stochastic
relaxation via the Metropolis algorithm and via the Gibbs sampler is included. This is
followed by the discussion of simulated annealing to obtain the Maximum A Posteriori
Probability estimator and of the Law of Large Numbers for Markov chains to obtain the
Minimum Expected Cost estimator. Then, the continuous state-space Gibbs sampler is
derived, and the issue of image intensity interpolation is discussed. The chapter is concluded
with numerous experimental results obtained from various image sequences. In appendices
at the end of the chapter proofs related to both stochastic relaxation algorithms as well as
the discussion of intensity interpolation are presented.

‘Chapter 5 extends the Maximum A Posteriori Probability estimation to a hierarchy of
resolutions. First, the relevance of filtering in a hierarchical approach is discussed, and then
the algorithm is described. Subsequently the filters for pyramid generation are designed,
and the adjustment of some parameters according to the resolution level is presented. Again
the chapter ends with experimental results. Appendix 5.A includes the proof of a theorem
relating filtering operations on the data and on the objective function.

Chapter 6 introduces the piecewise smooth model for motion. First, a new Maximum
A-quteriori Probability criterion is formulated, and then, based on the two-layer model, the
a posteriori probability is derived. Also the Gibbs sampler for the line process is discussed.
As usual the chapter concludes with numerous examples.

in Chapter 7 colour is incorporated into the structural and observation models. The
objective function is derived, and some experimental results shown.

Chapter 8 brings deterministic approximations to the Maximum A Posteriori Proba-

bility estimation for the discrete and continuous state-spaces. Theoretical and practical
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comparisons with. the stochastic counterparts are carried out.

In Chapter 9 two algorithms are applied to motion-compensated interpolation. Their
performance is compared subjectively via visual inspection and objectively — through an
error criterion.

Finally, Chapter 10 summarizes this thesis, discusses the contributions and indicates

some open questions.




Chapter 2 BACKGROUND

As stated in the introduction, this thesis addresses the problem of estimating a 2-D
motion of picture elements in a spatio-temporal (3-D) sequence of images. It is not the
intention of this work to investigate the recovery of the motion in the original 3-D scene.

[n this chapter some basic definitions and frequently used assumptions will be given, ill-
_posedness of 2-D motion estimation will be demonstrated, and the major motion estimation
techniques will be reviewed. Then, techniques proposed to deal with ill-posedness will be
described, followed by a brief discussion of hierarchical methods as well as of stochastic
modeling' and estimation. The chapter will be concluded with a simple example of 1-D
signal matching to illustrate the difficulties associated with minimization of multimodal

functions.

2.1 DEFINITIONS

In order to review the existing motion estimation techniques, some frequently used
assumptions and basic definitions are given below.

Images, which are the input for motion estimation, are usually formed by the projection
of a three-dimensional scene onto an image plane. It is clear that an.y perceived motion
in the image can be caused by some true motion (in the scene or between the observer
and the scene), or by a changing illumination of the scene. This perceived motion is called
optical flow, and is defined by Horn [42] as “the apparent motion of the image brightness
pattern”. This term is widely used in the computer vision literature. Since it is very difficult
to distinguish between the intensity (brightness) changes due to the true motion and due

to illumination effects, constant scene illumination is often assumed. With this assumption,
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the perceived changes in the image are due only to some true motion, and consequently a
fixed point on a moving object should ideally have the same intensity in subsequent images,
unless it disappears (leaves the field of view or is occluded). Hence, it is frequently assumed
that image intensity along the motion trajectories is constant.

The 2-D vector field v(x,t) of instantaneous velocities of points in the image plane as
a function of spatial position x = [z,y] and time ¢, is called a velocity field. It is defined
everywhere in the image plane except at the occluding motion boundaries (discontinuities).
Given a spatio-temporal position (x,1), v(x,t) is a vector consisting of two components:
v(x,t) = [va(x,1),vy(x,%)] (note that v is a row vector). For images sampled in the
temporal direction (sampling interval T'), the concept of the velocity field is replaced by
that of the displacement field d(x,t), which is defined as a mapping of image points from
the image at time ¢ into the corresponding image points at time ¢ + 7. The displacement
field is defined as well only for points also visible in the next frame. The term motion field
will be used to refer to either a velocity field or a displacement field.

Let f(x,t) denote the image intensity as a function of space and time. Then, the
assumption of constant image intensity along the motion trajectories can be formally ex-

pressed as the zero directional derivative of f(x,%) in the direction z:

df (x,1) . _

where z = [v(x,t),1]/\/l|v(x,t)||2 + L is a unit vector in the direction of motion and V =

[3@5, 5%, %]T is a spatio-temporal gradient (note that V is a column vector). Substituting

for z in the above equation, the motion constraint equation [41)], [73] can be obtained:

v(x,t)-Vxf+ %% =0 (2.2)
where Vy = [%,-%]T is a spatial gradient. Equation (2.2) is widely used in derivation of
various motion estimation algorithms,

For images sampled in time (¢ = kT for some integer k) it is more natural to describe

motion in terms of a displacement field d(x,t). Define the displaced frame difference as
Tr(d,x,t) = f(x +d(x, 1), t +T) — f(x,t)  all(x,¢). (2.3)

Let d(x,t) be the true motion field for some given images. dis a continuous function

of spatial position x and a discrete function of temporal position ¢t = kT. Under the

-10-




Chapter 2

assumption of constant intensity along the motion trajectory d, the following relationship

holds
rr(dx,t) =0  all(x,t). (2.4)

This equation can also be used in deriving motion estimation algorithms.
A second order assumption with respect to the intensity has been used to estimate
motion, as well [88], [9]. If the spatial gradient of intensity is constant along the motion

trajectories, then the directional derivative of this gradient should be zero

d(vi
(d:f) =z-V(VIf)=0. (2.5)
The vector equation above can be rewritten as
éj
V- Vx(Vaf) + 5 (V) = 0 (26)
where Vx(VT) denotes a (spatial) Hessian matrix:
| g2
Vx(Vy) = [ o E;E"’}- (2.7)
Jzdy  by®

Since (2.6) is a vector equation, it provides constraints for both vector components, hence

should not suffer as severely from the aperture problem [39] as the scalar equation (2.2).

2.2 ILL-POSED NATURE OF MOTION ESTIMATION

The estimation of 2-D motion from a sequence of images is an inverse problem. A 2-D
motion in an image, whether it is a consequence of a projected 3-D motion onto the image
plane or it is just a 2-D rearrangement of positions of intensity patterns, modifies the image
content over time. The goal is to “undo” that operation and to recover the action which
had produced that effect. Consequently, this recovery operation is an inverse problem, and
not surprisingly has been identified as /il posed.

According to Hadamard's definition, a well-posed problem is characterized by the fol-
lowing properties:

1. existence: for each data there exists a solution,
2. uniqueness: the solution is unique,

3. continuity: the solution is related to the data in a continuous manner.
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(b)

Fig. 21 Example of ill-posed nature of motion estimation (non-uniqueness):
complex motion and possible deformation (a), and simple translational
motion (b). Our experience tells us that example (b) agrees better
with what we expect.

Violation of any of the above conditions makes a problem ifl-posed. Clearly, motion esti-
mation is ill-posed, because:

1. for the data containing occlusion areas there is no solution in such areas
(violation of existence),

2. for given data there are many different motion fields satisfying the data
(violation of uniqueness, Fig. 2.1),

3. for some intensity structures even slight local modification of this inten-
sity may cause significant change in the computed vector length and/or
orientation (violation of continuity).
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The non-uniqueness of motion recovery is illustrated in Fig. 2.1. The image is simply
an intensity surface with one iso-luminance contour shown. Assuming unchanged intensity
between the images, Fig. 2.1.a shows one possible set of motion vectors explaining the
data, while Fig. 2.1.b shows another one. Both types of motion explain accurately the data
(intensities), however the field in Fig. 2.1.b seems to agree far better with our expectation
of actual action in this image. Our experience tells us that things move coherently and
most frequently those moving things are rigid bodies, hence we expect neighbouring points
on the same object to move with similar velocities in similar directions. Concluding, we
expected translational motion of the surface (Fig. 2.1.b) rather than complex motion with

possible deformation as in Fig. 2.1.a.

2.3 SURVEY OF MOTION ESTIMATION METHODS

There exist two classes of motion estimation algorithms: those which extract 3-D
motion parameters from a sequence of 2-D projections, and those which estimate dense
velocity (displacement) fields disregarding any relationship between the objects and the
camera. In the first case, a rigid body motion is usually assumed, which can be decomposed
into translation, rotation and zooming components, and relatively few motion parameters
are estimated from an overdetermined set of constraints. This class of methods will not be
examined here, since the goal of this work is to obtain dense velocity fields, and secondly
the typical TV imagery is too complex to be closely approximated by the simple motion
models considered there.

The following methods, belonging to the second class, will be briefly discussed in the
next few sections: histogram-based, transform-domain, matching and spatio-temporal gra-

dient.
2.3.1 Histogram-based methods

One of the early motion estimation techniques was the gradient intensity transform
method developed by Fennema and Thompson [23]. Based on the gradients estimated

using the Sobel operator, they computed for each image point a constraint curve similar to
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the motion constraint line (2.2), but positioned in the polar coordinates. The true velocity
vector should be situated at the intersection of all constraint curves evaluated for image
points belonging to a moving object. Since in practice there are numerous intersections,
they partition the polar velocity space into velocity cells and accumulate a count number
of motion constraint curve intersections with each velocity cell. Once all the image points
have been analyzed, the peak value in the histogram identifies the velocity estimate.

This technique works quite well for a single object undergoing a simple translation,
but it is not well suited for other motions (e.g., rotation), and may also present difficulties
for images with multiple objects. The problem becomes especially difficult when several
smaller objects are translating with the same velocity. From the histogram peak it will
be impossible to distinguish such a case from a single large object, with its area equal
to the total area of the small objects, moving with the same velocity. The technique of
Fennema and Thompson uses local constraints in the global decision, which can be viewed
as a bottom-up process. Once a decision is made there is no top-down feedback to use
this global information in the local constraints reevaluation. The local structure of the
constraints is lost, hence inability to tell the difference between several small and one large
object undergoing the same translation,
~ Schunck [80] improved the above approach by clustering constraint lines for a given
spatial area of the image. He performed 1-D cluster analysis to exclude contributions
from across the motion boundaries. His technique can distinguish multiple objects and
the background needs not be stationary. He presented some resuits but only for moving

“random dots” pattern.

2.3.2 Transform-domain methods

Unlike other methods described in this chapter, which operate in the signal domain, the
transform-domain techniques operate in a different domain. If a transformation is such that
motion in the image produces characteristic modification of the image transform, then this
motion can be detected and sometimes evaluated quantitatively in the transform domain.

The Fourier transform is used most frequently, and its shift property is the basis of the

Fourier-phase method [37], [43]. Suppose F(wg,wy) is the Fourier transform of the image
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f(z,y). Then, if this image undergoes a uniform translation [d, dy],
flz —dz,y — dy) = F(we,wy) - e—I2n(wrdstwydy)

The phase difference between the Fourier transforms of f(z,y) and f(r —dy, y —dy) evalu-
ated over a number of frequencies results in an overconstrained system of linear equations,
which can be solved for example by the least squares method. In practice this method will
work only for single objects moving across a uniform background. Moreover, the positions
of pixels with the obtained velocity vector are not known, hence the assignment of the
velocity to an object must be performed in some other way. Also, care must be taken
of the non-uniqueness of the Fourier phase function since the integral multiples of 27 are
indistinguishable.

Another approach is the spatio-temporal frequency method originated by Gafni and
Zeevi [24], [25], and generalized by Jacobson and Wechsler [46]. If a time-varying image

f(z,y,t) is uniformly translating with some constant velocity [vz,vy], then

flz,y,t) = f(z — vat,y — vyt,0) = f(z,y,0) * 6(z — vyt,y — vgt,O),
where 6 is the Dirac delta function and “+” denotes convolution. It can be shown that
the Fourier transform of f(z,y,t) is zero everywhere in the (wg,wy,wt) space except the
plane:
wpz + wyvy +wp = 0.

For each velocity (vz, vy) a velocity polling function is computed by integrating over different
planes in the spatio-temporal frequency space. The velocity corresponding to the maximum
of the polling function is chosen as an estimate. Obviously this approach is still limited to
estimation of a single velocity, however Jacobson and Wechsler have proposed the use of
the spatio-temporal/spatio-temporal frequency representation via the Wigner distribution
instead of the spatio-temporal frequency representation via the Fourier transform. They
claim that dense velocity fields can be obtained from this representation, but no examples
of such fields are given in their work. The viability of the method is also questionable when
discretized images have to be considered (3-D transform based on only two images ?).

The third type of transform-domain methods is the phase correlation, frequently used in

image registration. The idea is to first perform a 2-D Fourier transform of each image, then -
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multiply together their corresponding frequency components, and take an inverse Fourier
transform. The result, called a correlation surface, is nothing else but an outcome of full im-
age matching performed in an efficient way T. The method works very well for translational
motion, gives sub-pixel accuracy and is applicable to the estimation of large displacements
(tens of pixels). Multiple moving objects can be also handled by this method, however
the problem of assigning velocity estimates to spatial positions has to be circumvented in
a different way e.g., as proposed by Thomas [86]. After identifying possible velocity esti-
mates as n highest peaks on the correlation surface, he uses those candidates to perform
local matching operations (e.g., block matching) to choose the locally best candidate. This
method is @ good example of a bottom-up data aggregation (Fourier transform) for some
global decision process, combined with top-down feedback (block matching using globally
computed candidates) for reexamination of the local constraints. Unfortunately, the method
does not work well for motions departing from simple translation e.g., rotation, zoom or
elastic body motion. This promising variation of the transform-domain approach suffers

also from drawbacks characteristic for the block matching (Section 2.3.3.1).

2.3.3 Matching algorithms

Matching techniques have been designed to solve the short- and long-range corre-
spondence problem, which associates certain structures in one image with corresponding
structures in subsequent images. Various, image-dependent or image-independent, struc-
tures can be used. At first, these structures are identified in a reference image, and then
an organized search for the corresponding structures is performed in the following images.
Usually this search attempts to optimize some criterion in order to find the best match.

Since practically every motion estimation algorithm involves matching explicitly or im-
plicitly, it is not clear how to classify some methods (e.g., Paquin and Dubois [73]). In
this review it will be assumed that any method employing searching to derive the optimum

correspondence between two (or more) images is a matching technique.

t Note that the sequence of operations given above is equivalent to a convolution of two images, whick
can be also viewed as a cross-correlation.
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2.3.3.1 Region matching

A simple image-independent structure which can be used to solve the correspondence
problem is a fixed size block of points. Basic assumption in such block matching algorithm
is that motion is locally translational and slowly varying. The motion vectors are computed
over a dense grid (e.g., identical with the image grid) or are assumed constant over a block
(e.g.. equal to the image block) when only a single vector is estimated for each block. Then,
an optimization problem, based on some objective criterion, is formulated with respect to
a displacement estimate. As such an objective criterion the following functions have been

used:
1. correlation function (maximization) [8] 1,
2. mean square error (minimization) [48],
3. mean of the absolute frame difference (minimization) [82],
4

. thresholded absolute frame difference {minimization) [72].

The optimization problem can be solved by performing a very simple exhaustive search:
computation of the objective function for every possible vector from its state-space, and
choosing the one which offers the best value of the objective function. This inefficient
approach finds the global optimum {within the given state-space) of this local optimization

problem. To speed-up the search procedure other methods have been proposed:
1. 2D-logarithmic search [48],
2. three-step search [53],

3. modified conjugate direction search [82].

These techniques assume monotonicity of the objective function which in general is not
true. For small blocks, however, this function may frequently be unimodal.

An interesting approach to correlation matching has been proposed by Anandan [3],
[4]. He applied local analysis of the correlation surface by using principle axis decompo-
sition, which resulted in high and low confidence direction estimates. He also proposed
heuristic confidence measures, which together with the principle directions were later used
in formulating the objective function to be minimized (velocity constraint error and velocity

smoothness error).

t Comparative analysis of various correlation measures for motion analysis can be found in [14].
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Block matching is a very simple technique to implement and relatively fast. It becomes
much slower, however, when sub-pixel accuracy e.g., via bilinear or biquadratic interpola-
tion, is required. In the case of a single vector estimate per block, it produces motion vector
variations only at the block boundaries. To reduce this effect and to simultaneously more
effectively deal with the motion boundaries, the displacement block size can be reduced. In
the limit, when vectors are assigned on a pel by pel basis, this method becomes prohibitively
expensive and rather than performing a search for a matching block, minimization tech-
niques are used, and instead the method should be classified as a spatio-temporal gradient
technique (e.g., [71] in Section 2.3.4).

Block matching is usually considered a suitable method for the short-range correspon-
dence, while it is inappropriate for the long-range one. This can be explained by the fact
that as the state-space for each block vector grows, the number of local minima grows as
well, and the more efficient search methods frequently fail to attain the global minimum
while the exhaustive search becomes too costly.

From the point of view of image coding this method may be sufficient as it attempts
to minimize a prediction error in the direction of motion, but the resulting estimate may
have little in common with the true motion in the image which is crucial for applications

like motion-compensated interpolation.

2.3.3.2 Feature matching

The block matching approach does not take particular advantage of the image regions
with high information content, but uses all the available data equally. Analysis of the
human visual system suggests that the regions of high information content very significa ntly
contribute to the motion perception. Th us,. the use of more complex structures than blocks
of points, seems promising. One of the first attempts in this direction was the work by
Potter where he attempted to match simply intensity discontinuities [76] and templates [771,
and also by Aggarwal and Duda [1] who used polygon vertices for matching. Also other
high level features such as edges, termination points, corners [7], [58] or even complete
image regions [1] have been used to solve the correspondence problem. Being based on the

search for characteristic (and usually distinct) features of the image, feature matching is
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suitable for the long-range correspondence problem.
Feature matching is a much more complex technique than block matching, since it
heavily borrows from scene analysis (segmentation, feature extraction etc.). In fact, only

schemes for analysis of relatively simple images have been proposed so far.

2.3.4 Spatio-temporal gradient methods

An imbortant alternative to the techniques presented above are the spatio-temporal
gradient methods. This class of techniques relies on the relationship between the spatial
and temporal image intensity gradients.

The first attempts to use such gradients for motion computation were presented by
Limb and Murphy [61], and Cafforio and Rocca [17]. Both have used a ratio of finite
frame differences versus finite element differences to calculate the velocity estimate. In
later work Netravali and Robbins [71] have minimized a displaced frame difference, which
after linearization around some initial displacement estimate resulted in an iterative update
algorithm. The direction of this update (for pel recursive algorithm) coincides with the
negative direction of the gradient of their objective function (displaced frame difference),
hence their approach can be classified as a steepest descent method. As the initial displace-
ment estimate at each spatial location they used a horizontally preceding displacement, and
this initial estimate was assumed to be fixed over a block for the displaced frame differ-
ence computation. An improvement to this method has been proposed by Paquin and
Dubois [73]. They formulated a minimization problem, where the objective function was
a sum (over a certain volume) of the square of linearized displaced pel differences. They
obtained an iterative scheme which differs from the result of Netravali and Robbins in the
choice of the initial estimate (temporal instead of horizontal predecessor) and its variation
over the summation volume (variable instead of constant). Hence, the method provides
displacement estimates at every spatial location and not a single one per block of pels.

The important work of Horn and Schunck [41], which will be examined more closely
because of its relationship with some methods proposed in this thesis, has produced explicitly

‘the motion constraint equation in its scalar form (2.2), which is a direct consequence of the

constant image intensity assumption along the motion trajectories. In their paper they gave
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the geometrical interpretation of the motion constraint equation, which is a constraint line
in velocity coordinates. Since an overdetermined set of local constraints frequently fails to
give a unique or any solution, they minimized a constraint error. The scalar equation (2.2),
however, can produce only the velocity component along the local intensity gradient. To
overcome this limitation they augmented their original objective function (motion constraint
error) with another function reflecting the motion field smoothness. They formulated the

following continuous minimization problem:

min j [ (€2,(v) + A - e2(v))dz dy, (2.8)
where the motion constraint error ey is the left-hand side of (2.2):
3 _9of f of

and the motion smoothness error is the sum of squared magnitudes of gradients of the

velocity components:

3'03 a'U_'g avy

224 )2+(3”y)2+( L2 (210)

The dependence of the intensity function on (x, 1) and of the velocity function on x has been

e5(v) = [Vxvell + | Vxoy|® = (55

omitted for clarity of notation. The double integral in (2.8) extends over the entire image,
and the parameter A allows a balance between the impact of the data structure (through
em) and the smoothness of motion field (through es) on the velocity estimates. Note that
(2.8) is a globa! minimization problem, where the objective function is formulated over the
entire image and entire motion field. At the time it was a completely new perspective on
motion estimation.

From the necessary condition for optimality of the objective function in (2.8), Horn and
Schunck have derived a set of two equations for each x, and after discretization of f and v
have used deterministic relaxation (Jacobi, Gauss-Seidel) to solve that linear system. The
relaxation algdrithm resulted in the following iterative update:

vo+l = (1,3)(f’v )

M (z,J)_W_ (zjj)f, (2.11)

where the subscript (7, j) denotes a discretized spatial position x, Vi, 5) is a velocity vec-

tor averaged over some neighbourhood of (7, j) {41], superscript n denotes the iteration
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number, and V(;  is a discretized spatial gradient defined as
Vi = UE i BT
(%,4) ) EH

where f(xi,j) and f(”z.’j) are finite-difference approximations of the horizontal and vertical

derivatives of f, respectively. The scalars s(,-,j)(f,v“) and ; 5) (f) are defined as follows:
6.V =V 0) - Vi + fi gy
1) () = X+ 11V fI%

where again f(tz. i) is a finite-difference approximation to the temporal derivative of f.

(2.12)

Careful examination of the iterative update (2.11) and the scalars (2.12), will reveal

that the solution can be rewritten as:

VI = Vi~ 5 V) - mv%j)egn(""ﬁ,j)%
where Vv is a gradient with respect to velocity v. Note that with each iteration the solution
advances in the direction of the gradient of the squared smoothness error and then in the
direction of the scaled gradient of the squared constraint error (with respect to the average
velocity). It is not exactly the steepest descent method, but it may be viewed as a two-step
separable steepest descent.

A similar approach has been proposed by Hildreth [39). As the motion constraint
error e she used the difference between the measured velocity component orthogonal
to the intensity contour and its estimate, while as the smoothness error e; she used a
velocity variation measure (e.g., gradient} along an intensity contour. Thus, the smoothness
is enforced directionally along the intensity contour, and not homogeneously in spatial
coordinates. Similarly formulated uncoﬁstrained minimization problem she soived by the
method of conjugate gradients,

The relative success of Horn and Schunck’s approach spawned a significant amount
of interest in the global formulations. Nagel in his early work [68] has minimized a sum
of squares of a quadratic approximation {involving second-order derivatives of f) of the
displaced pel difference 75. Later [69] he augmented this approach with a smoothness
constraint based on the notion of the gray value corner. Unlike Horn and Schunck, he pro-

‘posed to vary the smoothness constraint based on the characteristics of the data structure
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using second-order derivatives of f. In his recent work {70] he argued about the redun-
dancy of second-order derivatives in approximating 1 (em term) and in weighting various
components of the smoothing functional (e; term). His oriented smoothness implemented
through a weight matrix in the smoothing functional seems to contain relevant information
about the data structure, and has a significanf impact on the estimates around inténsity
discontinuities.

Cornelius and Kanade [18] have proposed to relax the intensity constancy assumption
(along motion vectors) and added a space-varying offset to the constraint error. Gennert
and Negahdaripour [28] have extended that by adding a constant intensity multiplier, and
thus allowing the image pattern to vary linearly across the image. Both the offset and the
multiplier were constrained by a smoothness operator, and were estimated simultaneously
with the displacements. Also Krause [69] did not rely on the intensity constancy, but
minimized a norm of a derivative of the intensity gradient (left-hand side of equation (2.6)).
The second-order intensity derivatives resulting from differentiation of his objective function,
have been estimated from a 2-D low-order polynomial fitting to the actual intensity.

.A different approach to the local velocity estimation has been proposed by Tretiak and
Pastor [88]. They have also relaxed the constant intensity assumption, but instead required
constant derivative of the intensity gradient {2.5). Note that this is a vector equation,
which results in a vector version of the motion constraint equation (2.6). Since the vector
equation (2.6) provides two scalar equations, and since there are two unknowns vz, vy, this
linear system is not underconstrained any more, and the aperture problem so characteristic
of the scalar equation (2.2) is significantly reduced. This can be explained by the fact that
the determinant of the Hessian matrix (2.7) is equal to gaussian curvature of the intensity
surface at given ¢, which is large when local intensity contrast is large in all directions (a

good candidate for velocity estimation).

2.3.5 Statistical approach to motion estimation

The motion estimation methods presented above were based on the deterministic rela-

tionships between the estimators {motion fields) and the observed data {images), and also
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assumed no probabilistic models for the estimators themselves, Methods have also been
developed approaching the problem statistically.

Schunck [80] proposed the maximum likelihood estimation of velocity vectors. As
the likelihood function he used the probability of 2 line constraint measurements (orien-
tation and distance from the origin) conditioned on the direction of motion. He derived
an expression for this function assuming a uniform probability density of the constraint line
orientation given the motion direction, but failed to precisely specify the velocity probability
density. He proposed to use a set of measurements (assuming their independence), and to
maximize the log-likelihood function using histogram techniques. The estimated direction
permits computation of the velocity from the motion constrained equation. Schunck did
not demonstrate any experimental results.

Also Martinez proposed to maximize the joint likelihood of motion and local image
parameters [64]. From an additive white Gaussian noise model for observations he derived
a Gaussian likelihood function, which is quadratic in image parameters but non-quadratic
in motion vectors. He proposed to alternately estimate the image parameters (solution of a
linear system) and the motion vectors (steepest descent method). He reported good results

obtained with this method, however at high computational expense.

2.4 HIERARCHICAL METHODS IN IMAGE PROCESSING AND COMPUTER VISION

It has been an observation of many researchers that the performance of motion estima-
tion algorithms can be significantly improved by pre-filtering of images. This observation

can be explained by the following interactions:

1. block matching: the displaced frame difference (2.3) evaluated over a block
is usually a multimodal function with respect to the displacement i.e., apart
from the deepest valley in such a surface {global minimum for this local
problem) there might be several less deep minima; smoothing of the image
will result in smoothing of this surface too (proof for 1-D matching problem
will be given in Appendix 5.A}); with sufficient low-pass filtering this surface

- will become locally unimodal and any minimization method will attain the
global minimum of this new optimization problem,

2. -spatio—temporal gradient method: an important assumption of locally linear
variation of the intensity function, which is used by gradient methods relying
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on the motion constraint equation (2.2), is violated when the data struc-
ture is characterized by relatively high frequency content such as very sharp
edges, periodical patterns with small repetition period, noise; smoothing re-
duces this high frequency content, and also suppresses noise, so that the
data is closer to a locally linear behaviour; related is the problem of reliable
estimation of the intensity derivatives — suppression of high frequencies and
noise makes derivative estimation a better-conditioned problem [87].

The above observations have led to the interest in hierarchical algorithms which per-
form estimation over a pyramid of increasing image resolutions. The early examples of
hierarchical processing are from other fields than optical flow estimation. The pyramidal
representation was used for template matching [78] and image registration [91]. Ter-
zopoulos [83] investigated the problem of surface reconstruction from sparse data using
mechanical models {thin plate and membrane). He solved the minimization problem using
the finite elements method applied over hierarchy of image resolutions. He also showed
‘how the shape-from-shading and optical flow problems can be approached over a hierarchy
of resolutions [84].

Burt proposed hierarchical operators for motion estimation, and suggested correlation
and gradient-based methods [15]. He later developed a hierarchical correlation algorithm
[16}, where a pyramid of band-pass filtered images was used to obtain motion estimates at
various levels of resolution (frequency bands). The estimates from different levels have not
been combined into a full-resolution field, however. In other work, Glazer et al. [30] and
Anandan {6] have performed hierarchical correlation matching over a pyramid of low-pass
- filtered images. They used lower resolution estimates for subsequent estimation at higher
resolution levels. In his later work Glazer {31] aiso extended Horn and Schunck’s approach
by applying it in a hierarchical manner. Enkelmann [22] has similarly extended the oriented
smoothness approach of Nagel [68], [69].

In his early work Burt {13] has developed fast algorithms for generating pyramids of low-
pass or band-pass filtered images. His filtering relies on scale-invariant kernels which in the
limit approximate a Gaussian for Iow-pass filtering and a Laplacian for band-pass filtering.
Another fast algorithm for ba'hd-péss pyramid construction was proposed by Crowley and
Stern [20]. It is not clear, however, how much filtering should be applied to the data in

order to construct a pyramid suitable for motion estimation.
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The filtering performed in a hierarchical algorithm allows it to disambigruate the match-
ing problem to a certain extent. Reduced high-frequency content also allows it to perform
matching at larger displacements. These clear advantages do not, however, speed-up the
computation process. Since the high-detail data structure has been reduced, it should be
expected that also such structures will be reduced in the estimator (motion field). Hence,
it became apparent that the spatial grid of the motion field may be subsampled to such
an extent as to accommodate the local variation of the data. In this way at low image
resolution levels the displacement fields would be computed at sparse locations only. The
density of the displacement sampling grid would increase with the resolution of the data.
Hence two independent pyramids would be constructed: one for the images and one for the
displacement field. The subsampling of the displacement grid improves the convergence of
the hierarchical algorithm compared to the one with no estimator grid subsampling. This
improvement is due to two factors:

1. number of vectors to be computed at lower resolution level is smaller (e.g.,
for interlevel subsampling by 2 there are about 4 times fewer vectors to be
computed; the exact number depends on whether the pyramid is even or odd

[13], [31]),

2. propagation of the displacement field structure (this applies to methods
which involve certain relationships between neighbouring vectors) is faster
because of the absolute distance between displacement vector positions.

There is a danger, however, that this improved expansion of motion characteristics may

cause excessive smoothness across motion boundaries (invisible at such low-resolution scale)

unrecoverable at subsequent higher resolution levels.

2.5 REGULARIZATION METHODS

Recall the definition of a well-posed problem from Section 2.2 and its consequences for
motion estimation. |t comes as no surprise that, like many early vision problems, motion
estimation being an inverse problem is ill-posed. To deal with the ill-posed problems, quite
frequently arising in applied science, two branches of mathematical analysis have been
developed: the theory of generalized inverses and the regularization theory. A concise

review of both approaches to solving the ill-posed problems as well as numerous references
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are given by Bertero et al. [9]. Here, only the principle ideas underlying both approaches
will be given in order to refer to them in some later sections of this thesis.

Assume that functional spaces X and Y, as well as a linear, continuous operator L
from X to Y are given. The task of an inverse problem is to find, for some given 4 € V,

a function d € X such that:

h = Ld.

The direct problem would be to compute A given d. The theory of generalized inverses
attempts to solve the problem by minimizing a norm of a certain function. Inverses can be
classified according to the choice of that function as follows:

1. Least squares inverses: the following variational problem is solved:

min (|1 — hlly, (2.13)

where || - ||y denotes the norm in Y. This problem results in the linear
system L*Ld = L*h (L* is the adjoint of L) for which the existence and
uniqueness of the solution depend on the properties of L.

2. Generalized inverses: the solution of (2.13) is sought such that it is of
minimal norm:
| min ] x.

3. C-Generalized inverses: the solution of (2.13) is sought such that it is
also minimal in a constraint space:

min |Cd]|z,

where C'is a linear operator from X into the constraint (functional) space
Z.

An alternative to the generalized inverses are the regularization methods. The regular-
ization method as proposed by Tikhonov will be briefly summarized next, but some other
perspectives on regularization theory can be found in [9]. Probably the most investigated

technique of regularization is the following optimization problem:
min[[Ld - hl[§ + A-[ICdllE, (2.14)

where the same notation is used as above. The parameter ) is called the regularization

parameter, and ||C - || is the stabilizing functional, which usually expresses some desired
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property expected from the solution (e.g., smoothness, directionality). A weights the com-
promise between data approximation and model fitting (expressed by the stabilizing func-
tional). In spite of existing theory for the optimal choice of ), such choice is probably the
most difficult problem in regularization.

The theory of generalized inverses and regularization for non-linear problems t, has also
been investigated but it is not well-developed yet. The conclusions from existing results are
that the solutions may not exist, and even if they do, they may be not unique.

There are numerous examples of regularized approaches to the early vision problems
[74]. In optical flow estimation, the methods proposed by Horn and Schunck [41], Hildreth
[39], Anandan [5] are examples of regularization, where the ill-posedness, also understood
as the aperture problem [39], has been treated by imposing the smoothness constraint on
the solutions (the smoothest velocity field is sought from the set of possible velocity fields
consistent with the measurements). Also numerical differentiation, used in edge detection
and other early vision problems, has been formulated in the framework of regularization
[75]. [40], where the stabilizing functional uses the second derivative of the approximating
function. Other early vision problems approached from the regularization point of view are:
shape from shading [45], surface interpolation [32], [33], [34], [85], curve fitting in the

presence of discontinuities [60].

2.6 STOCHASTIC MODELING AND ESTIMATION

Various physical phenomena, among them image acquisition, can be interpreted de-
terministically or statistically. The topics discussed above treated such phenomena in a
deterministic manner i.e., it was assumed that the underlying phenomenon as well as its
relationship with the observed data were known with probability 1. An alternative to this
approach is to consider the underlying process and/or its relationship with the observations
as samples of some random processes. For example; in image acquisition the observed
image can be related to the underlying one through an additive random noise, and also the

true underlying image can modeled for example by a Markov random field.

T The linear operator Ld is replaced by A(d), where A(:) is a non-linear operator.
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Three stages can be identified in such a stochastic approach to estimation: modeling,
formulation and solution. The statistical modeling attempts to mathematically express the
behaviour of physical processes based on the probability theory. The statistical formulation
relates various phenomena {variables) in a probabilistic manner, and the statistical solution
involves a probabilistic method which solves the result of the formulation stage. Note that
the outcome of the statistical solution depends on random numbers used, hence in principle
is not repeatable T.

The best known statistical models in image modeling are: autoregressive (AR), moving
average (MA) and autoregressive moving average (ARMA) models [2]. The AR models
employ a recursive filter driven by a random noise to approximate such quantities as image
intensities [35], [47]. Similarly the MA models use a non-recursive filter also excited by
random noise. The combination of the two is known as the ARMA model. A closely
related concept of a Markov random field has also been used for modeling [92]. The AR
equation can be viewed as a means of generating Markov random field samples. The
Markov randoﬁ fields have been used in the context of conditional probabilities rather than
AR equations for texture modeling [38}, [19] and image modeling [26]. Also other random
fields, with neighbour probability dependence specified by a correlation function instead of
the Markov property, have been used in image modeling [2].

Usually the formulation stage is closely refated to the modelihg. Examples of formula-

tion (and modeling) will be given for the linear restoration problem:
g= h f +n

where f is the original image, g is the observed image, n is noise, h is a filter impulse re-
sponse and * denotes linear convolution. Note that the additive noise and the deterministic
filfer‘h are elements of the model. The goal is to recover f from the knowledge of g and
some additional information or assumptions. The following models and formulations can

be used to soive the above problem:

1. linear regression: model - n is a random process with known mean and
covariance; formulation - minimize the mean squared error between f and

I pseudo-random numbers generated by some algorithm are used, then of course the results are
repeatable. ’
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its linear estimate; results in the estimator which is a conditional expectation
of f given g,

2. Wiener estimation: mode/- f and n are random processes with known means
and covariances; formulation - minimize the mean squared error between f
and its linear estimate; results in the Wiener filtering,

3. Bayesian estimation: mode/ - f and n are random processes with known
Joint probability distribution P(f,g) (from which all marginal distributions
can be computed); formulation - minimize the conditional expected cost
Ef/g[ﬂ(f 7)), where 8 is a positive definite function, F is an estimate;
minimization of this cost results in the optimal Bayesian estimator; if @ is the
squared Euclidean norm, Bayesian estimation is simplified to the minimum
mean squared error (MMSE) estimation; if 8 is a Dirac impulse then Bayesian
estimation results in the maximum a posteriori probability (MAP) estimation,
and if additionally the a priori probability distribution is uniform then the
maximum fikelithood (ML) estimation is obtained.

In the case of linear regression and Wiener estimation, application of such tools as
linear algebra and theory of generalized inverses (Section 2.5) results in a closed form
solution, usually implemented in the Fourier transform domain. In general such closed form
solution does not exist for Bayesian estimation, but even when it does, as in the case
of MMSE estimation, its implementation is not sfraightforward (how do we compute a
conditional mean of a 512 by 512 image ?). In such a situation stochastic methods are
used, for example Monte Carlo methods [36], which are usually concerned with estimating
numerical values of some unknown distribution parameters (e.g., expected value). The
particularly well known example of Monte Carlo methods is the Metropolis algorithm [65],
which was originally proposed to study the behaviour of a many-particle system in thermal
equilibrium. A recent example in this class of techniques is the Gibbs sampler developed
by Geman and Geman [26] specifically to generate samples of Markov random fields. Both
methods can be used for estimation of certain distribution parameters, however they become
especially useful for minimization of objective functions via simulated annealing [52], a
stochastic minimization method which under certain conditions [89] is able to attain the
global optimum. Some minimization problems resulting from the Bayesian estimation could
also be solved via deterministic optimization techniques like the steepest descent, Newton

or conjugate gradients methods. However, if their initial state is not “sufficiently close”

T_ This notion depends on the modality of the objective function.
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to the global minimum, they will be able to locate only a local minimum (Section 2.7).
More detailed and formal discussion of these three stages will be given in Chapters 3

and 4.

2.7 FINDING THE GLOBAL OPTIMUM: A SIMPLE EXAMPLE

In this section three approaches to an objective function minimization will be demon-
strated on a simple 1-D example of segment matching. It will be shown how the difficulty
with localization of the global optimum performed by a steepest-descent method (due to
function multimodality) can be alleviated by using either the hierarchical or the stochastic
approach.

Let f(y) and g(y) be real-valued functions of the real position y, and let d be a real
number from [— K, K]. Consider the following objective function ¢(d) as the matching error

between f and g over the segment [0, N — 1] (d is assumed constant over this segment):

N-1

#d) = 3 [f(z) — g(z + d)]%.

r=0

To find the optimal displacement d*, the solution to the following minimization problem

must be found:

#(d%) = min 4(d). (2.15)

To solve (2.15), the following three methods will be used:

1. Gauss-Newton optimization.
Assume that some initial displacement dy is known, and that higher than
first-order terms in the Taylor expansion of g(d) can be neglected. Then
#(d) can be approximated as follows:

N-1
6D~ T )=l + o) = (4 - ) L

and from the necessary condition for optimality (8¢/6d = 0) the following
iterative update equation can be derived:

o p o [f(w) (e +d™1) ]%%“‘"—’l
]_[ay!:t—l-d“ 1!

where n denotes iteration number and d"~! is used instead of dy. Note
that the update term is proportional to the gradient of the objective function
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#(d), hence this method belongs to the steepest-descent algorithms. The
process stops if total error over M consecutive iterations does not exceed
some threshold 8. This convergence criterion can be expressed as follows:

H+M .

Yo (& -1 <.

j=i

2. Hierarchical Gauss-Newton optimization.
First, a pyramid of low-pass filtered versions of signals f and ¢ is produced.
Then the standard Gauss-Newton minimization described above is applied
to the most filtered f and g. The result of this estimation is supplied as the
initial value dpy to another Gauss-Newton minimization but applied to the
less filtered signals f and g. This process is repeated until the full resolution
estimate is obtained. The same convergence criterion as for the single-level
‘method is used. '

3. Simulated annealing.

This method will be discussed in detail in Chapter 4, but it should be men-
tioned that simulated annealing is a stochastic method able under certain
conditions to find the global minimum of a cost functional. It is basically a
random search through the state-space of the estimator with gradual {very
slow) lowering of a “temperature” parameter, so that after sufficiently long
evolution the only possible mode is the one corresponding to the global
minimum.

The signals f and g were generated by a moving-average process as follows:

1. a sequence r.of independent uniformly distributed random numbers from the
range [0.0,1.0) was generated,

2. a narrow-band low-pass linear-phase FIR filter was applied to the random
sequence r to obtain signal f (Fig. 2.2),

3. to avoid perfect segment match, signal ¢ was generated by superimposing
‘white Gaussian noise (mean m=0.05, variance 02=0.04) on random se-
quence r, then applying to the result the same filtering as in 2., and finally
shifting the outcome by the displacement d=100.0 (Fig. 2.2),

4. to obtain the “pyramid” of f and g signals for hierarchical Gauss-Newton
approach (Fig. 2.3), inter-level low-pass filtering with a finear-phase FiR filter
derived from Gaussian distribution with the standard deviation of 20.0 was
used.

Fig. 2.4 shows the objective functions ¢(d) for 4 resolution levels. Note that ¢(d)

after single filtering of f and g is still multimodal, and only after triple filtering it becomes

unimodal.
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Fig. 2.2 Input signals f and g for segment matching (before MA filtering signal
' g was corrupted by white Gaussian noise with mean m=0.05 and
variance 62=0.04, true displacement d=100.0).
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Fig. 2.3 Input signal f over 4 levels of resolution (filtering based on FIR
approximation to the Gaussian with standard deviation of 20.0).
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Fig. 2.4 Hierarchy of objective functions ¢ as a function of displacement
(filtering based on FIR approximation to the Gaussian with standard

deviation of 20.0).
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Fig. 2.5 Evolution of the estimation process for the Gauss-Newton method
from 4 initial states (0=0.0001). '
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Fig. 2.6 Evolution of the estimation process for the hierarchical Gauss-Newton
method from 4 initial states (6=0.0001).
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Fig. 2.7 Evolution of the estimation process for simulated annealing; initial
- state dy=-200.0, initial temperature Top=10.0. '
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For each method the estimation of d was performed starting from 4 different initial
states (values of dp). As the convergence criterion for the deterministic approach the
stopping threshold §=0.001 over M=10 iterations was used. Fig. 2.5 shows the iteration-
wise evolution of the Gauss-Newton method. It is clear that the method is highly dependent
on the initial state, and is not able to “climb” any of the encountered "hills". The 4-
level hterarchical Gauss-Newton method, as it can be seen in Fig. 2.6, found the global
optimum quite easily. At level 3 it found only an approximate estimate (=110.6, for initial
displacement of -200.0), which was refined at subsequent levels (~105.9, 101.0, 99.1). In
experiments with various amounts of hierarchical filtering it was observed that the success
of the approach is very dependent on this filtering. In the last experiment the method
of simulated annealing was used with the starting “temperature” parameter Tp=10.0 and
5% reduction every 10 iterations. The method performs a very random search initially
(Fig. 2.7), but then it visits the correct.state more and more often until it locks to the
true displacement. Only one initial state dy=-200.0 has been tested since the search is very
random at the beginning (independence of simulated annealing from the initial state follows
naturally). Note that no filtering was performed, hence the method is able to “climb” all
the encountered “hills” of the full resolution ¢. This method will be discussed in detail in
Chapter 4, where its limitations in practical implementation will be also reported.

The exercise presented in this section aimed at showing two successful but completely
different approaches to minimization of multimodal functions-frequently encountered in
computer vision. | will concentrate in this thesis mostly on the stochastic approach, how-
ever | will also present some deterministic approximations (to these stochastic algorithms)

implemented hierarchically,
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Chapter 3
OF MOTION ESTIMATION

Relatively littie research has been done to date in statistical approach to 2-D motion
estimation. The only statistical estimation method which has been investigated is the
maximum likelihood (ML) estimation.

In this chapter | propose to model the observed images (data) as random fields (RFs)
via an observation model, and the motion (displacement) fields as Markov random fields
(MRFs) - motion (displacement) model. These two models are combined into a single
description by application of Bayes rule to the a posteriori probability of obtaining a certain
motion field given the observed images. Two estimation criteria are proposed: maximum
(total) a posteriori probability and minimum expected cost.

This chapter is organized as follows. First the terminology will be presented, followed
| by a brief overview of Gibbs distributions and Markov random fields. Then, the estimation
criteria will be discussed, followed by the description of three models incorporated in these

criteria. Finally, the a posteriori probability will be derived.

3.1 TERMINOLOGY.

Let u denote the true underlying time-varying image to be defined in Section 3.4.
The observed image g (also time-varying) is considered to be a sample of a random field
(multidimensional stochastic process) G, and also to be related to the underlying image u
via some random transformation. The image g is assumed to be sampled on a lattice Ag
in R3 (horizontal, vertical and temporal directions). Such a lattice is a collection of sites

s € R3 uniquely described by a sampling matrix [21].
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Consider the true underlying image u defined over continuous spatio-temporal positions
(x,t). Let u at time t = ¢ be called the preceding image and at ¢ = t5 — the following
image. Excluding the occlusion and newly exposed areas, for every point in the preceding
image there exists a corresponding point in the following image. Every such pair of points
can be connected by a straight line. Since u is defined over continuous (x,¢), these lines
will intersect a plane located at ¢ (t] < ¢ < t3) over a dense set of locations. In other
words, for each (x,1) theré exists a line joining corresponding image points at times ¢; and
tg. Note that these lines coincide with the true motion trajectory at the end points (¢;
and ?3), and not necessarily between them. The true motion trajectory will intersect (in
general) the plane at time ¢ at location different from (x, ).

Let the 2-D projections of line segments between ¢; and 9 on the plane at time ¢ be
referred to as the unknown (true) displacement field d associated with the underlying image
u. It is unfeasible, however, to compute displacement vectors on a continuum of spatial
positions, hence d is assumed to be sampled on a lattice Agq in R3. In the literature the
cases where

1. Aqis a sub-lattice of Ag:  Agq C Ag, or

2. Aqisidentical to Ay : A4 = A,
have been most frequently considered. In this thesis a more general situation, where Ay and
Ag are arbitrary, will be investigated. Consequently a displacement vector may be defined
at a spatio-temporal position which does not belong to A4. Clearly, approximation of the
true motion trajectory by a line will be precise when Aq = Ay, for example in motion-
compensated prediction. In the case, however, when Ay # Ag, as in motion-compensated
interpolation, there will be an error introduced due to a departure of motion trajectory from
linearity in the interval (¢1,12). If this interval is small e.g., 1/60 sec., such an error should
be minor.

The investigations which follow are valid for any lattices Ay, Agq, however without

loss of generality, it is assumed that they are rectangular lattices with horizontal, vertical

t o provide a more accurate approximation to the true motion trajectory, two vectors: between £; and
i, and between ¢ and {2, would have to be defined. Then, however, the number of unknowns for each
(x,t) would grow from 2 to 4, and the problem would be severely underconstrained.
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Jt—AL-T, d; 9t+(1.0-A¢).T,

e

/ °°

e _

Ty

At'Tg

Fig. 3.1 Definition of the displacement field d; for motion estimation from two
image fields (only one vector is displayed). Sites of lattice Aq (o) are
also pivoting points for the displacement vectors — every vector
d(x;,t) crosses site (x,-,t? while its ends are “free” to move and do
not necessarily belong to lattice A4.

and temporal sampling periods (T;’,T;,Tg) and (T(’i‘,Té’,Td), respectively. Consequently
consecutive image fields are spaced by T, seconds, while motion fields are spaced by Ty
seconds. Each field of the image sequence contains M, picture elements (pels), and each
motion field consists of My vectors. Let the horizontal and vertical dimensions of the motion
fields be M} and M], respectively (Md=M3><M:i)- The numbering order for the picture
elements (i = 1,..., My) and the motion vectors (i = 1,..., My) in a given field is arbitrary
(e.g.. horizontal scan). With the above assumptions a site s; = [kTg", IT7,mTy] € Ag (for
some integer 7, k,{,m) is an image pel in the m-th field with spatial coordinate (£, 1).
'l"he true displacement field d(x,t) is an array of vectors defined over the lattice Ag,
and is assumed to be a sample (realization) from random field D(x, ). Let also d{x,¢)
denote any sample field from D(x,%). In general every motion field can be estimated
- from K; image fields. Here, however, the case of K;=2 will be investigated. Assuming

a linear motion trajectory between two images, as discussed above, the definition of the

displacement field is given below, and also illustrated in Fig. 3.1.
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Definition: The displacement (motion) field d(x, ) defined over A4 is a set of

2-D vectors such that for all (x;,t) € Ag the (preceding). image point
(x; — At-d(x;,t),t — At - Ty)
has moved to the (following) point:
(x; + (1.0 — Az) - d(x;, 1), + (1.0 — A?) - Ty),

where
t t
e |3
Tg Tg
is the normalized (with respect to the inter-image distance 7) temporal dis-

tance between the motion field position and the preceding image position.

Note that the above definition allows us to locate the displacement vector at any

spatio-temporal position. In particular consider the following two limiting cases:

l.t=m-(1.0+¢)-Tg,e € R = lim, At =00, and in the limit
the preceding and the following image fields are defined as follows:

(X;’, t) —_— (xi + d(xi7t)7t + TQ‘):

2. t=m-(10-¢)-Tg,e€ R = lim._,5At=1.0, and in the limit
the preceding and the following image fields are defined as follows:

(x; —d(x;,t),t — Ty) — (x;,1).

Essentially both cases are similar, since the temporal position of the motion field coincides
with the temporal position of an image. The first case describes the forward estimation
where the motion field is computed from the knowledge of the current and the following
imaggs. The second case is an example of backward estimation: motion field is obtained
from the current and the preceding images. In order to avoid Ambiguity, when the motion
field and image temporal positions coincide, it is enough to restrict At to one of the
following intervals: [0.0,1.0) or (0.0,1.0]. The first of these two intervals will be used here.

Let an estimate of the true displacement field d for a given image sequence be denoted
by d. Let also the subscript ¢ denote the restriction of a random field or of its realization

~to time t. Then, d; is a realization of random field D; (D at time t), while d(x;,t5) is a
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single displacement vector at spatial location x; and time t;. Hence, the following notation

will be used:

G,N,D - random fields: observation (image) RF, noise RF and displace-
ment RF; for instance G(x;,t;) is a random variable (RV) from the
observation RF,

g,n,d - samples (realizations) of the random fields G, N, D respectively;
for example g(x;,1;) is a sample of the observation RF at (x;, ;) or
in other words the current value (intensity) of the random variable

G(x;,5),

(G =g),(N =n),(D =d) —understood as follows: the RF G has currently
the realization g i.e., G(x;,t;) = g(x;,1;) for all ¢, 7,

Gt, Ny, Dy, gt,ny, dy — subscript ¢ in any symbol of a RF or its realization
means the restriction to the time instant ¢, hence (th = gtj) =
(G=g,at t = t5) = (G(xi, ;) = g(x;, t;),all ).
It is assumed that the random field G; is defined over the discrete state-space S; =
(S;)M-’, where S is the single pel state-space and (-)M denotes an M-fold Cartesian
product. Similarly, the random field D; is defined over the state-space Sg = (S&)Md,

where S is the single vector state-space. Two cases of 8! are considered:

1. 8} is a discrete state-space i.e., a square 2-D grid over the range
[~dmaz, dmaz] with N; possible levels in each direction,

2. 8! = R?is a continuous state-space.

All state spaces correspond to a sufficiently fine quantization of the underlying continuous

image intensities and displacements, so that their characteristic properties are preserved.

3.2 GIBBS DISTRIBUTION AND MARKOV RANDOM FIELDS

The following material is presented for completeness, however it can be found in various
references, for example: Geman and Geman [26], Besag [11], [10], Kindermann and Snell
[51].

3.21 Gibbs distribution

In order to define the Gibbs distribution the concepts of neighbourhood system, clique

and potential function are needed. For the purpose of this chapter let A denote a lattice
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eNI,j=1,..6

eNI,j=2..6

ENI j=3,..6

eENI j=4,..6

| eNI,j=56

e N6

Fig. 3.2 Hierarchically organized neighbourhood systems of order 1 through 6:
every j-th order system contains all sites of systems of order up to

(G -1).
with M sites, and let x be a sample field from random field X defined over lattice A and
state-space &. With the above temporary definitions neighbourhood system is defined as

follows.

Definition: A collection N of subsets of A
N ={n(s;): s;€ Ayn(s;)) CA1<i< M}

is a neighbourhood system on A, if and only if, the neighbourhood n(s;) of site

s; € A satisfies the following conditions:

1. s; € n(s;), and
2. if s; € n(s;), then s; € 5(s;) for any s; € A.

In this thesis random field models with only spatial (2-D) Markovian dependence are
considered for motion. Hence, only 2-D neighbourhood systems will be investigated. As a
consequence whenever a neighbourhood is discussed, the time coordinate ¢ will be omitted

and sometimes spatial coordinate x; will be replaced by (k,1), since x,-:(kT(’i‘,ITg) for
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(a) (b) {c) (d)

[ ]
(kF1)
[ ] (o] ®
(k-10) (ki)  (k+LD)

(*f1)
Fig. 3.3 First-order neighbourhood system A1 (a), and associated one-element

(b), two-element horizontal (c) and vertical (d} cliques. Note that

x; = (k,1) for some integer k and I.
some integer k,I. Fig. 3.2 shows 2-D neighbourhood systems A7, j=1,...,6, in hierarchi-
cal order i.e., every higher-order structure includes all the lower-order ones. The first-order
system A1, also known as the nearest-neighbour system, is commonly used in image mod-
eling. The second-order neighbourhood system A2 comprises the sites of AL, and also
additional diagonal sites. The higher-order systems are constructed similarly. Note that
a neighbourhood system defined over A needs not be isotropic nor hierarchical. It should
-also be pointed out that the neighbourhood system is shift-invariant except at the image

boundaries, where it must be redefined.

Definition: A clique c defined over a lattice A with reépect to the neighbourhood
‘system A is a subset of A such that:

1. two sites in a clique are neighbours i.e., (,7),(k,I}) € c and (3,7) #
(ka l) = (3a.7) € W(kvl)' or
2. c consists of a single site.

The set of all cliques is denoted by C. Cliques for the first- and second-order neighbourhood
systems are shown in Fig. 3.3 and 3.4, respectively. Note that the cliques associated with

N2 contain all the cliques associated with AL,

Definition: A Gibbs distribution with respect to the lattice A and the neigh-

bourhood system A is a probability measure 7 on S such that

o=tevos -
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(a) (b) (<) (d)
(-Dh1) (k1) (kiLF)
.
(L) (k) (kLD * e
.
(1041) (kP1) (kDi41)
(e) (1) (s) (h)
. . . .
. . o« o o e
0, 0Q) R
o e o o ¢« e
. . o o

Fig. 3.4 Second-order neighbourhood system A2 (a), and associated cliques:
one-element (b), two-element vertica! (c), horizontal (d) and diagonal
(e).(f), three-element (g).(h).(i).(j), and four-element (k). Note that
X; = (k,[) for some integer k and /.

where 3, Z are constants, and the energy function U is of the form

Ulx) =3 V(x o) (3.2)

ceC

V(x,c) is called a potential function, and depends only on those samples from y which

belong to the clique c. Z is called a partition function, and is a normalizing constant such

that = is a probability measure.
3.2.2 Markov Random Fields

The discrete state-space MRF X is a multidimensional stochastic process with the
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following properties:

L. P X=x)>0, VxeS,

2. P(X; = xi|Xj = x5, Y5 # 1) = P(X; = xilX; = x;,Vj € (i), Vi, x€S,
where P denotes a probability measure. Analogous property applies to the continuous
state-space MRF when the probabilities P are replaced by cumulative distributions Fx(x).
Furthermore, assuming the existence of the probability density p (the differentiability of
Fx), the above properfy applies directly with the densities p replacing the probabilities
P. To keep the further derivations clear and simple, the discrete state-space notation
(probability distribution P} will be used in this thesis. Exception to this rule will be where
explicit continuous state-space expressions (probability density p) are needed.

In order to uniquely characterize a MRF the finite-dimensional joint probability distri-
bution is necessary. To express this joint probability distribution of the complete random
field X all initial and transitional (conditional) probability distributions are needed. This ap-
proach is cumbersome, because the conditional probability distributions must satisfy certain
consistency conditions [10] (hence cannot be chosen arbitrarily), and because the computa-
tion of the joint distribution from these conditional distributions is usually difficult. Also the
relationship between the form of a conditional probability distribution and the characteristic
properties of a sample field (e.g., smoothness) is not obvious.

Such a clear and simple relationship can be provided through the Hammersley-Clifford
theorem [10] which states that if X is a MRF on lattice A with respect to neighbourhood
system N, then the probability distribution of its sample reaiizatiohs (configurations) is a
Gibbs distribution (Eq. 3.1). This unique characterization of a MRF by a Gibbs distribution
results in a straightforward relationship between qualitative properties of a MRF and its
parameters via the potential functions V. Extension of the Hammersley-Clifford theorem

to vector MRFs is straightforward (only a new definition of a state has to be provided).

3.3 ESTIMATION CRITERIA

The goal of this work is to estimate the true displacement field d(x,t) corresponding to

an underlying time-varying image u(x,t) on the basis of the observations g(x,t). As it was
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assumed in Section 3.1, the estimation of d(x,t) will be based on 2 image fields (K;=2).
To simplify the notation, the temporal positions of the preceding and the following image
fields will be denoted by t_ =t — At- Ty and t4 =t + (1.0 — At) - Ty, respectively (recall

that the image sequence is temporally sampled). Let also ¢4 denote either ¢_ or .

3.3.1 Maximum a posteriori probability (MAP) estimation

The objective here is to determine the “best” or the “most likely” displacement field

&;‘ € Sg given the observations g;_,g¢, . Hence, &; must satisfy the relationship:
P(Dy=d}|Gi_ =gi_,Gy, =g,) 2 P(Dy = &4|Gy_ = gt_,Gt, = g:,) Vdi €8y

To obtain the posterior distribution for the discrete state-space case, Bayes rule for the

discrete random variables can be applied as follows:

P(D¢=di|Gs_ =gt_,Gy, = g1,) =
P(Gi, =g, IDi=4d;,Gi_ = g;_) - P(Dy = &|Gy_ = g1_)
P(Gi, =gt |Gt = gt_)

while for the continuous Sy the same rule for mixed random variables can be used:

, (3.3.a)

p(delG_ = g¢1_,Gi, = g1,) =
P(Gi, = g1, |Ds = dy,Gy_ = gr_) - p(ds|Gr_ = 1)
P(Gt, = gt |Gt = g1_)
Again P is a probability distribution and p is a probability density. Note that since the

. (3.3.b)

probability in the denominator of (3.3) is not a function of the displacement process Dy, it
can be ignored, and the MAP estimate of d; is the solution to the following optimization

problem;
I%ax[P(Gt_,_ = gt,|D; = d, G = gt_) - P(Dy = ds|Ge_ = g1_ )] (3.4)
i

To perform this optimization the explicit form of the conditional probability distributions

involved in (3.4) must be known.

3.32 Minimum expected cost (MEC) estimation

Another approach to the estimation of d; is to minimize the ensemble average over

di, gt_, gt of some positive definite cost functional measuring the error between the true
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and estimated motion fields (minimum expected cost or MEC estimation) [62], [63]. Let

this functional have the following form:
O(de, di) = 3~ 0(d(x;, 1), d(x;,1)),
=1

where 6(:,+) is a positive definite function. The optimal Bayesian estimator ai!‘ € 84 is

defined as follows:
Edt,y;_,gt_l_ [O(dt! a‘?)] = n,d]:.in Edt,yt_ :gt_', [e(dt3 at)] (35)
1

where Ed:,g:_,g¢+ ['] stands for the ensemble expectation over all configurations of d;, g;_
and g¢_ . Note that the estimates d;, Ei;; are functions of ¢¢_ and gt,. and can be thought
of as mappings from R2Ms to R2Ma, Expressing the expectation as a sum {discrete random
variables), and using the positive-definiteness of 6(-,-), it can be shown (for the derivation

consult Appendix 3.A) that (3.5) is equivalent to:

_min Z ﬂ(r,a(xi,t))[ Z P(D;y = d¢|Gy_ = gs_, Gt+ = gt+)} Vi. (3.6)
dix;,¢) res) d;:d(x;,t)=r

This means that the minimization with respect to the field d; in (3.5) can be achieved by
individually minimizing marginal expected costs at each position (x;,t).

Any further simplification of (3.6) requires explicit knowledge of the function 8. This
function must reflect “goodness” of the estimate i.e., a worse displacement estimate should

increase the value of 4, and a better one should reduce it. The following 6 is used here:
0(d(x;,t),d(x;, 1)) = [[d(x;, ) — d(x;, 2)||%, (3.7)
where || - || is the L% norm, for mathematical tractability. It can be shown (Appendix 3.A)

that the solution to (3.6) with 6 defined in (3.7) is

a*(x,-,t) = Z l‘[ Z P(Dy = d¢|Gy_ = gt_,Gt, = gt )} Vi, (3.8.a)
reS;  ded(xt)=r

or in other words it is the marginal conditional expectation d(x;,t) of D(x;,1). This result
could have been inferred directly from expressions (3.6) and (3.7), since for this choice of 8
it is the minimum mean squared error (MMSE) estimation. For the continuous state-space
case the optimal Bayesian estimator has the following form:

d*(x;, ) = j | f PAi|Ge. = g1_,Gr, = gu, )ddy]dr Vi. (3.8.b)
reS; dad(xit)=r
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To compute the conditional expectations from (3.8.a,.b) the a posteriori probability distri-

bution P(D¢|G;_, Gy, ) and density p(dt|Gt_, Gy, ) are needed.

3.4 MODELS

To discuss the structural and the observation models, first the true underlying image u
must be defined. In this thesis the true image u is understood as an illuminance pattern in
some image plane obtained from the observed scene via an ideal optical system. Hence, u
is defined over continuous spatio-temporal coordinates (x, ), and given (x;, t5), u(x;,tj)

is a real number.

3.4.1 Structural model

In order to facilitate inference of motion from images it is necessary to assume a

certain relationship or a “structural” model between motion vectors and image intensity

values. Such a model is fundamental to any motion estimation algorithm. As reported
in Section 2.1, it is usually assumed that no illumination effects are present in the scene
viewed by the camera. Then, the constant image intensity or constant gradient (spatial or
spatio-temporal) of that intensity along the motion trajectories is usually assumed as the

“structural” model. Note that this assumption applies to the true underlying image u. The

constant image intensity model will be used here as follows. Since the ultimate goal of

 this thesis is estimation of motion in temporally sampled sequences (TV), the notion of a

displacement vector will be used instead of an instantaneous velocity. Assuming that over
the time interval [t_, %] the intensity of the true underlying image u along the motion

trajectory (true displacement d) is constant, the following holds:
u(x — At - d(x,t),t-) = u(x + (1.0 — At) - d(x,1),t4). (3.9)

A more complex model incorporating linear variation of intensity has been devised in [88],
[28], {59], however it will not be considered here. Also as an open issue it still remains to

account in this structural model for the occlusions and the newly exposed areas.
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3.4.2 Observation model

As discussed above, the true underlying image u is an effect of an “ideal” projection
of a scene onto an image plane. In reality, however, any image that will be used here has
been acquired through a real video camera® and discretized using some electronic circuitry,
This observed image g is a transformed copy of u after the following operations:

1. spatial optical filtering (non-ideal optical system),

2. spatio-temporal electronic filtering (sensor characteristics),

3. vertical and temporal sampling,

4. ~-correction,

5. horizontal electronic filtering (band-width limitation before horizontal
sampling),

horizontal sampling,

N o

. quantization.

In comparison with the true image u the image g also incorporates certain noise and

distortions. Their sources can be identified as the following:
1. image sensor noise,
2. quantization noise,
3. distortion due to aliasing.

To modef the characteristic properties of the processes contributing to g is a very
difficult task. First, consider a simplified case where g, u, n are continuous in value and
defined over continuous (x,t). Let the observed image g be related to the true underlying
image u as follows:

9(x,1) = u(x,t) + n(x, 1), (3.10)

where n(x, ¢) are Gaussian random variables. Using the structural model (3.9) the following

relationship can be eastly verified: _

g(x + (1.0 — At) - d(x,1),4) — g(x — At - d(x,1),t_) =

n(x + (1.0 — At) - d(x,t),t4) — n(x — At - d(x, t),t_). G40
The term on the left hand side of (3.11) is known as a dispiaced pel difference (DPD), and

the one on the right is a displaced noise difference. Since the right hand side of relationship

t Except for the test image 1 (Section 4.7) which has been generated synthetically.

- 48 -




./—1\\\
; d

Chapter 3

(3.11) is a linear combination of Gaussian random variables, it is a Gaussian random variable
itself with doubled variance.

In reality other transformations and noise sources discussed at the beginning of this
section should be taken into account too. It is very difficult, however, to theoretically
derive a DPD model in such a complex case.

In order to gain more insight into the statistical properties of displaced pel difference
(3.11), | have performed several simulations as follows. | have computed a number of
histograms and autocorrelation functions of displaced pel differences obtained by some ex-
isting motion estimation techniques. | chose reliable methods which made no assumptions
as far as the statistical properties of the DPDs are concerned. In particular, | chose the
method proposed by Horn and Schunck [41] implemented exactly as described in the paper,
and also the method of Paquin and Dubois [73]. Each method was applied to the test
images presented in Figs. 4.9 and 4.10. The histograms and the autocorrelation functions
of displaced pel difference, are presented in Fig. 3.5 and Fig. 3.6, respectively. Note that the
histograms in Fig. 3.5.a very closely resemble Gaussian distributions and those in Fig. 3.5.b
are not too far from Gaussians too. The narrow peaks for zero DPD in Fig. 3.5.b are
due to large stationary area (background) in the test image 4. Apart from this departure
from “gaussianity” the shape of the histograms is quite close to a Gaussian distribution.
Obviously other distributions could have been fitted to those histograms e.g., Laplacian,
however due to mathematical tractability of the Gaussian distribution | chose this approx-
imation as the DPD model. Note that the variance of such approximation depends on
the image material and motion estimation technique used. As far as the autocorrelation
functions are concerned (Fig. 3.6), it can be clearly seen that the impulse in the center
of th'e plot is quite similar to the Dirac impulse and indicates near independence between
the displaced pel differences. Again, to a first approximation it may be assumed that the
displaced pel differences are independent random variables.

Based on above derivation for the simplified case, and on empirical observations, the
independent, identically distributed discrete random variables drawn from the Gaussian

distribution with variance a2, are proposed to model the displaced pel differences (3.11).
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0.8
Hern & Schunck
= — - Gaussian var.=1.5
. + e Paquin & Dubois
---------- Gaussian var.=4,0
0.6f

Normalized count

DPD value
{a) test image 3

Horn & Schunck

- — - Gaussian var.=0.7
..... Paquin & Dubois
---------- Gaussian var.=2.¢
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LT
H
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-

Normalized count

DPD value
(b) test image 4

Fig. 3.5 Histogram of displaced pe! difference obtained by algorithms proposed
by Horn and Schunck [41] and by Paquin and Dubois [73] for the test

images 3 and 4 (Section 4.7).
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(c) P&D, test image 3 (d) P&D, test image 4

Fig. 3.6 Autocorrelation function of displaced pel difference obtained by
algorithms proposed by Horn and Schunck [41] and by Paquin and
Dubois [73] for the test images 3 and 4 (Section 4.7).

Consequently the equation (3.11) can be written in the following form:
g9(x+(1.0 — At) - d(x,¢),14) — g(x — At - d(x,1),1_) = ny(x, 1), (3.12)

£ where again g is discrete and (x, t) belongs to lattice Ay, and ng(x, ¢) is the discrete random

variable described above. Since ny(x,t) is an iid (independent identically distributed)
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Gaussian random variable it follows immediately from (3.12) that:

P(Gt, = gt,|Dt = d¢,Gt_ = g1_) =
Mg N _
H pﬂd(ﬁ(xi + (10 - At) ' d(xist)at“[") - E(xi - At- d(xi’ t)a t—)) = (313)

i=1
(2r02)~Ma/2 . o=Vislg,dege_)/20?
where pp, is a Gaussian distribution with variance 02, and § denotes an intensity value
at locations (x;~At - d(x;,1),1-), (x;—(1.0 — At) - d(x;,1),t4+) € A4 obtained by some
interpolation (e.g., bilinear, biquadratic). The resulting energy Uy is defined as follows:
Ma
Uy(gt, |de, g2,) = i_Zl[ﬁ(xi+(1.0—At)-a(xi,t),t+) ~§(x; — At-d(x;,1),t-)]2. (3.14)

To simplify the notation let ¥ denote the displaced pel difference:

Hd(xi, ), x5, t, At) = G(x; + (1.0 — At) - d(x;, 1), £4) — §(x; — At - A, 1), t-).

3.4.3 Displacement field model

It can be observed that in most scenes motion is a result of position change of rigid or
almost rigid bodies. After projection onto the image plane, that three-dimensional motion
becomes a two-dimensional motion of some 2-D objects. The optical flow in such an image
consists of patches of similar (orientation and length) vectors, with possible discontinuities
at the motion boundaries. In this chapter | will discuss only a coarse approximation to
such motion properties i.e., no motion discontinuities will be incorporated into the motion
model. The discontinuous motion case will be described in Chapter 6. Therefore, it will
be assumed here that motion fields are smooth functions of spatial position x (fixed ¢). In
fact d(x,t) is significantly smoother than the image itself. Based on this observation and
on successful application of Markov random fields {(MRFs) to image modeling [38], [26], |
- propose here to model the displacement field d(x,t) by a 2-D vector MRF (VMRF) D;.

Since a VMREF differs from a scalar MRF only by the definition of a state (e.g., in R2
instead of R), the properties described in (Section 3.2.2) hold for VMRFs too. Due to

the dammersley-Clifford theorem the Gibbs distribution (3.1) is a clear and effective way to
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characterize a random field D;. A virtually unrestricted choice of potential functions V3t in
this distribution provides a means of approximating local properties of D;. In this thesis the
first- and second-order neighbourhood systems Nj,]\/’g depicted in Figs. 3.3 and 3.4, will

be investigated. The first-order system consists of 2-element vector cliques (Fig. 3.3.c,.d)
Ch={ea={xix;}: x;—x;=[T4,0]}
Cv = {cd = {x;,x5}: % —x%x; =0, Tg]} (3.15)
Cho = {ChUCo}, (x5,1), (x5,8) € Ag

which represent only horizontal and vertical bindings (C(ll = Cpy). The second-order system

augments the above cliques with two-element diagonal, as well as three- and four-element

cliques. In this thesis, however, neighbourhood .Ng with only horizontal and vertical (3.15),

and diagonal cliques (Fig. 3.4 ¢.d.e.f) -
Ci5 ={ca = {xi, x5} : % —x; = [T}, T3]} (3.16)
Cogs ={ca={xix;}: x—x;=[-T} T3]}, |

is investigated (C3 = {Cp, U C45 UC—45}).

The f.hoice of the potential function V defined over a clique is crucial to characteriza-
tion of the VMRF model. In general this potential could be a function of d and g, hence
incorporating the image information into the motion model. In this chapter, however, | as-
sume the statistical independence of the motion model from the images (or in other words,
functional dependence of V3 only on d). A more complex model, taking such a relationship

into account, will be discussed in Chapter 6.

| choose the following potential function V3 over a two-element clique ¢g € Cq:

Va(ds, cq) = V(d(x;, 1), d(x;, 1)) = [[d(x;,8) — d(xj, )%, eq = {xi,xj} € Cq
_ (3.17)
where || - || is a norm in B2 e.g., L2 (note that the summation in (3.2) is now over i and
7)- This particular potential captures the smoothness of the displacement field process Dy;

for d(x;,t) = d(x;,%) the potential is zero, and the probability of such a configuration is

t The general concepts of neighbourhood, neighbourhood system, clique, set of cliques, potential etc.,
presented in Section 3.2.1 will be used now for random field D; and will be identified by subseript 4.
for example 1, N, ¢4, Ca, Va.
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high, while any deviation from this equality causes a smooth reduction in the probability of
such an arrangement.

In this chapter it will be assumed that the knowledge of a single image (e.g., G¢_) does
not provide any information to computation of the motion field d(x,¢). This is a coarse
approximation, since sometimes knowledge of one image may help in estimating a motion
field (for example in a uniform intensity area it is unlikely to have an abrupt change in length
or orientation of motion vectors). This approximation will be improved upon in Chapter 6
by using a more complex motion model. With the above assumption D; and G;_ are
independent and the probability P(D;=d;|G;_=g;_) will have the following Gibbs form:

P(D = dfGr. = 1) = n(de) = e~V = oo™ Teasca el (3.19)
where the set of cliques Cq is equal to C(]i for N& or C‘_zl for Ng For the continuous state-
space case the probability density p(d¢|G;_=g;_) has the same form as that in (3.18).

To demonstrate that VMRF is a valid model for displacement fields, | generated sev-
eral unconstrained VMRF samples (unconstrained by image intensities). The samples were
generated by the Gibbs sampler (to be described in Section 4.2.3) from the a priori Gibbs
distribution (3.18) with potential {3.17). Both first- and second-order neighbourhood sys-
tems were used, as well as different values of the parameter 33, reflecting the sample field
“activity” (the higher 34, the more active or chaotic the sample field). The Gibbs sam-
pler was supplied with a random configuratior as the initial state. After sufficient time
it produced only the most likely samples, which for small value of 33 were homogeneous
fields of identical vectors (due to the form of the potential function (3.17)). The average
length of these vectors should be approximately equal to the expected value of the initial
configuration. The state space S(,i for each vector was discrete with maximum displace-
ment dpmaz=2.0 and Ny=17 possible levels in each direction. The generating distribution
for the initial state was independent for both vector components and piecewise-uniform
i.e., uniform over [—dmaz, 2m] and (2m, dmgz] with probability 0.5 of falling into any of
the intervals. It can be easily verified that such distribution has mean equal to m, and for
m = ( it becomes a uniform distribution over the range [—dmaz, dmaz)-

Figs. 3.7, 3.8, 3.9 and 3.10 show VMRF samples for two different values of S after
50 iterations of the Gibbs sé)npler. The sample from Fig. 3.7 has been generated with the
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Fig. 3.9 VMRF samples for potential function (3.17), neighbourhood system

Ng and two values of parameter 34, initialized by a uniformly
distributed field with mean m=(0.0,0.0).
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Fig. 3.10 VMRF samples for potential function (3.17), neighbourhood system
, .N‘(% and two values of parameter 3, initialized by a
piecewise-uniformly distributed field with mean m=(0.5,0.5).
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first-order neighbourhood system A" é from a uniformly distributed initial configuration with
mean m=(0.0,0.0). For 83=1.0 the sample field consists of quite random vectors, only
locally “smooth”, while for 33=0.1 the vectors are well “ordered” but much shorter. The
sample field from Fig. 3.8 has been also produced with the first-order neighbourhood system
N} but from a piecewise-uniformly distributed initial configuration with mean m={(0.5,0.5).
Note that the influence of 34 is similar to that in Fig. 3.7, but the vectors for 83 = 0.1
oscillate around the mean value of the initial configuration. Figs. 3.9 and 3.10 present
similar results except that the second-order system Ng with cliques from C?i was used.
Again the influence of B4 is similar as before, but the vectors are more ordered now. This
is due to the increased size of the neighbourhood system (added diagonal cliques) in spite
of still only two-element cliques being used.

The VMRF samples shown in the figures suggest that the values of 34 smaller than 1.0
give smooth displacement fields, and the values above 1.0 produce more “chaotic” fields.
Thus, to model a slowly varying motion 34's of the order of 0.1 should be used, however

an exact value cannot be established.

3.5 A POSTERIORI PROBABILITY

Using equations (3.13) and (3.18) in (3.3) the following Gibbs form can be obtained

for the posterior probability distribution:

n(de|Ge_ = ¢t_,Gr, = gt,) = P(Dy = dt|Gs_ = g1_, Gi, = gt,)

= %e_U(ahgf_ ,y#+) (319)

where Z is a new normalizing constant (incorporating the probability P(Gy_, Gy, ) from
(33), (2m0?)~Ma/2 from (3.13) and Z; from (3.18)). The new energy function
U(at,gt_,gt+) is defined as follows *

U(dt,gt_,gt+) = )‘g ) Z[‘;'(d(xi:t)sxist: At)]2 +Aq- Ud(di)a (320)

=]
and Ay = 1/202, Ay = 1/84. Again for the continuous state-space case, the mixed a

posteriori probability density function has the same form as that in {3.19). The neighbour-

hood system for this new Gibbs distribution is the same as that for the a priori distribution
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P(Dy = d¢|G¢_ = g¢_) since the DPD model is based on the independently distributed
noise random variables. Should this model be correlated (e.g., filtered noise), the neigh-
bourhood system would need to be redefined appropriately [26].
The exponential a posteriori probability distribution (3.19) results in the following form
for the MAP estimation (3.4):
min U(dz, g:_, g¢, ) = H(}iin[/\g Uglgty|ds, 00,) + Mg - Ug(dy)]  (3.21)

dt 11

Note that the energy function U in (3.21) consists of two terms. The first one Uy is a sum
of squared DPDs over the entire image, and attempts to describe the matching problem of
the data g;_, g¢, by the motion field d. As suggested in Section 2.2, this correspondence
problem is ill-posed. The second term Uy in (3.21) is responsible for conforming to the
properties of some a priori model (Section 3.4.3).

The two-term formulation of the energy function (3.20) can be viewed as regularization
of the original correspondence problem (DPD only), as defined in Tikhonov's formulation
(Section 2.5). Then, Uy plays the role of a stabilizing functional and Xgq/), is a regu-
larization parameter. Hence, the Bayesian formulation comprises, as a specific case, the
regularization, which has been frequently used in computer vision (Section 2.5).

In order for the conditional a posteriori probability of an estimate (3.19) to be high, the
energy (3.20) must be low, hence this estimate must well explain the data and conform to

the motion model characteristic properties. For the model proposed by potential (3.17) such

- a property is smoothness of a displacement field. Due to this additional constraint, the esti-

mation problem becomes well-posed. Recall the example of motion estimation ill-posedness
from Fig. 2.1. Now, with the displacement field smoothness required simultaneously with
the data matching, it is easy to see that the translational motion (Fig. 2.1.b) will provide
iowe; total energy (3.20), and should be chosen as the better (in the view of assumed
model) solution.

In the formulation (3.21) the ratio Ag/)\, plays an important role weighting the con-
fidence in the data and in the a priori model. A modification of As has an effect on the
estimator, however the magnitude of this effect is highly dependent on the data itself. Re-

call that o2 is a variance of the displaced pel difference (Gaussian) model. Its value can be
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estimated given a displacement field, however the other parameter 34, which characterizes
displacement field “activity”, is far more difficult to compute. This parameter embodies our
prior expectation as to the degree of randomness which the estimator should incorporate.
When MRFs are used in estimation of such observables as images or textures, 54 can be
estimated by analyzing a number of samples (training process), and then used to perform
estimation on some other data. The success of the estimation is highly dependent on the
similarity between the real data and the model (the training data). In the case of estimating
an unobservable like motion, such computation of 84 is not possible {(at least up to now).
It must be chosen ad hoc. Consequently there is no point in estimating o2 (As may be

chosen instead).
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Appendix 3.A. DERIVATION OF MEC ESTIMATOR

In this appendix the optimal (discrete state-space) Bayesian estimator with respect to
a positive definite cost functional @ will be derived. Let this functional be of the following

separable form (as proposed in Section 3.3.2):

dt dt Za(d(xh (XH ))7 (3A1)

where 0(-,-) is a positive definite function, and d;, d; are again the true displacement field
and its estimate, respectively. The optimal Bayesian estimator a;; € &, is a displacement

field defined as follows:
Elt,gg_,gg_'_ [E‘)(dt, a:)] = I%in E‘:,g:_ Wty [e(dt: at)]! (3'A‘2)
t

where Eg,,g‘_,g,+[-]'is the ensemble expectation over all configurations of d;, g;_ and gt
(t— and i are temporal positions of the preceding and the following images, respectively).
Note that an estimator with the smallest expected cost (in the sense of ©) is being sought
over all possible configurations of the data ¢ and of the true displacements d.

The following theorem, which is a 2-D version of that proposed by Marroquin [62],

extends his results to the vector MRFs.

Theorem: Given a positive definite cost functional ©, the optimal (minimum
expected cost) estimate of a vector field d; with respect to © can be obtained by

minimizing independently the marginal expected cost for each vector, i.e.,

d*(x;,t) =q€Sy: Y. 0(r,q)- P(D(x;,t) = ¥|Gs_ = g1_, Gy, = gt,) <
reSy
> O(r,p)) P(D(x;,t) =r|Gi_ = g1, Gt, = at,)
resh

forall p £ q (p € §3), and fori = 1,..., My.
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Proof:

Since the fields d¢,g:_,g:, have discrete finite state-spaces the expectation will be
expressed in terms of finite summations rather than integrals (the continuous state-space

case). Then, using the Bayes rule the expectation (3.A.2) can be expressed as follows:

B 0., [00d,d)]= 3 O(d,dy)- P(Dy = d,Gi_ = ¢_,Gy, = g1,) =

hesy
9t_ 9t €Sy

> [ X o(d,dy)-P(D; = d|Gi_ =g, Gy, =g1,)|

gi_agt+esﬂ' ‘tESd
. P(Gt_ = gt_)Gt+ = gt+) =

S @i(deg.9t,) P(Gr. = 9t_, Gty =g1,) =
9:-:9#_,_639

Bg_ g, [Q1(d1, 00, 91, )], oAy

where the functional Q); is defined as:

Ql(atagt...vgt.g.) = Z @(dt,at) y P(Dt = dtht_ =4aq_, Gt+ = gt.|.)- (3A4)
€S

Since © is positive definite and P is a probability measure, Q1 is positive definite too. The
estimator d; is a mapping from space §; x 8y into space Sy, and also is a function of the
data ¢;_, gt+f. In other words, d; depends on the data gt_, gt but the choice of d; for
different data is independent. The same independence applies to (};. The expectation in
(3.A.3) is a linear corﬁbination of positive definite functionals ¢}y, hence the minimization

can be performed with respect to the functionals @ independently for different data:

I%in Eyg,_ Wty [©(d;, ai)] = r%in Eg._ Gy [Ql(ata gt_,9+)]
t

1

o (3.A.5)
= Eg:_ 9ty [Hal:ln Ql(dt:ngt_ ’ g+)]'
t

Using in (3.A.5) the definition of @ from (3.A.4) and the definition of separable © from
(3.A.1), and then appropriately expanding and grouping the summations (the summation

with respect to field d; is expanded as a multiple summation with respect to its individual

t For simplicity of notation the dependence of estimate Ei, and of the optimal estimate &; on the data
gt... ge, has been omitted.
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vectors) it follows that:

Hlin Ql(dtagt..sg+) =

d;

M A
min ), > 0(d(x;,t),d(xs¢)) P(Dy = &Gt =g1_,Gr, = g1,) =
d: 4e8qi=1

Mq . (3.A.6)
min), >, > O(r,d(xit)) - P(Di=d|Gt. =gt G, = g1,) =
d; i=1 reS) did(xq t)=r

Ma N

I'Ilin Z Z H(rﬂd(xht)) ' P(D(xut) = rth_ = gt_a Gt.l. = gt+)5

de i=1 res)
where the marginal conditional probability of displacement vector positioned at (x;,1) is
defined as follows:
P(D(x;,t) =r|Gi_ =g1,Gr, =g1,)= 3, P(Dy=4d|Gi. =g_,G, = g,).

d::d(x; t)=r

Defining another functional Q9 as

Q2(a(xist)agt_sgt+) = E G(r?a(xi:t)) ) P(D(X;’,t) = I‘th_ = gt_sGt+ = gt.;.):

r€Sh
permits the following modification of the minimization (3.A.6)
_ ) ve
H%liﬂ Q1(dy, gt_,9+) = I%iﬂ 21 Qa(d(xs,t), 9t., 91, )
t i 1=
My ) (3.A.7)
= > min Qo(d(x;,t),9t_,9t,)-
i=1d(x:,t)

The last line follows from the fact that the functional Qs is positive definite (¢ is a positive
definite function and P is a probability measure), and also that for every i, Q9 is a function
of only one estimate vector d(x;,t). Finally, the minimization in (3.A.7) is equivalent to

the inequality condition given in the theorem evaluated at each i. []

| Note that the continuous state-space case is very similar; the theorem and the proof
will hold with the summations over d; and r replaced by integrals, and with probabilities

P replaced by density functions p.
In order to complete the derivation of the MEC estimator, the function § must be

known explicitly. In this work | assume the following form for 8:
a(d(xi’t)1a(xist)) = |[d(x;,1) - a(xiat)||2, (3.A.8)
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where || - || is the L2 norm, since it reflects the “goodness” of the estimate and also since it
is mathematically tractable. Using the definition of 8 and the above theorem, the optimal

Bayesian estimator a*(xi,t) =q €8 (1 =1,..., My) is defined as follows

> lr—q|?- P(D(x;,t) = r|Gi_ = gt_,Gr, = g1,) <
resh

3 lir—p|*- P(D(x3,t) =r|Gy_ = 9_,Gi, =gt,.), all peSL,p+#aq,
res;

or after expanding the L2 norm and applying some arithmetic:
- 2 o = 2 !
IF—ql*<|F-p|I* VpeSgp#a,
where T denotes the conditional expectation of r given the data. Hence the MEC estimator

d*(x;,t) =q (¢ =1,..., M) is equal to the following marginal conditional expectation:

Ei*(x,-,t) = H(Xg,t) = Z r[ Z P(Dy =di|Gy. = gt_,Gt, = gt+)] Vi.
res;  dpd{x;t)=r
Again, for the continuous state-space case (S = R) appropriate MEC estimator can be
expressed as follows:

det)= [ [ ddilG = a, Gt = a,)ddi]dr Vi
' reS; dad(x;t)=r
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STOCHASTIC SOLUTION

Chapter 4
TO MOTION ESTIMATION

In Chapter 3 the motion estimation problem was formulated on the basis of stochastic
processés theory. This chapter will discuss some solution methods. In particular, stochastic
methods will be proposed to solve the MAP and the MEC estimation problems.

The chapter starts with a brief overview of Monte Carlo procedures, followed by a
detailed description of two examples of such procedures: the Metropolis algorithm and the
Gibbs sampler. Then, a general optimization method called simulated annealing is discussed
and shown to be applicable to the MAP estimation, followed by the solution of the MEC
estimation using the Law of Large Numbers for Markov chains. The following sections
discuss a continuous state-space MAP estimation and the spatial image interpolation for
computation of motion. Finally, four test images and numerous estimation results are

presented.

4.1 MONTE CARLO METHODS

Monte Carlo methods constitute a branch of experimental mathematics concerned with
expe;iments on random numbers. Out of two types of problems handled by Monte Carlo
methods — probabilistic and deterministic (according to whether or not they are directly
related to stochastic processes) — the former type will be considered in this thesis. The
simplest Monte Carlo approach to the probabilistic problem is to observe random numbers,
chosen In such a way that they directly simulate the physical random process of the original

problem, and to infer the desired solution from the behaviour of these random numbers.
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Most Monte Carlo work is concerned with estimating the unknown numerical value of a
parameter of some distribution. The ultimate goal is to find an unbiased, minimum-variance
estimator (linear or non-linear). There exist various approaches to Monte Carlo estimation
[36] e.g., crude Monte Carlo, stratified sampling, importance sampling, control variates,
antithetic variates etc.

The fundamental differences between the above approaches can be explained on the
example of expected value estimation for some given distribution. Assume that this distri-
bution is sufficiently complex to prevent standard analytical treatment. Then, Monte Carlo
methods can be applied to obtain the mean.

In the crude Monte Carlo method, the estimate is obtained by random sampling of
the argument domain, computation of the distribution function values at these points and
computation of the estimate. The argument domain samples are drawn from the uniform
distribution.

In stratified sampling the argument domain is divided into subintervals (strata) and
each of these intervals is assigned a number of sample points. Shbsequéntly, the crude
Monte Carlo method is applied to each of the strata. The specification of the strata may
be as simple as intervals of equal length. A better way, however, is to choose the strata
so that the variation of distribution function is the same in each subinterval. The number
of sample points per stratum should also be proportional to the variation of the function
over this stratum. The relative efficiency (product of labour ratio and variance ratio) of

.st_ratified sampling is about 10 with respect to crude Monte Carlo.

Importance sampling also attempts to modify the argument domain sampling in order
to provide higher refiability of the estimate. The idea is to concentrate the distribution of
the sample points in those parts of the domain that are of highest “importance” instead
of sp-reading them out evenly. In order not to bias the estimate, the appropriately modified
distribution function (non-uniform distribution of the sample points is taken into account)
is used in the estimation process rather than the unmodified one. The relative efficiency of
importance sampling is about 10, also with respect to the crude Monte Carlo method.

Control variates is another method attempting to reduce the variation of the distribution

function. A simple function (control variate) such that:
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1. it can be treated in the usual analytical way (e.g., integration),

2. it closely “mimics” the distribution function under investigation,
is chosen. Obviously these two requirements are conflicting since the distribution function
cannot be treated analytically (assumption at the beginning) and hence the control variate
cannot follow it exactly. Assuming that the estimation process is a linear operator (e.g.,
integration) it can now be performed independently for the control variate (analytically) and
for the difference between the distribution function and the control variate (crude Monte
Carlo). The relative efficiency of the control variates method is about 30 with respect to
the crude Monte Carlo method.

The antithetic variates method is similar to the control variates: it applies a control
function to “mimic” the behaviour of the distribution function, but it also permutes the
order of subintervals to make the variation of the sum of the rearranged functions as
constant as possible. Its relative efficiency is highly dependent on the permutation type,
but it ranges from about 30 to several thousands.

Only a few simple examples of Monte Carlo estimation have been briefly discussed
above, however it is clear that Monte Carlo estimation is more an approach than an algo-
rithm. The choice of the method is highly dependent on the problem; while some methods
may be of insufficient speed and/or precision for a given application, the other ones may
be very suitable for this particular case. In the following section two examples of Monte

Carlo methods will be discussed.

4.2 STOCHASTIC RELAXATION

Stochastic relaxation is an iterative, site-replacement procedure for generating sample
configurations from a MRF described by a Gibbs distribution 7. The characteristic property
of every stochastic relaxation scheme is that configuration changes resulting in energy
increase are permitted. By contrast, deterministic algorithms only allow modifications of

states leading to reduction of energy, and hence are mostly trapped in local minima.

4.2.1 General form of Metropolis algorithm
The Metropolis algorithm was originally invented to study certain proBlems in statistical
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mechanics [65). In particular, the goal was to calculate the properties of any substance
which may be considered as composed of numerous interacting individual elements (e.g.,
molecules in a gas or atoms in binary alloys). The systems studied consisted of hundreds
of identical, interacting components, which precluded the usual analytical treatment. The
Metropolis algorithm, being an example of Monte Carlo estimation, permitted the study of
the equilibrium properties (e.g., ensemble averages), time-evolution and low-temperature
behaviour of such farge systems.

Define T’ to be a state random variable, v to be a state sample and ) to be a dis-
crete phase-space or state-space for v (these definitions will be generalized in the following
section).

If a system is in thermal equilibrium and its state y has energy U(), then the probability

distribution in phase-space of the point representing v is proportional to

e~ UM/B (4.1)

where 8 = kT, T is absolute temperature of the surroundings, and k is the Boltzmann
constant. According to ergodic theory, the proportion of time that the system spends in
"state v is also proportional to (4.1). Usually one needs to compute the expectation < f>

of some state-function f(v)

<f>___ 27 f(’)‘)e—U(-r)/ﬁ (4 2)
- E‘T e~Um/iB '

< f> could be evaluated by the crude Monte Carlo estimation, but the exponential factor
means that major part of the summation is concentrated in a very small region of the

phase-space. Therefore importance sampling should be used instead, and samples from the

probability distribution
e_U(7)/ﬁ

"0 = T

should be generated. Direct use of (4.3) is impossible since the denominator is unknown,

(4.3)

but the algorithm proposed by Metropolis et al. [65] circumvents this problem.
Let 7 = 0,1,2,... be the discretized time in the evolution of a discrete chain. Let the

state random variable at time 7 — 1 be I'(r — 1), and the proposed (new) state random
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variable also at time 7 — 1 be I'*(t — 1). Let @ be a sample state from the phase-space,

and

w(@)/x(y) = e V@BHU(M/E _ ~AU/B

where AU = U(w) — U(7) is the energy difference between the two states. With the

above notation the general form of the Metropolis algorithm is given below.

General Metropolis algorithm

1. if T'(r~1) = - select a new state @ € (2 from a probability distribution P such

that
Qyw =PIt - 1) =w|I(r - 1) =9) =

P(F*(T -1 = 7|F(T ~l)=w) = Qwv,
2. if AU <0 take I'(7) = w,
3. if AU > 0 take

_ } @ with probability e~AU/#
I'(r) = ! Hi v
v with probability 1 — e=AU/8.

The condition in 1. simply requires from probability distribution P that the transitional
probabilities be symmetric. It remains to demonstrate that the above algorithm generates
a Markov chain with the steady-state (limiting, equilibrium) probability distribution = or
in other words, that it generates samples from the distribution 7. First, it is necessary
to show that 7 is a unique invariant measure of Markov chain T generated by the above
algorithm. The proof, based on the work by Hammersley and Handscomb [36], is presented
in 'Appendix 4.A. By the standard result from the theory of Markov chains (Theorem 1.3,
Chapter 3 in [49]) it follows that since the state-space is finite, and also since the chain is
irreducible (w(y) > 0, Vy € ) and aperiodic by construction, the invariant distribution =

is also the steady-state probability distribution of the Markov chain 1.

Finally, note that the original Metropolis algorithm [65] is a special case of the algorithm

presented above. The transition probabilities Q4 in that algorithm are independent of the
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previous state I'(7 — 1) and also are uniform:
Qo = P([*(r-) =all(r - 1) =7)=PI*(r~ 1) = @) =Qx
Quy = P(I*(r 1) =1|l(r = 1) = @) = P(T*(r - 1) = 7) = Qy
Qw = @y,

hence satisfying the symmetry requirement.

4.2.2 Metropolis algorithm for motion estimation

The Metropolis algorithm described in the previous section can be adapted to generating
random vectors (2-D random variables), and used later in motion estimation through the
joint probability distribution (3.19) which is Gibbsian.

To accommodate the more complex case of motion estimation the symbols T', v, @, (2
introduced in the previous section will now be redefined. Let T be a chain (discrete-time

process) with the state-space (set of all possible configurations) Q) defined as follows:

. M,
Q= {y= (71, 0y): ¥ = d(xi,t) € 8§, alli} = (53)".

Clearly, v is a possible configuration of chain T, and is also a set of individual states

(vectors) +; assigned to spatial positions x;. v can also be viewed as a sample motion field
from the state-space (phase-space) {2. Let @ be a single sample state (vector) from 8j.
Define v(®:) to be a configuration identical to configuration v except at position j where

its value is == i.e.,

’)f(w’J) = (‘)’1, ey V=1, T, 7j+1,...,’7Md), for some w € S:l'

Let also ' = {I'1,T'y,...,T'ps,} be a set of random vectors (bivariates) or a random field
with possible states in .

The Metropolis algorithm produces a Markov chain such that after long enough evo-
lution its states are distributed according to the invariant measure 7. The values of the
time-indexed random field I'(7) of this chain are complete motion fields i.e., ['(1)=7y =
{71572, YMm,}.  After sufficiently long evolution of the chain T motion field samples
of higher probability will occur more frequently than those of low probability. The gener-

at :d states will contain valuable information as to the statistical properties of the motion
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fields. The subsequent investigations of () will alsc apply if the conditional distribution
T(7|Ge_=g_, Gy, =g1,) is used instead. Since the single state v corresponds to a field
of vectors defined over a lattice, it is not clear how to select a new candidate state. If two
or more vectors are modified at a time, their effects might counteract, however when one
vector is modified at a time, only its impact on the energy value counts. Hence, in order
to propose a candidate motion field, first, a random location (uniformly distributed) in this
field is generated, and second, a random vector (uniformly distributed) is produced. Then,
corresponding energies of the old and new states are calculated and compared. If the new
state reduces the system energy then it is unconditionally accepted, otherwise it is accepted

with probability e=AU/8. The Metropolis algorithm for motion estimation is given below.

-

Metropolis algorithm for motion estimation

1. generate a random uniformly distributed spatial position j ((xj,t) € Ag) i.e,
such that: '

P(x1) = P(x9) =...= P(Xj) = ..= P(de),

where P is a probability,
2. for location j generate a uniformly distributed vector w so that the new state
s 7('57:.7),
3. compute the energy increment AU = U(+(®:))—U(y) resulting from changing
the state of j-th vector from v; to w,
4. i AU < 0 change the state i.e., set I'(7) = fy(w’j),
5. if AU > 0 change the state with probability =AU/ je.,
P(r) = ~(®.3)  with probability e—AU/8
¥ with probability 1 — e=2U/8,

The energy increment, fundamental to the Metropolis algorithm, can be also expressed
in terms of displacement vectors d(x;,t). Let z € 8} (z= w) denote some new proposed
vector (state) at spatial position nr. Recall that only one vector is modified at a time,

while the other ones remain unchanged. Then, using the energy function (3.20) computed
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in Section 3.5, the energy increment at n; can be expressed as follows:
AU™ =g - [(}(2 %n,,t, At))? — (Hd(%n, 1), Xn,, 2, A1)+
M X VEd)) - T V(d(xe,t)dixit).

i:x.-eqd(x,,,) iix:€0a(%n, )

(4.4)

If the new vector z reduces the energy U (AU < 0), then it is accepted unconditionally. If
AU > 0, the vector z s accepted with probability e=2U/8 Hence, the larger the AU, the

less likely is the acceptance of such a state.

4.2.3 Gibbs sampler

The Gibbs sampler is another method of generating samples from the Gibbs distribution
7 (3.1). Unlike the Metropolis algorithm, which was proposed in 1953, the Gibbs sampler
is a relatively new technique. It was developed in the early 1980's by Geman and Geman
[26]. It can be classified, with respect to the Monte Carlo methods, as an example of
importance sampling, since rather than producing uniformly distributed states of 2 Markov
chain, it generates samples from the Gibbs distribution. After sufficiently long evolution
of this chain, the Gibbs sampler, like the Metropolis algorithm, produces more frequently
such states which have higher probability of occurrence and less frequently those of lower
likelihood.

The following description of the Gibbs sampler will be presented directly in the context
of VMRFs since originally [26] it was intended to generate MRF samples, which was not
the case for the Metropolis algorithm. Let the symbols T, T, v, @,  be defined in the same
way as in Section 4.2.2. Let 7 denote again the time index in the evolution of the Markov
chain T. Then, the evolution T'(r — 1) — I'() of the Gibbs sampler is described by the
following relationship:

P(Ty(r) = %, ¥i) =x(Tn, = mm,ITj = 1j,§ # nr)- |
P(Li(r=1)=5j #ns)y (5,7 (xi1), (x5,1) € Ag),

where ny is the spatial position at which the replacement takes place at time r. It is

(4.5)

clear from (4.5) that at each epoch only one site undergoes a possible change, hence
configurations I'(r —1) and T'(7) are either identical {no change) or they differ at coordinate

nr. A new state is chosen at coordinate n, by drawing a sample from the local conditional
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characteristics of distribution =. More specifically, a state v, € &4 is chosen from the
conditional distribution of ', given the observed states of the neighbouring sites [';(t —
1) Vi:x; € ng(xa,).

Hence, the time evolution of the chain T can be defined by the transition probability
matrix Z(7) at time 7. This matrix is everywhere zero except for the entries (¢,7) (¢ -

row, v - column) such that { = 7(“”"7) for some w € §):

Zeq(r) = 4 *Tne = |05 = 95,5 # nr), i (= 7(=7) for some w € S}, nr
Y 0, otherwise.
(4.6)

From the above construction of the chain T it follows that it is a Markov chain. This
chain has a finite state-space, and is aperiodic and irreducible (7(v) > 0 for all v € Q).
The transition probability matrix = of the chain Y is time-dependent (hence T is non-
homogeneous) which can be demonstrated as follows. Consider the transition from state
¢ € Sq to another state 7 € Sg at time 7. Assume, without loss of generality, that
¢ = +(®n7) for some w € S} such that @ # (,,, hence a change of state takes place
at nr. Since every state from the state-space &} has non-zero probability, this transition
has non-zero probability: E¢,y(7) > 0. Now, move to the time 7 + 1 and consider again
the transition from ¢ to . Since already ¢ = {®nr) (w # Ca, ), in order to obtain the
state v the transition (5, — @ at n, must take place. But at 7 + 1 only transition at
coordinate nr 1 is allowed, hence =¢ (7 +1) = 0 while 2 . (7) > 0, and time-dependence
of transition probability matrix = follows.

- It can be shown (Appendix 4.B) that the invariant distribution of the chain T is the

Gibbs distribution :
w(7) = (v(r)), = 2 PR = 1[0 = ¢) - 7(0) (47)

The proof of convergence of the Gibbs sampler (convergence of the distribution of I‘(r))
is quite complex, and can be found in the paper by Geman and Geman [26] in the proof of
Theorem A. It is also shown there that the equilibrium distribution of the Gibbs sampler is

equal to its invariant distribution whica by equation (4.7) is Gibbsian.
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in order to completely specify the Gibbs sampler the transition probability matrix must
be known. Since the equilibrium distribution is Gibbsian, it follows that (Bayes rule and the

law of total probability):
T(Tn, =7, |Ti = 7,0 # ne) = w7) (i: (xi,t) € Ag)
T w(Li = vi,1 # nr)
_ ()
Twes; (7@}
The relationship (4.8) will also hold if the Gibbs distribution w(7) is replaced by a

(4.8)

conditional Gibbs distribution. To simplify the notation ¥'s shall be used for motion vectors

instead of d's. Then, the a posteriori probability distribution (3.19) can be expressed as

follows:
|
ﬂ'('Tth_ = gt_:Gt+ = g-t+) = E ‘e U(T:gt_lgt+), (49)
where the energy function U is defined as
Ma
U(')’) gt_agt+) = /\g - Z[F('Yi’xia ¢ At)]2 + Ad ’ Z Vd(7acd)'
i=] cq€Cq

With the above notation the conditional probability (4.8) takes the following form:
T(Tn, = m Li =vi,i #ne,Ge_ = g1, Gty = g1,)
_ (V|G = gt_,Gt, = gt,)
Cwesy TV @™)|Ge_ = gi_,Gt, = gt,) (4.10)
21",’ ce—U(1.9t_,9:, )/

= 1 __U (w,ﬂf), , .
ZweSé 7€ (r 9_.9:, )/ 8

The energy functions from the numerator and denominator can be decomposed as follows:

My
U(’Y)gf_agh.) =A9 ) ( Z [7{7j,Xj,t,At)]2 + [Frv('Yn,sxnﬂta At)]2)+

i=1
j#nr

’\d ) Z Vd (7-7 Cd)+
€d: Xn, Ecd

A Y Valv,ea) (4.11.)

Cd:Xn,CCq

. Ma
U(7(w,n7):gt_agt+) "'_"/\9 ) ( Z [’Yj:‘;(xj"' £ At)]2 + [7(7"'77 Xn,, L At)]2)+
1
i#nr

M Y Val®m) e+

Cd: Xn, §Fcq

MY Vg ®m) eq). (4.11.b)

Cd:Xn,ECq
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The first term in (4.11.b) is clearly independent of . Since the sum in the third term
extends only over the cliques which do not contain x,_, this term is also independent of
w. Hence, appropriate exponential factors can be extracted from under the summation in
the denominator of (4.10) and cancelled with identical factors in the numerator. Then, the

conditional probability (4.10) can be written as:

W(I‘nr = 7“7!1-‘2' = 72'32. ‘-I'é nr, Gt_ = gt_:Gt.q. = Q't+)
6—Ag-m7"" ’x"T’t’At)]z_)‘d'ch: xnyEcg Va(y.ea)

2 B—Ag‘mw’xﬂf’t’At)Iz_’\d'Ecd: xnr€cq Va(y(®:n7) ca)”
wES)

Since 7(7|Gt_=g1_,Gt, =91, )=P(Dy=d¢|Gy_ =gt_, G, =gt ) the original nota-
tion using d’s can be used now, and the final form of the conditional probability driving the

Gibbs sampler is

P(D(xn,,t) = d(xn,, )|D(x},t) = d(x},1),j # nr, Gr_ = ge_, Gt = gt,) =
e Ud” (C TGN Gey)

v e—Va (4 di.ge_ 9ty ) ’
%8,

(4.12)

where the Iocal‘(conditional) energy function U(fl for displacement vector update is defined
as

Ua(lds, g 00,) =g - [Maxt, AP +0g- T V(zd(x;t).  (413)

Jix5€na(x:)

Note that the partition function Z does not appear in the conditional probability expression
(4.12), hence there is no need to evaluate it. In order to sample from this distribution the
energy for each possible z € S/} must be computed (Appendix 4.C). The more states there
are in the State-space 8!, the more computations are needed to evaluate (4.12). This
approach will not obviously work for the continuéus state-spaces Sj. This case will be
tackled via a different approach later.

Practical implementation of the Gibbs sampler in the case of the vector MRFs is more

complex than that of scalar MRFs [26], [62], and can be foun' in Appendix 4.C.
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4.3 SOLVING THE MAP ESTIMATION: SIMULATED ANNEALING

The stochastic relaxation schemes described in the previous sections can generate
samples from VMRF Dy distributed according to the Gibbs measure #w(d;). Hence, the
more likely samples will be frequently encountered and the less likely ones will show up
rarely. This is not enough to find the state (or states) maximizing the posterior probabil-
ity P(Dy=d;|Gs_ =gt_,Gt, =gt ) = n(dg). The ultimate goal would be to devise an
algorithm generating samples from D; according to a uniform distribution on the set of
configurations attaining the global minimum of U. Such an algorithm, proposed for the first
time independently by Kirkpatrick et al. [52] and by Cerny, is generally known as simulated
annealing, but other names like Monte Carlo annealing, statistical cooling or probabil'@tic
hill climbing have also been used.

The simulated annealing algorithm is based on the analogy between the process of

annealing of solids and the problem of solving large combinatorial optimization problems.

‘In physics, annealing denotes a process in which the temperature of a solid in a heat bath

is increased to a point at which all particles of the solid randomly arrange themselves in the 7
liquid phase, followed by cooling through slowly lowering the temperature of the heat bath.
If the initial {maximum) temperature is sufficiently high and the cooling is sufficiently slow,
the particles attain the configuration of the minimum energy.

Since the thermal equilibrium of a system in a state y with energy U(y) is described
by the Boltzmann distribution (4.1}, the annealing process can be described as follows. For
every temperature value T the solid is allowed to reach the thermal equilibrium. While the
temperature decreases, the Boltzmann distribution concentrates around the states of the
lowest energy and eventuaily, once the temperature approaches zero, only the minimum
energy states have non-zero probability of occurrence. If, however, the cooling is too rapid
i.e., the solid is not allowed to reach the thermal equilibrium for each temperature value,
defects can be “frozen” into the solid and metastable amorphous structures can be reached
rather than the low energy crystalline lattice structure. In a process known as quenching
the temperature of the heat bath is reduced instantaneously, resulting in particle freezing.

In simulated annealing the behaviour of the solid is simulated by generating sample
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configurations from the Gibbs (Boltzmann) distribution with the energy function suitably
crafted for given optimization problem, while the temperature T is replaced by the “tem-
perature” parameter T, which is reduced according to some annealing schedule (e.g., loga-
rithmic). In the reminder of this thesis the parameter T will be referred to as a temperature.

Since the transition probabilities depend on the temperature T two formulations of the

algorithm can be distinguished:

1. a homogeneous algorithm described by a sequence of homogeneous Mar-
kov chains; each chain is generated at constant value of T which is
changed only between subseguent chains,

2. an inhomogeneous algorithm described by a single inhomogeneous Markov
chain; the value of T is changed between subsequent transitions.

In order to define the annealing schedule the following parameters have to be specified:
1. initial value of the temperature, Ty,
2. final value of the temperature, Ty,
3. length of Markov chains,
4. a rule ¢ for changing the temperature, T, = ©(Ty,n).

There is no clear advantage of one algorithm over the other. In the case of the ho-
mogeneous algorithm, the number of iterations at each value of T must be defined (this
number will depend on the decrements of T). For the inhomogeneous simulated annealing
the temperature decrement between subsequent transitions has to be specified. Fig. 4.1
shows block diagram of the inhomogeneous simulated annealing.

| will follow the approach of Geman and Geman [26]. They have used the inhomoge-
neous algorithm, and have proved (Theorem B), that if every replacement site is visited
infinitely often (in practice it means that it is not omitted) and if

1. T(t) - 0ast — oo, and
2. T(t) > MA/logt for all t > ¢y (tg > 2),

then with time ¢ — oo the chain will converge to the global optimum for any starting
configuration. In the above expressions M denotes the number of elements in one MRF
sample (e.g., number of pixels in an image) and A is the largest absolute difference in
energies associated with states differing at only one coordinate. Note that due to the

logarithmic decrements of the temperature, in order to reduce the initial value T(%,) by
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1=1
=1
n=T0
ToeTon| [Stbemmler]
i=1
n=n+1

Fig. 4.1 Block diagram of the inhomogeneous simulated annealing algorithm
based on the Gibbs sampler.
a factor of k, (to)¥ iterations {full scans of a displacement field) are required. Since the
interesting range of temperatures (at which the structure is well-organized) falls below 1.0,
the initial temperature value MA is quite impractical. More tight bounds on the initial
temperature have been also obtained [89], but still are impractical. As a common practice
the initial temperature is chosen ad hoc. Running several experiments with different values

of that temperature, one can find the smallest one such that it does not degrade the solution
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compared with the larger ones, _

Another practical problem is posed by the logarithmic annealing schedule, as proposed
by Geman and Geman. In order to obtain a “very organized” solution, the final temperature
Ty must be quite small, independently of the choice of the initial temperature, for example
of the order of 0.01. Unfortunately, the required number of iterations to attain the final
temperature Ty from the initial Tg grows exponentially with To/T ;. If the initial temper-
ature cannot be lowered any more without affecting the quality of the solution, then only
the annealing schedule can be modified. In the experiments involving simulated annealing

| will use either the optimal logarithmic schedule

_ log 2
fP(Toan) =Ty m,

where n is the iteration number, or the exponential schedule
¢ (To,n) = To - 1),

where 0.0 < a < 1.0. The exponential schedule allows to attain the final temperature in a
reasonable number of iterations, but has to be used with caution since a large temperature
decrement between iterations may trap the chain in a local minimum. Both schedules for

initial temperature Tp=1.0 are shown in Fig. 4.2 (a=0.980 for the exponential schedule).

~Note that after 200 iterations the logarithmic schedule attained the final temperature of

0.1307 while the exponential schedule gave 0.0179.

The optimality of the logarithmic schedule has been proved only for the Gibbs sam-
pler, and hence it is not necessarily optimal for the Metropolis algorithm. As described in
Sections 4.2.2 and 4.2.3 the Metropolis algorithm accepts or rejects states sampled from
a uniform distribution, while the Gibbs sampler generates such states from a local condi-
tiona-I distribution. This suggests that the convergence rate of the Gibbs sampler towards
the steady-state distribution is faster, however its complexity is higher. On the other hand
due to its slower convergence rate, the Metropolis algorithm requires that the temperature
modification be less frequent (between the temperature changes, a homogeneous Markov
chain is generated), and hence more iterations be performed, but it is much simpler compu-

tationally. Comparison of the complexities per update for scalar MRFs can be found in [62],
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logarithmie sehedule
v — — - exponential schedule |

Temperature

—
- .
- o
- o am me

40 80 * 120 : 160 ' 200
Iteration

Fig. 4.2 The logarithmic and exponential (¢=0.980) annealing schedules
starting at To=1.0 over 200 iterations.

however an overall conclusion as to the total efficiency is difficult because the equivalent

lengths of Markov chains cannot be easily established.

4.4 SOLVING THE MEC ESTIMATION: LLN FOR MARKOV CHAINS

It is clear from the construction of the Markov chain T that it is also a regenerative
process, and that the time instants of the returns to a given state v € {) constitute a
renewal process. Now the Law of Large Numbers (LLN) for Markov chains (Proposition

5.9 and Theorem 5.10 in [79]) can be applied. Taking the function f(X) in [79] as identity

gives
1 n-—-l _
2 on(r) = d(xit)  (n— o) (4.14)
=0
where (1) is the configuration generated by the Gibbs sampler at time 7. Hence, running

n

the Gibbs sampler or the Metropolis algorithm (or for that matter any other algorithm
generating appropriate Markov chain) sufficiently long, and taking separately the time av-
erages at spatial locations x; will approximate the conditional mean of the vector d(x;,t)

{remember that the generation of +'s is conditioned on the observations g;_ Gty )-
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The clear advantage of the above approach over the simulated annealing algorithm is
that it requires no annealing schedule, since the generation of samples happens at some
constant temperature T. Instead of the four parameters of the schedule (initial and end
temperatures, length of Markov chain, and temperature change rule) now only one tem-

" perature, at which the process evolves, is necessary. This temperature, however, controls
the state-rejection rate of the generation algorithm. The higher the parameter T the higher
the rejection rate and the more chaotic the generated samples. The lower the T, the lower

the rejection rate and the more orderly the structure of the generated realizations.

4.5 GIBBS SAMPLER FOR THE CONTINUOUS STATE-SPACE Sg4

In Chapter 3 the a posteriori probability density p(ds|G:_ =gt_, G, =) was de-
rived. It has the same form as the a posteriori distribution for discrete d;'s, but since
Sq=R2 is continuous the displacement Gibbs distribution becomes a density. Multiplied
by the likelihood P(Gy, =g¢+[Dt=at,Gt_ =g;_) it results in the a posteriori probability
density p(d¢]G:_=g:_,Gr, =g1, ).
~ The conditional density driving the Gibbs sampler will have the same form as the
conditional probability (4.12). The difference is that sample vectors from the continuous
state-space Sq=R? have to be generated rather than from a discrete one. The discrete
| state-space Gibbs sampler must compute the complete conditional distribution (4.12) at
each (x;,t) (for explanation consult Appendix 4.C). This is a highly time-consuming task.
To sample §4 with infinitely small increments is even less feasible, hence a different approach
must be used.

Recall the local energy function U("i of the conditional probability driving the Gibbs
sampler (4.13). Note that the first term is quadratic with respect to displaced pel difference
7, while the second one is quadratic (given the potential (3.17)) in d;. If the first term could
be approximated by a quadratic form in dg, then Ucil would be quadratic and the conditional
density would be Gaussian. There exist efficient techniques for generating normal bivariates,
hence such an approach would significantly speed up the estimation process.

Assume that an approximate estimate d; of the displacement field is known, and that

the image intensity is locally approximately linear. Then, using the first-order terms of the
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Taylor expansion the displaced pel difference 7 can be expressed as follows:

Hd(xi, 1), %3, 8, Aty = Hd(xs, 1), %3, 8, At) + (A(x5, 1) — (x5, 1)) - VaHd(x3, 2), X1, 4, AL),
(4.15)

where the spatial gradient of 7 is defined as

Vit st = [0 20

Bg(x,—Ag dxit)t-) | py 4 Bilx+(1.0- aAt) d(xi,),t4) (10— Af) (4.16)
ag(x,—-At d(x,,t)t ) At+8g(x,+(10 At) d(x;,£);t1) (10— At)J

To minimize the total energy U via simulated annea[mg the temperature T is slowly reduced

to zero. Including the temperature T in the weights /\; and X/, defined as follows
/\’g = Ag/T, Ay = A/T,
permits to write the local energy Ugl driving the Gibbs sampler at location (x;,t) as:
Ua(d(x;, 1)|d, g1_ 90, ) meXy - [HA(xi, 1), %4, 8, At)+
(a(xht) - ('l(Xi, t)) ' Vd’;{a(xis t)sxia i At)]2+ (417)

’\ii . z V(&(Xj,t), a(xia t)):
Frxi€nal(x;)
where d is fixed. The above local energy is quadratic with respect to d. It can be shown
that the conditional probability density (4.12) with the above energy is a 2-D Gaussian with

the following mean vector at location (x;,¢) (for the derivation of the mean vector and the

covariance matrix see Appendix 4.D):
m = d(xz,t)--—'v r(d(xht) X;, t, At),
where the scalars £; and y; are defined as follows
& = ;(&(Xi, t) Xi t, At) + (_d—(xb ) &(xi3 t)) ’ Vd'f-(c.l(x,-, t),xi5t1 At)

B= 63+ IV 0,53, 201 419

and d(x;,t) is an average vector
- 1 ~ .
d(x;,t) = G Y. d(xj,t), (4.19)
? jixj€na(x:)
where {; = |nq(x;)| denotes the size of neighbourhood 74(x;) e.g., 4 for the neighbourhood

system N& Note that a neighbourhood does not include the central vector. The horizontal
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and vertical component variances arf., 03, as well as the correlation coefficient p, which

comprise the covariance matrix M, have the following form
AI -
[02] _ 1| &3+ MG t), X0, AP
oyl 2idami | &58 + [P(A(xi, 1), %, A2
g
—P(d(x;,t), X, t, A)F(A(x;, 1), X;, 1, At)
26 X4 '

The initial vector d can be assumed zero throughout the estimation process, but then

Y

paggay -

with increasing displacement vector estimates the error due to intensity non-linearity would
significantly increase. Hence, it is better to “track” an intensity pattern by modifying d
accordingly. An interesting result can be obtained when it is assumed that at every iteration
of the Gibbs sampler d = d i.e., the initial (approximate) displacement field is equal to
the average from the previous iteration, and also that the neighbourhood AL, resulting in
£i=4, is used. Then, the estimation process can be described by the following iterative
equation:

an+1(xiat) = 'a*n(xi’ t) - fﬁ'vg;(an(xia t),xz': t, At) + n;, (420)
i

where 1 denotes the iteration number, and

g = Hd" (x5,1), X, 8, At)

A e (4.21
Bi = 4—,\_d + “Vdr(dn(x'i!t)vxiit’dt)“2' )
g

#; is a Gaussian bivariate with the following component variances and correlation coefficient:
[ag ] T[4 @ i 1), xit, A
8Aapi | 438 + [ (d"(x;, 1), xi,t, AB]?

4
T‘F(an(xi: t): X I, At)?l(an(xia t)} X, i, At)
8Aqni

The Gibbs sampler for the continuous state-space S4 described above results in a

pozOy = — .
spatio-temporal gradient estimation method, while the discrete state-space Gibbs sampler
from Section 4.2.3 is an example of explicit (pel) matching algorithm. This important
difference is due to the Taylor expansion used in approximating the displaced pel difference
T in (4.13) by the linear form (4.15).

Note the similarity of the iterative update equation (4.20) to the update equation of the

Horn-Schunck algorithm (2.11). Except for the displaced pel difference replacing the motion
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constraint equation and the inclusion of the random variable n; they are identical. In fact if
one applied the same Gibbs sampler procedure to a discretized version of objective function
(2.8), the Horn-Schunck algorithm would be obtained with appropriate bivariate term n;.
It is interesting that similar update equations result from two different approaches: Horn
and Schunck establish necessary conditions for optimality and solve them by deterministic
relaxation, while here a 2-D Gaussian distribution is fitted into the conditional probability
driving the Gibbs sampler. For T=0 and d = d the continuous state-space Gibbs sampler is
equivalent to a vafiation of the Horn-Schunck algorithm, or in other words their algorithm
can be viewed as instantaneous freezing instead of slow temperature decay. More details
on this similarity will be given in Chapter 8.

At the beginning, when the temperature is high, the random term n; has large variance
and the estimates assume quite random values seeking the optimum. As the temperature
T is reduced to zero, the variances and the correlation coefficient get smaller, thus reducing
the random term of the estimate. In the limit the algorithm performs a deterministic update.
Note that the variance o2 of the horizontal component for fixed As and 7 decreases with
growing 7. It means that when there is significant horizontal gradient {detail) in the image
structure the uncertainty of the estimate in horizontal direction is small. The same applies
to 2. Hence, the algorithm takes into account the image structure in determining the

¥
amount of randomness allowed at a given temperature.

4.6 SPATIAL IMAGE INTERPOLATION

in the practical implementation of any motion estimation algorithm operating with sub-
pixel accuracy the image intensities at locations (xi,t+) €Ay (recall that Ag is the image
lattice) must be known. Such intensities were denoted by §, for example in the energy
incr&nent (4.4) of the Metropolis algorithm or in the local energy (4.13) driving the Gibbs
sampler. In this section spatial interpolation algorithms computing § will be investigated.

The values of § can be either interpolated or approximated from g. Let (x;,¢+) be a
spatio-temporal position at which the image intensity is required. The interpolation process

performs local modeling of the intensity in such a way that

(xiati) € Ag = §(x¢',t:|:) - g(xiat:!:)
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In the approximation process, however, a surface fitting is performed and this relationship is

not satisfied (in general). Such a fitting can be considered a low-pass filtering and will not

be pursued in this section since filtering of the intensities will be discussed in Chapter 5.
An interpolation scheme suitable for motion estimation should be characterized by the

following properties::

1. efficiency, since it will be repeated hundreds of thousands of times for
each motion field; as the consequence it should be simple and have only
local support,

2. continuity with respect to the image intensities g, so that a small change
of the known intensity (on Ag) will not result in a large change of the
interpolated intensity (or its derivative),

3. continuity with respect to the position x, so that a small change of the
position e.g., X = X; — At - d(x;, ), will not result in a large change of
the interpolated intensity (or its derivative).
The constraint on the image intensity derivatives is not relevant in the case of stochastic
estimation via the discrete state-space Gibbs sampler, since the derivatives of ¢ are not
involved. However, for the continuous state-space Gibbs sampler discussed in the last
section, the constraint on image intensity derivatives is vital. |

Considering the above requirements, such complex schemes as the spline interpolation,
which requires spline computation for each set of data, have to be excluded. In order
to satisfy the efficiency requirement, the separable low-order polynomial interpolators will
be used. A separable 2-D spatial interpolator can be constructed as a cascade of 1-D
horizontal and vertical interpolators, hence is more efficient than a full 2-D interpolator.
1-D interpolators of 1-st, 2-nd and 3-rd order will be discussed here.

From now until the end of this section 1-D notation will be used. Let w be an input
signal defined over a lattice A, and @ be an interpolated value of w defined over R. Let
z, y€ R be arbitrary positions. Let A have a sampling period é so that A={z: z=jé,j €
I}, where I is a set of integers. If ||, denotes the nearest lattice point from z with

smaller or equal coordinate

then Az = z — | ], is the distance from the site z to the nearest preceding lattice point.

-84 -




it
|

Chapter 4

With the above notation the 2-, 3- and 4-point Lagrange interpolators can be described
by the following equations:
1. linear: 0.0< Az < 1.0
#(z) = (1 - Az) - w(|z]p) + Az - w(|z] 5 + ), (4.22)
2. quadratic: —0.5< Az < 0.5
(z) =3 As(de ~ 1) - w(lz| - 6)
~ (42— 1)(Az+1) - w(lz]4) (4.23)
+545(42 +1) - wllzs +9),
3. cubic: 0.0<Ax < 1.0
 d(e)=— %Am(ﬂx —1)(Az—2) - w(|z] — 6)

+ ';;(A‘” +1)(Az — 1)(Az — 2) - w(]z]4)
1 (4.24)
= 5(Az +1)Ac(Az - 2) - w(|z|4 +6) |

+ é(A;c +1)Az(Az — 1) - w({z] 5 + 26).

The above equations, suitable for implementation, are not very useful in the analysis of
continuity of the interpolators. Consider the interpolation process from the systems point
of view. Assuming that only linear (in the systems sense) interpolators are considered, the
following convolution can be used to describe the interpolator operation:

w(z) = Y w(y)- ez —y), reR (4.25)
yeA
where # is defined over R and a is the impulse response of an interpolator (linear filter)

defined over R. Note that also a derivative of i at arbitrary position = can be computed

~ as follows (due to the linearity of convolution (4.25)):

o _
oz

> w(y)%%a—;i), z € R. ‘ (4.26)
yeA

From the equations (4.22), (4.23) and (4.24), and the convolution {4.25), the impulse
responses a(z) of the interpolators can be derived (Appendix 4.E). They are piecewise
polynomials of the first-, second- and third-order, respectively, and are plotted in Fig. 4.3.

Note that while the linear and cubic interpolators have continuous impulse responses, the
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alx)

0.4

Fig. 45 Impulse response of cubic interpolator with C'l-continuous impulse
response proposed by Keys [50].

da{x)/dx

-1}

_ "Fig. 4.6 Impulse response derivative of cubic interpolator with Cl-continuous
(‘ : _ impulse response proposed by Keys [50].
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quadratic interpolator is discontinuous at z=-15,-0.5,051.5. The derivatives of a(z)
(Appendix 4.E) are plotted in Fig. 4.4. Note that the derivative of the impulse response is
discontinuous for the linear (x=-1.0,0.0,1.0) and cubic (x=-1.0,1.0} interpolators.

By choosing the separable low-order polynomial form for the interpolator, the require-
ment 1, posed at the beginning of this section, has been satisfied. Also the requirement
2 Is fulfilled, as the interpolator is a linear discrete filter with coefficients from the range
[0.0, 1.0] (equations (4.22), (4.23), (4.24)). In order to satisfy the third requirement, the
interpolator impulse response must be continuous.

The problem of designing C'l-continuous (continuous up to the first derivative) impulse
responses of linear and quadratic interpolators is overconstrained. It is, however, 'possible
with the cubic interpolatof, since there are 8 unknown coefficients in the piecewise polyno-
mial description of its impulse response and only 7 constraints providing continuity of a(z)
and da(x)/8z (Appendix 4.E). This one degree of freedom has been used by Keys [50] to
design a C'l-continuous cubic interpolator such that its output signal agrees with the first
three terms of the Taylor series expansion of the input signal. The impulse response of this

optimal cubic interpolator and its derivative are shown in Figs. 4.5 and 4.6.

4.7 TEST IMAGES

The algorithms described in this chapter have been tested on a number of synthetic
and natural images with synthetic or natural motion. The next 3 sections describe the test
images used throughout this thesis.

The ultimate goal of the motion estimation investigated here is its application to TV
'images, hence all the test images used subsequently had been stored in a displayable line-
interlﬁaced format. Such format consists of fields separated in time by 7gp=1/60 sec, and
- containing 106 lines with 256 pels per line. The odd fields are offset vertically by half of the
inter-line distance. The estimation is performed on the inter-field basis, hence the terms
field and image are used interchangeably. The theoretical dynamic range of the Juminance
component is [0,255], while in practice it is usually limited to [40,200]. Unless otherwise

indicated only luminance fields are used. The test images shown subsequently in the {igures,
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and referred to as fields number 0, are in fact two interleaved fields number 0 and displayed -
as a frame. The white rectangular contours encircle the area actually used in the estimation

process.

4711 Test image 1: synthetic data, synthetic motion

To provide a quantitative test for the motion estimation algorithms proposed here, |
used a pattern based on the concept of a random dot stereogram. Fig. 4.7 shows the 0-th
field of a 24 field sequence which will be referred to as the test image 1. The 0-th field
consists of random, uniformly distributed numbers from the range [40,200]. The subsequent
even fields are exact copies of the 0-th field, except that a 50 by 20 pel rectangle (note
that due to the interlace, the effective aspect ratio of the rectangle is around 5:4) in the
center of the encircled area has been moved by ds=(2.0,1.0) with respect to the previous
even field. The odd fields are exact replicas of the preceding even fields. The white frame

encircles the area of 77 by 49 pels subsequently used for estimation.

4.7.2 Test image 2: natural data, synthetic motion

This test image provides a synthetic motion of natural data obtained from a video
camera. Fig. 4.8 shows the 0-th field of a 24 field sequence which will be referred to as
the test image 2. The background is provided by the test image 3, while the 45 by 20 pels
rectangle i.n the center is obtained from another image as follows. That image had been _
first prefiltered by a 2-D low-pass separable linear-phase FIR filter to minimize aliasing after
the subsampling. Then it was subsampled by 4 producing a contracted copy of the original
imag;e. In subsequent fields of the test image 2 the same (stationary) background image
was used, while the moving pefs in the rectangle were obtained from appropriately shifted
pels in the prefiitered image. The subsampling factor of 4 provides the 1/4 pel precision
of displacement vectors. Unlike in the test image 1, this test pattern permits non-integer
displacements in which case there is no perfect data matching (more realistic situation).

The white frame encircles the area of 77 by 49 pels.
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Fig. 4.7 Test image 1, field number 0; a 50 by 20 pels rectangle in the center
moves by ds:(2.0,1.0) with every even field, the odd fields are
identical to the preceding even fields, the white frame encircles the
area used in estimation.

Fig. 4.8 Test image 2, field number 0; a 45 by 20 pels rectangle in the center
moves by d=(0.75,0.25) with every field, the white frame encircles
N the area used in estimation.
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Fig. 49 Test image 3, field number 0; the white frame encircles the area used
for estimation.

Fig. 410 Test image 4, field number 0; the white frame encircles the area used
for estimation.
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4.1.3 Test image 3 and 4: natural data, natural motion

Figs. 4.9 and 4.10 's.how the 0-th fields of two 24 field sequences obtained with a video
camera. No filtering or any other processing has been applied to those sequences after
their acquisition. The acquisition process included as usual camera filtering, sampling and
quantization as described in Section 3.4.2. There is some aliasing present in the data due

to insufficient filtering before sampling.

4.8 EXPERIMENTAL RESULTS

In this section some experimental results will be presented. First the results of applica-
tion of the MAP and the MEC estimation to all four test images will be discussed. Then,
some results for the test images 1 and 2 corrupted with noise will be also shown.

Note that, as defined in Section 4.3, an iteration means a complete scan of a displace-
ment field i.e., Mg = M('l‘ X MJ attempted modifications of displacement vectors. The
stochastic relaxation used to produce the results in this chapter has been based either on
the discrete state-space S"__l with dmaz=2.0 and N =17 levels in each direction or on the
continuous state-space. Unless otherwise indicated the parameter )y is set to 1.0 in all
experiments. Of course only the ratio A\3/Ay provides a weight between matching and
smoothing, however the absolute values of Ay and Ag have significant impact on the choice
of the initial tem-perature To-

The motion estimates presented in the following sections have been obtained from pairs
of images (fields) separated by Ty = 2743, and with At=0.0 (i.e., forward estimation) and
Ag = A,

- Since the true motion fields are known for the test images 1 and 2 (except for the
occlusion and newly exposed areas), it is possible to assess the quality of motion field
estimates. The Mean Squared Error and the bias measuring the departure of motion field
estimate d from the known motion field d;, are defined as follows:

MSE = E[(ds — A~ T [d(x;,2) — d(xi, 1))
X ER
bias = E[ds - a] = E [ds(xist) - a(xist)]a
X;ER
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where R denotes the spatial rectangle to which synthetic motion had been applied. MSE
and bias are computed for test images 1 and 2 only, and are shown below appropriate
motion field estimates.

Due to the interlace the vertical distance between neighbouring pixels in a field is about
twice larger than the horizontal distance. This effect is taken into account in the potential
function (3.17) by multiplying the vertical components of displacement vectors by 2.0.
Consequently there is more weight given to the vertical components which is reflected in

the mean squared error.

4.8.1 Results for test image 1

The two images used for estimation match exactly except for the newly exposed and
occlusion areas. The match occurs at the displacement (0.0,0.0) in the background, and
at (2.0,1.0) in the center rectangle. Due to this almost perfect matching, the estimation
should strongly rely on the data while very little on the model. In fact it seems that except
for those newly exposed and occlusion areas, just the data should be sufficient for motion
recovery. Consequently in the experiments with test image 1 the parameter \; was set to |

1.0, and Ay was varied.

4.8.1.1 MAP estimation

The results of MAP estimation based on simulated annealing with the discrete state-
space Gibbs sampler as described in Section 4.3, applied to the test image 1 are shown in
Fig. 4.11. The synthetic displacement applied to the 50 by 20 pels rectangle in the center,
which the estimation process attempts to recover, is shown in Fig. 4.11.a. The estimates
from Figs. 4.11.b,.c,.d have been produced for A\g/Ag =0.0, 0.05, 1.0 respectively, with
the férst-order neighbourhood system .N'& and bilinear spatial interpolation of the image.
The exponential annealing schedule with Tg=1.0 and a=0.980 over 200 iterations has been
used in all three cases. Such schedule resuits in final temperature T;=0.0179.

For the ratio A3/Ag=0.0 (Fig. 4.11.b), the estimation process disregarded the displace-

ment model completely. This result indicates that trusting just the data may be misleading,

which is not unexpected, since the algorithm uses only single pel matching and not blocks of
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pels, in which case the estimate would be closer to the true motion. Since there is no model
constraint the process seeks any vector minimizing a DPD, and hence it is ill-posed. To re-
strict the class of admissible solutions a (weak) adherence to a displacement model should
be enforced. Fig. 4.11.c shows the estimate for A3/\;=0.05 (weak model constraint),
which is a dramatic improvement compared to the previous result, both subjectively and in
terms of MSE. Relying to a higher degree on the model deteriorates the estimate, as can
be observed in Fig. 4.11.d for Ag/A;=1.0. It turns out that this clearly suboptimal solution
is due to the interaction between the weight ratio Ad/Ag and the temperature T. With
Ad/Ag=1.0 the local energy Ufi is higher (complete displacement energy contributes to the
local energy) than for small Aq/)g, and hence the relative temperature is smaller. That
this departure of the estimate from the true motion is caused by a low relative temperature
rather than directly by a high ratic A\g/)\g has been confirmed by computing a motion
estimate for Ag/Ag =1.0 and Tp=10.0. The result turned out to be almost identical to
that from Fig. 4.11.c.

Note that the estimate from Fig. 4.11.c is very uniform inside of the rectangle where
it attains exactly the value of the synthetic displacement. The two leftmost columns and
the top row of the rectangle are the newly exposed areas, while the two rightmost columns
and the bottom row are the occluded areas. Since At=0.0 the intensities from g{x,t)
are being matiched with those at {1, and unreliable estimates shou!d be expected in the
occlusion areas (the motion model does not take such an effect into account). This is
exactly what happens in Fig. 4.11.c. Obviously for At=1.0 (backward estimation) the
newly exposed areas would be troublesome, and both occlusion and newly exposed areas
wouid play a role when 0.0 < At < 1.0.

Also the inhomogeneous simulated annealing implemented via the Metropolis algorithm
has b‘een applied to the test image 1.. As discussed in Section 4.3 the Metropolis algorithm
is simpler per update than the Gibbs sampler, however it requires more iterations. | have
applied the Metropolis algorithm over 15,000 iterations with the exponential temperature
schedule modified every 75 iterations. Subjectively the result was almost identical to the
estimate obtained with the Gibbs sampler (Fig. 4.11.c), however the attained energies

were slightly higlier. The comparison of the computational effort for both methods is not
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straightforward (what is the minimal effort to obtain given result ?), however the measured
CPU time was very similar in both cases.

~ Using other exponential annealing schedules and also lowering the initial temperature
To to as low value as 0.01 (with A3/Ay=0.05) had negligible effect on the final result. This
suggests that the objective (energy) function for this particular data has rather few and not
very deep local minima, while the global minimum is probably very deep. This observation,
later confirmed in Section 8.1, is not surprising because the data cue is very strong due to
the “gray value corners” at almost every spatial location.

Application of the continuous state-space MAP estimation to the test image 1 resulted
in an estimate which had little in common with the true motion. This is not surprising since
as a spatio-temporal gradient technique it relies on the relationship between the spatial and
temporal intensity gradients, and those are absolutely unrelated in the test image 1 (the
random dots are statistically independent). This, however, is not the case for the test image

2 as it will be demonstrated in Section 4.8.2.1.

4.8.1.2 MEC estimation

Fig. 4.12 shows two MEC estimates obtained with the discrete state-space Gibbs sam-

pler for constant temperatures T=1.0 (a) and T=0.1 (c). Again A}, bilinear interpolation

and 200 iterations were used. The time average, which approximates the ensemble expec-
tation (Section 4.4), has been computed over the last 150 iterations. Note that due to the
averaging process the displayed vectors have continuous rather than discrete components.
The corresponding displacement fields after quantization to the closest of N states from
the [—dmaz, dmaz] range are shown in Fig .4.12.b,.d. Note significantly fewer spurious
vectors in the stationary background, especially in Fig. 4.12.d. The results demonstrate
that -MEC estimation can also provide reliable estimates without the need to use an an-
nealing schedule. A constant temperature T at which the Markov chain evolves, however,
must be specified. This temperature controls directly the randomness or “chaos” in the
estimates: the lower the temperature the more organized (spatially) the estimate is. Too
low a temperature, however, may prove suboptimal because only the most likely states will

be produced rather than a whole range of states.

- 96 -




Chapter 4

I TIR™

P SO PP R
. e vl

'
o PP T
[V TN )

st e atafy Ay
e w

(e

yate oo

S by prbeet el e
P A e gy

RN DRI b ST (D il W Bl S ieos
M SE=(0.5438,0.0578), bins={0.5735,0.0958)
(a) T=1.0

T=1.0, quantized

. MSE=(0.0172,0.0062), bas={0.0216,0.0088
S =
Fig. 412 MEC estimates: test image 1, Ag/A
: interp., 200 iter.

(c

- 97

M SE=(0.0180,0.0066), bica=

(d) T=0.1, quantized
9=0.05, neighb. Né, bilinear




rk_
- 5,

N
H H
.

Chapter 4

4.8.2 Results for test image 2

This test image contains the natural data in motion hence there is no perfect matching
and consequently the estimation process should rely to a higher degree on the a priori
motion model. Assuming that the data contains noise with variance o2 of the order of
1.0-10.0, and that the motion field samples should be characterized by the “activity” 84
of the order of 0.1-1.0, the ratio Ay/Aq should be of the order of 20.0. Obviously the
exact value cannot be established, however it will he demonstrated that even a 2 orders of

magnitude change in the ratio A;/Aq will not incur disastrous effects.

4.8.2.1 MAP estimation

Fig. 4.13.a shows the displacement applied to the center rectangle which the algorithms
try to recover. Figs. 4.13.b,.c,.d show the results of discrete state-space MAP estimation
applied to test image 2 for three values of the ratio Ag/As: 4.0 (b), 20.0 (c), 100.0 (d),
neighbourhood system N&, Keys bicubic interpolator and exponential annéaling schedule
starting at Ty=1.0 with @=0.980 over 200 iterations. Clearly the resuit from Fig. 4.13.c
is smoother than the one from Fig. 4.13.b, however no disastrous effects can be observed.
Even more smooth, but very 1"easible, field can be seen in Fig. 4.13.d for Ag/Ay ratio of
100.0. It shows that the adjustment range for the ratio Ag/), is quite large.

Since there is no perfect matching between the images, the spatial interpolation type

should have an impact on the results. Fig. 4.14.a shows the MAP estimate obtained for

. the same parameters as those used for the result from Fig. 4.13.c, except that bilinear

spatial interpolation was used instead of the Keys bicubic interpolation. Observe that both
subjectively (smoothness) and objectively (mean squared error in the center rectangle)
this estimate is inferior to the one from Fig. 4.13.c. To demonstrate the role of the
anneéling schedule in simulated annealing, .Figs. 4.14.b,.c show the estimates obtained
for the standard set of parameters but different annealing schedules. Fig. 4.14.b shows
the estimate produced for Tp=0.1. Clearly the estimate is subjectively suboptimal, as is
also confirmed by the higher total energy U. In another experiment, also a higher initial
temperature Tp=30.0 has been used, with no significant subjective or objective {energy)

effect. In practical implementation an important parameter is the final temperature T,
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which theoretically should slowly attain 0.0. The value 0.0 cannot be implemented, but for
a=0.980 the fina} temperature after 200 iterations is T;=0.0179. Further reduction of the
temperature to 0.001 did not result in significant changes. Too high a final temperature
may leave the process in a fairly chaotic state. Fig. 4.14.c shows an estimate obtained with
the logarithmic temperature schedule (Section 4.3) from Tg=1.0, which after 200 iterations
attains T;=0.1307. Clearly the process is on its way to an estimate probably at least as
good as the one from Fig. 4.13.b, however a too high final temperature leaves numerous
vectors still trying to sample some sub-optimal states. The further linear reduction of the
temperature to attain T ;=0.01, produces an estimate very close to the one from Fig. 4.13.c.

Also the continuous state-space MAP estimation (Section 4.5) has been applied to the
test image 2. The result is shown in Fig. 4.14.d for the same parameters as those applied
to obtain the result from Fig. 4.13.c except for the exponential annealing schedule which
started at Tp=>5.0 and used a=0.9944" over 1000 iterations. The need for higher initial
temperature can be explained by the fact that in the continuous state-space case not only
the intensity interpolation is involved but also the intensity derivative computation (which
is an ill-posed problem itself [74]7). The false vector estimates can be due to both the
intensity value and its derivative, hence a higher initial temperature is needed to overcome
all the local minima. That the continuous state-space case is more “delicate” (requires less
abrupt state changes), especially at low temperatures, seems to be confirmed by the need
‘to use long annealing. More abrupt temperature changes result in suboptimal estimates,
especially in the triangle (center of the moving rectangle) containing vertical bars with
horizontal repetition period close to the displacement per frame.

Also the Metropolis algorithm has been applied to the test image 2. Implemented over
15,000 iterations it produced a similar estimate to that from Fig. 4.13.c, however with
some-what higher energy. Since for similar computational effort it results in higher energy

values, only the Gibbs sampler will be used in subsequent experiments.

4.8.2.2 MEC estimation

t This choice of a has been dictated by the final temperature T;=0.0179, used in the discrete-state
space simulated annealing, in order to compare the results. It has not been optimized in any way.
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Figs. 4.15.a,.c show the MEC estimate obtained for temperatures T=1.0 and 0.1,
respectively. Other relevant parameters are the same as for the result from Fig. 4.13.c.
The time average has been computed over the last 150 iterations. The estimate for T=1.0
seems to be better subjectively, since for T=0.1 there is a pronounced triangle of smaller
velocities in the center of the rectangle. Also the mean squared error for both components
is significantly smaller for T=1.0. That the temperature T=0.1 is too small seems to be
confirmed by a poor MAP estimate commencing at Ty=0.1 (Fig. 4.14.b). For T=1.0 the
estimate inside of the rectangle is close to that shown in Fig. 4.13.b, however it is not
in the stationary background, where small chaotically oriented vectors are present. After
quantization of the MEC estimate to the 0.25 pel precision (as used by the Gibbs sampler in

this case), the result is dramatically improved in the background as shown in Figs. 4.15.b,.d.

4.8.3 Results for test images 3 and 4

The test images 3 and 4 contain camera captured scenes with moving subjects. Since
the data is natural, there is no perfect matching, and consequently the estimation process
should rely to a higher degree on the a priori motion model. Like in the previous section

the ratio A3/Ag of the order of 20.0 seems to be a reasonable choice.

4.8.3.1 MAP estimation

Figs. 4.16.a,.b and 4.17.a,.b show discrete and continuous state-space MAP estimates
obtained from the test images 3 and 4. In both cases Ad/A¢=20.0, the first order neigh-
bourhood system N& and exponential temperature schedule were used. The discrete esti-
mation used bilinear interpolation and initial temperature Ty=1.0 with a=0.980 over 200
iterations, while the continuous estimation used Keys bicubic interpolation and schedule
starti-ng at Tp=5.0 with a=0.9944 over 1000 iterations. Keys bicubic interpolation used
in discrete state-space estimation resulted in almost identical estimates as the ones from
Fig. 4.16.a and 4.17.a. This seems to confirm the earlier observation (Section 4.6) that
since the discrete state-space Gibbs sampler uses no intensity derivatives it should be more
robust to image intensity interpolation. Like in the case of test image 2, the continuous

state-space estimation required higher T and longer annealing schedule to attain results
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Fig. 4.17 Discrete and continuous state-space MAP estimates: test image 4, |
Ad/Ay=20.0, neighb. J\f&, exponential schedule. . :
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similar to the discrete case. Note, however, that due to smaller computational effort per
iteration, the continuous state-space estimation with Keys bicubic interpolation, which has
much higher complexity than bilinear interpolation, was still about an order of magnitude
faster than the discrete state-space estimation. _

All estimates are smooth within moving objects and this smoothing is also applied
across motion boundaries. This can be explained by the fact that motion boundaries
(inferred from the data) are not as strong as in the test image 1. Note that the continuous
state-space estimates are smoother than the discrete state-space results, especially on the
neck in the test image 3. The motion boundaries, however, are more oversmoothed too.
The smoothness of the continuous state-space estimates is confirmed by significantly lower
total energy than for the discrete state-space, which is due to longer annealing schedule.

It must be added that the test image 4 is rather difficult for estimation, because the
illumination effects are not negligible there (the shadow of the hair on the forehead) and
because of strong newly exposed areas (the hair suddenly exposed from behind the right
ear), both not accounted-for in the motion model.

The influence of a too low initial temperature T on the motion estimates from the

test image 3, as well as an example estimate early into annealing can be found in [54].

4.8.3.2 MEC estimation

Figs. 4.18.a,.b show the MEC estimate obtained for temperature T=1.0. Other relevant

parameters are the same as for the results from previous section. The time average has

been computed over the last 150 iterations, and displayed without quantization. Note that

subjectively the MEC estimates are very similar to the MAP estimates from Fig. 4.16.a and
4.17.a. Their energies are higher, however, which is not surprising since the MEC estimation
does not attempt to maximize the a posteriori probability (minimize the energy U), but

rather to minimize the mean squared difference between the true motion and its estimate.

4.8.4 Results for test images I and 2 corrupted by noise

To test the robustness of both algorithms in the presence of noise, additive white

Gaussian noise with the variance 02=20.0 has been superimposed on the test images 1
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Fig. 418 MEC estimates: test images 3 and 4, Ag/);=20.0, neighb. Né,
bilinear interp., T=1.0, 200 iter.
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PECTRE PRI PR IY

A\ ' y
TR

SN

MSE=(0.1684.0.0698)I._ btas=(0.1483,0.0808 M SE=(0.2612,0.0606), biaa:(%?;ﬁOT.0.0QZiZ)
(3) MAP, Ty=20.0, a=0.965 b) MEC, T=2.0

Fig. 419 MAP and MEC estimates from data corrupted by white Gaussian
noise {¢2=20.0): test image 1, Adg/Ag= 100.0, neighb. N’é, bilinear
interp., exponential schedule (a}, 200 iter.
and 2. Since the noise is white with variance 20.0 and 34 has been chosen in the range
0.1-1.0, the original ratio A\g/\y should be augmented by 202/84 valued at around 100.0
(8a=0.4).

Figs. 4.19.a,.b show, respectively, the MAP and the MEC estimates of motion from
the test image 1 corrupted by additive white Gaussian noise. In both cases the first order
neighbourhood system J‘Vg, the bilinear interpolation and Aq/A;= 100.0 were used. The
MAP estimation used the exponential annealing schedule with initial temperature Tg=20.0
and a=0.965, while the MEC estimator was produced for T=2.0, both over 200 iterations.
Noted that in spite of significant noise (02=20.0) both estimates are quite close to the
corresponding estimates obtained from the images without noise (Fig. 4.11.c and Fig. 4.12.c

respectively). These results demonstrate that both the MAP and the MEC estimation are

quite robust to noise. The ratio Ad/Ag could have been chosen differently since the value

of B4 is not known, however even as low a value of 84 as 0.1 did not incur disastrous

effects. With the value of 0.4 used here, the results for noisy and noiseless data are quite
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comparable.

Fig. 4.20 shows the estimates of motion from the test image 2 also corrupted by
additive white Gaussian noise. The first order neighbourhood system A &, the Keys bicubic
interpolation and the ratio Ag/A;= 120.0 have been used in each case. The discrete
state-space MAP estimation from Fig. 4.20.a used the exponential annealing schedule with
Tp=20.0 and ¢=0.965 over 200 iterations, while the continuous state-space MAP from
Fig. 4.20.b was produced for a=0.993 over 1000 iterations. The MEC estimation from
Figs. 4.20.c,.d used the constant temperature Tp=1.0 over 200 iterations. The estimates
agaih resemble quite well the corresponding true motion fields, however they are not as
good as the estimates from noiseless data (mean squared error). Poorer performance for
the noise corrupted test image 2 is not surprising, since the motion cue is much weaker here
than in the test image 1. Subsequently imposition of significant noise (¢5=20.0) “masks”
the motion to certain extent. In the test image 1, however, due to the “gray value corners”
almost everywhere, such masking effect is much less pronounced.

Note that both MAP estimates are quite similar except for the upper part of the moving
rectangle where the continuous state-space MAP estimate outperforms the discrete state-
space estimate. This is confirmed by the mean squared error, however the parametrizing
energies are quite similar.

From the above experiments, as well as from the experiments with noisy test image 3

[55], it was concluded that the MAP and the MEC estimates are similar. No superiority of

- the MEC estimation in noisy environment has been noticed as observed by Marroquin [62]

with respect to scalar MRFs applied to image reconstruction. This may be due to the fact
that only noise with variance of 20.0 has been tested, and also that the state-spaces used

were-much larger here than in his case.
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E4 I TA I PR EPB S b hurpep e bhnn dsty

SE=(0.1547,0.0401), bias=(0.2533,0.1119) M3E=(0.1209,0.0374), bias=(0.2326,0.1362)
(a) MAP discrete (b) MAP continuous

(c EC, quantized

Fig. 4.20. MAP and MEC estimates from data corrupted by white Gaussian
noise (02=20.0): test image 2, Ag/Ag= 1200, neighb. N}, Keys
bicubic interp., exponential schedule, T3=20.0, a=0.965 over 200
iter. {a) or ¢=0.993 over 1000 iter. (b) or T=1.0 over 200 iter. (c,d).

MSE=(0.3153,0.0402)). biaﬁnzé()c.4959,0.1472) MSE=(0.316(23.045h6X. bias=(0.4942,0.1417)
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Appendix 4.A. INVARIANT DISTRIBUTION OF THE METROPOLIS ALGORITHM

In this appendix it is shown that the Gibbs distribution 7 is the invariant distribution
of the Metropolis algorithm presented in Section 4.2.1. The reasoning below follows that
presented in [36].

Let oy be defined as the following ratio:

v = TB) _ —U(@)/B+U()/8 _ ~AU/B
T w(y)

Following the notation from Section 4.2.1 note that (y¢'s are transitional probabilities and

are symmetric (by assumption). Hence they satisfy the following relationships

Qvw 2 0, > Qyw =1, Qo = Qo (4.A1)

A little reflection shows that the Metropolis algorithm described in Section 4.2.1 can be

described by the following probability expressions:

. if ayw <1
TE@: P7w={8T: e :f a7:>1
i = (4.A.2)
1= Py=Qpt+ 3} Q- (1-eow)

Wilkym <1
That Pyg's really constitute a stochastic matrix can be concluded from the following:
1. Pyg = 0 since Qyp > O (transitional probabilities), (), 7(@) > 0 (7 is a
probability measure) and by {4.A.2),
2. Yo Pym =1 since

2 Pw=Py+t Y P
“ @ty

= Qyy + Z Qyw (1 — ayw) + Z Qyw - ayw + E Qvw

-HL Y | Y | g |

= Qv+ Z Qvo + Z Grw

W oy <1 W Ay 21

=Qy+ ) Qe

wFY

=2 Q=1

In order to show that = is the unique invariant measure of the generated Markov chain

it is enough to demonstrate that

(@) = L) Pre.
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Consider the following three cases:
1. ayg =1: then by (4.A.2) it follows that
Pyo = Qyw = Qoy = Py,

and therefore 7(y) - Pyp = n{w) - Py,
2. ayg < 1: then also by (4.A.2)

P'yw=Q7w'a-yw=Qw7'a7w=Pw7'a'yw;

and therefore 7(7) - Py = n(w) « Py,
3. ayp > 1: again by (4.A.2)

P7w =Q7w=Qw7=Pw'y'a*/w,

and aiso 7(7) - Py = w(w) - Proe.

Consequently the balance equation 7 (y)Pye = 7(w) Py holds for all values of 4, w, and

since Pyg's form a stochastic matrix, it follows that:
S ow(y)- Pyw =) n(w)- Poy =m(w) Y Poy = 7(w).
Y Y Y

0

Appendix 4.B. INVARIANT DISTRIBUTION OF THE GIBBS SAMPLER

Using the same notation as in Section 4.2.3 it will be shown here that the Gibbs
distribution = is the invariant distribution of the Gibbs sampler ]26].
For a fixed time 7 and some ¢ € 0 it follows that:
(r2(n), = T r(0)-Z4(r)
¢ (4.8.3)

— E 7;-(7(W,nf)) . Enr(ﬂ?.ﬂ'r),-y(r)'
wES)

The last summation extends over all possible w € Sa. Note, however, that the transition
probability of going from state @ at site n, (time 7) to a new state v, does not depend

- on the state of the site nr, but only on the states of its neighbours. Hence the following

relationship holds:
E,r(g,ﬂr)’,r(’r) = E‘r(w‘"’"),‘}’(T) ( for any ? e S&) _
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Since this summand is independent of the previous state o it can be considered a constant

in the summation, and it follows that

(wE(r)L =E (o.nr) 4(T) - w%;gf r(y(@nr) (for any 9 € S))
d

=7(Tn, =0, |Ti = %, Vi : (xi,) € Ag,i # nr)- (4.8.4)
n(T; =7, Vi : (X4, 1) € Ag,i # nr)

=(7).

Appendix 4.C. IMPLEMENTATION OF THE GIBBS SAMPLER FOR VECTOR MRFS

In practice the Gibbs sampler for Vector MRFs differs from that for Scalar MRFs. The
way it has been implemented for the purpose of this research is presented below.

The conditional probability P(Dy = Ei,|Gt_ =gt_,Gt, =gt,) driving the Gibbs sam-
pler has a non-quadratic local energy Ufi with respect to tHe displacement vectors d; (due to
the displaced pel difference). This precludes the use of a simple transformation of uniform
or normal random variables efficiently generated by standard routines. Hence the complete
probability distribution (local energy) must by computed at each location (x;,t).

Since the states to be generated are 2D vectors, let the state-space S:i of each vector
be the Cartesian product of state-spaces in horizontal and vertical directions (Sah and S&u

respectively):

Sa =S4, X Sg,» My =|8g,|, M,=|8} |,

‘where |S] | stands for cardinality of set S . Let z be a vector from 8] Let also z; and z;

be any two members of Sc’i;. and Sy , respectively. Then the cumulative distribution arrays

A (2D) and B (1D) are computed as follows:

By =0

For j =1,..., M, compute
A(O,j) =10
Fori =1,..., M} compute

z = (2,2§)
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- ,
Afi) = Aoy +e0 Bot)

Continue
Bj = Bj_1 + Ap, 5)
Continue

The new vector w € S} is obtained by generating two pseudo-random uniformly dis-

- tributed numbers (ry,ry). First, ry is generated in the range (0, Byy, ], and w” is assigned

the following value:

v’ =z, ry € (Bj_1, Bj]. (4.C.5)

Then 7, is generated in the range (0, A(py, 5] {for j from (4.C.5)), and w” is assigned the

value

o=z, 14 € (Ago1) Ay (4.C.6)

Appendix 4.D. MEAN AND COVARIANCE FOR THE CONTINUQUS STATE SPACE
GIBBS SAMPLER

The notation used here is that of Section 4.5. Let the subscripts z and y denote
horizontal and vertical components of appropriate vectors i.e., d = [E,,,Ry] and d =

[c'lz,c'iy]. Using the definition of potential (3.17) rewrite the local energy (4.17) as follows
Ug(d(xi, )ld, ., 91,) = X - (A (i, 2), X3, 1, At) -
(d(xi, 1), Xi, 8, At) - do(x;,8) — F(A(x5, 1), X5, 8, At) - dy(xi,8)+
P (A(xis 1), X, At) - do(xi, 1) + F(A(xi, 1), %, 1, A8 - dy(xi, 1)+

MY [de(xit) — do(x, )] + [dy(xi ) — dy(x;,1)]%
Jrxj€na(x:)

To simplify the notation the dependence of ¥ and ¥ on ( (x;,1),%;,t, At) as well as the
dependence of dy and dy on (x;,t) will be omitted for the rest of this appendix. After
some arithmetical manipulations Ufl can be rewritten as

Ugl(d(xist)ldsgt_,gt.}.) = A(E$)2+B(ay)2+cazay'Jf'Dat'{“an'l'Fa (407)

- 114 -



Chapter 4

where the parameters A, B, C, D, E are defined as follows
A= ()P + &0,
B = Xy(7)? + &)},
C =2X7#,
D = 2[X;7 (7~ Fdy — Mdy) — £:\dy],
E = 2P (F—Fdy — Pdy) — EM4dy),
and F'is a constant depending on the neighbouring estimates (a(x_,-,t) P X4 # X}, approx-
imate estimate d and dispiaced pel difference at d. The vector d = [dz, dy] denotes the
average over the neighbouring estimates, and has been defined in (4.19).
A bivariate Gaussian distribution of the vector d can be described by the following

expression:
(@) = 1 _e—3(@-m)M -1 (@d-m)T
2r(det M)
where m = [mz, my] is the mean and the inverse of the covariance matrix is defined as

follows
a'_,?_.ag(l ~ p?) | —pozoy o

o2 and crg denote the variances of horizontal and vertical components respectively, and p
is the correlation coefficient.

The exponent of this bivariate Gaussian distribution can be expressed in the same form
as the local energy (4.D.7). After some manipulations and comparing appropriate terms it

can be shown that )

02(1 P2y
_ 1
20%(1 - p?)’
I/
C= ;
ozoy(1 - p?)

1 Py _ ™
0'3;(1 -_ pz) O'y Ty ?
_ 1 Pz my)

oy(l1—p%)" oz oy
Since F' can be dropped (it is just a constant scaling the distribution so that it is a

D=

probability measure), there are 5 equations and 5 unknowns. Some laborious manipulations
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will show that the means, the variances and the correlation factor are described by the

following expressions:

7, - %0 Ad) + P (ds — de) + ¥ (dy — dy)

Tty =da: - ¥
&5+ (F)2 + (7)?
S Wxp AL Q)+ P (de — do) + F(dy — dy) -
my =dy — A v
fi‘,\'? + ()2 + ()2
. &%i‘ +(7)?
OTp = [;
2% X (638 + (F)2 + (R)2)
) &3+ (7)?
g, = 7
2GR+ (PR +(R))
P
POzdy =

2iXy(E5¢ + ()2 + (R)2)

Appendix 4.E. 1-D INTERPOLATION

‘In this appendix the impulse responses of linear, quadratic and cubic interpolators will
be computed from the interpolating equations (Sectio'n 4.6), and a C1 continuous cubic

interpolator will be derived. The notation will be that used in Section 4.6.

4.E.1 [mpulse response of an interpolating filter

Note that the convolution (4.25) can be written as follows
B(z) =...+a(z — |z]p +6) - w(|z]a — 8} +a(z ~ [z]A) - w(lz]a)+
a(z — |z]p —8) w(lz]p +6)+..., z€R,
where [z]A € A as defined in Section 4.6. Since z — ||, = Az, the above equation can
“be rewritten as
B(z) = ... +a(Az +8) - w(|z]p — 8) + a(Az) - w(|z]p)+
a{Az — &) - w(|z]p +6)+..., zER.
Comparison of the two terms of equation (4.22) for the linear interpolator with appropriate

terms of the above equation will result in the following expression for the interpolator
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impulse response a(z):

0 forz < —1.0

14z for-10<z<0.0
l—2 for0.0<z<1.0
l+z0for 1.0 < z.

Similarly it can be easily verified that the impulse response for the quadratic interpolator

a(z) =

is:

0 forz < —1.5
'%(.’172 +3z+2) for-1.5<z<—-05
a(z) =4 —z2 +1 for 0.5 <z <05
3(@2—3z+2) for05<e <15
0 forl5<z,
and for the cubic interpolator:
r 0 forz < =2.0

-é(a:3 +622 4+ 11z + 6) for —2.0<z < -1.0
—3(3+222—2-2) for-1.0<2<0.0
323~ 222 —z +2) for 0.0 <z < 1.0
—3(z% - 622 4 112 —6) for1.0<z < 2.0

\ 0 for 2.0 < z.

The derivatives of the impulse responses follow immediately from the above expressions.

a(z) = {

The impulse responses and their derivatives for all three interpolators are shown in Figs. 4.3

- and 4.4 of Section 4.6, respectively

4.E2 Cl-continuous impulse response design

To design a Cl-continuous third-order piecewise-polynomial impulse response, the co-

efficient vector [A1, By, C1, D1, Ag, By, Cy, D] of the following function

(0 forz < -2.0
~Agz3 + Boz? — Coz + Dy for —2.0 < z < —1.0
— A1+ Bz - Ciz+ Dy for—1.0<z<0.0
Ajgd + Biz?2+ Ciz+D;  for0.0<z < 1.0
A9z + Boz? 4 Coz + Dy forl.0<z < 2.8

L 0 for 2.0 < z.

must be computed. Note that due to the required symmetry of the interpolator (linear-phase

a(z) = |

filter) only 2 polynomials are independent. To insure that the above impulse response is a
valid interpolator and to provide the continuity of this response, the following constraints

have to be satisfied:
1. a(z=0)=10=>D; =10
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2. a(z=1")=00=>A41+B1+Ci1+ D1 =00

3. a{lz=17)=0.0= Ay + By + Cy + Dq = 0.0

4, a(x=2")=0.0=8A9+4By+2Cy + D9 = 0.0.
Moreover, to provide continuity of the impulse response derivative also this set of constraints
has to be satisfied:

1. d(z=0")=d(x=0")=1.0=C; =0.0

2. dz=1")=d(z=17)=00=34; +2B1 4+ C; =349+ 2By +

3. a(z=2")=00= 1245+ 4By + Cy = 0.0.

There are only 7 constraints while 8 unknown coefficients, hence 1 degree of freedom
allows to specify one coefficient according to some extra criterion, for example as proposed
by Keys [50]. He expressed all other coefficients in terms of Ay and chose it so that the
output (interpolated) signal agrees with the first three terms of the Taylor series expansion

of the input signal. This criterion resulted in A9 = —0.5, and provided the following impulse

response:
(0 forz < —2.0
0.5¢% + 2.522 +4.02 +2.0 for —2.0<z < —1.0
alz) = | —1.52z3 —2.52% + 1.0 for —1.0 < z < 0.0
1.5z% — 2.5z2 + 1.0 for 0.0 <z < 1.0
—0.52% + 2522 — 4.0z + 2.0 for1.0<z <20
L 0 for 2.0 < z.

The impulse response and its derivative are plotted in Figs. 4.5 and 4.6 of Section 4.6,

respectively
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Chapter 5
| ESTIMATION OF MOTION

In this chapter the Bayesian estimation based on the MAP criterion will be incorporated
into the hierarchical framework. Many motion estimation methods, which cannot estimate
large displacements due to violation of certain underlying assumptions (like finearity of image
intensity), must use a hierarchical approach. In the case of the discrete state-space MAP
estimation presented in Chapter 3, however, the only concern is computational efficiency.
It will be demonstrated that a MAP estimator can attain the same optimum at a single
scale, however at significantly increased cc.nmputational cost.

In the next section | will explain why the low-pass filtering of images is so helpful in
matching. Then, the hierarchical MAP estimation over discrete and continuous state-spaces
will be presented, followed by the discussion of filters used for image pyramid generation
~ and of adjustment of parameters . The chapter will be concluded with some experimental

results.

5.1 WHY DOES IMAGE FILTERING HELP IN MOTION ESTIMATION ?

The benefit of image pre-filtering before performing motion estimation has been ob-
served by numerous researchers (see Section 2.4), however usually it has been explained on
the basis of informal reasoning. Here | will show why the filtering helps in a more rigorous
way. | will consider the simple 1-D example of signal matching presented in Section 2.7.

Without loss of generality consider two infinite-length signals f and g. When matching

of two signals is performed, they are usually assumed to be closely related rather than being
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completely arbitrary. Hence, let ¢ be a transformed and shifted copy of f:

9(z) = s(z) * f(z — dy),

where s(z) is an impulse response of a linear operator, * is a linear convolution and dj is a
known displacement. This displacement between the signals f and ¢ can be estimated by

minimizing the following objective function:

o0

$@d)= Y [f(@—-g+d),

T=—0C0

which expresses the quality of matching i.e., the better the match, the smaller ¢. To make
the problem tractable mathematically assume that the estimator d is constant over the
whole domain (independent of ). Let f' and ¢ be the filtered versions of f and g:

f'(z) = h(z) * f(z)

¢(x) = h(z) * g(a),
where %(z) is an impulse response of an LS! filter. Consider now the same objective function
¢, but applied to the filtered data, and denote it by ¢':

dD= Y [f@)-da+P

T=—00

Using the above notation the relationship between ¢(d) and '(d) is established by the

following theorem:

Theorem: If H(v) is the frequency response of the linear shift-invariant filter
h(z) with real-valued coefficients, then the Fourier transforms ®(v) and ®'(v)

of qS(&) and ¢/(d), respectively, are related through the following equation:
(1) = =8(v) - (A' — A- [H(O)[2) + 8(v) - |H(»)|?
() = 5-5(0) - (4 = A~ |[HO)D) + 8() - [H()P,

‘where 6 is a Dirac impulse and A, A’ are constants dependent on signal f and
P P g

operator s.

The proof of this theorem is given in Appendix 5.A.
The above equation shows that ¢/(d) is equal to a DC term plus $(d) convolved with
a filter. If h(z) is a zero-phase filter i.e., h(z) = h(—z), then multiplication by |H(v)}?

- in the frequency domain corresponds to a cascade of two h(z) filters in the time domain.
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Hence, applying a low-pass filter to the data results in a double low-pass filtering of the
objective function ¢. If the data is such that ¢ is multimodal and has numerous local
minima, the low-pass filtering operation will smooth-out some of those local minima. If the
low-pass filtering is sufficiently severe, for example a cascade of filters is applied to construct
a pyramid, then only one minimum may be left. Recall the 1-D example from Section 2.7.
Fig. 2.4 shows the objective function ¢ over a hierarchy of resolutions obtained through low-
pass filfering. Note that after single filtering ¢ is still multimodal. Even if it is difficult to
see, this is the case after two filterings as well (a simple run of the Gauss-Newton algorithm
from the initial displacement dy=-200.0 confirms that). Only after the third filtering does
¢ become unimodal, allowing the obtimization algorithm to quickly locate the optimum.
There is, however, no certainty that this single minimum of the objective function for the
filtered data will correspond exactly to the global minimum of the unfiltered data. Hence,
the position of the optimum must be reevaluated at the higher resolutions of the data by
running the same optimization algorithm starting from the lower-resolution estimate. The
above procedure describes the very principle of hierachical approach to matching, motion
estimation or any other suitable problem.

The filtering applied to the data makes the objective function (in the limit) unimodal.
It can be also viewed as an attempt to make this function convex. This draws an immediate
parallel with the Graduated Non-Convexity algorithm proposed by Blake and Zisserman [12].
They overcome the non-convexity of their objective function by construcﬁng a sequence of
approximations of the original orbjective function. At one end of the sequence is a convex

approximation while at the other end is the original non-convex objective function, with

- some compromising functions between. The hierarchical approach can be viewed from

this perspective as a sequence of objective functions for variable-resolution data, with the

limiting case when the objective function is evaluated for averages (DC values).

5.2 HIERARCHICAL EXTENSION OF MAP ESTIMATION
5.2.1 Discrete state-space
The computational requirement of the discrete state-space Gibbs sampler employed
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either in MAP or MEC estimation is linearly proportional to the size of the single displace-
ment vector state-space S&. Recall that dy,q; denotes the maximum allowed horizontal and
vertical displacements. Then, if § denotes the step size in quantization of the state-space

S'., its size can be expressed as follows:
IS4i= N3, Ng=(1+ 2dmaz/6).

Note that the spatial area covered by the state-space S:i is (—dmaz * dmaz, —dmaz : dmaz)
with Ng sampling points. Increasing either the maximum allowed displacement or reducing
the step size by n, will increase the computational effort by approximately n2 . Hence, in
order to handle the large displacements efficiently, while maintaining sufficient precision, a
hierarchical technique must be devised for the Gibbs sampler. The approach | propose here
is the non-recursive multigrid (coarse-to-fine resolution) algorithm. The general principle
of this method can be explained as follows. An image pyramid of varying resolutions is
constructed for example from the lowest resolution at the top to the full resolution at
the bottom of the pyramid. The estimators (displacement fields) also form a pyramid of
varying resolutions. The estimation starts at the top of the pyramid (coarse resolution),
where the number of displacement lattice sites is small and the equilibrium state is located
very quickly. Then, the estimate from this coarse level is interpolated to a finer resolution
level, and is used as a coarse solution to be further refined. This hierarchical process is
repeated until the full resolution estimate is obtained.

The necessary ingredient of the hierarchical approach is data filtering, however spatial
subsampling is not. The data and/or estimator pyramids do not have to be spatially sub-
sampled (from the bottom to the top). The data can be just filtered, without subsampling,
and the estimators can be defined over the same full-resolution lattice Aq across the com-
plete pyramid. The algorithm will work perfectly well, and wili be still valuable for such
estimation methods which cannot compute large displacements due to violation of some
underlying assumptions (e.g., intensity linearity). In this form, however, it will not speed up

the computations. It is the spatial subsampling of the displacement fields (moving up the

P
s :

T For the maximum displacement d,,4.=2 and the step size §=0.25 pel, the size of S is 17x17=289,
while for dpm,-=4 the size will grow to 33x33=1089.
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pyramid) which provides the computational gain. At the top of the pyramid the number of
vectors to be estimated is relatively small, thus requiring only a fraction of the computa-
tional effort (compared to the bottom of the pyramid). Moreover, the increased absolute
distance between the vectors enforces quick propagation of the smoothness constraints over
large distances (to propagate the same constraint at full resolution over the same absolute
distance would require many more iterations), and hence additionally improves the con-
vergence rate of the algorithm. This solution is used at the next higher resolution level
as, for example, the initial state. At this level more vectors are involved, but since the
approximate solution is known the convergence is fast. The process is repeated until the
bottom of the pyramid is reached. Note again, that in principle the images do not have to
be subsampled when moving up the pyramid. Subsampling is just a way of reducing the
storage requirements for the data pyramid, which is an important consideration for hard-
ware implementations. It causes, however, data loss, since to obtain sub-pixel accuracy at
a given level spatial image interpolation must be used from previously subsampled data. |
will use here a “constant-width” pyramid for images and a regular pyramid for displacement
fields.

There are two types of pyramids: even and odd. In both, the lower resolution level
is constructed by spatial subsampling of appropriately filtered higher resolution level. The
difference is that in the even pyramid the lower resolution samples are shifted by half of the
sampling period of the higher resolution level, while in the odd pyramid there is no such
shift (Fig. 5.1).

Let K be the number of resolution levels. The following sequence of sample fields
{9f,,£=0,1,....K; — 1}

will denote a “constant-width” pyramid of images. Naturally, g?i denotes the full resolution
images, and the image gt is obtained by filtering the image gfi_l. The Gaussian (low-pass
filtered) [22] and Laplacian (band-pass filtered) [6] pyramids of images have been used in
hierarchical motion estimation. Also other filters such as Nyquist-like low-pass 2D separable
FIR filters can be used [55]. In the next section | will discuss two types of low-pass filters

which will be used later.
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< o
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{a) even pyramid (b) odd pyramid

Fig. 5.1 Schematic (1-D) representation of even and odd pyramids for
hierarchical data representation (the odd pyramid is used for
displacement fields): xk=0,1,2,3 or x,0,0,0.

Let also the sequence of sample fields
{df,k=0,1,... Ky — 1}

denote an odd pyramid of displacement field estimates at various resolution levels. Note

" that the filtering operation is not applicable in the case of estimator pyramid. Let s, denote

the spatial subsampling factor of displacement field at level x with respect to level 0. Then,
the size of the field df is ([(M} — 1)/sx] + 1) x ([(M3 — 1)/sx] + 1).

Once an estimate is obtained at level «, it must be transformed to the higher resolution

level for subsequent improvement. This operation can be viewed either as a “parent-

children” propagation or as an interpolation. | will consider the latter approach. Let the

interpolation Z,; between levels x and x — 1 be expressed as follows:
b1 = Z,.(dp), (5.1)

where af denotes the final estimate at level x, and bf‘l, called here the base displacement
field at level (x — 1), is the result of interpolation Z.. | will investigate two types of

interpolation for the odd pyramid:

1. simple repetition of k-level estimates at the missing positions of level
(= — 1) (“sample and hold"),

2. bilinear interpolation of «-level estimates to obtain complete (x —1)-level

field.

Usually hierarchical motion estimation algorithms use the previous-level estimate as an
initial state at the subsequent level and allow arbitrary vectors (within a given state-space)

after. Then, the spatial area covered by state-space S of each vector is identical at each

- 124 -




Chapter 5
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Fig. 5.2 Consecutive single-vector state-spaces for hierarchical estimation with
K;=3 and sx=2 (k=0,1,2).

resolution. This strategy is not suitable for the discrete state-space Gibbs sampler, because
the key problem is to speed up the computations or equivalently to restrict |84, However,
if the solution from the previous level is close to the optimal one, only a limited spatial
area around this initial solution can be searched for the new estimate. Let d%, . denote
the maximum allowed displacement at level « and let 6% specify the dispiacement step size
at level «. If the ratio df,,, /8" is constant for all «, then a sequence of state-spaces with
constant Ny, but covering smaller and smaller areas with decreasing &, results (Fig. 5.2).
In other words at the top of the pyramid a search with large step size, thus covering large
spatial area, is performed, while at the bottom only a small area is covered but with high
precision. |

The base displacement field bf will not be used at level « merely as the initial state, but
as a coarse solution which is fine-tuned at subsequent levels. The field bf is a fixed array
of vectors, and is used to identify the centers of new single-vector state-spaces at level &
as depicted in Fig. 5.2. Application of the MAP estimation algorithm yields an incremental

displacement field ﬁf, so that the final estimate at level « is given by |
df = h¥ + bf. (5.2)

In this manner obviously a non-homogeneous total state-space Sy has been generated. it

has a finer precision arcund the expected final estimate d;.
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The new energy function for the hierarchical MAP estimation can be expressed as

follows:

Mg R
U(hE, bf,g1_,01,) =Ag - 3 [F(h"(x;,1) + b(x;, ), %5, 8, At)) 2+ (5.3)
=1 ' .

2§ - Ua(hf +bf),
where the incremental displacement vectors h*(x;, t) are variable, while the base displace-
ment vectors b¥*(x;, ¢) are fixed for given x. ¥* is the displaced pel difference as before but
evaluated for images 9f, -

Fig. 5.3 shows the flow graph of the algorithm for hierarchical MAP estimation of
motion based on the above ideas. The initial base displacement field is denoted by by, the
initial incremental displacement field at resolution level « is hf, and the initial temperature
at level & is T,

The computational gain provided by the hierarchical approach compared to the single-
level method can be evaluated as follows. Recall that the full-resolution displacement field
size is Mg by MJ. If Kj resolution levels are used then the total maximum displacement is

EKI—‘]. d}c

k=0 9magz- Consequently the computational effort involved in performing one iteration

of the single-level method is
h 2 ! )
(ledXM:iX(l-f-gﬁ demaz).

k=0
As far as the multi-level method is concerned recall that the inter-level subsampling at level
k is denoted by s.. Since the displacement field size at level « is [(M":lz —1)/sk] +1 by
|(M§—1)/sx} +1, the computational effort associated with Kj-level hierarchical algorithm

is

Mh—1 MY -1 2
d—|+1)x(|—2 J+1)><(1+;5~;5d""maa,-)2-

K;-1
(k=2 (l

k=0 Sk Sg
The maximum allowed displacement at level & is related to the maximum displacement at
full-resolution level 0 as foliows

K
dmaz = d?naz : H 31,
i=0

where obviously sgzl. The displacement vector step sizes §% can be arbitrary, however it

is reasonable to increase this step size at low resolution levels to speed up the algorithm.
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k=K -1
b=t =,

TE%TO
~ . K=K-—1
K h?

MAP estimation via
simulated annealing bf'l = T(dF)
for h¥ with by, T*

df = hf + b

Fig. 5.3 Flow graph of the algorithm for non-recursive hierarchical MAP
estimation of motion based on simulated annealing.
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Here | will assume constant state-space size |S))| = Ng over the hierarchy of scales. Hence,
the step sizes will be defined as follows:
K
§ =80 I ss.
=0
This results in df,,, /6% = d0,,./60, and consequently in the state-space size IS4 = N3
with Ny =1+2d0 . /60. |
The computational gain provided by the hierarchical approach is clearly dependent on

displacement field size, required maximum displacement, step size and inter-level subsam-

pling. For the following set of parameters (used to produce some results of this chapter)
Ki=3, Mi=21 M{=69, .. =1 6°=025 s5=s5=2
the ratio {1/(k, equals 30.4. By using more resolution levels or larger inter-level sub-

sampling this ratio can be increased. Even with these modestly chosen parameters, the

computational gain is quite impressive.

5.2.2 Continuous state-space

The ideas from previous section, including the block diagram from Fig. 5.3, apply
also to MAP estimation over the continuous state-space of displacement vectors. The only
difference is the actual implementation of the Gibbs sampler. Recall that at every resolution
level only the incremental displacement Ef is variable while the base displacement bf is
constant. Using the relationship (5.2) in the iterative update (4.20) it follows that the

update in the hierarchical algorithm can be described as
(B (x;,8) =(0")™(xi, ) + B (xs, ) — b"(x;, t)—
: — — 5.4
%V%H(hn)n(xi’ t) + bm(xia t),X,’, i At) +n;, W ( )
[

where (h*)™ denotes h at resolution level x and iteration n. b and T denote averages of
b and h respectively (Section 4.5). The constants ¢; and p;, and the covariance matrix
are defined exactly as in Section 4.5 with (h*)® + B" replacing d" and Af, M4, replacing
Ag, Ag respectively.

Except for the way the incremental displacement field is computed, other ingredient§
like filtering, inter-level interpolation etc., are identical to those used in the discrete state-

Ay .
space version. The computational savings due to the hierarchical structure of the algorithm
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come from the reduced number of lattice points at lower resolution levels and subsequently
from faster convergence at higher resolution levels because of the known coarse estimates.
Unlike in the case of the discrete state-space algorithm, the state-space size is not a concern

here, hence the algorithm is much less involved computationally.

5.3 FILTER CHOICE FOR HIERARCHICAL ESTIMATION

Most frequently the low-pass Gaussian and band-pass Laplacian filters have been used
in motion estimation [31], [6], [22]. It is not quite clear, however, what frequency response
(or other properties) such a filter should have. The estimator is subsampled spatially by
factor s between each two resolution levels or in other words its resolution is reduced by
sx. Hence, it is reasonable to require that the data resolution also be reduced by s,, for
example by filtering with 1/s,-band filter [55]. Such a filter will assure no aliasing effects
in the subsampled data, which can significantly deteriorate the quality of motion estimates.
Here, despite the fact that the image pyramid is not subsampled spatially, | will still use
this type of filter.

Two significantly different (frequency response) low-pass filters will be used in hierar-

chical MAP estimation:

1. separable Gaussian filter with 5 independent coefficients and variance 2.5,
similar to that used by Enkelmann [22],

2. separable low-pass filter with 13 independent coefficients; each 1-D com-
ponent filter is an approximation of the appropriate Nyquist filter, hence
it will be called subsequently a Nyquist-like filter.

To generate the Gaussian pyramid the same filter is applied between every two consec-
utive resolution levels. Hence, a filtering operation from level « to level « + n is equivalent
to n-fold Gaussian filtering. The frequency response magnitudes for the single and double
Gaussian filters are shown in Fig. 5.4. The Nyquist-like filtering has been implemented in
a parallel manner i.e., the resolution level 1 is obtained from level 0 by approximation to
half-band filtering (s4=2), level 2 from level 0 by approximation to quarter-band ﬁlteriﬁg
etc. The frequency response magnitudes for both filters are also shown in Fig. 5.4, Note
that the Gaussian filters have significantly lower cut-off frequency than the correspond-

" ing Nyquist-like filters. Since the‘Nyquist-Iike filters must compromuise wide bandwidth
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Fig. 5.4 Magnitude of the frequency response of Gaussian and Nyquist-like
low-pass filters for 3-level (K;=3) hierarchical motion estimation.
for maximum signal fidelity and immunity to aliasing, | chose to design the filters with at
most 25% power aliased into the baseband {50% roll-off at half- and quarter-Nyquist rate
respectively).

The benefits of data filtering for hierarchical estimation are counteracted by “distor-
tions” introduced in the occlusion and newly exposed areas. Recall that the motion model
does not distinguish such areas, and that it relies on intensity constancy along motion
trajectories. Consider an image with an object moving across a uniform background and
suddenly disclosing a structural discontinuity in this background. The filtering operation
applied to the images is shift-invariant and will produce different intensity patterns in both
imag—es in the vicinity of the object border due to different background types. In spite of a
possibly perfect intensity match at full resolution (except for the exposed and occluded ar-
eas), it will not be the c#se for higher levels in the pyramid, and the assumption of constant
intensity along motion trajectories will not be satisfied. The extent of this violation will de-
pend on the severity of structural discontinuity in the uncovered and occluded background,

and on filter characteristics (coefficient values, mask size). Since the principle assumption
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of algorithms presented here will not be satisfied in such case, serious difficulties at lower
resolution levels can be expected. As will be demonstrated in Section 5.5, some images are
more prone to such problems, like the moving random uncorrelated dots, while in typical

TV imagery such effects are less pronounced.

54 DATA-MODEL COMPROMISE ACROSS THE RESOLUTIONS

In this section the problem of parameter ratio A§/A§ adjustment with changing data
resolution will be discussed.
The need for such an adjustment can be explained informally as follows. The ratio
q/Ag reflects the amount of smoothness to be expected from the estimator. In the
hierarchical approach, setting A§/A§ to a fixed value across the range of resolutions seems
to be incorrect, since at lower resolution levels (top of the pyramid) the data is smoother
and as such will produce smoother estimates T. Since some inherent vector smoothing is
due to the smooth data, the ratio \§j/A5 should be adjusted at lower resolution levels so
that oversmoothed estimates would not be produced.
Recall that the displaced pel differences 7 are modeled by iid Gaussian random vari-
ables. For such a strictly stationary (and consequently wide-sense stationa ry) discrete-space

stochastic process, the power spectral density S{w;,ws) can be defined as follows

M M _
Swiw)= 3 3 R(m,n)-ermium) g <y g <,
. m=-M n=—M
where {R(m,n)}, m,n = 0,1,..., M is an autocorrelation sequence, and (wy,ws) is the

2-D angular frequency. If the lower resolution data is obtained using a filter with frequency
response H(wy,ws), then the power spectral density Sy(wy,wg) of the filtered data can be
computed from the following relationship

Sf(wy,ws) = S{wy,wg) - | H{wr,we)|2.
Consequently the variance 012. of the filtered data is defined as:

2 _ S LA 2
o} = R(0,0) = o2 [ S(r,wn) - |H(wr,wg) oy dus,

! The fact that a smoother image will result in a smoother motion estimate can be explained by looking
at high correlation of intensities in such an image, and hence high correlation of the gradients and
displaced pel differences. In a spatio-temporal gradient estimation a highly correlated gradient will
not produce uncorrelated motion vectors. The same applies to matching algorithms.
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but since for iid random variables the power spectral density is flat (S(w1,us) = 2)

1 T
50 [ [ | Hwr,wg) 2durdos. (55)

The above relationship establishes the dependence of displaced pel difference variance on

o =

filter characteristics. The narrower the filter bandwidth the smaller the variance a%, and
consequently the smaller the ratio A§/Af.
The relationship (5.5) evaluated for the filters from Fig. 5.4 results in the following

values of a%:

1. one Gaussian filter: a%=0.034-a'2,

2. two Gaussian filters: a_2f=0.017-0‘2,

3. half-band Nyquist-like filter: a%=0.216-a2,

4. quarter-band Nyquist-like filter: a}=0.052-02.

According to the above values theoretically the variance of DPDs for filtered images is
approximately reduced by 30 and 60 for one and two Gaussian filters respectively, and by 5
and 20 for half- and quarter-band Nyquist-like filters. In reality the filtered DPD variance

012( may significantly depart from theoretical values because:

1. the DPDs are not exactly independent, hence their power spectral density
S(w1,ws) is not constant in the [—x, ] range,

2. since the filtering operation is shift invariant it may destroy the match
around motion boundaries especially in presence of covered or occluded
structural discontinuities,

3. severity of the distortion described above is increased at lower resolution
levels where the discontinuities are closer to each other.

To estimate the severity of mismatch between theoretical and practical reduction of
variance, | have applied estimates from Figs. 4.16.a, 4.17.a to the original and filtered
images respectively. For single Gaussian .fiitering the variance went down by about 2.0,
while for half-band Nyquist-like filtering it dropped by about 1.5. Interestingly, after another
Gaussian filtering and after quarter-band Nyquist-like filtering the variance remained almost
unchanged. This can probably be explained by the fact that no other effects than additive
noise have been incorporated into the observation model and consequently into the DPD

model. Those other effects reported in Section 3.4.2, however, are present in the test
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images 2, 3, 4, and contribute to pel matching errors. In practice the variance reduction
may be much smaller, and much smaller modifications of smoothness weights should be
applied.

The ratio A§/Af also involves the constant B4 from the Gibbs distribution «(dy)
which characterizes the properties of displacement field d;. It is not easy to establish the
relationship between S4's for different resolutions in a general case. Gidas [29] using the
renormalization group approach showed under certain assumptions the relationship between
Ising model parameters at different resolutions (scales). For isotropic 2-D Ising model, an
equivalent of B4 increased by 1.21 between each two resolution levels (spatial subsampling
by 2). That result cannot be directly extrapolated to compute 34 here, however it indicates
the order of change to be expected from 34. Moreover, since the theoretical reduction of
DPD variance due to filtering is exaggerated, it must be established ad hoc anyway. Hence
even a precise modification of 34 would leave the overall ratio ad hoc.

Since at the top of the pyramid the algorithm starts with no information about motion,
while moving downwards it uses the previous-level estimates, it is reasonable to require that
the temperature T in simulated annealing be reduced too. In this way deeper local minima
can be avoided when there is less confidence in the estimate. Such an approach has been

used in image restoration over a hierarchy of scales via stochastic relaxation methods [62],

- [29].

5.5 EXPERIMENTAL RESULTS

In this section some experimental results for hierarchical MAP estimation will be pre-
sented. The test images from Section 4.7 will be used with temporal spacing between
images g:_ and g;, of Ty=4rg for test images 1, 3, 4 or Ty=67gq for test image 2. In
describing the results for hierarchical algorithms some parameters like ratios AS/A%, ini-
tial temperatures Tf etc., varying with the resolution level, will be presented as vectors,
For example T§ = (1.0,2.0,4.0) will mean that the initial temperatures at levels 0, 1, 2
are 1.0, 2.0, 4.0 respectively. Taking into account the measured variances of filtered data

and the 1.21 factor between 34’s at neighbouring resolution levels the A§/\} ratios of
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(20.0,9.0,7.0) will be used for Gaussian filters and {20.0,12.0,10.0) will be applied in the

case of Nyquist-like filters.

5.5.1 Results for test image 1

As was explained in Section 5.3, certain classes of images are not well suited for hier-
archical motion estimation. The test image 1 turns out to belong to such a class. Since it
consists of uncorrelated random dots, the newly exposed and occluded background areas are
in no structural relationship with the rest of the background. Hence, the filtering operation
will modify the intensity pattern around object borders differently for both images. Even if

at full resolution there is a perfect matching of pels belonging to an object, after filtering
this will not happen in the band around the border affected by the background pels. For
the test image 1 the background consists of uncorrelated pels hence poor matching can be
expected in some areas,

Fig. 5.5.a shows the synthetic displacement to be estimated. In Fig. 5.5.b the dis-
crete state-space MAP estimate implemented at one resolution scale is presented, while
Figs. 5.5.c,.d show the results of hierarchical MAP estimation over two resolution levels
(K;=2). In both cases the N& neighbourhood, bilinear interpolation, exponential anneal-

 ing schedule and maximum displacement 80,0z =4.0 (N4=33 for 69=0.25) were used. The
single-level estimate was obtained for Ag/Ag:0.0S with Tp=1.0 and 2=0.980 over 200
iterations. The hierarchical approach used the Gaussian filters and A§/Ag = (0.05,10.0)
to offset the introduction of mismatch due to filtering as discussed above. To avoid lo-
cal minima due to the filtering, exponential annealing schedule with T§=(1.0,10.0) and
a=(0.9625,0.980) over (50,200) iterations was used. The single-level method attained
very similar solution in 200 iterations with about triple computational effort of the 2-level
method. This relatively small computational gain of the 2-level approach is due to the
fact that significant estimation errors are expected at level k=1, and in order to recover
from those errors, a Iargo state-space (/V;=33) must be used at full resolution. The gain
is due to faster convergence at full resofution assured by knowledge of a coarse estimate

from level 1. In more typical situations, where occlusion and newly exposed area effects are
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d,=(4.0,2.0} L. MSE=(0.2626,0.0581), bias=(0.0920,0.0450)
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Fig. 5.5 Hierarchical discrete state-space MAP estimates: test image 1, K;=2,
3/)\’9‘: (0.05,10.0), neighb. N1 bilinear interp., exponential
schedule, T§= (1.0,10.0), 200 iter. for single-grid and (50,200)
iter, for hierarchical approach.
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less pronounced, smaller state-spaces can be used without degradation of estimate quality
resulting in higher computational gain.

Application of the Nyquist-like filter caused even stronger effects. In fact the second-
level estimate was far from the estimate from Fig. 5.5.c, which can be explained by the size
of filter mask. Recall that such a filter extended over 25 pels by 25 pels area. Since the
size of the moving rectangie is 50 by 20 pels, there is no single pel within the rectangle not
affected by the background exposure or coverage. Consequently no perfect match exists
in the filtered image. Note that the Gaussian filtered image included perfect match areas

since the mask size was only 9 by 9.

5.5.2 Results for test image 2

Fig. 5.6.a shows the synthetic displacement field from test sequence 2 to be recov-
ered, while Figs. 5.6.b,.c,.d show the discrete state-space MAP estimates at levels k=2,1,0
respectively. Nyquist-like filters with A§/A§= (20.0,12.0,10.0), as well as neighbourhood
NJ. Keys bicubic interpolation and exponential annealing schedule with Th=(1.0,2.0,4.0)
and ¢=0.980 over 200 iterations at each level were used. Since the mismatch due to filter-
ing in the newly exposed and occlusion areas is much less severe than in the test image 1,
smaller state-spaces with Ny = 9 and §9=0.25 were used at each level resulting in further
computational gain. Fig.5.7.a shows the single-level estimate obtained for the same set
of parameters except for the state-space which extended over dpgz=5 with Ng=41 and
the annealing schedule with Tp=10.0 T and a=0.980 over 300 iterations. The hierarchical
estimate is characterized by a higher energy, and is a little oversmoothed at the rectangle
boundaries compared to the single-level estimate. Most importantly, however, it was in-
capable of correct estimation in the left-top corner of the rectangle, unlike the single-level
method. In that area a bright background is uncovered in the second image and causes
image breakup. The single-level method with sufficiently high T is able to estimate the
motion correctly, however the hierarchical method cannot because of the filtering.

For the above set of parameters the computational gain of the hierarchical method

with respect to the single-level approach was 15.6. Note, however, that the total maximum

T For To=1.0 over 200 iterations the single-level method attained a sub-optimal solution.
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displacement for the hierarchical method was 7 pels, while for the single-level method it
was only 5 pels. if the maximum displacement dpmq, were set to 7 pels for the single-level
approach, then the computational gain would be about 30.

Also the Gaussian filters from Fig. 5.4 have been used with A§/A7=(20.0,9.0,7.0) and
other parameters unchanged. The estimates resembled subjectively the results from Fig. 5.6
very closely at each resolution level. The displacement energy U4 and the image energy
Uy at full resolution level were higher, however, than for the estimates obtained with the
Nyquist-like filters . For both filter types a limited variation of ratios A§/AG as well as
different annealing schedules had negligible effect on the final result. Obviously the varying
ratio A§/A7 affected the estimates at « >0, but then the algorithm was able to recover
from any sub-optimalities at subsequent higher resolution levels. This confirms that, unlike
in the test image 1, the occlusion and exposure effects are not extremely pronounced in
typical TV imagery. Also, the bilinear interpolation, instead of repetition, of displacement
estimates between consecutive resolution levels has been used but had almost no impact at
alf on the final-fevel estimate,

Figs. 5.7.b,.c,.d show the continuous state-space MAP estimates for levels k=2,1,0
obtained with the same parameters as the results from Fig. 5.6 except for a=0.992 and
500 iterations. Also in this case varying weight ratios and annealing schedules had minimal
effect on the final level estimates. First of all note that there are numerous small vectors
in the stationary background (perfect match), while there were very few in the discrete
state-space case. This effect can be explained by the inaccuracies in intensity derivatives
computations in the continuous case versus a simple intensity match in the discrete case.
Apart from the background effect note that for k=1,2 the estimates are smoother in the
rectangle-background transition region than in the discrete case, due to local averaging
used to compute a new estimate. There is no explicit averaging in the case of the discrete
state-space Gibbs sampler. The energies for the continuous case were significantly lower
than for the discrete case at £=2, somewhat lower at £=1 and slightly higher at k=0. The

full resolution results slightly differ subjectively as well.

t The energies for £ #0 cannot be compared since A*'s are different.
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5.5.3 Results for test images 3 and 4

Figs. 5.8, 5.9, 5.10 show the leve! 2, 1, 0 motion estimates respectively, obtained from
the test image 3 using the 3-level discrete and continuous state-space MAP estimation
with Keys bicubic interpolétor, Nyquist-like filters and A§/A7= (20.0,12.0,10.0) ratios.
In both cases exponential annealing schedule with T#= (1.0,2.0,4.0) was used, however
with a=0.980 over 200 iterations in the discrete estimation, and with ¢=0.992 over 500
iterations in the continuous estimation. Again limited variations of the ratios A§/AG as
well as of the annealing schedule and inter-level interpolation had small effect on the final
results, however the constant ratio A§/A% =(20.0,20.0,20.0) resulted in significantly poorer
motion estimate both subjectively and in terms of the parametrizing energies. As before,
the estimate obtained with the Nyquist-like filter resulted in significantly lower energy values
than with the Gaussian filter, however subjectively the estimates were quite similar.

Note that both discrete and continuous state-space estimates are very similar at the
full resolution level in spite of some differences at the lower resolution levels, especially
for k=2 when the continuous state-space estimate was significantly smoother. Observe
also the evolution of motion field structure with increasing resolution. At level x=2 only
coarse motion is computed, while at level k=1 the motion boundaries are already quite
well established. At full resolution more details, like the boundaries of the hand and of the
face show up, however there are still significant smoothing effects fike above the hand or
in the occlusion between the hand and the face. As far as the energies are concerned the
continuous state-space estimate attained lower values due to a longer annealing schedule.

As shown at the end of Section 5.2.1 the computational gain of the hierarchical approach

over the single-level method is around 30. Of course if the maximum displacement in the

Ki—1

kg Amar=7, then a smaller size state-space can be used, however

image is less than 3
even for the worst case 3-level estimation (displacement of 3.25 pels) the gain is still around
7. The motion estimate for test image 3 obtained with the single-level method has been
almost identical to that from Fig. 5.10.a [55] confirming the ability of the single-level
discrete state-space MAP estimation to compute also large displacements.

Figs. 5.11, 5.12, 5.13 show the level 2, 1, 0 motion estimates obtained from the test
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Hierarchical discrete and continuous state-space MAP estimates: test
image 3, Kj=3, k=1, A\g3/Ag= (20.0,12.0,10.0), neighb. N&, Keys
bicubic interp., exponential schedule, T*=(1.0,2.0,4.0), 200 (a) or 500

(b) iter.
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Fig. 5.10 Hierarchical discrete and continuous state-space MAP estimates: test
image 3, K1=3, k=0, Aq/Ag= (20.0,12.0,10.0), neighb. A}, Keys
bicubic interp., exponential schedule, T*=(1.0,2.0,4.0), 200 (a) or
500 (b) iter.
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image 4 using the same parameters as for the test image 3. The same relative insensitivity
to the weight and annealing schedule adjustment has been observed as for the test image
3.

Again both discrete and continuous state-space estimates are quite similar at the full

resolution level in spite of some differences at the lower resolution levels. Also here the

~evolution of motion field structure with increasing resolution can be observed, however the

motion boundaries are not as well defined as for the test image 3. This is due to mostly
rotational motion of the head unlike the translational motion of the arm, hand and face
in the test image 3. The continuous state-space estimate attained lower energy than the

discrete state-space estimate, but as before this is due to a larger number of iterations.
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Fig. 5.11 Hierarchical discrete and continuous state-space MAP estimates: test
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(b) continuous state-space, k=1

Hierarchical discrete and continuous state-space MAP estimates: test
image 4, K;=3, k=1, A\g/Ag= (20.0,12.0,10.0), neighb. N}, Keys
bicubic interp., exponential schedule, T*=(1.0,2.0,4.0), 200 (a) or

500 (b) iter.
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(b) continuous state-space, k=0

Fig. 5.13 Hierarchical discrete and continuous state-space MAP estimates: test

image 4, K;=3, k=0, A\g/)g= (20.0,12.0,10.0), neighb. A/], Keys
bicubic interp., exponential schedule, T=(1.0,2.0,4.0), 200 (a) or
500 (b) iter.
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Appendix 5.A. PROOF OF THE THEOREM FROM SECTION 5.1

The notation used here follows that used in Section 5.1. Let the waveform g be a

transformed and shifted copy of the waveform f:
g(z) = s(z) * f(z — dp),

where s(z) is an impulse response of a linear operator, * is a linear convolution and dj is

a known displacement. dgy can be estimated by minimizing the objective function:

D= 3 ) -glz+ P

T=—00
Assume that the estimator d is constant over the whole domain (independent of z). Let
f" and ¢’ be the filtered versions of f and g:
f'(z) = h(z) * f(2)
g'(z) = h(z) * g(2),
where h(z) is an impulse response of an LS| filter. Define a new objective function applied
to the filtered data:
o0
fd)= 3 [f(e)—d =+
r=—00

The relationship between ¢(d) and ¢'(d) is established by the following theorem:

Theorem: If H(v) is the frequency response of the linear shift-invariant filter
h(x) with real-valued coefficients, then the Fourier transforms ®(v) and &'(»)

of qb(?l) and ¢/(d), respectively, are related through the following equation:
1 .
V()= 5-6() - (A = A |[HO)) + 2() - [H)I,

where § is a Dirac impulse and A, A’ are constants dependent on signal f and

operator s.

Proof.
Let r(z, d) be defined as follows:
r(z,d) = f(z) - g(c + d),
and let R(w,d) be the Fourier transform of r(x,d) with respect to z. Then, since g is a

shifted and filtered copy of f (Section 5.1) it follows immediately that

R(w,d) = F(w) — F(w) - §(w) - ef(d—do), (5.A.1)

- 148 -




Chapter 5§

where F(w) and S(w) are the Fourier transforms of f(z) and s(z), respectively.
Using the LS property of the filter k(z) and Parseval's theorem, the objective functions

and ¢' can be expressed as follows (note that z is discrete):
P

K@= 3 el = o [ 1R, dPds
D= 3 W)+ =g [T ) A, e,

and consequently

®(v) = f°° [% f | R(w, d)|%dw)] - e=ivdgg

=./:-oo gf_w |H(w)|2 . |R(w,d)]2dw] -e_jugda,

where ® and &' denote the Fourier transforms of ¢ and ¢' respectively, and v is a “displace-

(5.A.2)

ment frequency”. From (5.A.1) it can be shown that the squared magnitude of R(w, d)
is
|B(w,d)|* = |F(w)[- {1+ S}(w) + SHw) — 25g(w)cosw(d — d)]
+ 257 (w)sinfw(d - do)]},
where Sp(w) and Sy(w) are the real and imaginary parts of S(w). Rearranging the order

(5.A.3)

of integration, the expressions (5.A.2) can be rewritten as follows:
1 g |
() =5 [ Qu,v)d
1 ¢«
=3 [ Qw,») |H@)do,

where Q)(w, v) is the Fourier transform of |R(w, d)|? with respect to d. Based on (5.A.3)

(5.A.4)

it can be shown that Q(w, v) takes the following form:
Qw,v) = f ® | Rw, )2 - e=iddg
00
=IF @) {1 + 53(w) + 7)) - 6(v)-
[Sr(w) - (coswdy + sinwdp) + Sp(w) - (—coswdy + sinwdy)] - 6(v — w)—
[SR(w) - (coswdy — sinwdg) + Sp(w) - (coswdy + sinwdp)] - §(v +w)},
where & denotes 2 Dirac impulse. It is clear that the spectrum of Q(w, v) is concentrated in

the narrow pencils along the w axis (§(w)), and along +45° axes (6(v — w) and 6(v + w)),

as can be seen in Fig.5.A.1.
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Fig. 5.A.1 2-D frequency occupancy by the function Qw,v).

Finally, using Q(w,) in (5.A.4) and performing the integration with respect to w it

can be shown that:
B(v) =5-{A- 8(v)-
|F ()2 [Sgr(v) - (cosvdy + sinvdg) + Sy(v) - (—cosvdy + sinvdg)]— (5.A.5)
|F(—=v)|?- [Sr(v) - (cosvdy + sinvdy) + Sy(v) - (cosvdy — sinvdo)]},
and
'(v) = 511;{,4' - 8(v)—
' | |E ()2 - [Sg(v) - (cosvdy + sinvdp) + S;(v) - (—cosvdy + sinvdy)] - |H(v)|?~

|F(=v)%- [Sp(v) - (cosvdy + sinvdy) + Sy(v) - (cosvdy — sinvdy)) - [H(—V)|2},
(5.A.6)

where

T
A= [T IF@P (1 +5hw) + SHew)lds
i
The first terms in (5.A.5) and (5.A.6) are just DC offsets, while the next two terms are

some spectra over frequency v. Note that the last two terms in {5.A.6) are equal to those

in (5.A.5) multiplied by the squared magnitude of the filter frequency response. Under the
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reasonable assumption that filter coefficients are real it follows that:

__1
T o

which tells that ¢/(d) is a filtered version of #(d) with certain DC offset. []

¥'(v) = o=8(v) - (A"~ A- [H(O)]*) + O(v) - |H(»)[?,
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As was demonstrated in Chapter 3 the homogeneously smooth model for motion over
the complete image is insufficient for accurate representation of motion properties in many
TV image sequences. If such a sequence is characterized by a rigid body motion, its motion
field should consist of patches of similarly oriented and long vectors. Discontinuities between

those patches are known as motion boundaries, and usually correspond to occlusion borders.

In this chapter a two-layer model comprising a VMRF model for motion vectors {simifar to

- that presented in Chapter 3) and a binary MRF (BMRF) model for motion discontinuities

will be presented.
In the next section a stochastic process modeling motion discontinuities will be defined,
as well as its sampling structure and its state-space. Then, the MAP estimation criterion will

be derived, followed by the description of the displacement field model with discontinuities

-and of the line field model itself. In the subsequent sections the a posteriori probability and

the Gibbs sampler for coupled VMRF-BMRF model will be described. The chapter will be

concluded with experimental results.

6.1 TERMINOLOGY

To describe sudden changes in motion vector length and/or orientation | will use the
concept of motion discontinuity. The true motion discontinuities are defined over continuous
spatio-temporal coordinates (x,¢), and are unobservable like the true motion fields. They

are just a means of describing the motion in an image and can be understood as indicator
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functions (e.g., binary) for each (x,t). Let the unknown (true) field of such discontinuities
be .denoted by I Let I be a sample from a RF L and let I be any sample of motion
discontinuities drawn from L. Let an estimate of 1 be denoted by 7. The RF L will be called
a line process, its sample [ will be called a line field while individual discontinuities from
[ will be named line elements. | assume that the line elements are defined over a union
of cosets (shifted lattices) [21] W; = 1), U1y, where 155, and 1, are orthogonal cosets of
horizontal and vertical line elements, respectively. Those cosets are defined as follows:

n = Aq +0,T5/2,01"

Yo = A +[T5/2,0,07,
where T,gl and T,jl have been defined in Section 3.1 and superscript T denotes a transpo-
sition. Consequently there are M;-:M!i‘x(Mg—l)—i—(Mg—l)ng horizontal and vertical
line elements.

It is assumed that the random field L is defined over the discrete state-space §;=

(S{)M‘, where again 5] is the single line element state-space. For the purpose of this work
it is assumed that RF [ is binary and S| consists of two states: 0 — absence of a line

element (no motion discontinuity) and 1 — a line element “turned on” (motion discontinu-

‘ity). Possible extensions of this state-space to non-binary spaces (e.g., incorporating the

directionality of line elements) are not considered in this thesis, but can be found in [26].

6.2 ESTIMATION CRITERION

The objective here is again to find the true displacement field d(x,t) corresponding to
an underlying time-varying image u(x,t) on the basis of the observations g(x,¢). Since
the line field I(x, ) is assumed to aid in describing the true motion field d{(x,t), it must be
estimated, too. _

In order to determine the most likely displacement field a;:"ESd and line field T; €S

given the observations g;_, g1, , a bair (Eig,?;) which satisfies the relationship:
P(Dt = a:,Lt =TI|Gt_ = Qt..,Gt+ = gt+) >
PDy=dy, Ly =14|Gs_ = g;_,Gr, = g1,) Vdt€8g, heS
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must be found. Applying Bayes rule for discrete random variables the following posterior

distribution can be obtained (again sample fields dy, I, g;_. gt, are omitted):

P(Gy,|D¢, Ly, Gy_) - P(Dy, Lt|Gy_)
P(Gt+|Gt-)

P(Dt,Lt]Gt_,Gt_'_) = (6.1)

In Chapter 3 it was assumed that the random field D at time ¢ is statistically inde-
pendent of the observation G at time {_ i.e., that the knowledge of a single image field
provides no information about the motion. Consequently, since no line process L; was used,
the probability P(Dy|G;_) could be simplified to P(D;). That was a coarse approximation
in the model, because in some circumstances certain single-image information can be used
in motion computation. For example, it is unlikely to have a motion discontinuity in a
constant-intensity image region, and such an occurrence should be penalized. However, it
is possible to have a motion discontinuity at a position with significant appropriate (hori-
zontal or vertical) gradient, and such occurrence should not be penalized. In this chapter
| still assume no direct dependence between D; and G;_, however | assume an indirect
dependence through the line process L;.

Note that since the probability in the denominator of (6.1) is not a function of the
displacement process Dy, it can be ignored when maximizing P(Dy, Lt|Gy_, Gy, ) with
respect to (d¢, %;), and the MAP estimate of the pair (dg, It) is the solution to the following

optimization problem:

max [P(Gt+ =g, Dt =dy, Ly = 1,Ge_ = g¢_) - P(Dy = dy, Ly = |Gy = gt_)].
: S13 3
(6.2)

6.3 MODELS

Since the new characterization of the displacement field affects only the a priori knowl-
edge of motion, the same structural (Section 3.4.1) and observation (Section 3.4.2) models
as before apply. Consequently only the models for motion and its discontinuities will be

discussed,
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6.3.1 Displacement field model with discontinuities

In Section 3.4.3 a globally {over the complete image) smooth displacement field model
has been proposed, and a 2D VMRF Dy has been used to model the motion fields d;. Such
a homogeneous smoothness assumption, however, is violated at the boundaries of moving
objects. For example two vectors positioned across a motion boundary are subjected to
the same smoothness constraint as other vectors not positioned across such a boundary.
With this simple model the motion vectors in the vicinity of a motion boundary become
oversmoothed. In order to reduce this effect a binary MRF model for discontinuities is
introduced into the motion model. The idea of modeling discontinuities by a coupled MRF
has been introduced by Geman and Geman [26] for image restoration, and subsequently
used for boundary detection [27] and segmentation of moving planar surfaces [67]." A
deterministic version of line field has been used in optical flow computation [44] via non-
stochastic methods.

| will model the vector field - line field pair (dy, I;) by the vector-binary MRF field pair
(Dt,Lt).. This pair being jointly Markovian is characterized by the Gibbs distribution as
follows:

P(De,Le) = n(ds, ) = e~V @l/?,

where U is an energy function, and Z, 3 are constants as usual. Using the Bayes rule this

probability can be factored as follows:
P(Dy, Lt) = P(Dy|Ly) - P(Ly),

which corresponds to decomposition of the energy U(dy, ;) into two terms: U(d;|!;) and
U(iy) [26]. if U(dy, 1) and U(l;) are both non-negative energy functions, then P(D;|L;)
and P(L;) are Gibbsian, and Dy given Ly as well as L; by itseif are Markovian.

As far as the probability P(D¢, L;|G;_) from (6.2) is concerned, it can be factored as
follows:

P(Dy, Lt|Gy_ ) = P(Dy}Lt, Gy_) - P(L4]|Ge_) (6.3)

Due to the assumed direct independence between Dy and G;_, P(D¢]Ls, Gt_) is equal to
P(D;|L;) and consequently is Gibbsian. Also if P(L;|G;_) is defined in such a way that
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it equals P(L;) - e~ 2V where Vi, 1s a non-negative potential, it will be Gibbsian (recali
that P(Ly) is Gibbsian). Consequently P(Dy, L;|G;_) is also Gibbsian.
Let P(D¢|L¢) be defined as follows:

r(dglly) = _Z,-_]'Ee"'Ud(dtUt)/ﬁd’ (6.4)

where Z4,34 have the same meaning as before, and the conditional energy Ug(d:[l;) is
defined as:

Ug(de]ly) = > Va(dy, eq) - [1 — (<%, %>, )] (6.5)

ca={x;,x;}€Cq

Again cq is a vector clique, while Cq is a set of all vector cliques defined over Agq. Only
two-element cliques will be considered here. Vg is the same potential function as before,
and (<x;,x;>,t) € ¥; denotes a site of line element located between vector sites x; and
x; which belong to Ay.

The energy function (6.5) can be understood as follows. There exists a cost V3(dy, ¢q)
associated with each vector clique cg which increases if a motion field sample locally departs
from the assumed a priori model. This model is characterized by 84 and V. If, however,
the line element separating the displacement vectors from clique cq is “turned on” (I(<
Xj,Xj>,t)=1), there is no cost associated with the clique ¢q. In this way there is no
penalty for introducing an abrupt change in length or orientation of a displacement vector.

The ability to zero the cost associated with vector cliques by inserting a line element
must be penalized, however. Otherwise a line field with all elements “on” would give the
zero displacement energy (6.5). This penalty is provided by the line field model described
in the next section.

i'o specify the a priori displacement model (and the hence distribution) the neighbour-
hood system J\f(d’,), cliques cq and the potential function V3 have to be specified. In this
chapter the first-order neighbourhood system 'N‘(ld,l) depicted in Fig. 6.1.a, which consists
of 2-element vector cliques (Fig. 6.1.b, 6.1.c} defined in Section 3.4.3 is used. Note that
every displacement vector has 4 vector neighbours and 4 line neighbour#. The potential

function over cq is defined as before by (3.17).
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(a) (b) (<)

(k1)
X

awdn™ @n X wiy
X

(k1)

Fig. 6.1 First-order neighbourhood system ./V'(ld ) for vector field d; defined

over Ag with discontinuities (line elements) /; defined over ¥(a), and
associated horizontal (b) and vertical (c) cliques {0 - center vector
site, ® — vector site, X — line site).

6.3.2 Line field model

The line field model is based on a binary MRF L;, and is described by the Gibbs

probability distribution
1 _
P(L|Gt_) = n(ltlge_) = 7° Urltilge )/ Br, (6.6)

with Z; and ) as the usual constants. U is the line energy function defined as follows:

U(lklge_) = > Vill, 9e, 1), (6.7)
el

where ¢; is a line clique and C; is a set of all line cliques defined over ¥;. The line potential
function V; provides a penalty associated with introduction of a line element.

The neighbourhood system for the “dual” sampling structure ¥, is shown in Fig. 6.2.
Note that since the union of cosets ¥; = 1y, Uy, identifies positions of horizontal and
vertical line elements, two neighbourhood systems are defined (Figs. 6.2.a, 6.2.b). Every
line element has 8 fine neighbours and 2 vector neighbours. There are two types of four-
element line cliques. The cliques from Fig. 6.2.c are the same as used in [26] and aim
at modeling the shape of motion boundaries, while the cliques from Fig. 6.2.d exclude
isolated vectors. The two-element vertical cliques of horizontal line elements (Fig. 6.2.¢)
and the horizontal cliques of vertical line elements (Fig. 6.2.f) are used after Marroquin
[62]. Possible configurations (up to a rotation) and related costs are shown in Fig. 6.3.a for

the four-elernent clique from Fig. 6.2.c and in Fig. 6.3.b for the two-element clique. Note
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(a) (b)

X X
X o X X X
X X X X o @ o X
X & X X x
X X

(c) (d) (¢) o« ()

¢ X e X X
X X X X . * X 8 X @
* X @ x X

®

Fig. 6.2 Neighbourhood system N/ for line field /; defined over ¥;:
neighbourhood of horizontal (a) and vertical (b) line element, and
associated four-element (c),(d) and two-element (e),(f) cliques (® -
center line site, X — line site, ® — vector site).

that such potentials encourage absence of line elements (V1,=0.0), slightly penalize straight
lines (V7,=0.4) and corners (V;,=0.8), and more heavily penalize ends of lines (V,=1.2)
as well as the three-element (V},=1.2) and the four-element (V},=2.0) intersections. The
“double edges” and sharp turns are discouraged by the high penalty (V1,=3.2) associated
with the two-element cliques. The four-element cliqgue from Fig. 6.2.d is used only to
exclude isolated vectors by assigning V], = oo when all four line elements are “on”, s;ince
other configurations are incorporated in the clique from Fig. 6.2.c. The boundary conditions
for the line cliques are handled in such a way as if there were a frame of line elements around
the motion field. In this way motion boundaries extending beyond the field are discouraged
unless there is a strong cue from the data to do so.

So far the line model has been defined based only on the relationship between the line
elements and the displacement vectors. Note, however, that the a priori probability of the
line process (6.6) is conditioned on the observations. It means that one should take into
account the image information g;_ when computing the fine samples ;. If independence
between L; and G;_ were claimed, then only P(l;)==(l;) could have been used, and the

motion discontinuities would have been inferred only from the displacement field d;. It is
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(a) . . . . . | .
. . . I . . I )
0.0 1.2 04
. . . . . I .
. I . . l . . I .
0.8 12 2.0
(b) . . . .
. . . .
. . ° .
0.0 0.0 0.0 3.2

Fig. 6.3 Costs V},, V}, associated with various configurations (up to a rotation)

of the four-element (a) and two-element (b) cliques. (» — vector site,
== —line element “turned on”).

clear, however, that there exists a relationship between image intensity and motion discon-
tinuities. In general a 3D scene giving rise to a motion discontinuity will also contribute
to an intensity edge. Only under specific circumstances will a motion discontinuity not
correspond to an edge of intensity. Hence, | assume that an introduction of a line element
should coincide with an intensity edge, and | will use the following potential function for
one-element clique:

‘ m Ip(<x4,%x5>,1)  for horizontal ¢ = {x;,x;}
Vi (s 985 01) = & - l(<x4,x5>,1)  for vertical ¢ = {x;,%;} (6.8)
Vree_ )2 Y (R T 1 = 12451,

where I, 1, are horizontal and vertical line elements, V,, V,, are horizontal and vertical
components of the spatial gradient at position (<x;,x;>,t), and a is a constant. Note

that the potential V] is non-negative, hence P(L¢|G;_) from (6.3) is Gibbsian like P(L;).

The above potential introduces a p:nalty only if a line element is “on” and the appropriate
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gradient is relatively small. For example with a=10.0 a vertical element at a position
with horizontal gradient V;=5.0 will cause a penalty of 0.4 i.e., equivalent to the smallest
penalty of a non-zero line element (two in-line elements), while if V;=10.0 the penalty will
drop to 0.1.

The total potential function for the line field can be expressed as:

Vil gi_ ) = Vi, (b, &) + Vi (s 1) + Vi, (9t 1),

where 1}, and V), are tabulated in Fig. 6.3, and V, is given above.

6.4 A POSTERIORI PROBABILITY

Combining the conditional likelihood P(Gt, =g, |Dy =ds, Ly =1, Gy =g;_) from
(3.13), the displacement a priori probability P(D;=d;|L;=7;) from (6.4) and the line a
priori probability P(L;=1;|G;_ =g¢_) from (6.6) via (6.1) the following Gibbs form of the

a posteriori probability can be obtained

. . ' 1 1 _p@f
P(Dt = dt) Lt = ItIGt_. = g;_, Gt+ = gt+) —_ W)— . -Ze U(dhlhgt_,gt+) (69)
+ -

where Z is a new normalizing constant, and the new energy function U(at,?t,gtu,gt+) is
U(de, T, 9t-,91,) = Ag - Uyl e, 9e_) + Mg - Ua(dell) + A - Ur(elge_). (6.10)

The conditional energies in the above relationship are defined in (3.14), (6.5) and (6.7)
respectively, and A\g=1/(202), A\g=1/84, \;=1/8;.

Having shown that the posterior distribution (6.1) is Gibbsian, it follows that MAP
estimation can be achieved by means of the following minimization

{léniifé} Ag  Uglge, 1de ) + Aa - Ua(dell) + N - Uy(Blge_) (6.11)
i F111

Note that the functional under minimization is again in a regularized form, where Ad -
Ua(dy[ly) + A - U;(mgt_) is a stabilizing functional and 1/, is a regularization parameter
[74].

The objective function in (6.11) is similar to that used in [44], which is derived from

the original formulation of Horn and Schunck [41] with additional deterministic motion
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discontinuity model. | pursue the stochastic approach by using two coupled MRFs and
the displaced pel difference to solve the 2D correspondence problem instead of the motion
constraint equation. Also the line cliques are slightly different and the penalty for intro-
ducing a line element is continuous (inversely proportional to the squared magnitude of the
spatial intensity gradient) rather than binary [44]. Most importantly, however, | will use a

stochastic relaxation algorithm for minimization (6.11).

6.5 GIBBS SAMPLER FOR MOTION MODEL WITH DISCONTINUITIES

Since by Theorem A from [26] the scanning order is irrelevant for the convergence of
7(-) to some steady-state distribution, the unknowns can be organized so that first the
d'’s are updated and then t.he Is. In order to implement the Gibbs sampler the marginal
conditional a posteriori probabilities for displacement vectors and for line elements must
be known. Note that due to the Markovian property the condition that j#i is equivalent
to j€ng(x;), where nq(x;)€Ng. Similarly as in Section 4.2.3 it can be shown that the
conditional probability of a displacement vector at location x,_ can be expressed as follows:

P(D(an,t) = a(XnT,t)ID(XJ', t) = a(xjvt):j 7é nfs‘its gt_:gt+) =

e_UET(a(xﬂr :t)latj;rgt_. sgt+)
. (Xn,, 1), (xj,t) € Aqg.

Z e—U:;r (ziat j;:gt_ ,gf+ )
28,
(6.12)

For the potential function (3.17) the local displacement energy function Ugr driving the
Gibbs sampler is defined as
’ Ugr(Ziat,?t,gt_,gt+) =/\g ‘ [‘F(Z,Xn_r,t, At)]2+

Ad - E ||Z—a(xj,t)||2'[1 —7(<xn,,xj>,t)].
j: xj €na(xn,)
It can be also demonstrated that the conditional probability of a line element at location
(Yn,r, t) G‘I’I is _
P(L(yﬂ-r 7t) = 7(an,t)|L(Yj, t) = T(Yj’ t)sj 7é nr, atagt_) =
e~ UP7 ((yn, DlTedege)

5 E—U:“T (Zﬁ;;at,.‘h_)
2€S8]

) (¥n,» 1), (¥j,t) € ¥y, (6.13)
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where for the line potential function V; the local line energy function U}'" is defined as

U (elle,dey o) =ha - 2 d(xjpt) — dixg, )% - [1 - 2]+

{x;.%xg}:
<Xj,Xp>=¥nr

’\I - E Vi(z:gt_acl)'

CllYnr €0

Note that the local line energy is conditional on the data and the displacement field.
Thus, in order to expect reasonable discontinuity estimates, the displacement field must be
known to some extent. in practice it means that the Gibbs sampler for the displacement
field should run for a number of iterations with no discontinuity field until a coarse estimate
is obtained. Only then should the Gibbs sampler for the line elements be turned on, and

subsequently interleaved with the displacement Gibbs sampler.

6.5.1 Gibbs sampler for the discrete state-space Sy

In order to generate displacement field samples from the probability distribution (6.12)
the same procedure as that described in Appendix 4.C, but with the local energy Ugr
defined in the previous section, can be used. Line elements from the probability distribution
* (6.13) are obtained by computing the probabilities associated with possible states of a line

element (0 or 1}, and generating a random deviate according to these probabilities.

6.5.2 Gibbs sampler for the continuous state-space Sy = R?

As in the case of the continuous state-space Gibbs sampler for motion model without
discontinuities {Section 4.5), a first-order Taylor expansion will be applied to the displaced
pel difference 7. It will be demonstrated that given the line process estimate 7; the con-
ditional probability (6.12) can be approximated by a Gaussian distribution, thus allowing
simple generation of a 2-D vector deviate. Generation of a line sample according to the
conditional probability (6.13) is obviously the same as in the previous section.’

Recail the approximation (4.17) of the local energy for the motion model without

S
discontinuities. Taking into account the a posteriori energy {6.10) of the model with such
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discontinuities this approximation can be expressed as follows:
Uy(d(x;, )Id, T, gt_, 91, ) =
Xg - [HA(xi, 1), %3, 8, At) + (d(xs,t) — d(xi, £)) - VaHd(xi, 1), X, 1, AL} 2+ (6.14)
Mo Y V(dxjt),d(xi, ) - [1 - T(<xs, x5, 1))
J: X;€Na(%:)
Given the line process I;, this energy is again quadratic in d, and again it can be shown that
the conditional brobabiiity density (6.12) is a bivariate Gaussian. Note that the local energy
(6.14) differs from the energy (4.17) by the line elements. The same update equation, ¢;
and gy, as well as the means and the covariance matrix as those derived in Section 4.5 and
Appendix 4.D apply, except for the definitions of £; and d. It can be shown that taking into
account the line process, ¢; is defined as the following sum of line elements over 54(x;):
&= Y [1-T(<x;%;>,1) (6.15)
Jr X €na(x;)
instead of being the cardinality of ng(x;). It can be also easily demonstrated that the
vector d denotes the following weighted average over n4(x;):
d(x;,t) = 51 Y d(x, 1 = (<xi, x>, )], (6.16)
' jixs€na(x:)
Note that this definition is different from (4.19). This modified definition of averaging takes
into account the line elements and simply does not allow to perform such operation across
a line element. If such an element is associated with a motion boundary (it should be), the

averaging will not take effect across a motion boundary, which is a desirable property.

6.6 PIECEWISE SMOOTH MOTION MODEL OVER HIERARCHY OF RESOLUTIONS

The concept of motion discontinuity can be extended to a hierarchy of resolutions.
Recall the image and displacement pyramids defined in Chapter 5, and define a discontinuity
pyramid with line elements spatially interleaved with appropriate displacement vectors. Such
motion discontinuities may not be as well defined as at the full resolution due to the filtered
data and consequently smoother displacement field estimate. One can hope, however, that

introduction of such discontinuities at low resolution levels will fimit excessive smbothing
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across moving edges. Even if not precisely positioned, these discontinuities can be corrected
at subsequent higher resolution levels.

if 'I\f denotes the displacement discontinuity estimate at level &, then the following
minimization problem with respect to the pair {ﬁ;‘,‘l’;"} can be formulated at resolution

level «:

in Ag- Ug(of, 1df +bf, o) + A - Ua(df +BFIF) + X - Ui(TFlef ). (6.17)

{Bs.7r)

Recall that the base displacement is fixed during the minimization and is only updated during
inter-level interpolation. The estimate ?f has to be also transferred to subsequent resolution
level x-1. One possibility would be to simply pass the line elements from level x to level
x-1, especially if the even pyramid is used (Fig. 5.1). The missing line elements would have
to be somehow interpolated from the existing ones with eventual aid of the data (e.g., the
intensity gradient). For the odd pyramid situation is a little more complex since the position
of a line element at level & coincides with a vector position at level k-1. A “parent-children”
propagation could be performed, thus generating two “children” from each “parent” fine
element. If there is a high penalty associated with such neighbouring parallel line elements,
they will quickly disappear forming continuous single-element contours.

There is another alternative, however. Since at lower resolution levels the motion
discontinuity estimates may be somewhat unreliable, it may not be useful to use them
explicitly at the subsequent resolution level. Instead, they can be used implicitly through
the motion field i.e., the discontinuities “encoded” into the motion field are passed through
the displacement interpolation stage. The line process is absent for a number iterations
and is turned on once a coarse displacement estimate is known. This is consonant with
the earlier remark that the discontinuity estimation should be started only after certain
knowledge of the motion field had been acquired. This approach will be used for line

process interpolation in the hierarchical estimation.

6.7 EXPERIMENTAL RESULTS

In this section some experimental results of motion estimation based on the piecewise

smooth model will be presented. Introduction of another layer in the motion model requires
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specification of the weighting coefficient A;. The selection of A; is not trivial, especially
that in this formulation it must globally describe the trade-off between the displacement
and line models. A; defines a threshold between variations of vectors belonging to the same
patch of vectors and variations of vectors taken from different patches (across a motion

bouﬁdary). It means that Ay and }; should satisfy the following inequality
Ac-VE <V <AV,

where Vj‘ denotes the maximum value of the displacement potential for two vectors con-
sidered to belong to the same patch and Vi is the minimum value of this potential for
vectors from two different patches (across a motion boundary). V;® denotes the minimal
value of line potential associated with the introduction of one fine element, and for penal-
ties proposed in Fig. 6.3 it is equal to 0.4 for an in-line element. Setting the threshold
according to this rule will give the required balance between the line field “activity” and
the displacement field smoothness for a deterministic algorithm. Since at this point | have
- no better way of estimating the value of \; | will use this rule for stochastic algorithms as
well.

In order to perform estimation of motion discontinuities at least an approximate estimate
of the motion field must be known. Hence, the line process is turned on only after a few
dozen of iterations. The number of iterations has been chosen in all the experiments in
such a way that the initial temperature for the line process is around 0.5.

In order to save space, whenever a motion field is sparse enought the line elements will

be displayed on the same graph.

6.7.1 Results for test image 1

As already demonstrated in Section 4.8.1 the test image 1 contains a very strong motion
cue. This is further confirmed here by relative insensitivity of the algorithm to the choice
of A;. Since the displacement vectors for the test image 1 are (2.0,1.0), it is reasonable
to assume that V(i*' = (.2524+0.252 (two vectors with horizontal and vertical components

differing by at most 0.25 pel) and V= 1.0241.02. Consequently X; should be chosen

t Recall that for test images 3 and 4 the displayed motion fields are subsampled by 2 in each direction.
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L

M SE=(0.0000,0.0000), bias=(0.0000,0.0000)

(a) displ. field (b) line field
Fig. 6.4 Discrete state-space MAP estimates with piecewise smooth motion

model: test image 1, Ag/A;= 0.05, \;/Aq= 1.2, neighb. J\fé, bilinear

interp., exponential schedule, Tg=1.0, a=0.9866, 400 iter.
" from the interval (0.3125-14,5.0-A3). In Fig. 6.4 the displacement and line fields are shown
for the same set of parameters as used in estimation without the line model (Fig. 4.11.¢),
except for a longer annealing schedule of 400 iterations with a=0.9866. The line process
was introduced after 60 iterations. Also A\;=1.2-14=0.06, corresponding to a threshold
equivalent to about 0.5 pel difference in vector components, was used. The line model was
specified by the potentials discussed in Section 6.3.2, except for the potential Vi, which is
omitted (=0.0) since intensity values lack spatial correlation in this image.

After 300 iterations, for which @=0.9866 was intended, the result was very good, but
the total energy was still declining. This was confirmed by a few isolated line elements.
Another 100 iterations brought the temperature down to 0.0046, and to the estimate
demonstrated in Fig. 6.4. Due to the very strong motion cue in the data, the improvement,
compared to the motion field estimate from Fig. 4.11.c, is rather minor: a few vectors close

to the top and left motion boundaries have disappeared. The mean squared error and the
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bias, however, have been reduced to zero ! Within the rectangle the estimate is exactly
equal to the true motion ! Note that the well defined motion boundary along the top and
left edges of the rectangle is correctly estimated by the algorithm. The other two edges
corresponding to the occlusion border, where the motion boundary is not well definedt, are
éharacterized by numerous line elements splitting the occlusion regions into small patches,
and thus disallowing significant contribution from vectors located there to the displacement
energy. Note that since the motion model does not take the occlusion and exposure effects
into account, poorer performance of the algorithm in such areas is not unexpected.

The results for A;=0.3125-1q and )\;=5.0-A4 were very similar to the estimate from
Fig. 6.4. They differed in the occlusion areas only. For \;=0.3125-14, which also re-
quired slightly longer annealing schedule, the partitioning of those areas was finer, while for

A;=5.0-)4 it was coarser.

6.7.2 Results for test image 2

Figs. 6.5.a,.b show the displacement and line fields obtained by the discrete state-space
MAP estimation with the same parameters as those used in estimation without the line
model (Fig. 4.13.c), except for the length of the annealing schedule. An extended schedule
of 300 iterations, a=0.9866 as well as \;/Aq= 1.2 were used, and the line process was
introduced after 60 iterations. Note that line elements surround the moving rectangle and
isolate the motion vectors inside from the stationary background. This results in a motion
field that is slightly smoother inside the rectangle, especially close to its boundaries, and
consequently the image energy is driven down by about 10%. Positioning of numerous line
elements is incorrect, however, and the mean squared error is increased compared to the
result with no line elements. Figs. 6.5.c,.d show an estimate after adding the potential Vi,
defined over single-element cliques. The constant o was chosen to be 10.0 to discourage
formation of line elements in the areas of uniform intensity. Since higher a indirectly
increases the overall line energy, the ratio )\;/\q was reduced to 0.8. By enforcing the

gradient penalty, the mean squared error was driven below that from Fig. 4.13.¢, especially

t This motion boundary is not well defined since in the occlusion areas (to the right and to the bottom
of the rectangle) the motion itself is not well defined.
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(a) X/Ag=1.2, a=0.0

(b) M/Ag=12, a=0.0

41

) N

MSE=(0.1051,00317), 5iasa=(0.0722.0.0706)
{c) Ai/Ag=0.8, a=10.0

Fig. 6.5 Discrete state-space MAP estimates with piecewise smooth motion

(d) X/rg=0.8, a=10.0

model: test image 2, Ag/As= 20.0, neighb. Nl Keys bicubic interp.,
exponential schedule, Tp=1.0, a=0.9866, 300 iter
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for the horizontal component, and also the image energy was reduced by about 15%. This
result is exactly what was expected from the piecewise smooth displacement model: to
reduce the image energy without sacrificing motion smoothness.

Similar results for the continuous state-space MAP estimation without and with the
line model are shown in Fig. 6.6. The same parameters as above are used, except for the
annealing schedule. As in the estimation from Fig. 4.14.d, T(=5.0, ¢=0.9944 and 1000
iterations are applied, and the line process is introduced after 400 iterations. Again, the
mean squared error is increased {compared to the result from Fig. 4.14.d) if no gradient
penalty is introduced, but it is reduced slightly after introduction of such a penalty. Note
that some line elements are missing from the rectangle boundary. This effect is caused
by a small intensity gradient in some parts of the rectangle contour. In both cases the
image energy is reduced by over 20%, however the misplaced and ill-shaped discontinuity
boundaries in Fig. 6.6.b cause substantial increase in the line energy.

Fig. 6.7 shows the continuous state-space MAP estimate with the piecewise smooth
motion model over a hierarchy of resolutions. The same parameters have been used as for
the estimate from Fig. 5.7. Since the displacement is larger (Ty=67gp), the ratio \;/Ag
has been increased to 1.8. The line process is turned on after (100,150,200) iterations,
at respective resolution levels, to maintain similar initial temperature at each level. Since
to generate the image pyramid low-pass filtering has been applied, the images for k=2,1
contain much less spatial information. Taking this into account the constant o in com-
putation of the single-element clique penalty has been reduced at subsequent resolution
levels as follows: (10.0,3.0,1.0). Limited adjustment of these values did not incurr disas-
trous effects. Note that the discontinuity estimates at levels k=2 and 1, despite lack of
precision, stil! limit the spread of smoothness across the rectangle edge. The precision in
positioning of line elements is improved at the full resolution level where, except for one
area, it is exact. This imprecision is due to the image breakup in the left top corner of the
rectangle, already discussed in Section 5.5.2. Obsefve a dramatic drop in the mean squared
error compared to the corresponding hierarchical estimate not using the line process from

Fig. 5.7. 'I'he estimate from Fig. 6.7.c is very close to the true motion, also visually. This
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Fig. 6.6 Continuous state-space MAP estimates with piecewise smooth motion

model: test image 2, Ag/Ag= 20.0, neighb. N&, Keys bicubic interp.,
exponential schedule, Ty=5.0, @=0.9944, 1000 iter.
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Fig. 6. 7 Hierarchical continuous state-space MAP estimates with piecewise

smooth motion model: test image 2, Kj=3, Aq/Ag=20.0, X/ 3=

. : 1.8, «=10.0, neighb. Nl Keys bicubic interp., exponential schedule,
' T0=(1.0,2.0,4.0), u—0.992. 500 iter. at each level.
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is furthermore confirmed by a 50% reduction of the image energy, again compared to the

result from Fig. 5.7.

6.7.3 Results for test images 3 and 4

Except for the bilinear interpolation, the same parameters as used in the previous section
have been applied to the test images 3 and 4. Fig. 6.8 shows the displacement and line
fields obtained through the discrete state-space MAP estimation with the gradient penalty.
Observe the well identified motion boundaries of the moving palm of the hand, of the face
and of parts of the arm. Large fragments of motion boundaries are missing, probably due to
insufficient intensity gradient there, however motion boundaries coinciding with substantial
intensity gradients are easily detected. As in the case of test image 2, the image energy is
reduced by about 5% compared to the result without the line model (Fig. 4.16.a) but the
displacement field is at least as smooth as in Fig. 4.16.a.

Fig. 6.9 shows the continuous state-space MAP estimate with the same parameters.
The contours formed by line elements are even more smooth in this case. Note the well
identified borders of the moving hand, face and arm. The image energy is also substantially
reduced while the motion field remains smooth. In some other experiments | have also
applied the MAP estimation without the gradient penalty. In both cases (discrete and
continuous) the motion boundaries were misplaced and ili-positioned. The discrete state-
space estimate performed only slightly poorer in terms of the energies (compared to the
estimate with the gradient penalty), but the continuous state-space result produced much
lower image energy at a cost of boosted line energy. Overall, it performed significantly

‘poorer than the estimate with the gradient penalty. Consequently, only the model with
pbtential Vi, will be used.

To demonstrate the impact of line process on the smoothness of motion field in the test
image 3, Fig. 6.10 shows windows of 60 by 30 vectors taken from the central parts of motion
fields presented in Fig. 4.16.b and Fig. 6.9.a. The two estimates differ only by the motion
model, while other parameters are identical. Note the sharp transitions between the palm

of the hand and the background or the face ir Fig. 6.10.b. This transition is responsible for
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Fig. 6.8 Discrete state-space MAP estimates with piecewise smooth motion
O model: test image 3, Aq/Ag= 20.0, \;/Ag= 0.8, @=10.0, neighb. N},
I bilinear interp., exponential schedule, Tp=1.0, =0.9866, 300 iter.
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Fig. 6.9 Continuous state-space MAP estimates with piecewise smooth motion
model: test image 3, A\g/Ag= 20.0, ;/Aq= 0.8, a=10.0, neighb. A'],
" bicubic interp., exponential schedule, Tg=5.0, ¢=0.9944, 1000 iter.
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(a) globally smooth model (b) piecewise smooth model

Fig. 6.10 Central parts of continuous state-space MAP estimates without and
: with piecewise smooth motion model from Figs. 4.16.b and 6.9.a,
respectively (no spatial subsampling of vectors is applied).

more precise motion portrayal and significant reduction of image energy without affecting
smoothness of the motion field within moving objects.

One may expect that due to the introduction of a two-layer motion mode! the smoothing
can be increased substantially without effects across motion boundaries. An example of
discrete state-sp#ce MAP estimate with the ratio Aq/\y= 100.0 for test image 3, confirming
this observation, can be found in [57].

Figs. 6.11, 6.12 show the continuous state-space MAP estimates with the piecewise
smooth motion model over a hierarchy of resolutions. The same parameters have been used
as for the estimates from Figs. 5.8.b, 5.9.b, 5.10.b. Since the displacement is somewhat
larger due to the temporal distance between images Ty=47g, the ratio A\;/Ag has been
increased from 0.8 to 1.0. The line process is turned on after (100,150,200) iterations to
maintain similar initial temperature at each level. Note that the discontinuity estimates at
levels k=2 and 1 are not very precise, however they limit the spread of smoothness across
the hand and face contours. The precision in positioning of line elements is improved at
‘the full resolution level when the contours of the hand, face and parts of the arm are quite

well established. The impact of the two-layer motion model is further confirmed. by the fact
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that the motion field is as smooth as the one without the discontinuities model, but the
image energy is reduced by over 25%.

The same model and estimation parameters have been applied to the test image 4
and shown in Figs. 6.13, 6.14, however as expected it failed to produce as good results as
in the case of other test images. The reasons are twofold. Firstly, the piecewise smooth
motion model will work well only with images where moving objects generate well-defined
motion boundaries. In the case of test image 4, however, the motion is primarily rotational,
thus it does not contain well-defined motion boundaries. Secondly, as already reported, the
ilumination effects are not negligible because of the hair shadows on the forehead. The
image energy was reduced significantly, but numerous line elements are not positioned on

real motion boundaries.
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“Fig. 6.11 Hierarchical continuous state-space MAP estimates with piecewise
smooth motion model: test image 3, K;=3, £=2,1, Ag/A;= 20.0,
AM/Ag= 1.0, a=10.0, neighb. .N&, bicubic interp., exponential
schedule, Tp=(1.0,2.0,4.0), a=0.9944, 500 iter. at each levei.
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(a) displacement field, k=0

(b} line field, x=0

Fig. 6.12 Hierarchical continuous state-space MAP estimates with piecewise
smooth motion model: test image 3, K;=3, £=0, Aq/)\¢= 20.0,
A1/ Ag= 1.0, a=10.0, neighb. N&, bicubic interp., exponential
schedule, Tp=(1.0,2.0,4.0), a=0.9944, 500 iter. at each level.
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(b} displ. + line, k=1

Fig. 6.13 Hierarchical continuous state-space MAP estimates with piecewise
smooth motion model: test image 4, K;=3, x=2,1, A\g/Ay= 200,
AtfAg= 1.0, =10.0, neighb. Nc}, bicubic interp., exponential
schedule, Tp=(1.0,2.0,4.0), a=0.9944, 500 iter. at each level.
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(b) line field, k=0
Fig. 6.14 Hierarchical continuous state-space MAP estimates with piecewise
N smooth motion model: test image 4, K;=3, =0, Ag/)\g= 20.0,

A/ Aq= 1.0, a=10.0, neighb. N&, bicubic interp., exponential
schedule, T0=(1.0,2.0,4._0), a=0.9944, 500 iter. at each level.
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COLOUR CUE IN
MOTION ESTIMATION

Chapter 7

The algorithms presented so far have used only the image luminance to compute motion
fields. There exist, however, other cues which may be helpful in recovering 2-D motion.
For example, Wohn et al. [90] proposed a multiconstraint method incorporating luminance
as well as directional derivatives of that luminance to compute motion. They have also
suggested using colour information (R-G-B signal) for motion recovery, however failed to
give any details or show experimental results. Mitiche et al. [66] proposed a multiconstraint
method which combines the luminance with multispectral functions (e.g., R-G-B signal) or
with the output of spatial operators applied to the luminance (e.g., contrast, entropy) to
compute optical flow, but also did not provide examples for colour images.

in this chapter | will discuss the extension of MAP estimation to include the colour cue.

Some results of application of this method to images in Y-C1-C2 format will be presented.

7.1 INCORPORATING COLOUR INTO THE A POSTERIORI PROBABILITY

- Up to this point the images which | have used for computation of motion contained
luminance only. Scenes captured by a camera, however, are colorful and with a suitabl_e
imaging system these colours can be registered too. Depending on the type of system,
R-G-B (red, green, blue components) or Y-C1-C2 (luminance and two chrominance com-
ponents) format can be used to represent colour images. The R-G-B format contains three
basic colours which are sampled with the same rate, while Y-C1-C2 contains chrominance

components C1, C2 subsampled horizontally by 2 compared to the luminance Y. Conse-
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quently the Y-C1-C2 format requires 2/3 of the storage necessary for the R-G-B format

but at a cost of reduced chrominance resolution.

Does colour, apart from the pleasing effect, provide any useful perceptual information ?
This question has been tackled in many wéys, here however | am interested in this question in
the context of motion perception. A simple experiment with switching off the chrominance
on a colour monitor will show how much information is lost from an image. For example,
certain contours and edges may disappear since the same intensity can have different hues.
Also texture may look more pronounced in colour than in black-and-white. With this
extra information from the colour cue one may hope for possible improvements in motion

computation by applying an algorithm to all three components.

To generalize the subsequent derivation denote the three components of an image by
g1. g2 and g3. Recall the a posteriori probability (3.3) from Chapter 3. The likelihood
P(Gy, =gt, |Dy=dt, Gs_ =g;_) expresses ihe luminance matching between two images
captured at instants t_ and t1. Assuming that colours move coherently with luminance, the
same mat.ching should apply to both chrominances.. Let G denote a 3-D vector random field,
and let g be 2 sample field from G defined over the lattice Ag. Then, g can be understood
as a sample image with three components (a 3-D vector) at each spatio-temporal position
ie., g(xi,t)=[g1(x;,t), 92(x:,t), g(xi,t)]. Rewrite the a posteriori probability (3.3) as
follows:

P(Dy = di|Gs_ = g:_,Gt, =g1,) =

P(Gt, =gt,|Dy =d;,Gy_ =gz ) - Py =d4|Gy_ =gz ) (7.1)
P(Gi-}. = gi.;.IGt_ =gt_)

Note that now the likelihood P(Gi, =gt [Dy=dy,Gy_ =g:_) expresses the probabil-

ity of obtaining the three-component signat [g1, g2, g3]t, from displacement d(x;,) and

(91,92, 93]t_ . Define the 3-D displaced pel difference vector F as follows

F(d(xis t)v Xi, t, At) = [;‘l(d(xiv t)? X t, At),‘f‘z(d(xi, t)v Xi, t, At)? ﬁ(d(xia t)a Xi, &, At)]

If the same line of reasoning as for the luminance-only DPD model (3.4.2) is applied, then
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for the true motion field d the components of T are Gaussian RVs defined as follows
Ti(d(xi,t), %, 8, At) =gj(x; + (1.0 — At) - d(x4, 1), t4)~
gi{x; — At d(x;,t),1-)
=nj(x;t), j=12,3,alld
The nj(x;,t)’s have been assumed independent for each ¢ given j. It also seems reasonable
to assume that they are independent for different ;'s, for example.nl(x,-,t) independent
of ng(x;,t) for any i. Let or? be the variance of Gaussian noise n; for component g;.
Consequently the likelihood P(Gi, =g, |Dt=d¢, Gi_ =gz_) can be expressed as the
following product of Gaussian distributions:
- 3 Ma -
P(Gy, =g, Dt =di, Ge_ = g_) = [[ I po; (F(d(xi, 1), x4, 1, At)) =
. j=1i=1 (71.2)
(2rofofod)Mal? . U@y ldugi.),
where the energy Ug is defined as follows:
3
Ug(gt+lat,gt_) = Z 2 Z["J d(x,, xiat’At)P‘ (7.3)
j= 1 95 i=1
Having defined the likelihood (7.2), the joint a posteriori probabillity can now be written in

“the Gibbs form:
P(D;=d|Gs_ =gs_,Gy, =g¢,) = —U(d"gf Bty

where Z is again a constant and the energy U is defined as follows:

- 3 Mg ~
Ude, gr_,8,) = X Ag; - SIFi(A(xi,8), x5, 8, A + Aq - Ug(de)
j=1 i=1
(7.4)
= Z Z /\yg [rJ xh ),Xi,t, At)]2 + /\d . Ud(at).
i=1j=1

The displacement energy Uq was defined in (3.18), while the constants }g; are equal to
1/20}2-. The difference between the above energy function and the one derived in Section 3.5
Is that here three components of the image are matched simultaneously instead of one. The
weights between those three components are again inversely proportional to the variances

of DPD noise models for individual components.
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The conditional (marginal) probability driving the Gibbs sampler can be now computed
from the total energy (7.4). It has the same form as defined by expression (4.12), except
that the sample field g is replaced by the vector sample field g:

P(D(xp,,t) = d(xXs,,t)|D(x;,t) = d(x;,t), # nr,Gs_ = g1_,Gt, =g1,) =
o= Ua7(A(xn, )ld.ge_ &1,

Z: e_Ucrllf (zia!gf_ 1g1+) .
28,

(7.5)

The local energy function U3™ is different, however, since it incorporates matching with
respect to three-components:

Ut (dd,ge_,ge,) = 23;Ag,.-[‘fj(z,xn,,t,m)]2+,\d- Y V(znd(x;,t). (7.6)

j=1 J: % €Na(Xn,)

Consequently the difference between the Gibbs sampler implemented for the above local
energy function and the one described in Section 4.2.3 is in the DPD computation. Instead
of one DPD applied only to the luminance component, there are DPDs computed for each
component of the image e.g., Y, C1 and C2, and appropriately weighted.

Note that the use of three image components instead of one will not affect the two-
layer motion model incorporating discontinuities, except for the potential Vi, (6.8) defined
over one-element line cliques. This potential relies on the squared magnitude of appropriate
intensity gradient to penalize occurrence of line elements. With a three-component image
_ 1t seems natural to weight the squared magnitudes of gradients obtained from individual

components as follows:
3
(Vogi_)2 =3 vj - (Vag;, )% (7.7)
=1 .

where Vo denotes appropriate component of the gradient from (6.8), and v; is a weighting
coefficient. The squared gradient component computed above can be used in the one-

element clique potential to perform estimation from data in the Y-C1-C2 format.

1.2 EXPERIMENTAL RESULTS

In this section some experimental results of MAP motion estimation from colour se-

quences in Y-C1-C2 format will be presented. The algorithm will not be applied to the test
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image 1, since as was demonstrated in Chapter 4 this image contains a very strong motion
cue, and the resulting estimates had been already close to the true motion. Also the test

image 4 will be omitted.

7.2.1 Resuits for test image 2

Fig. 7.1 compares motion estimates obtained from the test image 2 via the MAP cii-
terion (discrete state-space Gibbs sampler) based on luminance matching only (a,b)!, and
based on Y-C1-C2 matching (c,d). Both estimates have been obtained for the neigh-
bourhood N&, Keys bicubic interpolation and exponential annealing schedule starting at
To=1.0 with a=0.980 over 200 iterations. The estimate from Fig. 7.1.a has been obtained
for Ag/Ag= 20.0, while the estimate from Fig. 7.1.c was computed for Ad/Ag;= 6.667,
7=1,2,3. In other words, in both cases the smoothing weight was 20.0, and it was uniformly
distributed among the three components in estimation with colour. Figs. 7.1.b,.d show the
vector fields of difference between the synthetic displacement field ds from Fig. 4.13.a, and
the motion fields from Figs. 7.1.a,.c, respectively. Note that the estimate obtained with the
colour cue is smoother than the one without the colour, which is confirmed by the lower
MSE displayed below the field, and also by fewer erroneous vectors in the central rectangle
.of the difference field.

Also the motion model incorporating discontinuities has been tested on image 2. Fig.7.2
shows the Y-C1-C2 estimate of motion field and of motion discontinuities field obtained with
the same parameters as for the results from Fig. 7.1, plus equally weighted (»;=0.333, V)
squared magnitudes of gradients of the component signals used in the potential (6.8). Note
a significant improvement over fhe no-colour estimate from Fig. 7.1.a in terms of motion
field smoothness in the central rectangle. This estimate is also significantly improved over
the one from Fig. 7.1.cin the vicinity of rectangle borders where the vectors are very uniform
on the inside and disappear on the outside (this effect is somewhat less pronounced around
the right-edge occlusion). Finally, compared to the already very good result from Fig. 6.5

(no colour, with line process), the estimate from Fig. 7.2 is superior in terms of vector field

t The result in Fig. 7.1.a is repeated from Fig. 4.13.c
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(d) diff. from d;

neighb. J\/‘é, Keys bicubic interp., exponential sched., Tp=1.0,

a=0.980, 200 iter.
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Fig. 7.2 Y-C1-C2 discrete state-space MAP estimate with piecewise smooth
motion model: test image 2, Aq/Ag; =6.667 and »;=0.333 for

7=1,2,3, A;/14=0.8, =10.0, neighb. Né, Keys bicubic interp.,

exponential sched., Tg=1.0, a=0.9866, 300 iter.
smoothness within the rectangle, and also in terms of the mean squared error. This estimate
is very close to the true motion field presented in Fig. 4.13.a. The artifacts are mostly due
the occlusion areas where motion is undefined. The fidelity of the estimate is confirmed by
~ significantly reduced mean squared error with respect to the estimates from Figs. 7.1.a,.c.
- The line field from Fig. 7.2.b, which ideally should be a rectangle, is still imprecise, however
it clearly contributed to the reduction of MSE. Note that the parameters used in estimation
were not optimized i.e., the same set of values as for the result with no colour (Fig. 7.1.a)

has been used, and only the uniform contribution of individual components has been added.

71.2.2 Results for test image 3

Fig. 7.3 shows motion estimates obtained from test image 3 using only luminance

{2)t, and three components (b). The same parameters as in the previous section have

t Again the result in Fig. 7.3.a is repeated from Fig. 4.16.a

- 187 -




Chapter 7

o SERAR TSNS R p AR B A PP IPERPRL BRSO
aah S LSRR RAPE] D 2 AR R AR AP PRI IIIPPAE LS
sanaasa srepas caaitadmnnp PPV R DA A P s FEPPPFIEIILSS S
R T U b i ar s Secntawsar m R e e st E P pnp s PV IPPIRIPIIAS
s imatt FRAE AR R PRAR AR AR RSP P ISP PP IS
SRS FYF VY YYFYY X Y YTy Y L

- - .

e 4

AidA LA 4 At ddAddd At

ARAALEE AACCAMNANE T FAMIAAAANANA VAN AT AALE LN

L P S R TN T P

tHididire ™
R N N RSN E P 2T ‘“co.-r---nnam.a:.a!”"ﬁl’tl"l PAAAPIP ar 2

facu wxap I S Y Y XNV YV PO F I P P
[ .: ;;; i :t :: ’: : : : :“. P S P PP P YL FE P I F R Y

B T I T I I I PP anf PP P PP PR
cqacana Ty ‘.._........n...---.....-.....-.'.wl-r.u.f——-u-.'h'”I.'II
U IR U1 T 14 | == e e a s nmm ey cma s A AN T 1Y 22t PP
B L
e RN EIE A J T i il darad

caaaaq

te dsedesaecan

4 susasaspeq - are

caceamaunan -

WA At A

v eaun

4 Asa sttt -

adddeAA Lt A

assraacanaans

LR P P N L Y PP R g

R T bttt nl AL S cxrrrmaganprrrorftt}
(Y T P I
[rrEeer Yy F LY F Y]
v SAFIPLEE

PR Y e P P Ll

rran

R PP PP dfdcaqaquqdeaqan wawadaaY

T T PR ) BPEIVIaen A Mmee axxeccaccuxs

EPFTETY Rmmmntatntaessticd

LD R andmmman i

ddtdddded dedddd

Trracans 4 SATERREINPIERVEY 4aa

L N L LT Er t AdAdd A b s v

CrassravsrevervTaterea R e

Hedsdrtadddavrcdeny AaaTEEr Ty gy anemd sy L Lt L L I

R PP PP PPV Y P N T L LT L L L T T T T R P I S PRV PES SRS FEEF

PRETrS Lyl Py

saud aswasaprtadfitidan,, - 1]

G rrsvevasrrnsnrenas ST s

e rwa s s mamrmansaonnrerf et o - snhavedd iy - PR T LU v
EEPFPr) S RN AL LR RS R PP R LT L L e e -
PR ”, PPN a0 qaraas mins, - -
EEEPYPRY L FAAPAAEEEN G R EDE N FS v s irnct, ronw
- A BB Kbt d AR A A AT RS ISR A ARG AG P EDERER TSR IR,
et b P RSN AN BRI SR PRI R PRPRP IR PERENRSTIT RE RS DS REED L,
M SR AL R A X YRR TY Y PPYEYYrr YY) APRARPPRERRS
can s AN N H 0 a P h BB s D p it PR P PR AP PR R AP PR PP SRS E R, .
wasanen s e NN N P I U S I IS I S rr Nt p B PP R IR PR PRI ERR PP AT 22, et A, . -

NSt P AN D P P B PP P PP Pt ms i p s s s rr 8 S P BN AP PAP A 2 mmmin i m AR
SR RANNN IR A P PP P P PR AP R R RS 443 3B P RR R AR S5 n AEEEEES L o~
CEE TR T TN AN S mF U d g g p R AR RAEA AP G A F BT B P R A RS ,T .
L T T N N T N P L & L L R T TR FF Y P TY P sy PP Y P Pty Py P S e P e

auana

aexe -

(a) luminance

T I T T T rapepuee i bl Y P P PP R F N RS L R P S
FEPEPEIIIE RAn R mmm KRR AR AR PRI RBIRRREREFREP LR IR PP S
[ YT P Y YR EF VP RN EY WL Y N A FY T
M ANt AN NP EI b bR b s B EpratadBIARARRRRRRPRRRIRRR R R PP PPPEL PP RRPP P
e Y TN PRFRN R PR TE L Sttt ARIPIRRR AR IR EP PR s PP LRI EFLIAN

VYA A A A Y WA Eaa

»e

PP vessascnaaa aasagangay

e P TP P T

At ddda

asausnse

qaqaqaqqcnaa

R NN TR PR T Ll P Y I P E Y Y NN N Y P YV i
LR XY EVITII T \..,...-.-.--.-.--..-...-11.-1’1’aaﬁp-utt.'ll)r)'!!."lill

R T P P T P cectavanuan
ddddddd i s e wveg L A SANIL LS DA ARE SR LR PRGBSI SIEERERSPPEESPE ISP LS
b L B8 » e memeraane PR PPy Y Py PP r YT F LY

R N PPN F TR NI I I ET L P TR R PR Y el d it Ll

» u” CIREsbIsadeddiEr ‘.-A.---n-.---....-'-w-—ovaaaalJ;:JJJl;ll.l‘l.l}I}I
R YN TR LR T T I Ranthat bttt e ¥ Y PPN T
U BRI Ed IR nre e Y L AR T I I P

R P P R T R

YT P R R T P P P L S L L S L

RN TT L} R N LA L P N

RrrEpAnEp LIPS
MR R AL R RN RN AN AT AT AILAALE A A A EEEPee ) X P g
M Ee SEA AR ATA AT EAA LA g | | AN r T bbb o ¢l FEIPIPS
EEamt A S SL AR r AR AER SIS
P

N A AN NN AN AT A AT A AL AT Ay

ceqacca AdaE ATttt 4 ddtsmmdne - [

T E Bomantttitab et b old

D T e e e 2 e E T

TrERbebb e

Y N TN T T

*erEERRAS

R E T T PN L R Y

ATy

AT

R A N T Y I Y R

PP P L L L S P e ]

faea aae Msseccubbbbadnnnnam

S4ddd it ragrratnernartd v
T R Y A E T X LN Y e
sranssud R FE IR s nar sttty

PLAL4daeTsTidnn arsa

TerrrrerTIY . 2t

IR 2R LY PR PP

R PP Y Py P I Y P A L T
CRRACEE RSN RRRRAEE S P P RREAPRERIRAP RSN 4001400 b s e
FAT SR RIS I C AR PR PR A PRI RERR SRR EFRREREE P BB E R P FE PR,
CER AP RIS O RIS SR AR RSP RPPRARRESERASAR SRR PARLRFPPA,
NS IR AP IS SRR R PR R AR P AR AR B DR R IR ARRI P E RS2 8 RN,

v a VIR Nt Wi dtada P SRS o mp r p A R B R R AR R R RRE R S, ”.
P S LA R I L A R S RN E X PN P P r Y Yy Yy ry Yy Yy
NSNS I P FP ISP P rrnrnsrrasnsassnns sy »o,
s aavEanLy NRARA USRI PP PP R nnppin s s trrar
B AR p VSRRV AS NN P AR R aa B RSP I EF A 3PP AR RI B AR AP S,
LSt sramraravudd PV E s p Rt g amay AN D,

L e e T ]

4sansasaaarswr?

.

drdanwtE R EREREN NS
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Fig. 7.3 Luminance and Y-C1-C2 discrete state-space MAP estimation: test
image 3, Aq/Ag=20.0 (a) and Ag/Ay,=6.667 (b) for j=1,2,3, neighb.

| N1, bilinear interp., exponential sched., Tg=1.0, 2=0.980, 200 iter.
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Fig. 7.4 Y-C1-C2 discrete state-space MAP estimate with piecewise smooth
motion model: test image 3, Ag/Ag;=6.667 and »;=0.333 for
7=12.3, A;/24=0.8, 2=10.0, neighb. A}, bilinear interp.,
exponential sched., Ty=1.0, ¢=0.9866, 300 iter.
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been used, except for the bilinear interpolation. Note that although both estimates are
similar at the first glance, a closer inspection will reveal that the estimate from Fig. 7.3.b is
slightly smoother. Numerous isolated vectors from the luminance-only estimate (Fig. 7.3.a),
differing significantly from their neighbours, have been aligned with those neighbours in the
three-component estimate in spite of the same smoothing weight used. This smoothness is
confirmed by the displacement energy for the three-component estimation which is about
a half of the energy for luminance-only estimation.

To make the tests more complete, the two-layer model with estimation from Y-C1-C2
data has been also applied to the test image 3. The result is presented in Fig. 7.4 with the
same set of parameters as those used for Fig. 7.3 plus uniform contribution of the three
components to the image energy (Aq/Ay;=6.667, V) and to the squared magnitude of the
gradient (1;=0.333, all 7). The improvement is not as significant as for the test image 2,
however a closer inspection will demonstrate that the estimate is smoother than the one
from Fig. 7.3.a and similar to Fig. 7.3.b. Also compared to the result from Fig. 6.8 the

motion boundaries are better defined and less chaotic, but there are fewer of them.
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Chapter 8
| TO STOCHASTIC MAP ESTIMATION

Stochastic methods based on the MAP and MEC estimation criteria (Chapters 3, 4)
find the global optima of the appropriate cost functions provided that certain conditions.are
satisfied. Due to these conditions the methods are characterized by significant computa-
tional effort, especially the discrete state-space Gibbs sampler which requires computation
of the complete local conditional probability distribution. In this chapter | will investigate
deterministic optimization methods to approximate the discrete and continuous state-space
MAP estimation.

In the next section the maximum marginal conditional a posteriori probability estima-
tion will be investigated, and the resuits of its application to the test images will be shown.
In the following section the Gauss-Newton optimization method will be used to minimize
the MAP estimation criterion. It will be shown that this approximation is a modified version
of the algorithm proposed by Horn and Schunck [41]. Also a deterministic approximation
to the stoﬁhastic method incorporating motion discontinuities will be discussed. The re-
sults produced by these methods will be compared with the ones obtained via stochastic

| optimization.
8.1 MAXIMUM MARGINAL CONDITIONAL A POSTERIORI PROBABILITY (MMCAP)
ESTIMATION

8.1.1 Algorithm description

Recall that the Gibbs sampler described in Section 4.2.3 generates discrete deviates

from the marginal conditional a posteriori probability distribution defined in (4.12). Those
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deviates are used to guide ‘the chain towards the state of the global optimum. The local
probability distribution describes the likelihood of a state at current position, given the states
at neighbouring positions and the data. Due to randomness (actually pseudo-randomness)
involved in this algorithm, the states obtained do not have to correspond to the maximum
probability. Moreover, sometimes they can even correspond to a very low likelihood. This is
the very principle of stochastic relaxation. But what would happen if the randomness were
eliminated, and for example only the states corresponding to the maximum of the marginal
conditional probability (4.12) were retained ? In this way the process would converge much
faster than in simulated annealing, however it would not provide (in general) the global
optimum in the sense of the MAP criterion.

The approach described above has been originally suggested by Besag [11] and termed
by him iterated conditional modes (ICM). He argued that since it is difficult to maximize
the joint a posteriori probability over the complete field, and since sometimes it is not
profitable to do so (?), the random field (e.g., displacement) should be divided into a
minimal number of disjoint sets such that any two random variables from a given set are
_ conditionally independent given the states of the other sets. If the field is defined over a
lattice (e.g., Aq) those sets become cosets [21]. Since they are frequently distinguished
by assigning a different colour to each of them, sometimes the name coding colours is
used. Fig. 8.1 shows two cosets (colours) necessary to provide the independence for the
M} neighbourhood system.

Since the random variables within one colour are conditionally independent given other
colours, they can be optimized individually i.e., the following minimization problem can be

solved

,..rila'x P(D(xivt) = a(x;,t)lD(Xj,t) = a(Xj,t),j 79 L,Gt. = g1_, Gt.|. = gt+)
d(x;,t) (8.1)
¥ i € one colour.
Minimizing one colour after another will resuit in a complete iteration. If D; is modeled

by a MRF with neighbourhood system A}, the conditional probability in (8.1) can be

replaced by the marginal conditional a posteriori probability (4.12)f. Equivalently, mini-

T This results in Maximum Marginal Conditional A Posteriori Probability (MMCAP) estimation,
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] o} ® o ®
o] ® o ® o)
L] o} L ] o} [ ]
[e) L] o L ] o}
L4 o} [ ) 8] L ]

Fig. 8.1 Independent cosets (colours) e and o for rectangular lattice A4 and
neighbourhood system N &: random variables associated with any two

sites from the same coset are conditionally independent given the state
of the elements of the other coset.

mization of the local energy U(’i (4.13), which is a non-quadratic function of displacement
vectors (via DPDs), can be performed. Since the state-space for the displacement vectors
is discrete, either an exhaustive search or one of the efficient search techniques described in
Section 2.3.3.1 must be applied. Standard optimization methods like Newton or conjugate
gradients are not suitable, since they provide continuous instead of discrete solutions. If the
displaced pel difference as a function of displacement vector a(xi,t) possesses more than
one minimum, the fast search procedures may not be able to locate the smallest one, and
consequently will not provide a MMCAP estimate. Hence, | will use the exhaustive search
procedure i.e., the local energy Ué will be computed for each possible vector from S’;, and

the vector which minimizes this energy will be considered the estimate.

In the language of statistical mechanics the above process is equivalent to quenching
or instantaneous freezing, in which the temperature is reduced to a minimum extremely
rapidly. This process solidifies 2 material very quickly, however there remain various artifacts

“frozen” into the solid and its state is far from the energy global minimum.
One should expect that the algorithm will converge in few iterations, and that the
result will stay unchanged from then on, rather than oscillate like for the MAP or MEC

estimation.
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8.1.2 Experimental results

Fig. 8.2 shows the MMCAP estimates of motion in the test images 1 and 2. The
estimate from Fig. 8.2.a was obtained for A4/)4=0.05, first-order neighbourhood system
J\f& and bilinear interpolation. The algorithm, being an exhaustive search, needed only 7
iterations to converge. Note that the estimate is very close to the corresponding discrete
state-space MAP estimate. This can be explained by the fact that there is very fittle
interaction between neighbouring vectors, hence the estimation is based primarily on pel
matching. In the limiting case, when \q/A;=0.0, the joint probability P(D¢lg:_,gt,) in
MAP estimation can be expressed as a product of marginal likelihoods as in (3.13), which
can be maximized individually. Consequently both the MAP and the MMCAP estimation
minimize the same objective function, and the only difference is that MAP estimation does
it randomly. If the motion cue is strong, similar results may be expected. For Ad/Ag #
0 this is not the case, but since for the value 0.05 the interaction between displacement
estimates is small, the MMCAP estimate still resembles the MAP estimate quite well, The
mean squared error for the MMCAP estimate, however, is significantly higher than the error
for the corresponding MAP estimate (Fig. 4.11.c).

The use of higher-order spatial data interpol.ation (e.g., bicubic) had marginal effect on
the MMCAP estimation, as expected, since the true motion points to the spatial locations
at £ which belong to Ay4. Also the second-order neighbourhood system Ng did not improve
the results significantly, since due to the strong data cue the motion model plays a minor
role. The similarity of the MMCAP and MAP estimates suggests that the objective function
for the test image 1 is close to a unimodal one. Another way of locking at it is to note
that the data consist of “gray value corners” everywhere, hence are easy to match.

I;ig. 8.2.b shows the MMCAP estimate of motion from the test image 2 for the same
set of parameters as used for the result from Fig. 4.13.c. Clearly the resuit has little in
common with the true motion field, and also is very far from the good estimates provided
by the MAP and MEC estimation, what is confirmed by the high mean squared error. This
shows that unless the data provides a very strong motion cue the MMCAP estimation may

provide very false solutions. As explained before, MMCAP estimation is just a simplification
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Fig. 8.3 MMCAP estimates: test images 3 and 4, Ag/\g= 20.0, neighb. N&,
bilinear interp.
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of MAP estimation, and does not attempt to maximize the joint a posteriori probability
but only local marginal conditional probabilities. Concluding, a global rather than a local
estimation criterion should be used for motion computation.

Even poorer performance of the MMCAP estimation can be observed in the presence
of noise, as shown in Figs. 8.2.c,.d. The estimates for both test images do not resemble the
true motion at all, and also are very far from the MAP and MEC estimates for the same data
and parameters. The mean squared error is also much higher than for the corresponding
estimates from the noiseless data.

Figs. 8.3.a,.b show the MMCAP estimation results for the test images 3 and 4. Since
the image size is larger, the algorithm converged in 18 and 30 iterations, respectively. The
results are poorer than for the stochastic relaxation, especially for the test image 3. Note
that the algorithm failed to compute correctly the motion of the forearm and of the arm,
except for the displacement vectors along the edge of the shirt sleeve. Also the vectors on
the neck and parts of the face suggest that there is no motion, which is incorrect. The
result for the test image 4 is somewhat better, however also there patches of very short or
absent vectors do not reflect the true motion in the image.

- Concluding, the quality of motion estimates obtained with the MMCAP estimation
depends on the data, however even for moderately difficult images it is clearly inferior to

the MAP estimation implemented via stochastic relaxation.

8.2 GAUSS-NEWTON MINIMIZATION OF THE MAP CRITERION
8.2.1 Algorithm description

Description of the continuous state-space approximation will be divided into three sub-
sections. The first one will describe the basic algorithm, the second will briefly discuss
the hierarchical extension, while the third one will augment the previous two by including

discontinuities in the motion model.

8.2.1.1 Basic algorithm

Recall the minimization problem (3.21) resulting from the MAP estimation, and rewrite
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it explicitly in terms of the displaced pel differences and potential functions:

Ma R N -
min Y g - [{d(xi,2), x5, 6, AP + Aa- Y V(d(xs,1), d(x;,1)]-
d; i=1 _ Fix;ena(x;)

Note that due to symmetry of cliques V(d(x;, 1), a(xj,t))= V(a(Xj,t),a(xi,t)). Conse-
quently, Ag should be reduced by the size of clique |cq|, which for neighbourhood system
N& is equal to 2. The function under minimization is not quadratic in terms of the dis-
placement field estimate d;, hence a general optimization procedure must be used. | will
approach the problem similarly as in the case of the continuous state-space Gibbs sampler
(Section 4.5) which is equivalent to applying Gauss-Newton minimization.

Assume that an approximate estimate d; of the displacement field is known, and that
the image intensity is locally slowly varying. Using the first-order terms of the Taylor
expansion linearize the displaced pel difference as in (4.15) with the spatial gradient of
7 defined in (4.16). Using this linearization of ¥ and also the definition of the potential
function (3.17), the minimization problem above can be approximated by the following
form:

) Maq e ~ . e 9

Hcllltﬂi; o - [HA(xi,2), x5, 1, At) + (d(x;, 1) — d(x4,2)) - VaRA(xi, £), %3, 8, A8)] 2+

A X Hd(xst) —d(x;, ).
Jix;€na(xi)

Since the function under minimization is now quadratic with respect.to d;, necessary con-
ditions for optimality ca'n be established by differentiating this function with respect to
a(xi,t) for each i= 1,..., M. The resulting equations have the following form:
2+ Ag - VIHA(xi, 1), X3, 8, AL) - [Hd(xi, ), x5, 8, AL) + (d(xi, £) — d(x;, 8))- _
_ Var(d(xi, 1), xi,t, At)] 4+ 2 Xg - & - [d(x, 8) — d(x;, 1) =0, V4,

where ag_ain d, defined in (4.19), denotes the average vector computed ovef neighbourhood
nd(x:), and & = |pq(x;)| is the size of this neighbourhood. Solving the above vector
equation, and assuming as before (Section 4.5) that d = d at every iteration, the estimation

process can be described by the {Gauss-Seidel) iterative update:

drtl(x;, t) = d™(x;, t) %vﬁ’"ﬂa”(x,-, t),x;, 1, At), (8.2)
: 3 1
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with €; and p; defined in (4.18), and superscript n denoting the iteration number.

Note that this iterative equation is exactly the same as equation {4.20) for the first-
order neighbourhood system N&i and for n;=0. In such a case there is no uncertainty
involved in the estimation process, and similarly as in the case of the MMCAP estimation
(discrete state-space) the above algorithm is an example of quenching i.e., instantaneous

reduction of temperature T to zero. Consequently, this rapid temperature reduction may

not allow the system to attain the global minimum of the energy function.

Clearly, the deterministic approximation to the continuous state-space MAP estimation
Is a spatio-temporal gradient technique which can be viewed as a modified version of the
Horn and Schunck algorithm described in Section 2.3.4. There are differences, however:

1. the modified algorithm (8.2) allows computation of displacement vectors
for arbitrary Agq (arbitrary spatio-temporal positions (x,t)) unlike the
original Horn and Schunck algorithm in which Aq = A4+[0.5,0.5,0.5]7,

2. the scalar ¢; is equal to a displaced pel difference in the modified version
rather than to a motion constraint equation, both evaluated for d(x;, );
consequently, no temporal derivative is needed,

3. the spatial intensity derivatives are computed from a separable polynomial
intensity model in both images and appropriately weighted (4.16), instead
of the finite difference approximation over a cube as proposed in [41].

The ability to estimate motion for arbitrary Ag is crucial for motion-compensated inter-
polation of sequences. The original Horn-Schunck algorithm would require 3-D interpolation
of motion fields to obtain estimates at arbitrary position (x,1).

The use of a displaced pel difference instead of the motion constraint equation in ¢;
Is important because it allows intensity pattern tracking thus permitting more accurate
intensity derivative computation, and also excludes necessity to compute the temporal
derivative (actually, ¥is an approximation to the directional derivative). The purely temporal
derivative used in the Horn-Schunck algorithm is a reliable measure of temporal intensity
change due to motion only if small displacements are applied to linearly varying intensity
pattern. If the displacements are not small or if the intensity pattern is far from linearity,

significant errors result, for example an overestimation at moving edges of high contrast. A

T Recall that for the first order neighbourhood system &; equals 4, and &; and u; are defined in (4.21).
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replacement of the motion constraint equation in ; by a displaced pel difference has been
proposed by Nagel [69], however he did not provide any justification for such modification.
He suggested computing ¥ as an average from ¥'s of the neighbouring vectors, while here
it is evaluated at d(x;,1).

~ The spatial derivative computation from an intensity model applied at the ends of vector
d(x;,t) is more general than that proposed by Horn and Schunck. Note, however, that
it is important to have a C!-continuous model as stressed in Section 4.6. In particular,
for bilinear interpolation, Ag = Ag+[0.5,05,0.5T and d(x;,¢)=0 the finite difference

approximation over a cube as proposed in [41] results.

8.2.1.2 Hierarchical algorithm

Recall the hierarchical continuous state-space MAP estimation from Section 5.2.2.
Using the same notion of the base displacement field b; and eliminating the random variable
n;, the following deterministic relaxation can be performed

(h*)" (%, 8) = (W)™ (i, t) + B"(x;, 8) — b (x;,8)~
&
Hq

As before, the base displacement field by is constant at given resolution level, and only

_ _ 8.3
v%“?((h")“(x,-,t)+b’°(x,-,t),x,-,t,At), Vi. (8.3)

the incremental field by is modified. The base displacement is updated only through the
interpolation stage between two neighbouring resofution levels. Other components of the
hierarchical approach, like filtering or inter-level interpolation, are the same as those used
in the stochastic approach (Chapter 5).

| This algorithm is related to the hierarchical methods proposed by Glazer [31] and
- Enkelmann [22]. Both of them use a more sophisticated multilevel control algorithm, while
here 'simply a non-recursive, top-bottom procedure is used. Also the pyramid structure for
the data is different as well as the interpolation scheme used for computation of intensities at
~ non-integer positions. Also Enkelmann, following Nagel's oriented smoothness constraint,
uses variable-space smoothing. Both formulations, however, are based on the Horn-Schunck
approach and are similar to the one proposed here. Also the iterative updates are quite

alike.
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8.2.1.3 Algorithm incorporating motion discontinuities

Recall the iterative equation (4.20) for the continuous state-space MAP estimation.
With the definitions of £; and d given in (6.15) and (6.16), respectively, it is also the
update equation for the model with motion discontinuities. Again, after disregarding the
random term n; that update equation becomes the equation (8.2). The only difference is
that £; and d are computed through (6.15) and (6.16), instead of (4.18) and (4.19).

This deterministic approximation is related to the algorithm proposed in [44] and based
on the Horn-Schunck approach with addition of deterministic motion discontinuities. The
major differences are in the use of the displaced pel difference here instead of the motion
constraint equation as in [44], and in the choice of line potentials. In particular, the potential
V), for single-element cliques is binary (0 or 00) in [44], while it varies continuously according
to the local intensity gradient here. Qtherwise the methods are identical.

The extension of this deterministic approximation to a hierarchy of resolutions is

straightforward after defining appropriate pyramids as discussed in Section 6.6.

8.2.2 Experimental results

In this section some experimental results of application of the deterministic approxima-
tion to the continuous state-space MAP estimation will be presented. The test image 1
will not be used since it consists of uncorrelated pels, and as such results in uncorrelated
intensity gradients. Since every spatio-temporal gradient method relies on a close relation-
ship between the spatial and temporal gradients, such a method is not expected to work

well in the case of test image 1.

8.2.2.1 Basic algorithm

In Fig. 8.4.a the result of the original Horn-Schunck method, exactly implemented as
suggested in the paper, applied to the test image 2 is shown for the ratio Ag/A;= 20.0
after 50 iterations. Recall that for this method Ag= Ag+[0.5,0.5,0.5]T. Consequently, to
compare this result with other methods, Fig. 8.4.b shows the deterministic approximation
to the continuous state-space MAP estimation as described above, while Fig. 8.4.c presents

the continuous state-space MAP estimate itself. In both cases /\d//\_é=20.0, Keys bicubic
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interpolation and Aq = Ay+[0.5,0.5,0.5]7 have been used. The deterministic method has
used 50 iterations, while in the stochastic method Ty=5.0, =0.9944 over 1000 iterations
have been applied. Note that the Horn-Schunck algorithm produces the worst result, both
subjectively and in terms of the MSE. The motion tends to be overestimated at strong edges
(due to the purely temporal gradient), while it is underestimated in uniform areas. The
deterministic approximation has produced a significantly lower MSE, and also subjectively
the estimate is more uniform. Except for the visible triangle of underestimated displace-
ments, the motion has been quite well computed. Superiority of the stochastic approach
is clear from Fig. 8.4.c. The mean squared error is the lowest of the three estimates, and
also subjectively this estimate is closest to the true motion. The image energy cannot be
used as a parameter in the case of the Horn-Schunck approach, because this algorithm does
not attempt to modify it. Such energy is, however, lower by about 5% in the case of the
stochastic method compared to the deterministic one. This result is very significant, since
not only theoretically, but also in practice, it may be profitable to slowly attain low tem-
peratures rather than to perform instantaneous freezing. In other words, using a stochastic
relaxation rather than deterministic does provide some gain, especially that in case of a
continuous state-space the computational overhead is not very large (Section 4.5),

Observe that the deterministic estimate as well as the result provided by the Horn-
Schunck algorithm have no vectors in the background, while the stochastic estimate has
numerous small and differently oriented vectors. These vectors may be much smaller than
the actual arrow size since only the zero length vectors are omitted while all other ones
have identical size arrows. The background vectors in the stochastic estimate will eventually
disa ppéar with further reduction of the temperature to zero.

Fig. 8.4.d shows the deterministic estimate obtained from the noisy test image 2 for
Aq = Ag and Ag/Ag=120.0 after 200 iterations. Compared to the corresponding stochastic
estimate (Fig. 4.20.b), the deterministic result is quite good subjectively. lts mean squared
error is much higher for the horizontal <’:omponent, which is visible in the central part of

the rectangle. In some other experiments it has been confirmed that the deterministic

T This results in At=0.5.T,.
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- Fig. 8.5 Estimates for the Horn-Schunck algorithm and the deterministic
approximation to the continuous state-space MAP estimation for
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i Keys bicubic interp., 100 iter.
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Fig. 8.6 Continuous state-space MAP estimate for Ay = Ay+{0.5,0.5,0.5]7:
test image 3, Ag/Ag= 20.0, neighb N’& Keys bicubic interp., Tg=5.0,
a=0.9944, 1000 iter.

algorithm performs quite well for high ratios A\q/)g i.e., for significant smoothing. As far
as the energies are concerned, the continuous state-space MAP estimate from Fig. 4.20.b
has a higher energy than its deterministic approximation. However, after slowly reducing
the temperature to 0.0001 over another 150 iterations, the stochastic algorithm attained

an energy slightly lower than that of its deterministic counterparti. This temperature

reduction did not noticeably change the subjective quality of the vector field. Consequently,
another very important observation can be made. After this extra temperature reduction,
both energies (stochastic and deterministic algorithrf:s) are similar, however subjectively
the vector fields are quite different. This suggests that the objective function (3.20) is
multimodal, and for the same value of this function quite different solutions can be obtained.
Again, the stochastic relaxation algorithm has found a solution closer to the true motion

field than the deterministic algorithm.

‘ t Note that additional iterations in the deterministic algorithm will not drive the image energy down
after a stationary point had been attained, while the stochastic method has another degree of freedom
via the temperature, and unless it is already zero, further energy reduction is possible.
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Similarly the three algorithms have been applied to the test image 3. Fig. 8.5.a shows
the estimate resulting from the Horn-Schunck algorithm, and Fig. 8.5.b presents the result
of deterministic approximation to the continuous state-space MAP estimation, both with
the same parameters as for the test image 2. Note again that in the case of the Horn-
Schunck method the motion vectors are overestimated at the edge of shirt sleeve and
are underestimated in the uniform area to the right. The deterministic approximation
performs slightly better: it is more uniform and has smaller edge effects. Both, however,
are absolutely inferior to the continuous state-space MAP estimate via simulated annealing
shown in Fig. 8.6. The estimate is smooth, and no edge effects are present. Again the
deterministic estimate is characterized by a higher image energy (about 25%) than the

stochastic MAP estimate.

8.2.2.2 Hierarchical algorithm

Fig. 8.7 shows the deterministic approximations to the continuous state-space MAP
estimation at three resolution levels for test image 2. First-order neighbourhood system,
Keys bicubic interpolation and 200 iterations at each resolution level have been used. Ob-
serve that, compared to the stochastic hierarchical estimate from Fig. 5.7, it has a higher
MSE for the horizontal component but lower error for the vertical one. In terms of the
image energy it performs significantly poorer (about 50% higher energy). Subjectively it is
very similar to the stochastic estimate except for the left top rectangle corner where the

‘image breakup occurred.

Figs. 8.8, 8.9 show estimates at three resolution levels obtained by the deterministic
approximation implemented over a hierarchy of grids for test image 3. The estimates at
levels £=2,1 are very similar to the corresponding stochastic estimates from Figs. 5.8.b,
5.9.b. The full resolution estimate is also similar to the continuous state-space MAP
estimate from Fig. 5.10, except for increased oversmoothing above the hand. The image
energies are also comparable, however after another few dozens of iterations the energy of
the stochastic estimate can be reduced below. Again, a clear superiority of the stochastic
approach at single resolution level, is less pronounced when a hierarchy of resolutions is

used.
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Fig. 8.9 Deterministic approximation to the hierarchical continuous state-space
MAP estimation: test image 3, K;=3, k=0, Aq/A;=20.0, neighb.

N:__%, Keys bicubic interp., 200 iter. at each level. Nyquist-like filtering.

8.2.2.3 Algorithm incorporating motion discontinuities

In this section some experimental results for deterministic aigorithm with the two-layer

motion model will be presented. In numerous experiments with this algorithm | have ob-
served that to obtain results comparable with the stochastic estimates, the ratio A;/Aq has
to be significantly reduced. The values around 0.8-1.0 produced very few line elements.
This may be explained by explicit averaging used in the deterministic algorithm. The contin-
uous state-space MAP estimation uses similar averaging, but it also involves a randomness

factor thus allowing switching line elements off and on, even if motion discontinuity does

not quite allow it.

Figs. 8.10.a,.b show the deterministic estimate for test image 2. The parameters used

are the same as for the stochastic estimate from Figs. 6.6.c,.d except for the ratio };/\g
which was 0.15. Note that both subjectively and in terms of the MSE the deterministic

estimate is clearly inferior. The motion field in the center of the rectangle is not estimated
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Fig. 8.10 Deterministic approximation to the continuous state-space MAP
estimation with piecewise smooth motion model: test image 2,
Ad/Ag=20.0, A;/Ag= 0.15 (a,b) and 6.50 (c,d), neighb. ./\f(]i, Keys
bicubic interp., 1000 iter. (a,b) and 500 iter. at each leve! (c,d).
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correctly, and in the left top corner the estimates are very inconsistent (image breakup).
There are also numerous unended line segments.

Figs. 8.10.c,.d show the deterministic approximation to the continuous state-space MAP
estimate with the piecewise smooth motion model over a hierarchy of resolutions (only the
full resolution motion field is shown). Again identical parameters have been used as those
for the stochastic estimate from Fig. 6.7 except for A;/Aq which was 0.5. The estimate is
characterized by a much higher mean squared error than the stochastic result. Subjectively,
however, except for a more pronounced distortion in the troublesome left top corner of
the rectangle, and some inconsistency in the bottom right corner, it is the same as the
stochastic estimate, and very close to the true motion.

Fig. 8.11 presents the deterministic estimate of motion from test image 3 obtained
with the same parameters as for the stochastic result from Fig. 6.9 except for the ratio
ArfAq which was set to 0.15. Smaller values of this ratio resulted in many spurious line
elements not reflecting motion boundaries, while farger values prevented formation of such
boundaries where they should actually be. Compared with the stochastic result from Fig. 6.9
it is characterized by similar image energy, however the estimated motion boundaries are
very fragmented and frequently unrelated to the true motion boundaries.

To complete the tests Fig. 8.12 shows the full resolution deterministic estimate with
piecewise smooth motion model over a hierarchy of resolutions. Needless to say that the
same parameters as those used for the result from Fig. 6.12 have been applied. This
estimate is characterized by about 10% higher image energy than the stochastic solution
from Fig. 6.12. The estimated motion boundaries are stili fragmented, but subjectively this
estimate is not very different from the stochastic result. The adjustment of ratio Ag/)g
towards larger values resulted in more continuous boundaries, but simultaneously mahy of
them were missing.

Throughout the experiments | have observed that the deterministic algorithm is more
sensitive to modifications of ratio Ag/A, than the stochastic method, and also that obvious
superiority of the stochastic algorithm at one resolution level is diminished once hierarchical

- estimation is used.
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Fig. 8.11 Deterministic approximation to the continuous state-space MAP
estimation with piecewise smooth motion model: test image 3,

Aa/Ag=20.0, \;/Aq=0.15, neighb. A}, Keys bicubic interp., 1000
' iter.
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Fig. 8.12 Deterministic approximation to the continuous state-space MAP
, estimation with piecewise smooth motion model over hierarchy of
a : : resolutions: test image 3, K;=3, k=0, Aq/A¢=20.0, A;/14=0.20,

_ ~ neighb, N&, Keys bicubic interp., 500 iter. at each level.
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MOTION-COMPENSATED

Chapter 9
INTERPOLATION

In previous chapters motion estimates resulting from different algorithms have been
compared subjectively by evaluating the vector fields, and objectively, if the true motion
had been known, by computing the mean squared error. The ultimate tests for the algo-
rithms, however, are application specific. For example, in robotics it will be important how
frequently a robot arm misses a target due to imprecise velocity estimates or incorrect local-
ization of motion boundaries. In time-varying image processing and in image compression,
the quality of the final displayed image is relevant. Thus, the quality of motion estimates
will be assessed in this chapter by applying them to motion-compensated interpolation.

In the next section motion-compensated interpolation will be described. Then, two of
the methods reported in earlier chapters will be applied to the test images 2 and 3, and the

resuits will be compared.

9.1 MOTION-COMPENSATED INTERPOLATION

Motion-compensated interpolation is a technique which computes image intensity val-
ues specified on a sampling grid e.g., A4, from known images (image fields) specified on
another lattice Ay, such that Ag#Ay. This technique can be used in time-varying image
compression via temporal subsampling, or in sampling structure conversion e.g., conversion
between North American and European TV scanning standards.

If there is no motion in an image sequence, then a linear interpolation along the purely

temporal direction will provide missing fields for At £ 0.0. For missing lines or pels at
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Ai=0.0, either spatial interpolation or purely temporal interpolation from the preceding
and following images, can be used.

I there is motion in an image sequence, however, purely temporal interpolation fails to
provide good results. For At=0.0 the missing lines and pels can be computed, at reduced
resolution, by spatial interpolation, but for At 0.0 motion must be taken into account.

Recall Fig. 3.1 where the definition of displacement field d; is portrayed. If constant im-
age intensity along motion trajectories is satisfied, then the intensity value at (x;,t) should
be identical to the intensity values at (x;—~At-d(x;,t),t-) and (x;+(1.0—At)-d(x;, ), 14).
Obviously in practice such equality holds only approximately, and if illumination as well as
occlusion effects are not negligible the error may be quite large. Assuming, however, that

‘the intensity values at both ends of the displacement vector d(x;,t) are similar, the in-

tensity value at (x;,t) should be closely related to such intensities. The following linear

interpolation along displacement vectors d(x;, ) will be used in subsequent experiments:
G(xi,t) =(1.0 — At) - §(x; — At - d(x;,1),t-)+

At - §(x; + (1.0 — A¢) - d(xs,t), 4),
where g is the new interpolated intensity field defined over A4.

9.2 EXPERIMENTAL RESULTS

To test motion-compensated interpolation the algorithm has been applied to two 24-
field image sequences which had been previously temporally subsampled. These sequences
will be called the input sequences. Thus, motion fields are recovered from temporally sparse
data, and used in the interpolation algorithm. Three sequences are generated for subjective

evaluation:

1. interpolated (output) image sequence: for ¢ such that At # 0.0 mo-
tion compensated interpolation is used, otherwise input fields are directly
copied to the output sequence,

2. displaced field difference sequence: for ¢ such that At # 0.0 displaced
pel differences ¥, offset by 128 to accommodate positive and negative
errors, are written at appropriate location x;, otherwise a field with fixed
luminance of 128 is substituted,

3. original/interpolated difference sequence: difference between the input
and output sequences is created.

- 215 -




Chapter 9

The sequence of interpolated fields is uged for direct comparison with the original
(input) sequence. Sometimes it is difficult, however, to precisely locate the errors, hence
also the difference sequence is created. This sequence identifies areas where an algorithm
fails to faithfully reproduce the original image sequence. The DPD sequence shows the
spatial distribution of image energy Uy which is an indicator of a mismatch between the
images from which motion had been estimated. In an ideal case, when full correspondence
between the images exists, it should be zero. Of course in reality, due to illumination effects,
occlusion problems or violated assumptions of linear motion trajectory, local linearity of
intensity function etc., such zero-valued field does not occur. To enhance the visibility of
the errors, the DPD and (original /interpolated) difference fields presented in the following
sections have been muitiplied by 3.0 before adding 128.

The following algorithms have been used to generate motion field sequences, and then
applied to motion-compensated interpolation:

1. deterministic approximation to the continuous state-space MAP estima-
tion {or the modified Horn-Schunck algorithm) over a hierarchy of resolu-
tions: K;=3, A3/A4=(20.0,12.0,10.0), first-order neighbourhood system
N&, Keys bicubic interpolation, Nyquist-like filtering, 200 iterations at
each level,

2. continuous state-space MAP estimation via stochastic relaxation with
piecewise smooth motion model over a hierarchy of resolutions: K;=3,
Ad/2g=(20.0,12.0,10.0), A}/ g=1.8 (test sequence 2) or 1.0 (test se-
quence 3), «=(10.0,3.0,1.0), first-order neighbourhood system V], Keys
bicubic interpolation, Nyquist-like filtering, T9=(1.0,2.0,4.0), =0.980,

200 iterations at each level.
In the following sections the above algorithms will be called 1 and 2, respectively. The vector
fields obtained by both algorithms are very similar to those reported in Sections 6.7.2, 6.7.3

and 8.2.2.3, and will not be presented here.

021 Test image 2

In order to simulate realistic data (no perfect matching) the temporal subsampling
factor has been chosen to be 6 i.e., Ty=6769. Thus from every 2 image fields 5 motion

fields are computed.
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Figs. 9.1.a,.b show the displaced field differences for both algorithms for motion fields
number 2. The image energies U; per pel are given below the images. Note the significant
reduction of the DPD error for algorithm 2 compared to algorithm 1, both subjectively and
in terms of Uy. Algorithm 1 has produced significant DPD errors which are distributed
uniformly across the rectangle area, and visible in particular at the rectangle boundaries.
There are rather few significant DPD errors produced by algorithm 2, and they appear in the
image breakup area (top-left corner of the rectangle) and in the occlusion area (along the
right edge). Unlike in the case of algorithm 1, the rectangle edges are hardly visible. This
is exactly what the line process was supposed to provide: reduction of mismatch enforced
by oversmoothing of vectors at motion boundaries. Matching constrained by spatial vector
smoothness no longer has to be performed. With sufficient information in the data, this
smoothness is broken and unconstrained matching can be carried out.

Figs. 9.1.c,.d show the original /interpolated difference fields number 2 for both algo-
rithms. The mean squared error is displayed below both images. The MSE for the algorithm
2 is lower than that for the algorithm 1. This is also confirmed in the images. Note a spu-
rious pattern extending from the rectangle boundary into the stationary background in
Fig. 9.1.c. This pattern is due to oversmoothed vectors extending into the background
where motion is absent. Observe that this pattern disappears completely in Fig. 9.1.d

| along the top and bottom edges, and is significantly reduced along the left and right edges.
Due to the line process, a sudden transition from vectors inside of the rectangle to no
vectors outside is permitted, reducing errors enforced by a smoothness-constrained match-
ing. More pronounced effect in the vertical direction can be explained by a higher vertical
smoothing resulting from twice larger inter-line than inter-pel distance (already discussed
in Section 4.8).

When evaluating the moving pictures, with no error boost, the effects described above
have been less pronounced. The reduction in the DPD error was still quite dramatic, how-
ever the original/interpolated difference was almost the same for both algorithms. In fact,
when comparing both interpolated sequences with the original, certain artifacts remained
in both, and there was no visible difference between the two algorithms except for the

occlusion areas. These areas contained numerous annoying errors, but neither of the inter-
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(a) DPD,alg. 1

(d) Diff., alg. 2

Fig. 9.1 Displaced field difference (a,b) and interpolated/original difference
(c.d) for test image 2 (field number 2).

polated sequences could be considered better. These observations suggest that in spite of a
significant improvements in the DPD and difference (boosted) errors, the problem of vector
oversmoothing is not critical. Since oversmoothing occurs at the motion boundaries, and
these usually coincide with occlusion borders, rather gentle oversmoothing errors tend to

Ty be masked by more pronounced occlusion errors. Errors due to oversmoothing are gentle,

because if sufficient data structure (e.g., strong texture) is present in the background, the
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vector coupling is less strong (either reduced displaced pel difference ¥ in the local energy

(4.13) or increased update term in iterative equation (4.20)).

9.2.2 Test image 3

For test image 3 the temporal subsampling rate was chosen to be 4:1 i.e., Ty=47.
Consequently, from e{lery 2 image fields 3 motion fields are computed.

In earlier work [56] | have compared the quality of interpolated image sequences 3
and 4 compensated for motion using algorithm 1, with simple field repetition and with
linear interpolation in the temporal direction. The sequences using field repetition were
characterized by very annoying motion jerkiness. This effect was significantly reduced in
the linearly interpolated sequences, but blur and multiple edges remained. The sequences
produced using algorithm 1 were clearly superior to the above non-compensated schemes:
and also when compared with simple block matching algorithms.

Fig. 9.2 shows the displaced field differences for both algorithms for motion fields
number 1. The image energies U, per pel again confirm significant reduction of the DPD
error for algorithm 2 compared to algorithm 1. Such reduction can be also observed in
the images, where the errors for algorithm 1 are more pronounced around the hand and at
the face contours. In particular, there is a significant improvement in the area just above
the palm of the hand, which is suggested to move according to algorithm 1 while it is
almost stationary according to algorithm 2. Note also that algorithm 2 managed to avoid
significant errors at the motion boundaries due to the hand and face movements.
~ Fig. 9.3 shows the differences between the original and interpolated fields number 1.
Note that there is very little difference between the two algorithms. Moreover, algorithm 2
has even introduced few more pronounced errors at the occlusion borders of the palm of the
hand‘. This is confirmed by a slightly higher mean squared error for algorithm 2. Subjective
evaluation, however, has revealed no clear preference between the two algorithms. The
interpolated sequences looked alike. In spite of some differences compared to the original
sequence, both presented very good image quality. Major artifacts could be observed in the
occlusion and newly exposed areas. The improvement due to the two-layer motion model,

very striking when viewing the DPD sequence, had basically no impact on the quality of
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the interpolated sequence. As remarked in the previous section, any improvements due
to a reduction of oversmoothing are either minor or masked by nearby occlusion artifacts.
Again, if the background structure were stronger such that one might hope for visible
improvements, then less oversmoothing would have been present due to such a structure,
and the occlusion errors would have been much more pronounced. In any event, the
interpolation errors due to motion field oversmoothing are not a major source of distortion.
Errors due to occlusion areas are more important, and have to be given attention if one

hopes for improvements to motion-compensated interpolation.
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(b} algorithm 2 (M SE=8.7770/pel)
Fig. 9.3 Original/interpolated difference for test image 3 (field number 1).
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Chapter 10 CONCLUSIONS

10.1 SUMMARY

In this thesis | have presented a stochastic approach to the estimation of 2-D motlion
from a sequence of spatio-temporally sampled time-varying images. The Maximum A Pos-
teriori Probability (MAP) and the Minimum Expected Cost (MEC) criteria have been used
to formulate the estimation problem. Both criteria require the knowledge of the a posteriori
probability P(D:=d¢|G;_=gt_, Gy, =gs, ) to specify a cost functional for optimization.
This probability can be factored using Bayes rule into terms which are representative of the
models used. The observation model, relating the underlying and the observed images, and
egP.rgs..sgd as additive Gaussian noise, is combined with the structural model assuming con-
stant image intensity along motion trajectories. As the displacement field model a vector

Markov random field has been used, resulting in a Gibbs a priori distribution. Combined

-via Bayes rule, these distributions provided a regularized cost functional to be minimized.

The minimization problem, involving several thousands of unknowns, has been solved using
simulated annealing. Two stochastic relaxation algorithms: the Metropolis algorithm and
the Gibbs sampler, have been used to generate Markov random field samples according to
the a posteriori probability. It was concluded that the Gibbs sampler had provided slightly
better performance, hence it has been used subsequently. Also the spatial interpolation of
images to provide samples at non-integer locations has been investigated. The importance
of Cl-continuous image models, especially for spatio-temporal gradient techniques has been

demonstrated.
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First, the MAP estimation algorithm for vectors defined over a discrete state-space has
been derived. This algorithm was an extension of methods proposed for image restoration.
Within the motion estimation context, it was identified as a pel matching algorithm with
motion smoothness constraint. Then, the possibility of solving the MAP estimation over a
continuous state-space has been investigated. Linearization of the displaced pel difference
T resulted in a Gaussian distribution driving the Gibbs sampler, and thus provided a much
more efficient spatio-temporal gradient algorithm. This algorithm proved to be a stochastic
extension of Horn-Schunck-type methods. Both the discrete and the continuous state-space
stochastic MAP estimation resulted in very good motion estimates.

The MEC estimation problem has been solved by applying the Law of Large Numbers
for Markov chains. In practice, an iteration-wise averaging has been performed without the
need for an annealing schedule, which is an important ingredient of simulated annealing.
The performance of MEC estimation has been shown to be similar to that of the MAP
estimation. In a noisy environment, however, the MEC estimator did not provide better
performance than the MAP estimator, as found by Marroquin [62]. The reasons could be
twofold: 1. the state-spaces used here were much larger than in Marroquin's experiments,
and thus might have needed many more iterations to show differences between the two
algorithms, 2. the SNR value was much higher here.

To perform efficient estimation of large displacements, a hierarchical non-recursive
approach has been proposed for the MAP estimation criterion. An important theorem for
1-D shift-invariant signal matching has been proved, which relates the filtering operations
on the data and on the cost functional. Extrapolated to 2-D motion estimation, this
theorem shows why low-pass prefiltering of images improves reliability of motion estimation.
Two even pyramids have been used in the hierarchical approach: a constant-width image
pyrar-nid , which increases precision of interpolated intensities at a cost of increased memory
size, and a standard variable-width displacement field pyramid. Simple repetition as well as
bilinear interpolation have been tried to interpolate displacement fields between subsequent
resolution levels with no difference in performance. The hierarchical approach has been
shown to give good quality motion estimates on some test images, however it disclosed

substantial problems on the other. In general, it can be concluded that the occlusion
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and exposure effects present in an image are enhanced by the filtering operation. Even if
a good matching (explicit or via spatio-temporal gradient) can be performed at the fuli
resolution level, this may not be the case at higher levels of the image pyramid. Violation
of the assumption of constant image intensity along motion trajectories is spread by the
filtering, thus disallowing correct estimation, which may not be recoverable at lower levels
of the pyramid. Another problem characteristic of hierarchical methods is motion field
oversmoothing across the motion boundaries.

The problem of estimation across motion boundaries has been tackled by introducing
a two-layer motion model. The original vector MRF model for motion fields has been
augmented with a coupled binary MRF modeling motion discontinuities. Another MAP
estimation criterion has been proposed, and a three-term regularized cost functional derived.
The motion discontinuity model has been based on four-, two- and one-element line cliques
to encourage formation of smooth, continuous boundaries at focations characterized by a
substantial spatial gradient. This model has been shown to improve the subjective quality
of motion fields, as well as to reduce the mean squared error (this criterion applies only to
the test sequences with synthetically generated motion).

Throughout the research | have observed that other cues (than intensity) may be useful
in motion estimation. The MAP criterion has been extended to also include the colour.
Both the one-layer and the two-layer motion models using colour have shown substantial
improvements in performance compared to the estimates based on intensity only.

The advantages of using stochastic instead of deterministic relaxation have been also
investigated. The MAP estimation criterion over a discrete stafe-space has been optimized
by exhaustive search for the maximum of the local marginal conditional probabilities. This
method has been shown to be inferior to the stochastic optimization. In the case of a
continuous state-space, the Gauss-Newton optimization has been used. By performing
instantaneous freezing to obtain a deterministic algorithm, the single-resolution method
~ has been demonstrated to be a modification to the Horn-Schunck method [41], while a
hierarchical approach has been shown to be related to the methods proposed by Glazer [31]

and Cnkelmann [22]. It has been also found that the deterministic approximation with the
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two-layer model is very similar to the method proposed by Hutchinson et al. [44]. Note that
all these methods are special cases of a general stochastic MAP formufation and solution.

In numerous experiments it has been observed that the stochastic solution methods
provide superior performance at one resolution level. The difference in performance is sig-
nificantly diminished, however, once a hierarchy of resolutions is used. This observation
is in agreement with the theorem from Chapter 5 extrapolated to 2-D space-variant mo-
tion estimation. Since low-pass filtering smooths-out the objective function, with sufficient
amount of filtering this function may become nearly unimodal. In such a case any opti-
mization technique will attain the local (and hence the global) minimum at this resolution
level. Repetitive estimation at subsequent resolution levels, starting from the previous-level
estimate should easily locate the global minimum at the full-resolution level. No stochastic
search should be needed. These remarks are consonant with observations of Simchony et

al. [81]. They used the GNC algorithm for the image restoration problem, and obtained

similar results to those produced by simulated annealing. “As described earlier, hierarchical ™ "

methods can be viewed as examples of the GNC algorithm.

Finally, two estimation algorithms proposed in this thesis have been applied to motion-
compensated interpolation. Both (hierarchical) algorithms have performed very well pro-
ducing good quality interpolated sequences. The stochastic algorithm (2) incorporating the
two-layer motion model has performed substantiaily better in terms of the displaced field
difference error, both subjectively and‘objectively, than the deterministic algorithm (1) with
globally smooth motion model. The reduction of oversmobthing error in the interpolated
sequences has been minor, howevér, compared to the occlusion artifacts. Since the error
due to motion oversmoothing is never very severe, and since it is always located close to
occlusion borders, it tends to be masked by occ!ﬁsion effects and is not a major source of
distortion. Concluding, the two-layer model did not provide improvements to the quality

of motion-compensated interpolation. Not everything is lost, however. The line elements

 are usually formed at the motion boundaries, and as such frequently surround the occlusion

areas, or even partition them into smaller sub-areas. The vectors in such areas are distinctly
different from their neighbours, which is allowed by the line elements. Since there is no

correct match in the occlusion area anyway, these vectors will usually provide substantial
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DPD error. Thus, if a vector belongs to an isolated (by line elements) area, and if its DPD
is substantial, it is very likely that this vector is trying to find a match for a pel which sim-
ply disappeared. Knowing that, different processing can be performed at the interpolation
stage. For example, a sought after pel can be taken from the preceding or the following
image at appropriate spatial location, rather than averaged from the two images. Identifi-
cation of the motion boundaries thus can be helpful in motion-compensated interpolation,
as well as in robotics or computer vision. Note also that due to a significantly reduced DPD
error such an algorithm can further reduce the bit rate in motion-compensated predictive

coding schemes.

10.2 CONTRIBUTIONS

This thesis has contributed to the theory of 2-D motion estimation, as well as to
practical implementation of the algorithms. The major contributions of this work can be
summarized as follows:

1. 2-D motion estimation has been formulated as a Bayesian estimation prob-
lem. The formulation has been extended to incorporate a hierarchy of
resolutions. The basic motion model has been augmented with another
layer to include motion discontinuities.

2. The influence of various parameters on the behaviour of the proposed
stochastic relaxation algorithms has been identified through numerous ex-
periments.

3. Various existing motion estimation methods have been shown to be special
cases of the stochastic solution when instantaneous freezing is applied.
Consequently, the stochastic formulation and solution can be viewed as a
generalization of various deterministic methods.

- 4. It has been shown for 1-D shift-invariant signal matching, that low-pass
filtering aids in obtaining unimodality of the objective function, and thus
helps in reliable shift estimation.

5. It has been demonstrated that at single resolution level the stochastic meth-
ods offer substantially better performance than the corresponding determin-
istic algorithms. This improvement is reduced, however, when a hierarchy
of resolutions is used. It has been shown that the stochastic and the hier-
archical approaches are two effective but conceptually different methods of
finding the global optimum of a multimodal function.
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6. It has been shown that the colour information in an image should not be
disregarded as a cue for motion estimation. Also the importance of using
a Cl-continuous luminance and chrominance models has been indicated.

7. It has been demonstrated that image matching error due to motion over-
smoothing across motion boundaries can be substantially reduced by using
a piecewise smooth motion model. It has been also concluded that such
oversmoothing is not a dominant source of artifacts in motion-compensated
interpolation. The most severe errors are due to interpolation across occlu-
sion borders. It has been suggested to use line elements in identification of
such borders.

10.3 OPEN QUESTIONS

10.3.1 Regularization parameters

The constants Ay, Aq and A; have been chosen here empirically. It may be important to
choose these constants optimally. It is not clear how to estimate the DPD model variance
necessary to compute Ay. Also the other A's are not easily computable. Training data,
| extensively used in texture segmentation, does not apply since both motion and motion

‘boundaries are not observable ! Estimation of the \'s seems to be a challenging task.

10.3.2 Hierarchical approach

Three major problems are related to the hierarchical approach. Firstly, it is not clear
what kind of filtering should be applied to construct the image pyramid (efficiency issues
aside). In this thesis Nyquist-iike filters have been proposed to minimize aliasing errors
after spatial subsampling. They provided better performance for this particular application
than the Gaussian filters which tend to unnecessarily oversmooth the data. Following the
comments on the theorem from Chapter 5, it may be asked whether there exists an optimal
filter for a given estimation method, such that in a Kj-level image pyramid the lowest-
resolution cost functional will be unimodal.

Secondly, the filtering operation should be adaptive to avoid spreading of occlusion and

exposure effects at the top of the image pyramid. Fixed filtering used so far enhances the
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occlusion effects by contributing to violation of the constant image intensity along motion
trajectories in the vicinity of the occlusion areas.

Thirdly, the hierarchical approach seems to be related to the GNC algorithm proposed
by Blake and Zisserman [12]. It may be profitable to use GNC-type algorithms for motion

estimation.

10.3.3 Piecewise smooth motion model

The motion boundary model investigated here was very simple. Multi-level instead of
binary line cliques could be implemented to identify directions of line elements for better
rendition of motion boundaries. Also the single-element line clique relating the motion
boundary to an intensity edge could be improved, especially for temporal positions different

from image positions.

10.3.4 Motion-compensated interpolation

The very important problem of occluded and newly exposed areas in infage sequences
remains unresolved. Jt seems, however, that the piecewise smooth motion model may be
helpful in identification of such areas. Vectors unable to attain low DPD errors and isolated
by line contours from other vector patches where the DPD error is small, are very likely
to belong to occluded or newly exposed areas. If they can be identified reliably, then
appropriate processing can be applied to reduce errors due to averaging across occlusion

borders,

10.3.5 Multiple-frame processing

'i"his thesis has addressed the problem of motion estimation and motion-compensated
interpolation based on two images only. Motion estimation, and in particular identification
of occlusion areas, can be done much more reliably by using multiple image frames (fields).
Accumulating the history of objects over several frames should allow easier identification of
what is new in the image and what disappeared. As remarked earliér this kind of information

is of crucial importance for occlusion-adaptive processing.
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10.3.6 Other structural models

Here, only the constant image intensity structural model with res;‘Ject to luminance and
two chrominances has been developed. It should be possible to extend this approach to
constant intensity gradient (or even higher-order derivative of the intensity). Also other
cues than used here could be investigated, for example: contrast. it would be also interest-
ing to compare Y-C1-C2 and R-G-B formats with respect to their applicability to motion

estimation.
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