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CROSSTALK-AWARE DESIGN OF ANTI-ALIAS FILTERS FOR 3-D
AUTOMULTISCOPIC DISPLAYS

ASHISH JAIN

ABSTRACT

Automultiscopic displays present a three-dimensional image to viewer without using
any eyewear unlike some other three-dimensional display technologies. The absence
of glasses and multi-user delivery of content are making the automultiscopic displays
popular in the areas of 3D medical imaging, computer games, 3D web browsing, and 3D
home entertainment.

The data rendering process required to display a 3D image on automultiscopic screen
requires downsampling a 2D regularly-sampled image to 2D irregularly-sampled image.
This may result in aliasing and create visual artifacts, which may be unpleasant to the
eyes. To avoid this, the image needs to be filtered before downsampling. The bandwidth
of the filter needed can be computed in multiple ways one of which is by modeling an
irregular sampling structure using an orthogonal lattice. Another method is modeling
such a structure using non-orthogonal lattice or union of cosets. The results cited in the
literature suggest, however, that the filter bandwidth actually needed is more than the
bandwidth computed using the above methods.

The above methods of computing filter bandwidth ignore the fact that there is always
some amount of crosstalk, due to optics involved, between the adjacent views. Thus,
modeling of the view rendering process by simple subsampling on a lattice or union of
cosets is inaccurate. In this thesis, we focus on developing new models to incorporate
crosstalk between views into the sampling structure. We also propose to exploit the fact
that adjacent views, where crosstalk is strong, are highly correlated. This is expected

to result in more accurate anti-alias filter designs and a better 3D visual experience.
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Image crosstalk between individual views in automultiscopic displays results in dou-
ble edges at high contrast object boundaries, also known as ghosting. This reduces the
visual comfort for the viewer and creates difficulty in fusing the two images. We discuss

our efforts to reduce the formation of ghost images in automultiscopic displays.
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Chapter 1

Introduction

The basic principles of stereoscopic imaging were first introduced by Sir Charles Wheat-
stone in 1838 (Holliman, 2005). Several stereoscopic devices have been developed since
1838. However there have been no reasonable eyewear-free personal 3-D displays until
the early 1990’s (Berkel et al., 1996b). Today’s personal 3-D displays provide no-glasses
multi-view look-around 3-D experience with significantly enhanced image quality as
compared to previous-generation technologies. The rapid advances in personal 3-D dis-
plays have been possible due to availability of low cost, high resolution LCDs (Liquid
Crystal Displays), and low cost desktop image processing hardware.

The basic principle of 3-D displays is to provide stereoscopic images to a viewer
allowing each eye to see its own view of a 3-D scene. To deliver a stereoscopic image,
all 3-D displays use a technique called angular multiplexing. Angular multiplexing is
a technique in which a pixel appears to have different characteristics such as color and
intensity depending on the relative position of a viewer (Cossairt, 2003). All popular
3-D display technologies such as lenticular displays, parallax barrier, and polarized or
shuttered glasses, employ angular multiplexing to deliver stereoscopic images.

Parallax barrier and lenticular technologies provide eyewear-free and multiscopic 3-D
experience to an observer. Multiscopic displays provide multiple views to an observer
as compared to two views by stereoscopic displays. Both technologies use a spatial mul-
tiplexing technique, as compared to the time multiplexing technique used by shuttered

glasses, to provide two different perspectives to each eye. Lenticular technology, like



other technologies based on spatial multiplexing, involves tradeoff between the number
of views and resolution of an individual view. For example if the number of views in a
lenticular display is increased by a factor of N, then an individual-view resolution goes

down by a factor of N.

In a lenticular 3-D display having N individual views, the N view images are mul-
tiplexed to create an image suitable for 3-D presentation (Stereographics, 2003). Since
the multiplexed image and individual view images are of the same resolution, we need to
subsample individual-view images by a factor of N. The subsampling of individual-view
images would require pre-filtering of individual-view images in order to avoid aliasing
in the resulting multi-view image (Konrad and Agniel, 2006). Since the individual-view
sampling structure is not periodic, the traditional methods of designing anti-alias fil-
ters would result in sub-optimal anti-alias filters. The more suitable approach would be
to develop a model which can handle non-periodic sampling structures. Thus, in this
thesis, we develop a model which can be used to design optimal anti-alias filters for a

non-periodic sampling structure.

In a perfect stereoscopic system, each eye sees only its assigned image. The lenticular
technology, like many other stereoscopic technologies, suffers from crosstalk between
views. Crosstalk is a phenomenon in which each eye, apart from an intended perspective,
sees an image of unwanted perspective views. The crosstalk between two views is due
to the inherent optical design of a lenticular display and changes the visual experience
of a viewer such as, smoother transition between views, reducing the number of views
required, and perceived higher resolution of individual views (Berkel and Clarke, 1997).
In this research, we quantify the amount of crosstalk between the views and use it to
design an optimal anti-alias filter for a lenticular automultiscopic display, SynthaGram

SG202 from Stereographics Corporation.

The optical crosstalk between views present in lenticular displays results in inter-



ocular crosstalk for a viewer. The inter-ocular crosstalk between the views reduces the
fusibility of views and influences subjective image quality and visual comfort (Berkel and
Clarke, 1997; Yeh and Silverstein, 1990). Berkel and Clarke (Berkel and Clarke, 1997)
have proposed a new design for a slanted lenticular automultiscopic display, in which
the optical crosstalk between adjacent views does not result in inter-ocular crosstalk,
thus increasing the image quality and visual comfort for the viewers. Also there have
been efforts by Pommeray (Pommeray et al., 2003), Konrad (Konrad et al., 2000),
and Klimenko (Klimenko et al., 2003b; Klimenko et al., 2003a) to reduce the crosstalk
between views by preprocessing the individual-view images for different stereoscopic
display technologies. In this thesis, we discuss our efforts to reduce inter-ocular crosstalk
by preprocessing individual view images.

In the rest of the chapter, we introduce the concepts, principles and terminology used
in the area of multi-dimensional sampling, automultiscopic displays, and 3-D display

technologies to facilitate easier understanding of this thesis.

1.1 Human Depth Perception

Binocular vision along with independent information about the distance and direction
of the fixation point allows humans to perceive depth in real world (Berkel and Clarke,
1997; Mayhew and Longuet-Higgins, 1982). The human brain combines the two different
perspectives of a scene, provided by two eyes, and creates a mental model of the 3-D
world. Apart from binocular depth perception, the human visual system also uses the

various monocular depth perception cues described below:

e Interposition or Occlusion: Two objects occluding each other allow us to perceive

relative depth space between the two objects.

e Size: The relative size of the object, with previous knowledge of absolute sizes,



can be used to infer the distance between the objects.

e Motion parallax (Kineopsis): provides a depth cue to user when either he moves
his head or the object in the scene moves. The information provided by motion
parallax is quite similar to the one provided by binocular vision but is not the

same. (Berkel and Clarke, 1997; Rogers and Graham, 1982).

e Accommodation: Oculomotor depth cues are due to change in focal length of an
eye by using muscles involved in controlling the eye’s lens. Oculomotor is a nerve

controlling eye movements.

Apart from the depth cues mentioned so far, other cues such as light and shade,
texture gradient, and aerial perspective also help a user to judge depth in a scene. Some
of these monocular cues can be used by 2-D displays to provide feeling of depth in 2-D
images but others like motion parallax are difficult to integrate into 2-D displays.

The most important depth cue for a human visual system is the stereopsis or binocu-
lar disparity. Each eye is presented with a different perspective of the same scene based
on its location. The two images are fused together to form a 3-D image in the human
brain and to provide the feeling of depth to a viewer.

Wheatstone, in 1838, first established that it is possible to create depth sensation
by showing each eye a separate 2-D image (Holliman, 2005). The two images should
be of the same scene from slightly different viewpoints. He demonstrated this effect by
building the first stereoscopic device. Since then many stereoscopic devices have been

developed achieving different level of success.

1.2 3-D Display Systems

Many 3-D displays have been developed to date; some have reached the consumer market

while others have remained in research laboratories. We now review 3-D displays, both



eyewear-equipped and eyewear-free technologies, which had reasonable success in the

3-D stereoscopic devices arena.

e One of the oldest, patented by Louis Ducosdu Hauron in 1891, and most popular
technique to deliver 3-D content is anaglyph imaging. Two perspectives of a scene
are projected or printed together as a single image, one perspective through red
color (usually right view) and the other perspective through a contrasting color
such as blue, green or cyan (usually left view). When an anaglyph image is viewed
through appropriate colored glasses, each eye sees its own perspective thereby
creating a 3-D effect (Dubois, 2001). The anaglyph method is the only method
which can be used to display stereoscopic images on normal 2-D displays and also

in print. This technique has been quite popular in 3-D comic strips and movies.

e Another popular technique used in 3-D content delivery is using polarized glasses
to separate multiplexed views. In this method, two different images are projected
onto the same screen through orthogonal polarizing filters. The viewer uses low-
cost glasses of appropriate polarization to separate the two views. This technique
has been the most popular in delivering 3-D movies. Recently “Polar express” was

released using polarized 3-D glasses, reviving interest in 3-D movies.

e Another popular technique is using time-sequential shuttered glasses in which ac-
tive LCS (Liquid Crystal Shutter) is used for view separation. The images are
presented at the rate of 120 frames per second by time-multiplexing left and right
views each captured at 60 Hz. The left and right shutters are synchronized with a
monitor so that each eye gets its own view. These displays suffer from crosstalk be-
tween individual views due to phosphor persistence, LCS leakage, and LCS shutter
timing errors. Konrad et al (2000) proposed pre-processing individual-view images

so as to reduce the inter-ocular crosstalk.
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e Parallax-barrier displays: In this display technology, a parallax barrier is placed
on a display in such a way that half of the pixels are seen by left eye and the other
half by right eye. The left and right images are interlaced in columns as shown in
Fig. 1-1. The display can be used for more than one viewer, albeit with reduced
image quality, because the viewing window is repeated periodically in the space
in front of the display. These displays suffer from reduced brightness, reflection
off of the glass surface of parallax barrier, and diffraction. The use of bright
light sources and anti-reflection coated optics has solved the first two problems

(Holliman, 2005).
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e Lenticular displays: These displays have cylindrical lenses placed over the screen
of 2-D displays such as an LCD. The lenses, placed over LCD, diffuse light from
each pixel in such a way that each eye sees its perspective of a scene (Berkel et al.,
1996a). Fig. 1-2 shows a two-view autostereoscopic lenticular display. A lenticular
automultiscopic display works on the same principle except that the number of
views is greater than two. In a multiscopic display, the position of an observer
determines the pair of views seen. Several improvements have been made since
the first lenticular display was designed. The improved lenticular automultiscopic
displays use slanted lenticular sheets, and offer increased number of views, as
well as higher resolution of individual views. The lenticular displays still have
the disadvantage of repeating view zones, reduced individual view resolution, and
crosstalk between views. This latter problem has been solved by designing a
display in which optical crosstalk between adjacent views does not manifest itself
in inter-ocular crosstalk (Berkel and Clarke, 1997). This can be achieved if a
display is designed so that non-adjacent views, for example views 1 and 3, are
presented to the left and right eyes respectively. Such a design may suffer from
optical crosstalk between the views but reduces inter-ocular crosstalk considerably

(Berkel and Clarke, 1997).

The biggest advantage of lenticular displays is that they provide multiple views
and hence an observer can experience "look-around”. The number of views in displays
available on the market today varies from 4 to 16 (Dodgson, 2005). The number of
views greater than two also provides motion-parallax depth cue which is an important
monocular depth cue. The greatest advantage of lenticular displays is that they provide
multiple views using normal LCD screen and a lenticular sheet. The ever-increasing
performance of lenticular displays, due to availability of higher resolution LCDs and

cheaper high-performance graphics hardware on desktops make them a viable solution



for the mass market.

1.3 Previous Work

In an automultiscopic display, a lenticular sheet made up of microlenses is placed over
the display to refract light from pixels into different angular zones in front of the screen.
It is possible to map visibility of each pixel on the screen to a particular angular zone.
This allows us to spatially multiplex view images in a way that each eye sees a par-
ticular view image. However, due to the downsampling process associated with spatial
multiplexing of images, aliasing effects such as Moiré patterns, spurious color dots,
and distorted texture patterns are visible (Konrad and Agniel, 2006). To eliminate the
aliasing artifacts, it is necessary that each view image be suitably pre-filtered before
multiplexing (Konrad and Agniel, 2003). In early lenticular displays, a lenticular sheet
was placed vertically over a pixel-addressable screen. The displays however suffered
from two major problems: the resolution of individual views was poor in the horizontal
direction and a black mask between pixels was visible between view transitions (Berkel,
1999). Slanting the lenticular sheet at a small angle can solve both problems. The slant-
ing of lenticular sheet makes the black mask equally visible from every position thereby
making it invisible to the observer. Similarly, slanting allows a designer to achieve a
balance between horizontal and vertical resolutions of each view. Another advantage
of slanting the lenticular sheet is that the view flipping becomes a continuous process
so that there are no visible boundaries between the views that would otherwise exist
(Berkel and Clarke, 1997).

The advantages offered by using a slanted lenticular sheet make it a desirable design
feature in lenticular automultiscopic display designs. However, making a lenticular sheet
slanted makes the individual view pixel distribution irregular. This irregularity in pixel

distribution for each view makes the downsampling process, inherent in the multiplexing
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of images, quite complicated. The multiplexing of images now requires an image to be

downsampled from an orthogonal sampling grid to an irregular sampling grid.

The anti-alias filter design for downsampling an image from an orthogonal sampling
grid to another orthogonal sampling grid is trivial and has been discussed widely in
literature. Dubois (Dubois, 1985) first introduced the method to design an anti-alias
filter for a downsampling process in which an image is being downsampled from a regular
sampling grid to another regular sampling grid. He introduced the concept of sampling
structures based on lattices and used the concept to develop a framework in which
sampling structure conversion along with anti-aliasing filter design was possible. The

sampling structures which Dubois dealt with were limited to regular sampling structures.

However, the view pixels in slanted lenticular displays are far from regular. With this
problem in mind, Konrad and Agniel developed a design method in which an irregular
sampling structure was approximated with regular sampling structures such as orthog-
onal lattices (Konrad and Agniel, 2003), non-orthogonal lattices (Konrad and Agniel,
2004) and a union of cosets (Konrad and Agniel, 2006).

In this research, they developed a cost function to measure how close a regular sam-
pling structure model was to an irregular sampling structure. An exhaustive search was
performed to minimize the cost function by varying the model parameters. Once an
approximate regular sampling structure was found, a design of an anti-alias filter was
performed using the multidimensional signal processing theory developed by Dubois
(Dubois, 1985). The anti-alias filters designed were found to be quite effective in remov-
ing aliasing artifacts from multiplexed images. Since the method proposed by Konrad
and Agniel performs an exhaustive search of parameters, the computational complexity
of designing a filter is quite high (Agniel, 2004). Also the method involves approximat-
ing an irregular sampling structure with a regular sampling structure. It is desirable to

have a filter design process where the amount of computational complexity associated
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with the design is reduced and irregular sampling structures are handled directly.

In an ideal stereoscopic device, the right eye should only see a right-eye image and
no left-eye image, and vice versa for the left eye. For a real stereoscopic system, this is
not true. Some amount of the left-eye image is seen by the right eye and vice versa. The
amount and source of crosstalk varies from system to system (Pommeray et al., 2003).
For example, time-sequential displays suffer from crosstalk due to phosphor persistence
and shutter leakage, whereas lenticular displays suffer from crosstalk due to optics.
The crosstalk between views reduces image quality, causes eye strain and headache
to an observer and influences conspicuity of ghost images at object boundaries. The
conspicuity of ghost images is also more prominent for an image with bright region
against a dark background (Pommeray et al., 2003). Hsu (Hsu et al., 1994) proposed
that crosstalk is visible only if it is different from stimuli by more than 14 percent.
There have been efforts to reduce crosstalk by using short phosphor persistence in liquid
crystal (LC) shutter glasses systems (Woods and Tan, 2002). Another approach taken
by Berkel (Berkel and Clarke, 1997) to reduce crosstalk in lenticular display systems is
to project non-adjacent views on left and right eye. This method does not reduce the

optical crosstalk between the views but reduces the inter-ocular crosstalk.

The idea to reduce crosstalk by pre-processing view images was first proposed by
Lipscomb in 1994 (Lipscomb and Wooten, 1994). The method suggested was to raise the
background from black to grey and subtract the ghosts before the projection of images
onto the screen. The technique was fairly successful in eliminating ghosts. Similar
crosstalk cancellation techniques were proposed by Kilmenko (Klimenko et al., 2003a)
and Pommrey (Pommeray et al., 2003) for polarized glasses. Pommrey, apart from
developing a crosstalk cancellation method, also proposed a quantitative measure SGR
(signal-to-ghosting ratio) to measure the amount of crosstalk between the views. The

research also exploited the fact that the SNR (signal-to-noise ratio) of a stereo pair
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with correlated noise is lower than that of a stereo pair with uncorrelated noise. So it
is possible to reduce the SNR of individual view images but increase the SGR ratio of
stereo images (Pommeray et al., 2003), thereby increasing the overall 3-D quality for an
observer. Konrad (Konrad et al., 2000) proposed a method to reduce crosstalk between
the views in time-sequential displays. The basic principle is similar to one proposed
by Lipscomb (Lipscomb and Wooten, 1994), but the crosstalk measurement is done by
psychovisual experiments. Also, the crosstalk model used is non-linear and uses lookup
table in its crosstalk cancellation algorithm, making it computationally efficient. The
results obtained were quite encouraging in terms of improvement in 3-D visual experience
of viewers.

Most of the crosstalk cancellation efforts to date have been restricted to stereoscopic
displays. There have been no efforts so far in spatially-multiplexed multiscopic displays.
This is because the crosstalk model in spatially-multiplexed multiscopic displays be-
comes complicated. However, we believe it is worthwhile to study the effectiveness of
simple linear crosstalk models in crosstalk cancellation in spatially-multiplexed multi-

scopic displays.
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Chapter 2

Computing Reciprocal Sampling Structures

2.1 Reciprocal Sampling Structure

The sampling of an image involves specification of image intensity or color over some
predefined discrete set of points in 2-D space referred to as sampling structure. One ex-
ample of periodic sampling structure is a lattice. The predefined periodic sets of points
are known as lattices, a term borrowed from solid state physics. The theory of sampling
multidimensional signals on a lattice was proposed by Peterson in 1962 and developed
further by Gaarder in 1972 (Dubois, 1985). A detailed review of multidimensional
sampling theory discussing sampling of multidimensional signals, Fourier transform rep-
resentations, sampling of continuous signals, and conversion between different sampling
structures was done by Dubois (Dubois, 1985). The sampling of images has been satis-
factorily studied as the multiplication of the continuous signals by a predefined train of
Dirac delta functions. A very important concept in multidimensional sampling theory
is the concept of reciprocal lattice (Dubois, 1985). The idea of reciprocal lattice makes
the frequency domain representation simpler. The method to compute reciprocal lattice
was developed by Dubois for regular lattices such as orthogonal lattices, non-orthogonal
lattices, and union of cosets. Later, Konrad and Agniel (Konrad and Agniel, 2006)
presented a method to compute reciprocal structure for irregular sampling structure by
approximating the irregular sampling structure using union of cosets. The proposed

method could compute the reciprocal lattice for irregular sampling structure approxi-
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mately but was a computationally demanding procedure. In this chapter, we introduce
and develop a generic method to compute reciprocal lattice which works for lattices,
unions of cosets and irregular sampling structures. The method is not only computa-
tionally less complex for irregular sampling structures than the method proposed by
Konrad and Agniel (Konrad and Agniel, 2006) but also computes a mathematically ac-
curate reciprocal structure. We propose the idea of using Fourier transform to compute
an accurate reciprocal structure. We first prove that computing the 2D Fourier trans-
form of a sampling structure, in the case of orthogonal lattice, indeed results in reciprocal
lattice structure and we also prove that it works for union of cosets. In the following
section, we demonstrate that 2D transform of lattice structure results in corresponding

reciprocal lattice structure.

2.2 Reciprocal Structure

A lattice I in RY is the set of all linear combinations of basis vectors vy, va, ..., vy with

integer coefficients.
F={nvi+nevo+..+nyvy:n; € Z,i=1,2,.... N} (2.1)

The quantity d(I"), determinant of the lattice I', physically represents the reciprocal of
the sampling density. The definition of reciprocal lattice as defined in (Dubois, 1985)
is “Given a lattice I', the set of all vectors y such that y’x is an integer for all x € I'
is called the reciprocal lattice I'* of the lattice I'.” Dubois also proved that a signal
sampled on I'" would have its frequency spectrum replicated at each point in I'*.

The definition of reciprocal structure was left open for sampling structure other than
lattices and unions of cosets. In this section, we introduce the concept of reciprocal
structure in general case including, lattices and union of cosets. Let u(x) be a real-

time continuous signal and U(f) be its frequency spectrum. If we sample a real-time
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continuous signal u(x) on sampling structure ¥, then

u(x)P(x) = us(x) (2.2)

This means ¢(x) is a signal which is non-zero at the points x € W. The spectrum
of sampled signal us(x) must be periodic in nature. Let Uy(f) be the spectrum of the

sampled signal, then we have

U(f) * B(f) = U,(f) (2.3)

where * denotes convolution, and we can define a reciprocal structure ¥* as a set of
vectors f for which ®(f) is non-zero. Each point f in reciprocal structure is associated

with gain of ®(f). Mathematically,

U = {f; ®(f) #0, f€ RV} (2.4)

This definition of reciprocal structure is consistent with the definition of reciprocal
structure for lattices and unions of cosets (Dubois, 1985) and can be used to define
reciprocal structure for an arbitrary sampling structure. The gain values in the case
of reciprocal lattice would be 1 and can be ignored. We will use this definition of
reciprocal sampling structure in this thesis. Using equation (2.3) and (2.2), we claim
that it is possible to compute reciprocal structure by calculating Fourier transform of

signal ¢(x), which is non-zero at points belonging to the sampling structure V.

2.3 Reciprocal Structure of Lattice

The paper by Dubois (Dubois, 1985) discusses ways to compute the reciprocal structure
for lattices and unions of cosets. All the sampling structures discussed by Dubois are

periodic in nature (Dubois, 1985). However difficulty arises when the sampling pattern
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of an image is not periodic. A method to compute reciprocal structure for an aperiodic
sampling structure was proposed by Konrad and Agniel (Konrad and Agniel, 2006).
However the method proposed was computationally demanding and gave mathematically
approximate solution. In this section, we propose a computationally less expensive, more
precise method of computing reciprocal structure of periodic and aperiodic sampling
structures. We first develop the method for lattices and then develop it for union of
cosets and aperiodic structures.

Let A be a lattice of which we want to compute reciprocal lattice. Let I' be an
underlying denser orthogonal lattice such that A C I'; ', A C RY. Let us define a signal

¢(x) over lattice I as,

1, forx e A
P(x) = (2.5)
0, forx¢ A, zel

The discrete-space Fourier transform of ¢(x) can be defined as (Dubois, 1985),

F{opx)}(E) =D ¢(x)e > fe RN (2.6)

xel

F{o(}HE) =D o(x)e ™4+ 3" g(x)e ™, fe RY (2.7)

x€A x¢A,xel

Since ¢(x) =0 for x ¢ A , x € I'; we have

F{o(x)}(f) = > o(x)e 2> fe RN (2.8)

xEA

As ¢(x) =1 for all x € A, we get

F{p(x)}(f) =Y e (2.9)

x€eA
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Since x is the set of all vectors in lattice A, we can write x as

Xx=Vn

where V is the sampling matrix of A and n € Z¥. The sampling matrix V is of
dimensions N x N.

Substituting the value of x in equation (2.9) we get,

F{o(x)}(f) =Y e /2 Vn (2.10)

xEA

F{o(x)}(f) = 3 e tv7o"n (2.11)

n

To simplify equation (2.11), we make the following substitution.

Vif=m (2.12)

Since f € RY and V is the sampling matrix of A, we must have m € R".

F{o(x)}(m) = ) o2 (2.13)

O(m) =) e e (2.14)

Since m = [mymy...my|7, n = [niny..nx|’, we have

_ Z Z Z efj27r(m1n1+m2n2+...+mNnN) (215)

ny ng ny

= (D errmmm) (Y " emirmmanz) (e (2.16)

n2 nn
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Now we need to prove that ) eJ2mmm ig the same as a train of Dirac delta functions
ie.

S(my) =Y e MM =N "5(my — ki), k€ Z (2.17)
k

nieZ

The mathematical proof of this is beyond the scope of this thesis and can be found
in introductory book on generalized functions by Zemanian (Zemanian, 1987) and hand-
book on generalized functions by Zayed (Zayed, 1996).

Using equation (2.16) and equation (2.17) we can write,

Z(S my — k’l 25 mg—kg 25 mN—k’N kl,kg,...,k’NEZ (218)
ZZ Za my — k1)6(my — ko)...0(my — kn), ki ko, ... ky € Z (2.19)
1 2

=> > . Z(Sml ki,my — ko, omy —kn), ki ke, .. ky €2 (2.20)

k1 k2

Using equation (2.14) and (2.20), we get

=Y e ™ =3 "5(m—-k),ne 2z ke z" (2.21)
k

Substituting for m from equation (2.12), we get

=) e VR N (VIE— k), k€ 2V (2.22)

Using scaling property of Dirac delta function, we get

|d6t |25 k), ke zZV (2.23)
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This shows that ®(f) is zero everywhere except at values of f such that f = (V™!)Tk
and k € ZV. If we sample any continuous signal over lattice A, then the Fourier
transform of the sampled signal is the superposition of original spectrum replicated at
set of points defined by f = (V™!)Tk. This means that this set of points represents
reciprocal structure of lattice A. This proves that the discrete-space Fourier transform
of signal ¢(x), as defined in equation (2.5), results in the corresponding reciprocal lattice

structure.

2.4 Reciprocal Structure of Union of Cosets

A union of cosets is a sampling structure defined as a union of several shifted lattices.
Let A and T' be lattices. A is a sublattice of I' if every point of A is also a point of T
For any ¢; € T', ¢; ¢ A, the set ¢; + A = {c; + x|z € A} is called a coset of A € T.

Let us consider a structure ¥ as a union of selected P cosets of a sublattice A in an

orthonormal lattice I'. Mathematically we can write ¥ as:

P
U= Jle+4) (2.24)
i=1
We define a signal
1, forxe VU
$(x) = (2.25)

0, forxg¢ V¥, xeTl

The next step is to compute the Fourier transform of the signal ¢(x) over the orthogonal

lattice structure I,

O(f) = Y p(x)e >, fe RV (2.26)

xel’
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O(f) =Y ox)e x4 N g(x)e X fe rN

xevw x¢ W, xel

Since ¢(x) =0 for x ¢ ¥, x € T, we have

O(f) = Y p(x)e >, fe RN

xew

Using equation (2.24) and (2.28), we can write

»
o) = Y (e +x)e > fe RN

1=1 x€A

Using the time-shift property of the Fourier transfrom, we get

P

CI)(f) _ Z 6j27rchi Z ¢(X)6_j2ﬂfo, fe RN

i=1 x€EA

Since ¢(x) = 1 for all x € ¥, we get

P

D(f) =D&y e, fe RN

=1 xEA

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Since x € A, we can write X = Vn, n € Z¥; where V is the sampling matrix of lattice

A

P

CD(f) _ ZejQﬂchi Z e—j27rfTVn7 fe RN

=1 n

Using equation (2.22) and (2.32), we get

P

o(f) = > e N §(VIE-k), feRY
=1 kezN
1 P
O(f) = g2t e §(f— (VHTk), fe RV
|det(V)] ; kezz:N

(2.32)

(2.33)

(2.34)
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A S eintte  f— (Vv )Tk ke zZN
() = [det(V)] £wi=1 (2.35)

0, elsewhere.

The reciprocal structure is defined as a set of points where replication of spectrum,
sampled on ¥, happens. For replication of spectrum to happen ®(f) should be non-zero.

Therefore, reciprocal structure ¥* can be written as:

U ={r: ®(r) #0,r € RV} (2.36)

Since ®(r) = 0 except for r = (V"1)Tk, k € ZV, we can write

U ={r: ®(r)#0,r=(V ")k ke z"} (2.37)

Sincer = (V"1)Tk and k € ZV, then r € A* because V is the sampling matrix of

lattice A. We can write the above expression as follows:

U ={r: &(r) #£0, r € A*} (2.38)

The reciprocal structure obtained by Dubois (Dubois, 1985) for the same sampling

pattern ¥ being union of selected P cosets of a sublattice A in a lattice I', is as follows:

U*={r: g(r) #0,r e A"} (2.39)

_ 1 P ji2rr T c;

where g(r) = Il Do e
We compare the reciprocal structure of ¥ obtained by computing the Fourier trans-
form of signal ¢(x) in equation (2.38) with the one obtained by Dubois in equation (2.39).
We see that both are defined over a set of vectors r € A*, and that over A* the functions

®(r) and g(r) are equivalent. This means that reciprocal structures U* are equivalent

in these two cases.
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Hence we claim that it is possible to compute the reciprocal structure for a union of
cosets sampling structure by computing the Fourier transform of the signal ¢(x) defined

in equation (2.25).

2.5 Reciprocal Structure of Irregular Sampling Structure

In this section, we compute reciprocal structure of a finite irregular sampling structure.
A finite irregular sampling structure is a sampling structure which has finite number
of irregularly-distributed sample points. Since each pixel in a finite irregular sampling
structure is irregularly distributed, each pixel needs to be described by a coset in an
orthonormal lattice. So the number of cosets required to describe the structure is equal
to the number of sampling points in the sampling structure.

Let us define a finite orthonormal sampling structure ¢ of dimension M x N such
that ¢ € I', I' being an orthonormal lattice. We define a sampling structure T with P
sample points irregularly-distributed over the orthonormal sampling structure . Let us
consider a sublattice A of I' which is M N times sparser than lattice I'. We can describe
a sampling structure W, such that T € ¥, as a union of selected P cosets of sublattice

A in lattice T.

P
U= J(ci+A) (2.40)
i=1
We define a signal
1, forxe V¥
b(x) = (2.41)

0, forx¢ ¥, xel
We observe that this signal is the same as the signal for unions of cosets case and hence

the results would be also valid for unions of cosets would be valid for this case also. We
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use the results of unions of cosets from previous section (eq. 2.37):

U ={r; ®(r) #0,r=(V )k, ke z"} (2.42)

Since T € W, the reciprocal structure of ¥ is the same as the reciprocal structure T
as location of sample points outside of ¢ is of no consequence. The reciprocal structure

of T for all practical purposes is same as W. Hence,

T ={r;®(r) #0,r=(V )k, ke z"} (2.43)

2.6 Using the Fourier transform for Computing Reciprocal Lat-

tice Structure

In this section, we will use some examples to validate the results proposed in this chapter.
We take four different sampling structures and demonstrate the validity of the results.
Let ¥ be the sampling structure of which we want to compute reciprocal sampling
structure. We generate a matrix which contains either 1 or 0 for all sample points. The
elements of matrix which belong to ¥ are assigned value of 1 and all other elements
of matrix are assigned zero value. We then compute the discrete Fourier transform
(DFT) of the matrix. The resulting matrix gives us reciprocal sampling structure W*.
An element of matrix belongs to the reciprocal structure if it is not zero. Using this
method, we compute the reciprocal structure for four different cases.

(a) Orthogonal lattice: Let us define the underlying orthonormal lattice I' with the

sampling matrix as follows:

Vi = (2.44)
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and let A be the orthogonal lattice with the sampling matrix given below:

2 0
Vy = (2.45)
0 1

Fig. 2-1 (a) shows lattices I' and A. Fig. 2-1 (b) shows reciprocal lattice A* and
the associated Voronoi diagram. A Voronoi diagram is a diagram in which every point
x € RY is assigned to its nearest neighborhood point y € U* (Aurenhammer, 1991). A

Voronoi cell associated with point y can be defined as:

V(y)={x:|x—y| <|x—k| for allk € U*\ y} (2.46)

A Voronoi diagram is sometimes also known as nearest-neighbor diagram. A Voronoi
cell associated with vector O is a special Voronoi cell in the sense that it tells us how
spectrum should be confined in order to avoid aliasing. A Voronoi cell associated with
vector 0 is also known as the Nyquist area.

(b) Nonorthogonal lattice: Let A be a non-orthogonal lattice with the sampling

matrix given below:

0 2
Vi = (2.47)
2 1
The Fig. 2-2 (a) shows lattices I" and A. Fig. 2-2 (b) shows reciprocal lattice A* and

the associated Voronoi diagram.

(c) Union of cosets: Let ¥ be the union of cosets of lattice A in lattice I'.

U=AU(c+A) (2.48)
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with the sampling matrix of A given below:

0 2
Vi = (2.49)
2 1
1
c= (2.50)
0

The Fig. 2-3 (a) shows lattices I and unions of cosets U. Fig. 2-3 (b) shows reciprocal

sampling ¥* and the associated Voronoi diagram.
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Figure 2:3: (a) Union of cosets ¥ (x) along with the underlying or-
thonormal lattice I' (-), (b) reciprocal structure U* (x) to the union of
cosets sampling structure.

d) Random Sampling: A random sampling structure ¥ is defined with respect to

the orthonormal sampling structure I'. The sample points are irregular and cannot be
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defined using a union of cosets. The sample points were randomly generated. The
reciprocal structure of ¥ is computed using 2D Fourier transform. The results were
thresholded using 0.2 as the threshold for visual clarity. The Fig. 2-4 (a) shows lattices
I’ and sampling structure W. Fig. 2-4 (b) shows reciprocal sampling structure U* and

the associated Voronoi diagram.
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Figure 2-4: (a) Random sampling structure ¥ (x) along with underlying
orthogonal lattice I' (-), (b) Reciprocal structure U* (x) to the random
sampling structure.

The results obtained for all examples would be the same had they been computed
using the methods proposed by Dubois (Dubois, 1985). In the last example, the results
obtained would be the same if we were to model it as a union of cosets and each coset
would contain just one sample point. The results in this chapter show that a reciprocal
structure for any sampling structure can be computed efficiently by applying discrete
space Fourier transform to signal ¢(x), which is 1 at points which belong to the sampling

structure and zero elsewhere.
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Chapter 3

Crosstalk-Aware Sampling Structure

3.1 Sampling Model for Automultiscopic Displays

Automultiscopic displays simulate the binocular disparity depth cue by projecting dis-
tinct image to each eye. The views are multiplexed in such a way that left and right
views of the scene are projected on the left and right eyes, respectively. This stereo
pair of images allows human visual system to perceive depth, an important cue for 3-D

visualization.

The automultiscopic displays available on the market suffer from crosstalk between
views. This means that a portion of left view of a scene is visible to the right eye with
reduced intensity and vice versa (Klimenko et al., 2003a). As a result, the user observes
ghost images at object boundaries which interferes with 3-D perception of the image
(Konrad et al., 2000). The presence of crosstalk, in automultiscopic displays, increases
the perceived resolution of the image as shown in Fig 3-1 as compared to the case
without crosstalk in Fig 3-2. The image with crosstalk seems to be of better quality and
contains a lot more details as claimed by Berkel (Berkel and Clarke, 1997). The increase
in perceived resolution of the image should be taken into account while designing anti

alias filters for the subsampling operation.
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(a)

Figure 3-1: Image with crosstalk from other views. Number of views =
4. crosstalk coefficient = 0.5
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(a)

Figure 3-2: Image with no crosstalk from other views. Number of views
= 4.
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3.2 Perceived Sampling

As discussed in the previous section, there is an increase in perceived resolution of the
image due to crosstalk. This increase should be taken into account in designing the
antialiasing filters using subsampling operation. The effect of increased perceived reso-
lution can be incorporated into the design of antialias filters by modeling the crosstalk
present in the displays. In this section, we develop mathematical foundation of perceived
sampling and analyze its effect on frequency of support. For a given sampling structure,
we define its frequency of support as a range of frequencies which do not undergo any
aliasing during sampling of a signal. Though all our discussion will be limited to 1-D

sampling, the results are also valid for 2-D sampling of images.

The subsampling of a 1-D discrete-time signal can be considered to be the multiplica-
tion of a discrete signal with a train of Kronecker delta impulses. This can be considered
as normal subsampling operation without taking into account any crosstalk effect. To
incorporate crosstalk into our model, we would have to include an impulse function with
magnitude equal to the crosstalk coefficient. The train of sampling impulses for both

sampling without crosstalk and with crosstalk are shown in Fig 3-3.

In the subsequent mathematical model, we assume that our display has N views and
that there is subsampling only in horizontal direction. The views are at regular interval

in space and there is no crosstalk between the views.

The subsampling pattern (train of impulses that multiplies the discrete signal) for

each view without considering crosstalk can be mathematically expressed as follows:

z(t) = +ZOO d(t —nN),fort € Z (3.1)

where, N is the time or physical spacing between two adjacent pixels/Kronecker impulses

in one view.
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Figure 3-3: (a) Sampling pattern without crosstalk (b) Sampling pattern
with crosstalk

The Fourier transform of the above train of unit impulses is:

27 2m
X(w) = N nzzoo dw — Nn) (3.2)
This can be also written as:
1 1
X(f) =+ n_Zj(f - 5" (3:3)
In this case, the discrete signal can represent frequencies up to ﬁ without any

aliasing and we would need to filter any frequencies greater than ﬁ before subsampling.

Now we consider the case in which display suffers from crosstalk between the views.

If we assume N views in our monitor, N being odd, then we have crosstalk from M =
(N +1)/2 views from each side. The perceived sampling in this case can be represented

as the sum of impulse trains with different amplitudes and phase shifts.

Given below are mathematical expressions of sampling for each of the views. As-
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suming view M is intended, the crosstalk coefficients between the intended view M and
views M +1, M +2, ..., 2M —1 are ay, as, ..., ap_1, respectively. Assuming the crosstalk
into the intended view from spatially symmetric views to be equal, the crosstalk coeffi-
cients between the intended view M and views M — 1, M — 2, ..., 1 are aq, as, ..., ap—1,
respectively. It is assumed that the intended view is seen at full brightness implying

that ag is equal to 1. The values of crosstalk coefficients a; lie between 0 and 1.

View M (intended view) is seen at full brightness:

ru(t)= > 6(t—nN) (3.4)

n=—0oo

Crosstalk from view M + 1 has gain of a;:

ry(t) = ap i.i d(t—nN +1) (3.5)

Crosstalk from view M — 1 has gain of a;:
+o0o

rya(t)=ar Y 5(t—nN—1) (3.6)

n=—oo

Crosstalk from view 2M — 1 has gain of ap;_1:

ZEQM_l(t) = apy-—1 f (5(t —nN + M — 1) (37)

n=—oo
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Crosstalk from view 1 has gain of ay;_1:

x1(t) = ap—1 f 0(t—nN—M+1) (3.8)

n=—oo

The contribution of all pixels to the perception of the intended view can be modeled

as sampling of full image by the following train of impulses.
xnet(t) = .Tl(t) + .Tg(t) + ...+ .TQM_l(t) (39)

The Fourier transform of x,.(t) can be written as:

1

X(f)= N Z 5(f—%)[1+2a1 cos(2m f)+2aq cos(4m f) + ...+ 2ap—1 cos((M —1)27 f)]
N (3.10)

For f =0, all the components are in phase:

1
X(f) = N[1+2a1+2a2+...+2aM,1] (3.11)
At f = %, we have
1 2m A 2

X(f) = N[l + 2a4 cos(ﬁ) + 2a; COS(N) + ...+ 2ay 1 cos((M — 1)W)] (3.12)

Now, we have the original signal at f = 0 and nearest alias at f = j:# The original
signal at f = 0 has greater energy than the nearest aliases and this would allow us to
relax the filter bandwidth to a greater degree than % before subsampling. The exact

filter bandwidth would depend on the number of views N in the display.

We will present an example of automultiscopic display with N = 3 views. The value
of M is 2 in this case. The crosstalk coefficient a; is 0.6285. The comparison of the
original signal energy for display with and without crosstalk is shown in Fig 3-4. The

nearest alias component, in case of no crosstalk, has the same energy as the original
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signal. In the case with crosstalk, the signal energy of alias signal is less than the

original signal energy by approximately 84 percent.
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Figure 3-4: Original and nearest alias signal energy: (a) without crosstalk
(b) with crosstalk (N = 3)

3.3 Computing Filter Bandwidth Using Image Covariance Mod-

els

In the normal subsampling case, the aliasing signal has the same energy as the original
signal. So it is easy to compute the ideal antialias filter bandwidth which is exactly
mid-way between the original signal center frequency and alias signal center frequency.
However, in the case of crosstalk the energy in the alias signal is different from the
original signal energy. To compute the filter bandwidth in this case, we need to make
some reasonable assumptions about image properties. We will use a covariance model
to statistically approximate the actual image data.

The covariance model is based on the assumption that the closer the pixels are in an
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image, the more correlated they are. It is possible to use exponential autocorrelation
models to model natural and computer-generated images quite precisely.

The separable exponential autocorrelation model can be expressed mathematically
as follows:

Ry[my, ms] = pi™lpi! (3.13)

Since the model is separable, the one dimensional equivalent of the above equation

can be written as:

Ry[m] = p" (3.14)

The Fourier transform of exponential function is:

1
F{e7?m Pl (f) = H?ﬁf& (3.15)

Using equations (3.14) and (3.15), we compute the power spectral density, which is

the Fourier transform of auto correlation R, of the image:

F{p"}(f) = %ﬁiofg (3.16)

where fo = 7= In(p1).

We are sampling a 1-D signal with power density spectrum given in equation (3.16).
This signal is sampled by a train of impulse functions with frequency spectrum such as
one shown in Fig. 3-4(b). As sampling of a signal in time domain is a multiplication
operation, it results in a convolution operation in frequency domain. This leads to copies

of Fourier transform centered at f = 0, £5,n € Z. The mathematical expression of

Fourier transform centered at f = 0 is ﬁ Similarly a copy of Fourier transform
0
. . Afo . . .
centered at f = 1/N is TN= TR where A is a gain factor defined as the ratio of

nearest alias 