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CROSSTALK-AWARE DESIGN OF ANTI-ALIAS FILTERS FOR 3-D

AUTOMULTISCOPIC DISPLAYS

ASHISH JAIN

ABSTRACT

Automultiscopic displays present a three-dimensional image to viewer without using

any eyewear unlike some other three-dimensional display technologies. The absence

of glasses and multi-user delivery of content are making the automultiscopic displays

popular in the areas of 3D medical imaging, computer games, 3D web browsing, and 3D

home entertainment.

The data rendering process required to display a 3D image on automultiscopic screen

requires downsampling a 2D regularly-sampled image to 2D irregularly-sampled image.

This may result in aliasing and create visual artifacts, which may be unpleasant to the

eyes. To avoid this, the image needs to be filtered before downsampling. The bandwidth

of the filter needed can be computed in multiple ways one of which is by modeling an

irregular sampling structure using an orthogonal lattice. Another method is modeling

such a structure using non-orthogonal lattice or union of cosets. The results cited in the

literature suggest, however, that the filter bandwidth actually needed is more than the

bandwidth computed using the above methods.

The above methods of computing filter bandwidth ignore the fact that there is always

some amount of crosstalk, due to optics involved, between the adjacent views. Thus,

modeling of the view rendering process by simple subsampling on a lattice or union of

cosets is inaccurate. In this thesis, we focus on developing new models to incorporate

crosstalk between views into the sampling structure. We also propose to exploit the fact

that adjacent views, where crosstalk is strong, are highly correlated. This is expected

to result in more accurate anti-alias filter designs and a better 3D visual experience.
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Image crosstalk between individual views in automultiscopic displays results in dou-

ble edges at high contrast object boundaries, also known as ghosting. This reduces the

visual comfort for the viewer and creates difficulty in fusing the two images. We discuss

our efforts to reduce the formation of ghost images in automultiscopic displays.
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Chapter 1

Introduction

The basic principles of stereoscopic imaging were first introduced by Sir Charles Wheat-

stone in 1838 (Holliman, 2005). Several stereoscopic devices have been developed since

1838. However there have been no reasonable eyewear-free personal 3-D displays until

the early 1990’s (Berkel et al., 1996b). Today’s personal 3-D displays provide no-glasses

multi-view look-around 3-D experience with significantly enhanced image quality as

compared to previous-generation technologies. The rapid advances in personal 3-D dis-

plays have been possible due to availability of low cost, high resolution LCDs (Liquid

Crystal Displays), and low cost desktop image processing hardware.

The basic principle of 3-D displays is to provide stereoscopic images to a viewer

allowing each eye to see its own view of a 3-D scene. To deliver a stereoscopic image,

all 3-D displays use a technique called angular multiplexing. Angular multiplexing is

a technique in which a pixel appears to have different characteristics such as color and

intensity depending on the relative position of a viewer (Cossairt, 2003). All popular

3-D display technologies such as lenticular displays, parallax barrier, and polarized or

shuttered glasses, employ angular multiplexing to deliver stereoscopic images.

Parallax barrier and lenticular technologies provide eyewear-free and multiscopic 3-D

experience to an observer. Multiscopic displays provide multiple views to an observer

as compared to two views by stereoscopic displays. Both technologies use a spatial mul-

tiplexing technique, as compared to the time multiplexing technique used by shuttered

glasses, to provide two different perspectives to each eye. Lenticular technology, like
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other technologies based on spatial multiplexing, involves tradeoff between the number

of views and resolution of an individual view. For example if the number of views in a

lenticular display is increased by a factor of N , then an individual-view resolution goes

down by a factor of N .

In a lenticular 3-D display having N individual views, the N view images are mul-

tiplexed to create an image suitable for 3-D presentation (Stereographics, 2003). Since

the multiplexed image and individual view images are of the same resolution, we need to

subsample individual-view images by a factor of N . The subsampling of individual-view

images would require pre-filtering of individual-view images in order to avoid aliasing

in the resulting multi-view image (Konrad and Agniel, 2006). Since the individual-view

sampling structure is not periodic, the traditional methods of designing anti-alias fil-

ters would result in sub-optimal anti-alias filters. The more suitable approach would be

to develop a model which can handle non-periodic sampling structures. Thus, in this

thesis, we develop a model which can be used to design optimal anti-alias filters for a

non-periodic sampling structure.

In a perfect stereoscopic system, each eye sees only its assigned image. The lenticular

technology, like many other stereoscopic technologies, suffers from crosstalk between

views. Crosstalk is a phenomenon in which each eye, apart from an intended perspective,

sees an image of unwanted perspective views. The crosstalk between two views is due

to the inherent optical design of a lenticular display and changes the visual experience

of a viewer such as, smoother transition between views, reducing the number of views

required, and perceived higher resolution of individual views (Berkel and Clarke, 1997).

In this research, we quantify the amount of crosstalk between the views and use it to

design an optimal anti-alias filter for a lenticular automultiscopic display, SynthaGram

SG202 from Stereographics Corporation.

The optical crosstalk between views present in lenticular displays results in inter-
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ocular crosstalk for a viewer. The inter-ocular crosstalk between the views reduces the

fusibility of views and influences subjective image quality and visual comfort (Berkel and

Clarke, 1997; Yeh and Silverstein, 1990). Berkel and Clarke (Berkel and Clarke, 1997)

have proposed a new design for a slanted lenticular automultiscopic display, in which

the optical crosstalk between adjacent views does not result in inter-ocular crosstalk,

thus increasing the image quality and visual comfort for the viewers. Also there have

been efforts by Pommeray (Pommeray et al., 2003), Konrad (Konrad et al., 2000),

and Klimenko (Klimenko et al., 2003b; Klimenko et al., 2003a) to reduce the crosstalk

between views by preprocessing the individual-view images for different stereoscopic

display technologies. In this thesis, we discuss our efforts to reduce inter-ocular crosstalk

by preprocessing individual view images.

In the rest of the chapter, we introduce the concepts, principles and terminology used

in the area of multi-dimensional sampling, automultiscopic displays, and 3-D display

technologies to facilitate easier understanding of this thesis.

1.1 Human Depth Perception

Binocular vision along with independent information about the distance and direction

of the fixation point allows humans to perceive depth in real world (Berkel and Clarke,

1997; Mayhew and Longuet-Higgins, 1982). The human brain combines the two different

perspectives of a scene, provided by two eyes, and creates a mental model of the 3-D

world. Apart from binocular depth perception, the human visual system also uses the

various monocular depth perception cues described below:

• Interposition or Occlusion: Two objects occluding each other allow us to perceive

relative depth space between the two objects.

• Size: The relative size of the object, with previous knowledge of absolute sizes,
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can be used to infer the distance between the objects.

• Motion parallax (Kineopsis): provides a depth cue to user when either he moves

his head or the object in the scene moves. The information provided by motion

parallax is quite similar to the one provided by binocular vision but is not the

same. (Berkel and Clarke, 1997; Rogers and Graham, 1982).

• Accommodation: Oculomotor depth cues are due to change in focal length of an

eye by using muscles involved in controlling the eye’s lens. Oculomotor is a nerve

controlling eye movements.

Apart from the depth cues mentioned so far, other cues such as light and shade,

texture gradient, and aerial perspective also help a user to judge depth in a scene. Some

of these monocular cues can be used by 2-D displays to provide feeling of depth in 2-D

images but others like motion parallax are difficult to integrate into 2-D displays.

The most important depth cue for a human visual system is the stereopsis or binocu-

lar disparity. Each eye is presented with a different perspective of the same scene based

on its location. The two images are fused together to form a 3-D image in the human

brain and to provide the feeling of depth to a viewer.

Wheatstone, in 1838, first established that it is possible to create depth sensation

by showing each eye a separate 2-D image (Holliman, 2005). The two images should

be of the same scene from slightly different viewpoints. He demonstrated this effect by

building the first stereoscopic device. Since then many stereoscopic devices have been

developed achieving different level of success.

1.2 3-D Display Systems

Many 3-D displays have been developed to date; some have reached the consumer market

while others have remained in research laboratories. We now review 3-D displays, both
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eyewear-equipped and eyewear-free technologies, which had reasonable success in the

3-D stereoscopic devices arena.

• One of the oldest, patented by Louis Ducosdu Hauron in 1891, and most popular

technique to deliver 3-D content is anaglyph imaging. Two perspectives of a scene

are projected or printed together as a single image, one perspective through red

color (usually right view) and the other perspective through a contrasting color

such as blue, green or cyan (usually left view). When an anaglyph image is viewed

through appropriate colored glasses, each eye sees its own perspective thereby

creating a 3-D effect (Dubois, 2001). The anaglyph method is the only method

which can be used to display stereoscopic images on normal 2-D displays and also

in print. This technique has been quite popular in 3-D comic strips and movies.

• Another popular technique used in 3-D content delivery is using polarized glasses

to separate multiplexed views. In this method, two different images are projected

onto the same screen through orthogonal polarizing filters. The viewer uses low-

cost glasses of appropriate polarization to separate the two views. This technique

has been the most popular in delivering 3-D movies. Recently “Polar express” was

released using polarized 3-D glasses, reviving interest in 3-D movies.

• Another popular technique is using time-sequential shuttered glasses in which ac-

tive LCS (Liquid Crystal Shutter) is used for view separation. The images are

presented at the rate of 120 frames per second by time-multiplexing left and right

views each captured at 60 Hz. The left and right shutters are synchronized with a

monitor so that each eye gets its own view. These displays suffer from crosstalk be-

tween individual views due to phosphor persistence, LCS leakage, and LCS shutter

timing errors. Konrad et al (2000) proposed pre-processing individual-view images

so as to reduce the inter-ocular crosstalk.
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Figure 1·1: Autostereoscopic parallax-barrier display principle (Holli-
man, 2005).
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• Parallax-barrier displays: In this display technology, a parallax barrier is placed

on a display in such a way that half of the pixels are seen by left eye and the other

half by right eye. The left and right images are interlaced in columns as shown in

Fig. 1·1. The display can be used for more than one viewer, albeit with reduced

image quality, because the viewing window is repeated periodically in the space

in front of the display. These displays suffer from reduced brightness, reflection

off of the glass surface of parallax barrier, and diffraction. The use of bright

light sources and anti-reflection coated optics has solved the first two problems

(Holliman, 2005).

Figure 1·2: Autostereoscopic lenticular display principle
(Holliman, 2005)
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• Lenticular displays: These displays have cylindrical lenses placed over the screen

of 2-D displays such as an LCD. The lenses, placed over LCD, diffuse light from

each pixel in such a way that each eye sees its perspective of a scene (Berkel et al.,

1996a). Fig. 1·2 shows a two-view autostereoscopic lenticular display. A lenticular

automultiscopic display works on the same principle except that the number of

views is greater than two. In a multiscopic display, the position of an observer

determines the pair of views seen. Several improvements have been made since

the first lenticular display was designed. The improved lenticular automultiscopic

displays use slanted lenticular sheets, and offer increased number of views, as

well as higher resolution of individual views. The lenticular displays still have

the disadvantage of repeating view zones, reduced individual view resolution, and

crosstalk between views. This latter problem has been solved by designing a

display in which optical crosstalk between adjacent views does not manifest itself

in inter-ocular crosstalk (Berkel and Clarke, 1997). This can be achieved if a

display is designed so that non-adjacent views, for example views 1 and 3, are

presented to the left and right eyes respectively. Such a design may suffer from

optical crosstalk between the views but reduces inter-ocular crosstalk considerably

(Berkel and Clarke, 1997).

The biggest advantage of lenticular displays is that they provide multiple views

and hence an observer can experience ”look-around”. The number of views in displays

available on the market today varies from 4 to 16 (Dodgson, 2005). The number of

views greater than two also provides motion-parallax depth cue which is an important

monocular depth cue. The greatest advantage of lenticular displays is that they provide

multiple views using normal LCD screen and a lenticular sheet. The ever-increasing

performance of lenticular displays, due to availability of higher resolution LCDs and

cheaper high-performance graphics hardware on desktops make them a viable solution
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for the mass market.

1.3 Previous Work

In an automultiscopic display, a lenticular sheet made up of microlenses is placed over

the display to refract light from pixels into different angular zones in front of the screen.

It is possible to map visibility of each pixel on the screen to a particular angular zone.

This allows us to spatially multiplex view images in a way that each eye sees a par-

ticular view image. However, due to the downsampling process associated with spatial

multiplexing of images, aliasing effects such as Moiré patterns, spurious color dots,

and distorted texture patterns are visible (Konrad and Agniel, 2006). To eliminate the

aliasing artifacts, it is necessary that each view image be suitably pre-filtered before

multiplexing (Konrad and Agniel, 2003). In early lenticular displays, a lenticular sheet

was placed vertically over a pixel-addressable screen. The displays however suffered

from two major problems: the resolution of individual views was poor in the horizontal

direction and a black mask between pixels was visible between view transitions (Berkel,

1999). Slanting the lenticular sheet at a small angle can solve both problems. The slant-

ing of lenticular sheet makes the black mask equally visible from every position thereby

making it invisible to the observer. Similarly, slanting allows a designer to achieve a

balance between horizontal and vertical resolutions of each view. Another advantage

of slanting the lenticular sheet is that the view flipping becomes a continuous process

so that there are no visible boundaries between the views that would otherwise exist

(Berkel and Clarke, 1997).

The advantages offered by using a slanted lenticular sheet make it a desirable design

feature in lenticular automultiscopic display designs. However, making a lenticular sheet

slanted makes the individual view pixel distribution irregular. This irregularity in pixel

distribution for each view makes the downsampling process, inherent in the multiplexing
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of images, quite complicated. The multiplexing of images now requires an image to be

downsampled from an orthogonal sampling grid to an irregular sampling grid.

The anti-alias filter design for downsampling an image from an orthogonal sampling

grid to another orthogonal sampling grid is trivial and has been discussed widely in

literature. Dubois (Dubois, 1985) first introduced the method to design an anti-alias

filter for a downsampling process in which an image is being downsampled from a regular

sampling grid to another regular sampling grid. He introduced the concept of sampling

structures based on lattices and used the concept to develop a framework in which

sampling structure conversion along with anti-aliasing filter design was possible. The

sampling structures which Dubois dealt with were limited to regular sampling structures.

However, the view pixels in slanted lenticular displays are far from regular. With this

problem in mind, Konrad and Agniel developed a design method in which an irregular

sampling structure was approximated with regular sampling structures such as orthog-

onal lattices (Konrad and Agniel, 2003), non-orthogonal lattices (Konrad and Agniel,

2004) and a union of cosets (Konrad and Agniel, 2006).

In this research, they developed a cost function to measure how close a regular sam-

pling structure model was to an irregular sampling structure. An exhaustive search was

performed to minimize the cost function by varying the model parameters. Once an

approximate regular sampling structure was found, a design of an anti-alias filter was

performed using the multidimensional signal processing theory developed by Dubois

(Dubois, 1985). The anti-alias filters designed were found to be quite effective in remov-

ing aliasing artifacts from multiplexed images. Since the method proposed by Konrad

and Agniel performs an exhaustive search of parameters, the computational complexity

of designing a filter is quite high (Agniel, 2004). Also the method involves approximat-

ing an irregular sampling structure with a regular sampling structure. It is desirable to

have a filter design process where the amount of computational complexity associated
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with the design is reduced and irregular sampling structures are handled directly.

In an ideal stereoscopic device, the right eye should only see a right-eye image and

no left-eye image, and vice versa for the left eye. For a real stereoscopic system, this is

not true. Some amount of the left-eye image is seen by the right eye and vice versa. The

amount and source of crosstalk varies from system to system (Pommeray et al., 2003).

For example, time-sequential displays suffer from crosstalk due to phosphor persistence

and shutter leakage, whereas lenticular displays suffer from crosstalk due to optics.

The crosstalk between views reduces image quality, causes eye strain and headache

to an observer and influences conspicuity of ghost images at object boundaries. The

conspicuity of ghost images is also more prominent for an image with bright region

against a dark background (Pommeray et al., 2003). Hsu (Hsu et al., 1994) proposed

that crosstalk is visible only if it is different from stimuli by more than 14 percent.

There have been efforts to reduce crosstalk by using short phosphor persistence in liquid

crystal (LC) shutter glasses systems (Woods and Tan, 2002). Another approach taken

by Berkel (Berkel and Clarke, 1997) to reduce crosstalk in lenticular display systems is

to project non-adjacent views on left and right eye. This method does not reduce the

optical crosstalk between the views but reduces the inter-ocular crosstalk.

The idea to reduce crosstalk by pre-processing view images was first proposed by

Lipscomb in 1994 (Lipscomb and Wooten, 1994). The method suggested was to raise the

background from black to grey and subtract the ghosts before the projection of images

onto the screen. The technique was fairly successful in eliminating ghosts. Similar

crosstalk cancellation techniques were proposed by Kilmenko (Klimenko et al., 2003a)

and Pommrey (Pommeray et al., 2003) for polarized glasses. Pommrey, apart from

developing a crosstalk cancellation method, also proposed a quantitative measure SGR

(signal-to-ghosting ratio) to measure the amount of crosstalk between the views. The

research also exploited the fact that the SNR (signal-to-noise ratio) of a stereo pair
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with correlated noise is lower than that of a stereo pair with uncorrelated noise. So it

is possible to reduce the SNR of individual view images but increase the SGR ratio of

stereo images (Pommeray et al., 2003), thereby increasing the overall 3-D quality for an

observer. Konrad (Konrad et al., 2000) proposed a method to reduce crosstalk between

the views in time-sequential displays. The basic principle is similar to one proposed

by Lipscomb (Lipscomb and Wooten, 1994), but the crosstalk measurement is done by

psychovisual experiments. Also, the crosstalk model used is non-linear and uses lookup

table in its crosstalk cancellation algorithm, making it computationally efficient. The

results obtained were quite encouraging in terms of improvement in 3-D visual experience

of viewers.

Most of the crosstalk cancellation efforts to date have been restricted to stereoscopic

displays. There have been no efforts so far in spatially-multiplexed multiscopic displays.

This is because the crosstalk model in spatially-multiplexed multiscopic displays be-

comes complicated. However, we believe it is worthwhile to study the effectiveness of

simple linear crosstalk models in crosstalk cancellation in spatially-multiplexed multi-

scopic displays.
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Chapter 2

Computing Reciprocal Sampling Structures

2.1 Reciprocal Sampling Structure

The sampling of an image involves specification of image intensity or color over some

predefined discrete set of points in 2-D space referred to as sampling structure. One ex-

ample of periodic sampling structure is a lattice. The predefined periodic sets of points

are known as lattices, a term borrowed from solid state physics. The theory of sampling

multidimensional signals on a lattice was proposed by Peterson in 1962 and developed

further by Gaarder in 1972 (Dubois, 1985). A detailed review of multidimensional

sampling theory discussing sampling of multidimensional signals, Fourier transform rep-

resentations, sampling of continuous signals, and conversion between different sampling

structures was done by Dubois (Dubois, 1985). The sampling of images has been satis-

factorily studied as the multiplication of the continuous signals by a predefined train of

Dirac delta functions. A very important concept in multidimensional sampling theory

is the concept of reciprocal lattice (Dubois, 1985). The idea of reciprocal lattice makes

the frequency domain representation simpler. The method to compute reciprocal lattice

was developed by Dubois for regular lattices such as orthogonal lattices, non-orthogonal

lattices, and union of cosets. Later, Konrad and Agniel (Konrad and Agniel, 2006)

presented a method to compute reciprocal structure for irregular sampling structure by

approximating the irregular sampling structure using union of cosets. The proposed

method could compute the reciprocal lattice for irregular sampling structure approxi-
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mately but was a computationally demanding procedure. In this chapter, we introduce

and develop a generic method to compute reciprocal lattice which works for lattices,

unions of cosets and irregular sampling structures. The method is not only computa-

tionally less complex for irregular sampling structures than the method proposed by

Konrad and Agniel (Konrad and Agniel, 2006) but also computes a mathematically ac-

curate reciprocal structure. We propose the idea of using Fourier transform to compute

an accurate reciprocal structure. We first prove that computing the 2D Fourier trans-

form of a sampling structure, in the case of orthogonal lattice, indeed results in reciprocal

lattice structure and we also prove that it works for union of cosets. In the following

section, we demonstrate that 2D transform of lattice structure results in corresponding

reciprocal lattice structure.

2.2 Reciprocal Structure

A lattice Γ in RN is the set of all linear combinations of basis vectors v1,v2, ...,vN with

integer coefficients.

Γ = {n1v1 + n2v2 + ... + nNvN : ni ∈ Z, i = 1, 2, ..., N} (2.1)

The quantity d(Γ), determinant of the lattice Γ, physically represents the reciprocal of

the sampling density. The definition of reciprocal lattice as defined in (Dubois, 1985)

is “Given a lattice Γ, the set of all vectors y such that yTx is an integer for all x ∈ Γ

is called the reciprocal lattice Γ∗ of the lattice Γ.” Dubois also proved that a signal

sampled on Γ would have its frequency spectrum replicated at each point in Γ∗.

The definition of reciprocal structure was left open for sampling structure other than

lattices and unions of cosets. In this section, we introduce the concept of reciprocal

structure in general case including, lattices and union of cosets. Let u(x) be a real-

time continuous signal and U(f) be its frequency spectrum. If we sample a real-time
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continuous signal u(x) on sampling structure Ψ, then

u(x)φ(x) = us(x) (2.2)

This means φ(x) is a signal which is non-zero at the points x ∈ Ψ. The spectrum

of sampled signal us(x) must be periodic in nature. Let Us(f) be the spectrum of the

sampled signal, then we have

U(f) ∗ Φ(f) = Us(f) (2.3)

where ∗ denotes convolution, and we can define a reciprocal structure Ψ∗ as a set of

vectors f for which Φ(f) is non-zero. Each point f in reciprocal structure is associated

with gain of Φ(f). Mathematically,

Ψ∗ =
{

f; Φ(f) 6= 0, f ∈ RN
}

(2.4)

This definition of reciprocal structure is consistent with the definition of reciprocal

structure for lattices and unions of cosets (Dubois, 1985) and can be used to define

reciprocal structure for an arbitrary sampling structure. The gain values in the case

of reciprocal lattice would be 1 and can be ignored. We will use this definition of

reciprocal sampling structure in this thesis. Using equation (2.3) and (2.2), we claim

that it is possible to compute reciprocal structure by calculating Fourier transform of

signal φ(x), which is non-zero at points belonging to the sampling structure Ψ.

2.3 Reciprocal Structure of Lattice

The paper by Dubois (Dubois, 1985) discusses ways to compute the reciprocal structure

for lattices and unions of cosets. All the sampling structures discussed by Dubois are

periodic in nature (Dubois, 1985). However difficulty arises when the sampling pattern
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of an image is not periodic. A method to compute reciprocal structure for an aperiodic

sampling structure was proposed by Konrad and Agniel (Konrad and Agniel, 2006).

However the method proposed was computationally demanding and gave mathematically

approximate solution. In this section, we propose a computationally less expensive, more

precise method of computing reciprocal structure of periodic and aperiodic sampling

structures. We first develop the method for lattices and then develop it for union of

cosets and aperiodic structures.

Let Λ be a lattice of which we want to compute reciprocal lattice. Let Γ be an

underlying denser orthogonal lattice such that Λ ⊂ Γ; Γ, Λ ⊂ RN . Let us define a signal

φ(x) over lattice Γ as,

φ(x) =















1, forx ∈ Λ

0, for x /∈ Λ, x ∈ Γ

(2.5)

The discrete-space Fourier transform of φ(x) can be defined as (Dubois, 1985),

F{φ(x)}(f) =
∑

x∈Γ

φ(x)e−j2πf
T
x, f ∈ RN (2.6)

F{φ(x)}(f) =
∑

x∈Λ

φ(x)e−j2πf
T
x +

∑

x/∈Λ,x∈Γ

φ(x)e−j2πf
T
x, f ∈ RN (2.7)

Since φ(x) = 0 for x /∈ Λ , x ∈ Γ; we have

F{φ(x)}(f) =
∑

x∈Λ

φ(x)e−j2πf
T
x, f ∈ RN (2.8)

As φ(x) = 1 for all x ∈ Λ, we get

F{φ(x)}(f) =
∑

x∈Λ

e−j2πf
T
x (2.9)
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Since x is the set of all vectors in lattice Λ, we can write x as

x = Vn

where V is the sampling matrix of Λ and n ∈ ZN . The sampling matrix V is of

dimensions N × N .

Substituting the value of x in equation (2.9) we get,

F{φ(x)}(f) =
∑

x∈Λ

e−j2πf
T
Vn (2.10)

F{φ(x)}(f) =
∑

n

e−j2π(VT
f)

T
n (2.11)

To simplify equation (2.11), we make the following substitution.

VT f = m (2.12)

Since f ∈ RN and V is the sampling matrix of Λ, we must have m ∈ RN .

F{φ(x)}(m) =
∑

n

e−j2πmT n (2.13)

Φ(m) =
∑

n

e−j2πmT n (2.14)

Since m = [m1m2...mN ]T , n = [n1n2...nN ]T , we have

=
∑

n1

∑

n2

...
∑

nN

e−j2π(m1n1+m2n2+...+mNnN ) (2.15)

= (
∑

n1

e−j2πm1n1)(
∑

n2

e−j2πm2n2)...(
∑

nN

e−j2πmNnN ) (2.16)
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Now we need to prove that
∑

n1
e−j2πm1n1 is the same as a train of Dirac delta functions

i.e.

S(m1) =
∑

n1∈Z

e−j2πm1n1 =
∑

k1

δ(m1 − k1), k1 ∈ Z (2.17)

The mathematical proof of this is beyond the scope of this thesis and can be found

in introductory book on generalized functions by Zemanian (Zemanian, 1987) and hand-

book on generalized functions by Zayed (Zayed, 1996).

Using equation (2.16) and equation (2.17) we can write,

Φ(m) =
∑

k1

δ(m1 − k1)
∑

k2

δ(m2 − k2)...
∑

kN

δ(mN − kN), k1, k2, ..., kN ∈ Z (2.18)

Φ(m) =
∑

k1

∑

k2

...
∑

kN

δ(m1 − k1)δ(m2 − k2)...δ(mN − kN), k1, k2, ..., kN ∈ Z (2.19)

Φ(m) =
∑

k1

∑

k2

...
∑

kN

δ(m1 − k1,m2 − k2, ...,mN − kN), k1, k2, ..., kN ∈ Z (2.20)

Using equation (2.14) and (2.20), we get

Φ(m) =
∑

n

e−j2πmT n =
∑

k

δ(m − k),n ∈ ZN , k ∈ ZN (2.21)

Substituting for m from equation (2.12), we get

Φ(f) =
∑

n

e−j2πf
T
Vn =

∑

k

δ(VT f − k), k ∈ ZN (2.22)

Using scaling property of Dirac delta function, we get

Φ(f) =
1

|det(V)|
∑

k

δ(f − (V−1)Tk), k ∈ ZN (2.23)
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This shows that Φ(f) is zero everywhere except at values of f such that f = (V−1)Tk

and k ∈ ZN . If we sample any continuous signal over lattice Λ, then the Fourier

transform of the sampled signal is the superposition of original spectrum replicated at

set of points defined by f = (V−1)Tk. This means that this set of points represents

reciprocal structure of lattice Λ. This proves that the discrete-space Fourier transform

of signal φ(x), as defined in equation (2.5), results in the corresponding reciprocal lattice

structure.

2.4 Reciprocal Structure of Union of Cosets

A union of cosets is a sampling structure defined as a union of several shifted lattices.

Let Λ and Γ be lattices. Λ is a sublattice of Γ if every point of Λ is also a point of Γ.

For any ci ∈ Γ, ci /∈ Λ, the set ci + Λ = {ci + x|x ∈ Λ} is called a coset of Λ ∈ Γ.

Let us consider a structure Ψ as a union of selected P cosets of a sublattice Λ in an

orthonormal lattice Γ. Mathematically we can write Ψ as:

Ψ =
P
⋃

i=1

(ci + Λ) (2.24)

We define a signal

φ(x) =















1, forx ∈ Ψ

0, forx /∈ Ψ, x ∈ Γ

(2.25)

The next step is to compute the Fourier transform of the signal φ(x) over the orthogonal

lattice structure Γ,

Φ(f) =
∑

x∈Γ

φ(x)e−j2πf
T
x, f ∈ RN (2.26)
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Φ(f) =
∑

x∈Ψ

φ(x)e−j2πf
T
x +

∑

x/∈Ψ,x∈Γ

φ(x)e−j2πf
T
x, f ∈ RN (2.27)

Since φ(x) = 0 for x /∈ Ψ, x ∈ Γ, we have

Φ(f) =
∑

x∈Ψ

φ(x)e−j2πf
T
x, f ∈ RN (2.28)

Using equation (2.24) and (2.28), we can write

Φ(f) =
P

∑

i=1

∑

x∈Λ

φ(ci + x)e−j2πf
T
x, f ∈ RN (2.29)

Using the time-shift property of the Fourier transfrom, we get

Φ(f) =
P

∑

i=1

ej2πf
T
ci

∑

x∈Λ

φ(x)e−j2πf
T
x, f ∈ RN (2.30)

Since φ(x) = 1 for all x ∈ Ψ, we get

Φ(f) =
P

∑

i=1

ej2πf
T
ci

∑

x∈Λ

e−j2πf
T
x, f ∈ RN (2.31)

Since x ∈ Λ, we can write x = Vn, n ∈ ZN ; where V is the sampling matrix of lattice

Λ

Φ(f) =
P

∑

i=1

ej2πf
T
ci

∑

n

e−j2πf
T
Vn, f ∈ RN (2.32)

Using equation (2.22) and (2.32), we get

Φ(f) =
P

∑

i=1

ej2πf
T
ci

∑

k∈ZN

δ(VT f − k), f ∈ RN (2.33)

Φ(f) =
1

|det(V)|

P
∑

i=1

ej2πf
T
ci

∑

k∈ZN

δ(f − (V−1)Tk), f ∈ RN (2.34)
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Φ(f) =















1
|det(V)|

∑P
i=1 ej2πf

T
ci , f = (V−1)Tk, k ∈ ZN

0, elsewhere.

(2.35)

The reciprocal structure is defined as a set of points where replication of spectrum,

sampled on Ψ, happens. For replication of spectrum to happen Φ(f) should be non-zero.

Therefore, reciprocal structure Ψ∗ can be written as:

Ψ∗ =
{

r : Φ(r) 6= 0, r ∈ RN
}

(2.36)

Since Φ(r) = 0 except for r = (V−1)Tk, k ∈ ZN , we can write

Ψ∗ =
{

r : Φ(r) 6= 0, r = (V−1)Tk, k ∈ ZN
}

(2.37)

Since r = (V−1)Tk and k ∈ ZN , then r ∈ Λ∗ because V is the sampling matrix of

lattice Λ. We can write the above expression as follows:

Ψ∗ = {r : Φ(r) 6= 0, r ∈ Λ∗} (2.38)

The reciprocal structure obtained by Dubois (Dubois, 1985) for the same sampling

pattern Ψ being union of selected P cosets of a sublattice Λ in a lattice Γ, is as follows:

Ψ∗ = {r : g(r) 6= 0, r ∈ Λ∗} (2.39)

where g(r) = 1
|det(V)|

∑P
i=1 ej2πrT ci .

We compare the reciprocal structure of Ψ obtained by computing the Fourier trans-

form of signal φ(x) in equation (2.38) with the one obtained by Dubois in equation (2.39).

We see that both are defined over a set of vectors r ∈ Λ∗, and that over Λ∗ the functions

Φ(r) and g(r) are equivalent. This means that reciprocal structures Ψ∗ are equivalent

in these two cases.
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Hence we claim that it is possible to compute the reciprocal structure for a union of

cosets sampling structure by computing the Fourier transform of the signal φ(x) defined

in equation (2.25).

2.5 Reciprocal Structure of Irregular Sampling Structure

In this section, we compute reciprocal structure of a finite irregular sampling structure.

A finite irregular sampling structure is a sampling structure which has finite number

of irregularly-distributed sample points. Since each pixel in a finite irregular sampling

structure is irregularly distributed, each pixel needs to be described by a coset in an

orthonormal lattice. So the number of cosets required to describe the structure is equal

to the number of sampling points in the sampling structure.

Let us define a finite orthonormal sampling structure ϕ of dimension M × N such

that ϕ ∈ Γ, Γ being an orthonormal lattice. We define a sampling structure Υ with P

sample points irregularly-distributed over the orthonormal sampling structure ϕ. Let us

consider a sublattice Λ of Γ which is MN times sparser than lattice Γ. We can describe

a sampling structure Ψ, such that Υ ∈ Ψ, as a union of selected P cosets of sublattice

Λ in lattice Γ.

Ψ =
P
⋃

i=1

(ci + Λ) (2.40)

We define a signal

φ(x) =















1, forx ∈ Ψ

0, forx /∈ Ψ, x ∈ Γ

(2.41)

We observe that this signal is the same as the signal for unions of cosets case and hence

the results would be also valid for unions of cosets would be valid for this case also. We
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use the results of unions of cosets from previous section (eq. 2.37):

Ψ∗ =
{

r; Φ(r) 6= 0, r = (V−1)Tk, k ∈ ZN
}

(2.42)

Since Υ ∈ Ψ, the reciprocal structure of Ψ is the same as the reciprocal structure Υ

as location of sample points outside of ϕ is of no consequence. The reciprocal structure

of Υ for all practical purposes is same as Ψ. Hence,

Υ∗ =
{

r; Φ(r) 6= 0, r = (V−1)Tk, k ∈ ZN
}

(2.43)

2.6 Using the Fourier transform for Computing Reciprocal Lat-

tice Structure

In this section, we will use some examples to validate the results proposed in this chapter.

We take four different sampling structures and demonstrate the validity of the results.

Let Ψ be the sampling structure of which we want to compute reciprocal sampling

structure. We generate a matrix which contains either 1 or 0 for all sample points. The

elements of matrix which belong to Ψ are assigned value of 1 and all other elements

of matrix are assigned zero value. We then compute the discrete Fourier transform

(DFT) of the matrix. The resulting matrix gives us reciprocal sampling structure Ψ∗.

An element of matrix belongs to the reciprocal structure if it is not zero. Using this

method, we compute the reciprocal structure for four different cases.

(a) Orthogonal lattice: Let us define the underlying orthonormal lattice Γ with the

sampling matrix as follows:

VΓ =





1 0

0 1



 (2.44)
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and let Λ be the orthogonal lattice with the sampling matrix given below:

VΛ =





2 0

0 1



 (2.45)

Fig. 2·1 (a) shows lattices Γ and Λ. Fig. 2·1 (b) shows reciprocal lattice Λ∗ and

the associated Voronoi diagram. A Voronoi diagram is a diagram in which every point

x ∈ RN is assigned to its nearest neighborhood point y ∈ Ψ∗ (Aurenhammer, 1991). A

Voronoi cell associated with point y can be defined as:

V (y) = {x : |x − y| ≤ |x − k|, for allk ∈ Ψ∗\ y} (2.46)

A Voronoi diagram is sometimes also known as nearest-neighbor diagram. A Voronoi

cell associated with vector 0 is a special Voronoi cell in the sense that it tells us how

spectrum should be confined in order to avoid aliasing. A Voronoi cell associated with

vector 0 is also known as the Nyquist area.

(b) Nonorthogonal lattice: Let Λ be a non-orthogonal lattice with the sampling

matrix given below:

VΛ =





0 2

2 1



 (2.47)

The Fig. 2·2 (a) shows lattices Γ and Λ. Fig. 2·2 (b) shows reciprocal lattice Λ∗ and

the associated Voronoi diagram.

(c) Union of cosets: Let Ψ be the union of cosets of lattice Λ in lattice Γ.

Ψ = Λ ∪ (c + Λ) (2.48)
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Figure 2·1: (a) Orthogonal lattice Λ (×) along with the underlying or-
thonormal lattice Γ (·), (b) reciprocal structure Λ∗ (×) to the orthogonal
lattice.
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Figure 2·2: (a) Non-orthogonal lattice Λ (×) along with underlying
orthonormal lattice Γ (·), (b) reciprocal structure Λ∗ (×) to the non-
orthogonal lattice.



26

with the sampling matrix of Λ given below:

VΛ =





0 2

2 1



 (2.49)

c =





1

0



 (2.50)

The Fig. 2·3 (a) shows lattices Γ and unions of cosets Ψ. Fig. 2·3 (b) shows reciprocal

sampling Ψ∗ and the associated Voronoi diagram.
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Figure 2·3: (a) Union of cosets Ψ (×) along with the underlying or-
thonormal lattice Γ (·), (b) reciprocal structure Ψ∗ (×) to the union of
cosets sampling structure.

d) Random Sampling: A random sampling structure Ψ is defined with respect to

the orthonormal sampling structure Γ. The sample points are irregular and cannot be
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defined using a union of cosets. The sample points were randomly generated. The

reciprocal structure of Ψ is computed using 2D Fourier transform. The results were

thresholded using 0.2 as the threshold for visual clarity. The Fig. 2·4 (a) shows lattices

Γ and sampling structure Ψ. Fig. 2·4 (b) shows reciprocal sampling structure Ψ∗ and

the associated Voronoi diagram.
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Figure 2·4: (a) Random sampling structure Ψ (×) along with underlying
orthogonal lattice Γ (·), (b) Reciprocal structure Ψ∗ (×) to the random
sampling structure.

The results obtained for all examples would be the same had they been computed

using the methods proposed by Dubois (Dubois, 1985). In the last example, the results

obtained would be the same if we were to model it as a union of cosets and each coset

would contain just one sample point. The results in this chapter show that a reciprocal

structure for any sampling structure can be computed efficiently by applying discrete

space Fourier transform to signal φ(x), which is 1 at points which belong to the sampling

structure and zero elsewhere.
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Chapter 3

Crosstalk-Aware Sampling Structure

3.1 Sampling Model for Automultiscopic Displays

Automultiscopic displays simulate the binocular disparity depth cue by projecting dis-

tinct image to each eye. The views are multiplexed in such a way that left and right

views of the scene are projected on the left and right eyes, respectively. This stereo

pair of images allows human visual system to perceive depth, an important cue for 3-D

visualization.

The automultiscopic displays available on the market suffer from crosstalk between

views. This means that a portion of left view of a scene is visible to the right eye with

reduced intensity and vice versa (Klimenko et al., 2003a). As a result, the user observes

ghost images at object boundaries which interferes with 3-D perception of the image

(Konrad et al., 2000). The presence of crosstalk, in automultiscopic displays, increases

the perceived resolution of the image as shown in Fig 3·1 as compared to the case

without crosstalk in Fig 3·2. The image with crosstalk seems to be of better quality and

contains a lot more details as claimed by Berkel (Berkel and Clarke, 1997). The increase

in perceived resolution of the image should be taken into account while designing anti

alias filters for the subsampling operation.
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(a)

Figure 3·1: Image with crosstalk from other views. Number of views =
4. crosstalk coefficient = 0.5
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(a)

Figure 3·2: Image with no crosstalk from other views. Number of views
= 4.
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3.2 Perceived Sampling

As discussed in the previous section, there is an increase in perceived resolution of the

image due to crosstalk. This increase should be taken into account in designing the

antialiasing filters using subsampling operation. The effect of increased perceived reso-

lution can be incorporated into the design of antialias filters by modeling the crosstalk

present in the displays. In this section, we develop mathematical foundation of perceived

sampling and analyze its effect on frequency of support. For a given sampling structure,

we define its frequency of support as a range of frequencies which do not undergo any

aliasing during sampling of a signal. Though all our discussion will be limited to 1-D

sampling, the results are also valid for 2-D sampling of images.

The subsampling of a 1-D discrete-time signal can be considered to be the multiplica-

tion of a discrete signal with a train of Kronecker delta impulses. This can be considered

as normal subsampling operation without taking into account any crosstalk effect. To

incorporate crosstalk into our model, we would have to include an impulse function with

magnitude equal to the crosstalk coefficient. The train of sampling impulses for both

sampling without crosstalk and with crosstalk are shown in Fig 3·3.

In the subsequent mathematical model, we assume that our display has N views and

that there is subsampling only in horizontal direction. The views are at regular interval

in space and there is no crosstalk between the views.

The subsampling pattern (train of impulses that multiplies the discrete signal) for

each view without considering crosstalk can be mathematically expressed as follows:

x(t) =
+∞
∑

n=−∞

δ(t − nN), for t ∈ Z (3.1)

where, N is the time or physical spacing between two adjacent pixels/Kronecker impulses

in one view.
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Figure 3·3: (a) Sampling pattern without crosstalk (b) Sampling pattern
with crosstalk

The Fourier transform of the above train of unit impulses is:

X(ω) =
2π

N

+∞
∑

n=−∞

δ(ω − 2π

N
n) (3.2)

This can be also written as:

X(f) =
1

N

+∞
∑

n=−∞

δ(f − 1

N
n) (3.3)

In this case, the discrete signal can represent frequencies up to 1
2N

without any

aliasing and we would need to filter any frequencies greater than 1
2N

before subsampling.

Now we consider the case in which display suffers from crosstalk between the views.

If we assume N views in our monitor, N being odd, then we have crosstalk from M =

(N +1)/2 views from each side. The perceived sampling in this case can be represented

as the sum of impulse trains with different amplitudes and phase shifts.

Given below are mathematical expressions of sampling for each of the views. As-
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suming view M is intended, the crosstalk coefficients between the intended view M and

views M +1, M +2, ..., 2M −1 are a1, a2, ..., aM−1, respectively. Assuming the crosstalk

into the intended view from spatially symmetric views to be equal, the crosstalk coeffi-

cients between the intended view M and views M − 1, M − 2, ..., 1 are a1, a2, ..., aM−1,

respectively. It is assumed that the intended view is seen at full brightness implying

that a0 is equal to 1. The values of crosstalk coefficients ai lie between 0 and 1.

View M (intended view) is seen at full brightness:

xM(t) =
+∞
∑

n=−∞

δ(t − nN) (3.4)

Crosstalk from view M + 1 has gain of a1:

xM+1(t) = a1

+∞
∑

n=−∞

δ(t − nN + 1) (3.5)

Crosstalk from view M − 1 has gain of a1:

xM−1(t) = a1

+∞
∑

n=−∞

δ(t − nN − 1) (3.6)

.

.

.

Crosstalk from view 2M − 1 has gain of aM−1:

x2M−1(t) = aM−1

+∞
∑

n=−∞

δ(t − nN + M − 1) (3.7)
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Crosstalk from view 1 has gain of aM−1:

x1(t) = aM−1

+∞
∑

n=−∞

δ(t − nN − M + 1) (3.8)

The contribution of all pixels to the perception of the intended view can be modeled

as sampling of full image by the following train of impulses.

xnet(t) = x1(t) + x2(t) + ... + x2M−1(t) (3.9)

The Fourier transform of xnet(t) can be written as:

X(f) =
1

N

+∞
∑

n=−∞

δ(f− n

N
)[1+2a1 cos(2πf)+2a2 cos(4πf)+ ...+2aM−1 cos((M−1)2πf)]

(3.10)

For f = 0, all the components are in phase:

X(f) =
1

N
[1 + 2a1 + 2a2 + ... + 2aM−1] (3.11)

At f = 1
N

, we have

X(f) =
1

N
[1 + 2a1 cos(

2π

N
) + 2a2 cos(

4π

N
) + ... + 2aM−1 cos((M − 1)

2π

N
)] (3.12)

Now, we have the original signal at f = 0 and nearest alias at f = ± 1
N

. The original

signal at f = 0 has greater energy than the nearest aliases and this would allow us to

relax the filter bandwidth to a greater degree than 1
N

before subsampling. The exact

filter bandwidth would depend on the number of views N in the display.

We will present an example of automultiscopic display with N = 3 views. The value

of M is 2 in this case. The crosstalk coefficient a1 is 0.6285. The comparison of the

original signal energy for display with and without crosstalk is shown in Fig 3·4. The

nearest alias component, in case of no crosstalk, has the same energy as the original
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signal. In the case with crosstalk, the signal energy of alias signal is less than the

original signal energy by approximately 84 percent.
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Figure 3·4: Original and nearest alias signal energy: (a) without crosstalk
(b) with crosstalk (N = 3)

3.3 Computing Filter Bandwidth Using Image Covariance Mod-

els

In the normal subsampling case, the aliasing signal has the same energy as the original

signal. So it is easy to compute the ideal antialias filter bandwidth which is exactly

mid-way between the original signal center frequency and alias signal center frequency.

However, in the case of crosstalk the energy in the alias signal is different from the

original signal energy. To compute the filter bandwidth in this case, we need to make

some reasonable assumptions about image properties. We will use a covariance model

to statistically approximate the actual image data.

The covariance model is based on the assumption that the closer the pixels are in an
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image, the more correlated they are. It is possible to use exponential autocorrelation

models to model natural and computer-generated images quite precisely.

The separable exponential autocorrelation model can be expressed mathematically

as follows:

Ru[m1,m2] = ρ
|m1|
1 ρ

|m2|
2 (3.13)

Since the model is separable, the one dimensional equivalent of the above equation

can be written as:

Ru[m] = ρ
|m|
1 (3.14)

The Fourier transform of exponential function is:

F{e−2πf0|x|}(f) =
1

π

f0

f 2 + f 2
0

(3.15)

Using equations (3.14) and (3.15), we compute the power spectral density, which is

the Fourier transform of auto correlation Ru, of the image:

F{ρ|m|
1 }(f) =

1

π

f0

f 2 + f 2
0

(3.16)

where f0 = −1
2π

ln(ρ1).

We are sampling a 1-D signal with power density spectrum given in equation (3.16).

This signal is sampled by a train of impulse functions with frequency spectrum such as

one shown in Fig. 3·4(b). As sampling of a signal in time domain is a multiplication

operation, it results in a convolution operation in frequency domain. This leads to copies

of Fourier transform centered at f = 0, ± n
N

, n ∈ Z. The mathematical expression of

Fourier transform centered at f = 0 is f0

f2+f2

0

. Similarly a copy of Fourier transform

centered at f = 1/N is Af0

(1/N−f)2+f2

0

, where A is a gain factor defined as the ratio of

nearest alias signal energy to the original signal energy. We can define A mathematically
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as:

A =
X(f)f= 1

N

X(f)f=0

(3.17)

Using this information we find the filter cutoff frequency.

In order to minimize aliasing from repeat spectra while maximally preserving spectral

content of the original signal, we propose to define the cut-off frequency fc of the filter

as a frequency for which the repeat spectrum equals the original spectrum, expressed as

follows:

f0

f 2 + f 2
0

=
Af0

( 1
N
− fc)2 + f 2

0

(3.18)

Solving the above equation, we get the following cut off frequency,

fc =















+( 2

N
)±
√

( 2

N
)2−4{1−A}{( 1

N
)2+f2

0
−Af2

0
}

2(1−A)
, for A 6= 1

1
N

, for A = 1

(3.19)

where f0 = −1
2π

ln(ρ1).

If we substitute A = 1, then the above bandwidth of filter would reduce to the no-

crosstalk case. Another Another observation is that A is always less than 1 which means

the bandwidth of filter for displays with crosstalk will always be greater than for those

with no crosstalk. This would allow us to relax the bandwidth of antialiasing filter.

Let us demonstrate this by an example. Assume N = 3 views and let us choose our

ρ1 = 0.9 and a1 = 0.6285 . For this specification, we would have

A = 0.165, f0 = 0.0168 (3.20)

The frequency-domain representation of signal for no-crosstalk and crosstalk case is

shown in Fig 3·5. Solving the above equations for antialias filter cut-off frequency we
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get fc = 1/1.78 which is significantly larger than 1/3. This validates our argument that

crosstalk aware anti-alias filter would be less restrictive.
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Figure 3·5: Original and nearest alias signal energy: (a) without
crosstalk, filter bandwidth = 0.33 (b) with crosstalk, filter bandwidth
=0.56
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Chapter 4

Design of Anti-alias Filters

In this chapter, we discuss the measurement of crosstalk between views for Synthgram

SG202 lenticular display. We use these crosstalk measurements and sampling structures

of individual views to generate the perceived sampling structure and its corresponding

reciprocal sampling structure. Due to crosstalk from other views, an observer is able

to see some pixels which do not belong to the intended view. If we include these extra

pixels in our sampling structure; this new modified structure is termed as a “perceived”

sampling structure. Using this reciprocal sampling structure along with the image co-

variance model, we compute the frequency response of desired anti-alias filter. We then

proceed to design a two-dimensional anti-alias filter matching the desired frequency re-

sponse. We use the anti-alias filter to filter the individual views before interzigging them.

In the end, we present and discuss the results of using anti-alias filter on interziged 3-D

images.

4.1 Measurement of Crosstalk

In this section, we describe and present the results of measurement of crosstalk in Syn-

thagram SG202 lenticular automultiscopic display. The resolution of this LCD display is

1600×1200 pixels. In this display, we have nine views each of which provides a different

perspective of a scene to the viewer. Each view has been assigned an approximately

equal number of pixels from the total of 1600 × 1200 pixels. The pixel assignment to

each view is quite irregular in space (Agniel, 2004). This is a desired property in lentic-
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ular displays because it reduces the Moiré effect, and has been achieved by slanting the

lenticular sheet at a small angle. However this irregular pixel mapping makes the task

of designing an appropriate anti-alias filter difficult.

In these monitors, even though a viewer is supposed to view a pair of intended views

from the total of 9 views, there is some leakage of light from neighboring views. This

modifies the visual experience of the viewer and in this section we make an effort to

quantify the amount of crosstalk between two views.

We used a digital camera to measure the amount of light emitted by our SG202

display. Since we measure a range of intensities using this camera, an experiment was

conducted first to establish linearity of the setup and of the measuring instruments. The

following are the steps of experiment conducted to verify the linearity of the camera:

1. In the first step, view number 1 was illuminated using white image (maximum

brightness of 255) and a camera was placed in such a way that it received the

maximum amount of light. The process of identifying the right location of camera

was done manually.

2. Once the location of the camera was fixed, the intensity with which the intended

view was illuminated was varied from 0 to 255. The amount of light captured by

the camera was measured for different levels of displayed intensities.

3. The plot of actual display intensity versus the received intensity is shown in Fig

4·1.

From the plot in Fig. 4·1, we can assume that our setup to measure the crosstalk

was reasonably linear except at the extreme end of the image intensity range.

We now describe the experiment to measure the crosstalk of the Synthagram lentic-

ular automultiscopic display SG202 using the same digital camera. The steps of exper-

iment are described below:
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1. Initially, view number 3 was displayed using a white image and the camera was

placed where it received the maximum amount of light. The process of identifying

the correct location of camera was done manually.

2. Once the location of the camera was fixed, all the views from view 1 to view 9

were illuminated and images of the display screen were captured with the camera.

These images were used to estimate the amount of light intensity captured by the

camera.

3. The above steps were repeated with the camera placed to capture different views.

All the above steps were performed in a darkroom where no other source of light was

present. The camera was in manual mode to keep aperture and focal length constant

during the measurement. The advantage of measuring the crosstalk using this method

is that it allows us to measure the spatial variation in crosstalk. Also it allows us to

measure crosstalk for each color; red, green, and blue simultaneously. The monitor

used for this experiment was the Synthagram SG202. Also an image of display without

any view being illuminated was captured to create a black reference for the crosstalk

calculation.

The crosstalk measurement results are shown in Tables 4.1 and 4.2.

View No. → 1 2 3 4 5 6 7 8 9

Crosstalk ratio: R 1.0 0.628 0.128 0.010 0.004 0.004 0.010 0.117 0.589

Crosstalk ratio: G 1.0 0.665 0.159 0.015 0.005 0.005 0.014 0.132 0.596

Crosstalk ratio: B 1.0 0.683 0.173 0.016 0.004 0.004 0.013 0.134 0.596

Crosstalk ratio: Y 1.0 0.656 0.151 0.014 0.004 0.004 0.012 0.127 0.594

Table 4.1: Crosstalk measurements with view 1 as center

From the above table of crosstalk measurements, we can make the following infer-

ences:
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View No. → 1 2 3 4 5 6 7 8 9

Crosstalk ratio: R 0.093 0.598 1.000 0.640 0.143 0.013 0.006 0.006 0.011

Crosstalk ratio: G 0.112 0.608 1.000 0.667 0.172 0.017 0.005 0.005 0.012

Crosstalk ratio: B 0.114 0.618 1.000 0.678 0.186 0.017 0.004 0.004 0.012

Crosstalk ratio: Y 0.106 0.605 1.000 0.660 0.164 0.015 0.005 0.004 0.011

Table 4.2: Crosstalk measurements with view 3 as center.

1. The amount of crosstalk for the three primary colors (red, green and blue) were

approximately equal. So we can just design our filter for one color and apply it

for other colors too.

2. The crosstalk is more or less spatially symmetric. The crosstalk from view 2 and

view 9 into view 1 is approximately the same. A Similar observation holds for

views 3 and 8, views 4 and 7, views 5 and 6.

3. The crosstalk for any view is a function of distance between them. For example,

view 1 and view 2 have the same crosstalk level as view 3 and view 4. Similarly,

crosstalk between view 1 and view 3 has the same crosstalk level as that between

view 3 and 5. This spatial invariance of crosstalk allows us to design a common

anti-alias filter for one view and use it for other views.

4.2 Perceived Sampling Structure

Using the crosstalk measurements given in the previous section and sampling structure

for individual views, we can create a perceived sampling structure for each individual

view of display SG202.

Fig 4·2(a) shows the pixel assignment of view 1. Since we know the amount of

crosstalk between the views, we can use the information to construct a perceived sam-

pling structure for view 1. Fig 4·2(b) shows the perceived sampling structure of view 1.

In Fig. 4·2(b), the set of pixels with crosstalk ratio less than 0.1 has been ignored for
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Figure 4·2: (a) Sampling structure of red color component of view 1, (b)
Percieved sampling structure of red color component of view 1 (For the
sake of visual clarity, only neighboring-view samples with crosstalk ratio
of 0.1 or more are shown).
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clarity.

The sampling structure in Fig. 4·2(a) shows us that we have a downsampling by

factor of 9 if these pixels were periodic in nature. The sampling structure in Fig. 4·2(b)

shows us that we have a downsampling by factor of 3.61 if these pixels were periodic

in nature. Though none of the sampling structures are periodic, it gives us an intuitive

idea that including crosstalk in our model would change the filter bandwidth of our

anti-alias filter significantly.

4.3 Computing Reciprocal Structure

We now use the method proposed in Chapter 2 to compute the reciprocal sampling

structure for the sampling structures shown in Fig. 4·2.
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Figure 4·3: (a) Reciprocal sampling structure, (b) Reciprocal crosstalk-
aware sampling structure (For the sake of visual clarity, only locations of
spectral replications with the gain of 0.2 or more are used to compute the
Voronoi diagram and shown).

We create a 2-D discrete space signal Φ(x) of dimension 1600 × 1200, the sample
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values of points corresponding to view 1 are assigned 1. All other sample values of the

signal are set to zero. We can compute the reciprocal sampling structure by computing

2-D Fourier transform of the signal Φ(x). Fig. 4·3 (a) shows the reciprocal structure

corresponding to sampling structure in Fig. 4·2(a). Similarly, Fig. 4·3(b) shows the

reciprocal structure corresponding to sampling structure in Fig. 4·2(b). In both the

cases, sample values lower than 0.2 have been removed to assure visual clarity in the

figure.

However, in this case we can make reasonable assumptions about the signal spectrum

and can design filters in a more accurate manner. The knowledge of the frequency

spectrum of the signal allows us to exploit the fact that gain factors associated with alias

signals are less than 1. We use the image covariance model, discussed in chapter 3, to

approximate the spectrum of the image. The image covariance model of equation (3.13)

can be written as follows:

Ru[m1,m2] = ρ
|m1|
1 ρ

|m2|
2 (4.1)

The corresponding power spectrum density is:

Φ(fx, fy) =
1

π2

f 2
0

(f 2
x + f 2

0 )(f 2
y + f 2

0 )
(4.2)

Each point in the reciprocal sampling structure (Fig. 4·3) has a gain factor associated

with it. We classify our reciprocal sampling structure gains into three categories:

• Original signal gain: This is a gain associated with the original signal which we

want to recover after filtering.

• Alias Signal Energy: These are the gains associated with aliasing signal and have

value greater than 0.2.
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• Noise Signal Energy: These are the gains associated with noise signals and have

value less than 0.2.

Suppose we have signal with the bandwidth of 800Hz and we decide to sample the

signal at 1.5 KHz with a periodic sampling structure. The signal energy from frequencies

750-800 Hz will get mapped to 0-50 Hz range after sampling and would cause aliasing.

If we perform irregular sampling with average sampling rate of 1.5 KHz, a part of signal

energy from frequency 750-800 Hz will be mapped to 0-50 Hz range and would cause

aliasing. The remaining part of signal energy would get mapped onto 0-750 Hz range

and would appear as noise. In this context, we use the term alias signal energy and

noise signal energy.

The classification between the alias signal energy and noise signal energy on the

basis of threshold is somewhat arbitrary. However, the effects of these two signals on

the image quality are quite different. The effect of alias signals is that of Moiré patterns

and that of noise signals is grainy nature of the image.

The reciprocal structure contains many points; each point corresponds to replication

of the original signal spectra. The point which corresponds to 0 represents the original

signal spectrum which we want to recover. All other points correspond to alias or noise

signal spectrum. Using the covariance model for image spectrum, we can compute

the amount of original signal energy and alias-noise energy at each point in frequency

space. Since we would like to maximize the SNR of filtered image, we should define the

passband of anti-alias filter as the location where original signal energy is greater than

alias-noise signal energy i.e. wherever we have original signal energy greater than the

sum of alias and noise signal energy, we have filter magnitude response equal to 1, and

0 elsewhere.

This process gives us the frequency response of the desired filter. We need to design

a 2-D filter with the desired frequency response. For this we use the MATLAB function
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‘fwind1’ to design a 2-D filter. The function fwind1 designs two-dimensional FIR filters

using the window method. In this method, we compute the inverse Fourier transform

which gives us the time domain impulse response of the desired filter. But this would

give us a large number of filter coefficients. So we truncate the filter coefficients to give

us a desired number of filter coefficients. The number of coefficients can be reduced

by truncating the time domain impulse response. The truncation can be done using

commonly used windows such as the rectangular, Hanning, Hamming, and Blackman.

Since the Hamming window gives us the best overall characteristics such as moderate

main-lobe width ( 8π
M

), and moderate side lobe attenuation (-41 dB), we used it for our

filter design.

The 2-D filter designed in this case has size of 51 × 51. The larger the number of

coefficients, the better the filter characteristics. We define 2D anti-alias filter passband

as follows:

H(f) =















1, if Eo > K(Ea + En)

0, otherwise

(4.3)

where Eo is the original signal energy, Ea is alias signal energy, and En is noise signal

energy.

In the above equation, we can change the value of K to change the passband area

of the specified filter. To maximize the signal to noise ratio of the filtered image, we

should choose K = 1. The shaded region in Fig. 4·4 (b) shows the passband region

of an ideal anti-alias filter. In the same figure, magnitude response of a 2-D FIR filter

designed using impulse invariance response is shown. The kernel size of the 2-D FIR

filter is 51 × 51. The ideal filter response has a passband area of 0.1207. The effective

passband area, in which magnitude response is greater than 0.707 (half energy point),

for the designed 2-D FIR filter is 0.1182.
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We also designed a 2-D FIR filter assuming no crosstalk between the views. You

would notice that this filter is more restrictive than the previous one. The shaded

region in Fig. 4·4 (a) shows the passband of the ideal filter. Fig. 4·4 (a) also shows

the contour plot of magnitude response of designed 2-D FIR filter using kernel size of

51 × 51. The ideal filter in this case has a passband area of 0.0912 as compared to

effective passband area of 0.0940 for 2-D FIR filter.

In both the cases, the design of FIR filter is close to the ideal filter with very small

transition band. The 3 dB contour line of FIR filter is reasonably close to the passband

contour line of the ideal filter.

4.4 Filter Design Results

In this section, we compare our anti-alias filters specifications with those obtained by

filter specifications obtained by Konrad and Agniel (Konrad and Agniel, 2006). Fig.

4·5 (a) shows the passband of an ideal anti-alias filter using the non-orthogonal lattice

model. The filter has a hexagonal passband that restricts the spatial frequencies almost

equally in all the directions. Fig. 4·5 (b) shows the passband of an ideal anti-alias

filter using the union of cosets model. The model approximates an individual view pixel

pattern using union of 20 cosets. In this case, the ideal filter passband is more or less

hexagonal but is more restrictive in some directions than other directions. In both cases,

the sampling model used in filter design assumes that there is no crosstalk between the

neighboring views.

Fig. 4·4 (a) shows the passband of the ideal filter, for a display with no crosstalk,

designed using the method proposed in this chapter. The filter design is highly restric-

tive for diagonal frequencies, whereas it allows almost all the horizontal and vertical

frequencies to pass through. The filter has a passband area of 0.0912 = 1/10.96 which

is less than 0.1111 (= 1/9). This is because of irregular pixel distribution of the pixels
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in individual views of the display. Though this kind of pixel distribution supports fewer

frequencies without aliasing as compared to regular pixel distribution, loss of support

happens in diagonal directions. Since the human eye is less sensitive to frequencies in

diagonal directions, lack of diagonal frequencies on the display may not be perceived by

an observer.

Fig. 4·4 (b) shows the passband of the ideal filter with crosstalk included in the

model. The filter design is more or less similar to the filter design with no crosstalk case

except the fact that this filter has a larger passband area. The passband area of ideal

filter in this case is 0.1207 (= 1/8.29) which is 32 percent more than the no-crosstalk

case. The filter, as in the case of no crosstalk, is highly restrictive in diagonal directions

but allows most of the horizontal and vertical frequencies in original images. In vertical

direction, the bandwidth of the filter is 0.8 in normalized frequency. This means that

even though we are downsampling our image by a factor of 9, the loss of frequency would

be only 20 percent in vertical direction and 40 percent in horizontal direction.

Comparing our filter design with previous efforts (Konrad and Agniel, 2006), we see

improvements in filter design due to the following reasons:

• The model to approximate an irregular pixel pattern is more mathematically ac-

curate.

• The image spectrum is modeled using image covariance models.

• The crosstalk between neighboring views is taken into account.
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Figure 4·4: Contour plot of desired (shaded) and designed (contours)
magnitude response for a multiplexing model based on irregular sampling
in case of lenticular display: (a) with no crosstalk, and (b) with crosstalk.
Note the wider passband in the case accounting for display crosstalk.
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Figure 4·5: Contour plot of (a) desired (shaded) and designed (contours)
magnitude response for a multiplexing model based on non-orthogonal lat-
tice; and (b) desired response for model based on union of cosets (zoomed
in be a factor of 2).
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Chapter 5

Crosstalk Cancellation

In this chapter, we discuss our efforts to reduce “ghosting” or “blurring” effect in the

lenticular autostereoscopic displays at object boundaries. We build a linear model of

crosstalk for a lenticular automultiscopic display and use it to develop a crosstalk can-

cellation algorithm. The crosstalk model is quite similar to the one used by Klimenko

(Klimenko et al., 2003a) and Konrad (Konrad et al., 2000). Our algorithm, unlike

Klimenko’s (Klimenko et al., 2003a), tries to measure and cancel inter-ocular crosstalk

rather than optical crosstalk. We later present the results obtained by our algorithm,

by using 2 views and 3 views out of total 9 views, for Synthagram SG202.

5.1 Crosstalk Model

In this section, we build a crosstalk model for a spatially-multiplexed lenticular display.

We begin with an assumption that our display has two views and later extend it to

multiple views, that is, 9 views for the Synthagram SG202.

Since our display has only two views, for each eye one of them is intended and the

other is an unintended view. Let us assume that view 1 is our intended view, and view

2 is our unintended view. Now we define the following terminology:

I1(x, y) is the true pixel pixel intensity at location (x, y) in view 1 of the display.

I2(xn,yn) is the intensity vector of a set of pixels of view 2 in the neighborhood of (x, y).

I
′

1(x, y) is the observed pixel intensity at location (x, y) in view 1 of the display.
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The optical crosstalk at (x, y) in view 1 occurs due to the pixels in neighborhood of

(x, y) in view 2. So we can write the crosstalk model for the display as follows:

I
′

1(x, y) = I1(x, y) + a ∗ I2(xn,yn) (5.1)

Now if we assume that in view 2 pixels in neighborhood of (x, y) have the same intensities,

as that of the pixel at location (x, y), then

I2(x, y) = I2(xn,yn) (5.2)

Using equation (5.1) and (5.2), we get:

I
′

1(x, y) = I1(x, y) + a12 ∗ I2(x, y) (5.3)

The assumption in equation (5.2), makes our crosstalk model a simple one. Assuming

that the crosstalk is symmetric, we write our crosstalk model equations for the two-view

case as:

I
′

1(x, y) = I1(x, y) + a12 ∗ I2(x, y)

I
′

2(x, y) = a12 ∗ I1(x, y) + I2(x, y) (5.5)

The crosstalk equations can be written in matrix form as:





I
′

1

I
′

2



 =





1 a12

a12 1









I1

I2





and

I
′

= H × I, H =





1 a12

a12 1



 (5.7)

We extend the linear crosstalk model to 9 views as follows:
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I
′

= H × I, (5.8)

where H, I, and I
′

are defined below:

H =











a11 a12 · · · a19

...
...

. . .
...

a91 a92 · · · a99











I =
[

I1 I2 I3 I4 I5 I6 I7 I8 I9

]T

I
′

=
[

I
′

1 I
′

2 I
′

3 I
′

4 I
′

5 I
′

6 I
′

7 I
′

8 I9

]T

We use the linear crosstalk model in equation (5.8) to develop a crosstalk cancellation

algorithm in the next section.

5.2 Crosstalk Cancellation Algorithm

We take an approach similar to the one taken in the development of crosstalk model

(Section 5.1). We assume that our display has only two views and later extend it to

multiple views. We develop a crosstalk algorithm which would cancel or reduce the

”ghosting” effect due to the crosstalk.

We want to process original images I in such a way that when these processed images

are projected on the display, the images percieved by viewer would be the same as the

original images. Since our crosstalk model is linear, a linear processing of original images

would be sufficient to find an optimal solution.

Let G be the processing matrix which is applied to the original images, then the

processed images would be equal to:
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Ip = GI (5.12)

The set of processed images is projected on the display, and they undergo crosstalk

“addition” according to equation (5.8). The images viewed by an observer are:

Ir = HIp (5.13)

Using equations (5.12), we get:

Ir = HGI (5.14)

For a complete crosstalk cancellation, we would like to have Ir = I. If the matrix H is

a non-singular matrix, we get the following solution:

G = H−1 (5.15)

Once we have computed the matrix G, we can process our original images to obtain

the processed images Ip which can be displayed on the monitor after multiplexing them.

The processed images however suffer from one problem; they have pixel values outside

the range [0,255]. One solution to this problem is to saturate the values greater than

255 to 255 and negative values to 0. This makes our solution sub-optimal. A better

approach is to perform a constrained linear least-squares minimization, i.e. to solve the

following equation

Ip = argmin
Ip

‖(I − HGIp)‖, 0 ≤ (Ip)i ≤ 255, for all i. (5.16)

This gives us an optimal solution for the assumed crosstalk model. The problem

with this solution is that it takes a lot of time to perform the optimization of each pair
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of intensities. This, however, is not a problem because we can store the solution in

a lookup table of size 256 × 256 × 2, so the real processing time of the images is not

affected.

The algorithm we developed performs uniform amount of crosstalk cancellation at

every pixel. As discussed by Berkel (Berkel and Clarke, 1997), crosstalk actually im-

proves image quality in datum plane, i.e., where the image has the same pixel values in

all the views. This means that by performing crosstalk cancellation at pixels in datum

plane, we are degrading the image quality. We know that crosstalk is a problem at ob-

ject edges where ”ghosting” or blurring of object edge boundaries occurs. So we would

like to reduce crosstalk only at the edges.

The human visual system is sensitive to ratio of intensities and not the difference of

intensities. This means a human observer would perceive the same difference between

intensities 0.1 and 0.2, and 0.3 and 0.6. Hsu (Hsu et al., 1994) observed that crosstalk

becomes perceivable only when the difference between image intensity is more than 14

percent. This means that perceived crosstalk between two views having intensities of

0.1 and 0.2 would be the same as between 0.3 and 0.6. We would like to make use of this

characteristic of the human visual system in our crosstalk cancellation algorithm. This

human visual characteristic has been quantitatively defined in Weber’s law. Weber’s

law (Montag, 2002) states that “the ratio of the increment threshold to the background

intensity is a constant.” Though the physical crosstalk between views remains the same

for range of image intensities from 0 to 255, the actual inter-ocular crosstalk varies

depending on the image intensities of the views.

In a two-view display, let a12 be the crosstalk coefficient between the two views. We

define r12 as a quantity which measures the difference between the image intensities with

respect to the image with lower intensity,
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r12 =
|I1 − I2|

min(I1, I2) + α
(5.17)

The r12 measures the amount of “ghosting”between the images in a quantitative

manner. The reason we want to measure with respect to lower intensity is that “ghost-

ing” is more visible when you are looking at darker object than at brighter edge. For

example, if two views have pixel values 100 and 200, then crosstalk is more visible in

view 1 than in view 2. So the parameter r12 captures the amount of perceived crosstalk

in the image with lower intensity. The data from Aguilar and Stiles (1954) (Montag,

2002) showed that for the Weber’s law to be true, a small baseline level of activity must

be surpassed. The addition of α in the denominator captures the fact that there is a low

threshold activity which must be surpassed for this to be true. For example, suppose,

I1 has value of 2 and I2 has value of 10. Although the ratio of intensity difference is

4 times larger than the lower intensity, the crosstalk is not actually visible. The value

of α measures the minimum level of activity which is needed for crosstalk to be visible.

The value of α was found experimentally.

Now, we use this parameter r12 to compute the amount of inter-ocular crosstalk. We

assume that inter-ocular crosstalk varies linearly with the ratio of intensities and hence,

c12 = a12r12 (5.18)

The parameter c12 captures the amount of inter-ocular crosstalk; however when the

value of r12 is greater than 1, then the value of c12 becomes greater than a12. We limit

our crosstalk cancellation algorithm to the maximum of amount of physical crosstalk

present in the display. Hence, we get:

c12 = min(a12 ∗ r12, a12) (5.19)
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Now, c12 is used in our model, instead of a12, to perform crosstalk cancellation. We

build an H matrix and use this matrix to do our crosstalk cancellation. We perform

constrained linear least-squares minimization with upper bound as 255 and lower bound

as 0 as in equation (5.16).

This algorithm can be easily extended to multiple views. We use the algorithm to

perform crosstalk cancellation on the automultiscopic display Synthagram SG202.

rij =
|Ii − Ij|

min(Ii, Ij) + α
(5.20)

cij = min(aij ∗ rij, aij) (5.21)

The modified crosstalk cancellation coefficient can be plugged into our crosstalk

model using equation (5.8) to process the images. Tables 4.1 and 4.2 give the measured

physical crosstalk coefficients aij.

View No. → 1 2 3 4 5 6 7 8 9

Crosstalk ratio: 1Q 1.000 0.745 0.085 0.008 0.003 0.003 0.004 0.025 0.305

Crosstalk ratio: 2Q 1.000 0.208 0.014 0.003 0.002 0.003 0.014 0.202 0.984

Crosstalk ratio: 3Q 1.000 1.261 0.412 0.024 0.004 0.003 0.004 0.018 0.215

Crosstalk ratio: 4Q 1.000 0.338 0.031 0.005 0.003 0.004 0.017 0.229 0.894

Table 5.1: Spatially-variant crosstalk measurements with view 1 as center

View No. → 1 2 3 4 5 6 7 8 9

Crosstalk ratio: 1Q 0.017 0.269 1.000 0.741 0.086 0.076 0.002 0.001 0.03

Crosstalk ratio: 2Q 0.157 1.039 1.000 0.172 0.011 0.003 0.002 0.003 0.012

Crosstalk ratio: 3Q 0.012 0.159 1.000 1.396 0.491 0.029 0.004 0.002 0.003

Crosstalk ratio: 4Q 0.171 0.898 1.000 0.353 0.035 0.004 0.002 0.003 0.013

Table 5.2: Spatially-variant crosstalk measurements with view 3 as cen-
ter.
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5.3 Applying Crosstalk Cancellation Algorithm

The Synthagram SG202 has total of nine views. However, we would like to test our

algorithm by first illuminating 2 views, then 3 views and then illuminating all 9 views. In

this experiment, we use only 2 views while the remaining 7 views contain zero intensities.

The actual values used in the model were (Tables 4.1 and 4.2):

a12 = 0.6, α = 10 (5.22)

In order to speed up the algorithm, we created a look up table of size 256× 256× 2

which stores the results of crosstalk cancellation algorithm for all possible pairs of image

intensities. We use the lookup table to process the images and then multiplex the

processed images in a normal way.

Unfortunately, our display is not spatially uniform; the degree of crosstalk is different

in the four corners of the screen. Therefore, out next step is to model spatial variation of

crosstalk coefficient across the display. We divided the display into four separate zones:

Top-left, Top-right, Bottom-left, and Bottom-right. In each of the zones, the crosstalk

coefficient was assumed to be spatially invariant. We used a different coefficient for

different zone. The four zonal coefficients shown in Tables 5.1 and 5.2. They were

estimated in the same manner as those in Tables 4.1 and 4.2.

We, now, test the algorithm by illuminating only 3 while the remaining 6 views

contain zero intensities. The actual values used in the crosstalk cancellation algorithm

were:

a12 = 0.6, a23 = 0.6, a13 = 0.12, α = 10 (5.23)

To improve the speed, we create a lookup table of size (256, 256, 256, 3) which stores

the results of crosstalk-cancelled triplets. Performing the optimization over 16581120



63

(=256*256*257/2) triplets of intensities becomes time consuming. To reduce the pro-

cessing time, optimization results were computed for several points uniformly-distributed

all over the domain in step of 5, and then nearest-neighbor interpolation was performed

for other intensity triplets.

This lookup table was used for processing the original images and multiplexed in

the normal way. Similar to the two-view case, we used our model of spatial variation of

optical crosstalk coefficients over the display. This would give better results than using

spatially-uniform coefficients.

Finally, we used all 9 views of our display. The coefficient values in the model are

the same as given in Tables 4.1 and 4.2. The nine-view model requires performing a

large number of optimization, i.e., over
(

256
9

)

intensities tuplets. This is a very large

number and even if we decide to perform optimization over selected points, it would

still be unmanageable unless the selected points are far apart. We need to develop an

efficient and reasonably accurate solution to this problem.

5.4 Results

In this section, we present the results of crosstalk cancellation algorithm applied to

Synthagram SG202 using 2 views and 3 views.

• The object boundaries became a little bit sharper with reduced level of ghost

images.

• The images overall looked sharper than the images without any processing.

• The overall brightness of images remains more or less unchanged, as the crosstalk

cancellation algorithm performed a selective cancellation at the object edges.

• The quality of objects in the datum plane, where crosstalk actually results in

higher image resolution, remained the same.
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• The crosstalk cancellation algorithm improved the quality of images.
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Chapter 6

Conclusion

6.1 Discussion of Results

In Chapters 2, 3, and 4, we proposed a filter design method which can handle irregu-

lar sampling structure and crosstalk between the views. The model resulted in design

of anti-alias filter whose frequency response primarily attenuates diagonal frequencies

and leaves horizontal and vertical frequencies intact. The filter design works marginally

better than the non-orthogonal lattice model (Konrad and Agniel, 2006). The improve-

ment obtained was not much because of the fact that most of the natural images do

not have very high frequency content. In such a case, any filter with cutoff frequencies

within an appropriate range would be able to do a reasonable job of removing aliasing

artifacts. However, there are some visible improvements in areas which contain diagonal

frequencies. The human eye is not very sensitive to diagonal frequencies; this minor

improvement comes at the cost of increased number of coefficients in 2-D FIR filter and

makes separable filter design very difficult. Also, in the case of moving pictures the

aliasing artifacts are less perceptible so separable orthogonal filter may do a reasonable

job.

Though the proposed method to design gave minimal improvements, it can be used

to design anti-aliasing filter for any system which performs downsampling from regular

to irregular sampling structure. In the case when the signal spectrum is not known, it

is possible to design anti-alias filter, except that it would not result in optimal design.
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In the crosstalk cancellation algorithm, we developed a linear model for crosstalk and

used it to perform crosstalk cancellation. The algorithm uses a lookup table to perform

crosstalk cancellation for the two-view and three-view case and hence can be used to

perform real-time crosstalk cancellation. The crosstalk cancellation algorithm improved

the sharpness of the image for the 2 and 3-view cases.

6.2 Suggestions for Further Work

In case of anti-alias filter design for the SG202 display, we can explore the possibility of

analyzing the image spectrum and designing the filter in real time. This might result in

better image quality and reduce the aliasing artifacts further. The current systems may

not be able to support real-time filter design but as the processing power of desktops

increases it might be possible in the future.

The current filter design methodology assumes crosstalk to be spatially invariant.

However this is not true, so it would be a good idea to include spatial variation of

crosstalk coefficients in the sampling model to improve accuracy of filter design.

We implemented crosstalk cancellation algorithm for 2 and 3-view cases and the next

logical step is to implement it for the 9-view case. Since, it is not possible to perform

optimization for a large number of tuplets, it is necessary to find a solution which gives

us reasonable solution for the crosstalk model.

In our crosstalk cancellation model, the crosstalk coefficients were considered to be

spatially invariant. The best we did was dividing the monitor into four zones, and

then assumed invariance of crosstalk coefficients within the zones. One possibility is

to approximate the spatial variation of crosstalk coefficients with some polynomial or

spline function and use it in our crosstalk reduction algorithm.

We assumed in our crosstalk model, that the image crosstalk happens between the

views pixels at the same location in space. This, however, can be better modeled if
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we incorporate the fact that crosstalk happens from neighboring pixels. The next step

to improve the crosstalk cancellation algorithm would be to perform joint crosstalk

cancellation between a set of neighboring pixels.
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