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I would never be able to overcome the difficulties of my life. They endured my absence for

all these years and supported me all the time. I cannot thank them enough.

Finally, I would like to thank my dear wife Gözde. Without her endless support,
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Boston University, College of Engineering, 2008

Major Professor: Janusz Konrad, Ph.D., Professor of Electrical and Com-
puter Engineering

ABSTRACT

This dissertation concentrates on the problem of intermediate view reconstruction, which is

defined as follows: given few images of a scene captured by real cameras, reconstruct images

that would have been captured by virtual cameras. Our main goal in this dissertation is

to reconstruct intermediate views using two input images with a special focus on occlusion

areas. Occlusion areas are the areas that are visible only in one of the input images.

We start the dissertation by identifying the main challenges in intermediate view re-

construction from two images, and then offer novel solutions to each challenge. First, we

present in detail the popular pivoting-based view reconstruction that requires estimation

of a separate disparity field for each view under reconstruction. After pointing out the defi-

ciencies of pivoting-based approach, as an alternative, we propose a new intermediate view

reconstruction method based on B-spline approximation. The new approach permits recon-

struction of multiple views from a single disparity field, a clear computational advantage.

It also assures better robustness to image noise, although is more sensitive to disparity es-

timation errors than the pivoting-based method. However, most importantly, spline-based

reconstruction allows selective forward compensation of visible areas and, therefore, is of

importance in occlusion awareness. Next, we present a new simple occlusion area esti-

mation method and show its superior performance over other low-complexity algorithms.

The knowledge where occlusions occur in an image is a valuable piece of information since
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disparity cannot be reliably estimated there and needs to be inferred in a different man-

ner. In view of this, we present a novel approach to disparity recovery in occlusion areas,

namely the image-driven disparity inpainting. We further embed this idea into a varia-

tional formulation, and propose occlusion-aware optical flow (disparity) estimation that

jointly computes disparity vectors, implicitly detects occlusions and extrapolates dispari-

ties in occlusion areas. Combining all of these proposed methods in view reconstruction,

we reconstruct realistic and improved intermediate views especially in occlusion areas. Fi-

nally, we focus on using multiple images, instead of two images, in view reconstruction

to improve the pivoting-based approach. Specifically, we propose another occlusion-aware

pivoting-based disparity estimation formulation, which adaptively estimates disparity by

using different pairs of input images. The reconstruction using multiple images shows

significant improvements over pivoting-based reconstruction that uses two images only.

Intermediate view reconstruction has many applications, especially in the area of 3D

displays and communication. One of the most important applications is that it can be used

to reconstruct additional views from stereo pairs, so that any stereo pair can be displayed

on emerging automultiscopic displays that require many views of a scene as input. It

is in this context that we demonstrate applications of the proposed methods in different

areas. First, in a biomedical application, the proposed view reconstruction algorithm is

embedded into a neuromuscular training system that utilizes automultiscopic 3D displays.

Second, the proposed view reconstruction method is applied to monoscopic video sequences

to increase frame rate and, therefore, enhance low frame-rate videos captured by mobile

phones. Third, the proposed occlusion-aware optical flow method is used to solve a real-

world problem of NASA, namely the recovery of a missing color component in stereo images.

Finally, disparity estimation in a multiview video codec that uses view reconstruction is

shown to benefit from our methods.
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Chapter 1

Introduction

This dissertation concentrates on the problem of intermediate view reconstruction, which

is defined as follows: given few images of a scene captured by real cameras, reconstruct

images that would have been captured by virtual cameras. The problem is illustrated in

Fig. 1·1. We would like to reconstruct an image from the virtual camera by using images

captured by cameras #1 and #2.

Camera #1 Virtual camera Camera #2

Figure 1·1: Illustration of intermediate view reconstruction; reconstruct
virtual camera image from images captured by cameras #1 and #2.

The problem is of interest for it finds various applications, among others in 3D display

systems such as the emerging eyewear-free multiview 3D displays. Such displays are de-

signed to project multiple views of a scene that are not always available. Intermediate view

reconstruction can be used to generate the additional views by using few captured images,

thus enabling multiview displays even when very few cameras are used to capture a scene.

Our focus in intermediate view reconstruction is on the impact of occlusions. Occlusions

occur when certain image areas are visible in some images only. For example, a part of

the scene may be visible in camera #1 but not visible in camera #2. Occlusion areas pose

significant challenges in view reconstruction as will be discussed in this dissertation.

This chapter contains a general introduction to the problem and motivation for this

dissertation. First, it discusses the evolution of image and display technologies. This is

1
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followed by an overview of benefits of 3D systems and difficulties involved in their de-

sign. Then, intermediate view reconstruction is discussed in more detail along with its

applications.

1.1 Evolution of display and image technologies

Thanks to the advances in display technology and signal processing, nowadays we have

vast opportunities to make our lives easier using visualization tools. Visualization tools

find applications in wide range of areas, from entertainment to medicine, from surveillance

to communications. They fundamentally changed how we live.

The first black and white still image was captured by Nicéphore Niépce in 1816. Early

black and white photos achieved high quality over the years, and were later enhanced by the

addition of color. To people’s fascination, still pictures were followed by moving pictures.

The twentieth century witnessed an impressive use of images. Television is invented

by using communication technologies that allowed to transmit pictures. Then, the digital

era slowly started to replace analog devices of the imaging technologies. Digital cameras

changed the way images are captured. In the last twenty years, the picture quality reached

an impressive level. High-definition television, for example, with its 1920×1080 resolution,

amazes audiences.

Unfortunately, there is still a missing piece in current imaging technologies: the appre-

ciation of depth. Adding the depth to the state-of-the-art visualization tools will enhance

the quality and offer a more realistic experience to the viewer. Flight/battlefield simula-

tors, fields of medicine and entertainment are among those to benefit from this realistic

experience.

Humans perceive depth thanks to the coordination of their eyes and brain. Since the

eyes are separated by a about 2.5 inches, they perceive the scene from two slightly different

angles. These images are then fused by the brain to perceive depth. This is the basic idea

behind the stereoscopic vision. Stereoscopic images are captured by two adjacent cameras

mimicking the way humans see the world. The basics of stereoscopy and its applications
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(a)

(b)

(c)

Figure 1·2: (a) Diagram of Wheatstone’s stereoscope from his pa-
per in 1838. Mirrors A and A′ are used to shows different images
to each eye (b) Wheatstone used hand drawings to demonstrate the
function of his stereoscopic device (c) Brewter-type stereoscopes (from
http://users.telenet.be/thomasweynants/stereoscope.html).

will be discussed later in this dissertation.

1.1.1 Early stereoscopy

It is actually very interesting that the work on three dimensional images had begun long

before photography was invented. It is noted that Leonardo da Vinci (1452-1519) studied

the perception of depth. His interest and appreciation for the third dimension can be found

in his notes written 500 years ago. He writes “...the main objective of painting is to show

a raised body projecting from a plane surface. Whoever achieves this surpasses all others

and should be considered most skilled within his profession.” (Benyon, 1998).

However, the breakthrough happened in 1838 when British physicist Charles Wheat-

stone (1802-1875) invented the first stereoscopic viewer. Wheatstone explained the theory

of stereoscopic vision in his address entitled “Phenomena of Binocular Vision” to the Royal

Scottish Society of Arts in June 1838 (Wheatstone, 1838). He constructed a stereoscopic

viewing device knowing that left and right eyes view the same scene from slightly different

angles. His device consisted of two mirrors, shown with A′ and A in Fig. 1·2.a (Wheatstone,

1838), and two planes, E and E ′, to attach the pictures for the left and right eyes. He used

hand drawings to demonstrate the device (Fig. 1·2.b).
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Following Wheatstone, David Brewster (1781-1868) made significant contributions to

the field of stereoscopy. In 1849, he proposed his own stereoscope consisting of a pair of

half lenses and an opening to a slot where the pair of images could be mounted side by side.

This new design, shown in Fig 1·2.c, was more compact than that of Wheatstone’s and later

became a template for many subsequent stereoscopes. One year later, Brewster succeeded

in interesting the French optics company Soleil and Duboscq and the company started

manufacturing the device (Howard and Howard, 1995). Soleil and Duboscq exhibited the

stereoscope in London. Queen Victoria was very impressed by the device. Having caught

the attention of a noble, it easily drew the public’s attention. As a result, within a three

months period, a quarter of a million stereoscopes were sold in London and Paris.

More sophisticated methods to deliver the left and right images to each eye are pro-

posed in time. Early attempts were anaglyph glasses which are composed of red and cyan

colored lenses. Later, new devices such as shutter and polarized glasses were proposed to

deliver a better quality. Recent systems even eliminated the need for eyewear by using

lenticular sheets or parallax barriers. We will present a detailed analysis of technology for

3D visualization in Section 2.4. Let us first outline the benefits of using 3D visualization

in various fields.

1.2 Benefits and applications of stereoscopic display technologies

Many applications can benefit from stereoscopic vision because the depth cues in 2D images

and videos (called ‘monocular depth cues’, to be discussed in Section 2.1.1) are not enough

to fully perceive depth. Even worse, they may be misleading; some of the popular optical

illusions are due to the incorrectly perceived depth cues. Through stereoscopic vision, we

can introduce a realistic depth feeling to the display for the viewer.

Potential applications of stereoscopic vision in the field of medicine are numerous. Stan-

dard displays in computer tomography and other radiology equipment can be replaced by

stereoscopic systems which can create a more realistic experience and can make diagno-

sis easier (Hubbold et al., 1997; Wang et al., 2004). As shown in ultrasound scan in
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(a) (b)

Figure 1·3: (a) An ultrasound scan (Property of Harvard University Med-
ical School) in 2D (left) and in 3D (right; anaglyph glasses required) (b) an
exercise bed for bedridden patients equipped with 3D displays.

Fig. 1·3.a, the 3D version on the right (anaglyph glasses required) delivers a more realistic

representation of data. Minimally-invasive surgery, such as angioplasty or laparoscopy, can

also benefit from stereoscopic vision. With the help from stereoscopic vision, doctors can

achieve a 3D experience as if they were doing a full surgery (Salimpour et al., 1997; Salb

et al., 2000; Ellis et al., 2005). In neuromuscular research, virtual reality environment

created by 3D displays was shown to shorten balance recovery time of bedridden patients

before they start walking again (Fig. 1·3.b). (Oddsson et al., 2006; Oddsson et al., 2007).

Stereoscopic vision can also be used in remote guidance (Olson et al., 2003). One such

example is the recent mission of NASA to Mars (Bell III and et al., 2003a; Ince and Konrad,

2005b). The rovers Spirit and Opportunity each carry a stereo camera which helps NASA

scientists navigate the rovers precisely with the help of the depth information. Similar areas

for stereoscopic vision are mining and operations in radioactively-contaminated areas that

are potentially dangerous to humans (Konrad, 2001).

Simulators, such as for flight, driving etc. can be improved using stereoscopy (Ilgner

et al., 2004). The trainee will be more aware of the situation with an enhanced display.

Businesses will benefit from stereoscopic displays, too. Companies can demonstrate

their products in life-size using 3D displays. Similarly, virtual visits of homes, vacation

sites can be made possible (Konrad, 2001).



6

One final application of stereoscopic vision is entertainment. Adding the third dimen-

sion to movies and computer games will add realism and be more pleasing to audiences.

IMAXTM, and more recently Real-DTM, movie theaters are well-known for such an experi-

ence. Overcoming hardware and software problems, 3D TVs can replace ordinary TVs in

the future (Lipton, 1994; Matusik and Pfister, 2004).

1.3 Is stereo really 3D?

Stereoscopic devices, as described earlier, can be used for many applications, however,

there is a crucial question: are stereoscopic displays really 3D displays?

Unfortunately, although these displays can deliver the feeling of depth, this cannot be

considered a real 3D experience. The missing part is the ability to modify the perspective

on the screen when viewer changes his/her position.

In real life, when looking at an object, if we move our heads, we can see around the

object. This is called the ‘look-around feeling ’. Therefore, a realistic 3D device must be

able to change the perspective if the viewer changes position. This is possible, for example,

in volumetric displays because they create actual bright points in 3D space and the viewer

is able to see different perspective by changing his/her position. However, in projected

(planar) 3D devices, this is not directly possible, because in such devices, left and right

views of the scene are painted on a flat screen and proper images are delivered to each

eye by means of glasses or other devices. Therefore, when the viewer changes position,

new images which will create the correct perspective must be painted on the screen. This

inevitably brings the need for multiple images of the scene that are captured at different

viewpoints as shown in Fig. 1·4.a.

Newly-emerging 3D displays solved the problem of changing perspective with respect

to the position of the viewer. While some of these displays track the viewer either with a

head-tracking device worn by the viewer or by cameras that capture the eyes of the viewer,

others, such as displays with lenticular sheets, even removed this tracking requirement.

These new displays brought us one step closer to a realistic and comfortable 3D experience.
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C3 C4 C5C2C1 CN-1 CN

(a)

PL PRPVPV2

(b)

C2C1 CV

Left 
Eye

Right 
Eye

(c)

Figure 1·4: (a) Multiple images are required for a realistic 3D experience
(b) Problem of intermediate view reconstruction. Given the images cap-
tured at positions PL and PR, is it possible to reconstruct the view at vir-
tual position PV ? (c) Parallax on the screen can be adjusted by generating
a new view for the virtual camera CV .

However, the need for multiple images persists.

1.4 Elements of realistic and non-fatiguing 3D experience

Having distinguished stereo and 3D, we can conclude that there are two essential elements

of a high-quality 3D experience.

Look-around feeling: When observing a static scene, if the observer changes position,

the objects in the scene displace with different amounts; an effect called motion parallax.

Therefore, the realism of a 3D system is only possible if the display can deliver motion

parallax. Motion parallax, in turn, results in look-around feeling, which is the ability to

see a changing perspective as the viewer changes position as mentioned in previous section.

In order to deliver motion parallax, a 3D system should have many images of the scene

captured at multiple positions as shown in Fig. 1·4.a. Although displaying multiple images

is possible by state-of-the-art technologies, generating multiple views of the same scene is

still a problem.

Non-fatiguing viewing: Stereoscopic images/videos are captured by mimicking the

human anatomy. Two identical cameras are positioned next to each other, similar to

human eyes, and then the images from each camera (one for the left, one for the right
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eye) are delivered to the viewer separately, e.g., glasses, lenticular sheets. However, the

distance between the cameras is vital. If this distance is larger than the viewer’s interocular

distance, viewer will have difficulties with fusion of the left and right images. On the other

hand, if it is smaller than viewer’s interocular distance, the depth feeling will be subdued.

Since it is not possible to shoot a movie for all possible interocular distances, the movies

are shot for the average interocular distance, which in turn results in an uncomfortable

experience for many people, for example children. The current technology, unfortunately,

does not allow viewer to adjust ‘3Dness’ of the scene.

1.5 Intermediate view reconstruction – remedy for 3D system issues

We mentioned two very important elements of a realistic 3D experience in previous section.

The first one is the ability to show multiple views depending on the position of the viewer.

This, of course, brings the need for many images of the scene as shown in Fig. 1·4.a.

Using many cameras is the most trivial solution. However, this is not only an expensive

and bulky solution but also requires extra effort, for example, to calibrate the cameras.

Also, the number of cameras will always be limited. It is not possible to shoot a scene

from every possible viewpoint. For example, if the viewer wanted to see the scene from a

position between C3 and C4 in Fig. 1·4.a, the system would not have the corresponding

data.

An alternative approach to this problem can be shooting the scene with few cameras (for

example 2, 3 or 5) and then creating additional virtual views from the available images.

Such techniques are called intermediate view reconstruction (or view synthesis or view

interpolation or image-based rendering ) and they constitute the main subject of this work.

For example, the scene is captured by two cameras at positions PL and PR in Fig. 1·4.b.

The question is what would the scene look like from the position of virtual cameras at PV

or PV 2?

By using intermediate view reconstruction, we can generate the views for cameras 2 to

N − 1 (Fig. 1·4.a) using only the images from cameras C1 and CN . This way, two cameras
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will be enough to create the look-around feeling instead of a bulky rig with many cameras.

The ability to generate additional views with intermediate view reconstruction can

also be used to enhance the comfort of a viewer when watching a 3D movie (Konrad,

1999). As mentioned in the previous section, a 3D experience with optimal comfort can

only be possible if the acquiring cameras are positioned exactly at the interocular distance

of the viewer. Intermediate view reconstruction can solve this problem by generating an

additional virtual video stream or an image that is most pleasing for the viewer as shown

in Fig. 1·4.c. The scene is shot using cameras C1 and C2, but a new view can be generated

for the virtual camera CV using the latter two.

As we elaborate on the background of an end-to-end 3D system in the next chapter,

we will demonstrate additional applications of view reconstruction in 3D systems. In fact,

view reconstruction has applications other than 3D systems as well, for example, in movie

effects. Anyone who watched the movie The Matrix was amazed by the opening scene

where the character Trinity jumps, time freezes and we see a full rotation of the camera

around Trinity. This scene was shot by more than 100 cameras. Controlling and calibrating

100+ cameras is obviously a difficult job. Intermediate view reconstruction can generate

this type of visual effects using a smaller number of cameras.

Intermediate view reconstruction can also be applied to a monocular sequence. For

monocular sequences, intermediate view reconstruction can be used to change the frame

rate by generating virtual frames between available ones. Intermediate views can also be

generated in order to fill the missing frames in a video sequence. View reconstruction for

monocular sequences will be discussed in Chapter 9.

View reconstruction is a challenging problem. Disparity estimation, handling of occlu-

sion areas, formation of the intermediate view and intensity mismatches due to camera

imperfections are some of the main problems. Later in this dissertation we will examine

these challenges and offer novel solutions to each of them.
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1.6 Outline of the dissertation

The outline of the dissertation is as follows:

Chapter 2 introduces the main concepts of stereo vision, disparity being the most of

important of all. This chapter also describes components of a full end-to-end 3D system

including human depth perception, acquisition, display and transmission of 3D data. Fi-

nally, this chapter outlines how view reconstruction can be utilized in every stage of a 3D

system, therefore presents the motivation of this work.

Chapter 3 discusses prior work on intermediate view reconstruction. It starts by

summarizing the assumptions and constraints of our work, then it categorizes the previous

work with respect to the number of input images and effect of occlusions on each method

and finally positions our work relative to other methods.

Chapter 4 is dedicated to one of the challenges; formation of intermediate view. It

proposes overconstrained spline-based view reconstruction algorithm. Experimental results

compare this method to the well-known pivoting-based method on ground truth data and

prove its efficacy. It also discusses why this approach will be beneficial in handling occlusion

areas.

Chapter 5 discusses the problem of occlusions from two perspectives. First, how to es-

timate occlusion areas and subsequently how to handle the occlusion areas once estimated.

An occlusion estimation method is proposed to solve the first problem. Next, a disparity

handling method, image-driven disparity inpainting, based on anisotropic diffusion is pro-

posed to solve the second problem. Finally, this chapter elaborates on the interrelation of

occlusions and disparity, and how these two problems can (and should) be solved jointly.

Chapter 6 is dedicated to disparity estimation. It starts by introducing optical flow

and then proposes an occlusion-aware optical flow-based disparity estimation method. The

proposed formulation jointly computes disparity, estimates occlusion areas and extrapolates

disparity in occlusion areas. Experimental results show the superior performance of the

method compared to state-of-the-art methods.
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Chapter 7 combines all methods presented so far to create occlusion-aware spline-

based view reconstruction. Experimental results demonstrate its efficacy especially in oc-

clusion areas.

Chapter 8 focuses on extending the pivoting-based method to multiple images. The

original pivoting-based method, which uses only two images, is unable to handle occlusions

properly. Considering this problem, a new pivoting-based method that uses multiple images

is proposed. Multiple images are essential to estimate and handle the occlusion areas. The

proposed variational formulation adaptively uses different pairs of input images to estimate

a disparity field and subsequently to reconstruct an intermediate view. Experimental

results of proposed method show that the reconstruction quality in occlusion areas improves

significantly.

Chapter 9 presents several applications of methods and ideas presented in this dis-

sertation to real-world problems. First, proposed view reconstruction algorithm is used

in health care as part of a special exercise bed for bedridden patients. Second, the view

reconstruction algorithm is applied to monoscopic video sequences to improve the quality

of videos captured by mobile phones. Third, a problem faced by NASA during Mars mis-

sion is solved by using proposed optical flow and view reconstruction algorithm. Finally,

a block-based depth estimation algorithm is improved by using spatial regularization and

used in a multiview video codec as a predictor.

Chapter 10 discusses contributions of this dissertation, draws conclusions and presents

possible directions for future work.



Chapter 2

3D system design background

This chapter introduces system design issues of an end-to-end 3D system namely, percep-

tion, acquisition, transmission and display of 3D data. We will first discuss how humans

perceive depth, and then we will present how stereoscopic images are acquired. Next,

transmission of multiple image/video streams will be discussed. Then, we will classify

the technologies used to display stereo. Finally, we will present applications of interme-

diate view reconstruction (IVR) in each of these steps, therefore presenting a part of our

motivation for IVR.

2.1 Human perception: How do we perceive depth?

Depth is the relative distance of objects from the observer within a scene. Humans do not

require any special effort to perceive depth of a scene. This is automatically achieved by

the coordination of our eyes and brain. Our brain uses many cues to find the depth of an

object. These cues can be classified as monocular and binocular depth cues.

2.1.1 Monocular depth cues

Monocular depth cues do not require the use of two eyes and as the name implies, they

can be viewed with one eye only. We learn these cues starting from our childhood. Major

monocular cues are as follows:

1. Interposition (occlusion): The most important monocular cue is the interposition

of objects. If an object is blocking the view of another object, then it is obvious that

the occluded object is further away from the viewer while the occluding object is

12
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closer to the viewer. Figure 2·1.a shows a simple example; gray object is closer to

the viewer.

2. Geometric perspective: Objects appear to be getting smaller as they get further

away from the viewer. This effect is called geometric perspective (Franich, 1996).

For example, the distance of points to the camera increases from A to B to C in

Fig. 2·1.b.

3. Light and shading: Artists often use the lighting and shading in their works to

emphasize depth. Shadows give an idea about the shape of objects and help us

estimate the relative positions of points. Figure 2·1.c shows this effect (Lipton, 1991).

4. Motion parallax: This particular depth cue can be noticed during continuous move-

ment of observer. In a static scene as the observer moves his/her head depending on

the distance of objects from the observer, objects displace at different amounts. This

effect can easily be noticed when traveling in a car. As the car moves, hills in the

landscape move very slowly, while the traffic signs on the road pass by very quickly

(Lipton, 1991).

5. Relative size: Another monocular depth cue is the relatives size of objects in the

scene. Since our brain has a general idea about the sizes of objects in the world, we

know that objects that appear larger are generally closer to us. Therefore, if two

objects are known to have similar sizes and one of them is seen bigger than the other,

then we know that the bigger one is closer to us. The house on the left in Fig. 2·1.d

is closer to the viewer. This cue is very similar to ‘geometric perspective’ cue.

6. Textual gradient: Textual gradient depth cue is defined as the gradual change in

the appearance of the object texture from coarse to fine (Lipton, 1991). The objects

whose texture is more distinct appear closer. The object in the lower side of Fig. 2·1.e

appear closer because of the textual gradient and geometric perspective.

7. Aerial perspective: The blurring of distant objects in the scene because of haze
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(a) Interposition

A

C

B

(b) Perspective

(c) Light and shade (Lipton, 1991) (d) Relative size

(e) Texture gradient (f) Aerial perspective

(g) M.C. Escher’s

“Belvedere”(1958)

Figure 2·1: (a)–(f) Examples for monocular depth cues (g) Famous artist
Escher uses monocular cues to confuse the viewer. (M.C. Escher’s
“Belvedere” c©2007 The M.C. Escher Company - the Netherlands. All
rights reserved. Used by permission. www.mcescher.com).

and scattering of light in the atmosphere is due to the aerial perspective. The objects

in Fig. 2·1.f have the same sizes but the blurry one seems to be more distant.

The drawings of famous artist and mathematician Escher are best known to exploit the

monocular depth cues to confuse the viewer (Franich, 1996). One such example (Belvedere,

1958) is shown in Fig. 2·1.g.

2.1.2 Binocular depth cues

Binocular depth cues, unlike monocular ones, are perceived by two eyes. Since human eyes

are positioned about 2.5 inches apart, projections of a scene onto retinas of eyes are slightly

different. The brain fuses these two different images to perceive the depth of the scene.

This is often referred to as binocular stereopsis.

In order to understand this effect, one can do this easy experiment: While looking at a
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Figure 2·2: Two commonly used stereo acquiring configurations.

stationary scene, close and open one eye at a time. It is easy to notice the differences when

looking with left or right eye. The main difference between both eyes’ perceptions is that

positions of objects are different. This displacement between projections of the same 3D

point in left and right images is called disparity, a very important concept in stereo vision.

The brain uses disparity information in order to find depth.

The disparity is larger for objects that are closer to the viewer, in other words, disparity

is inversely proportional to depth. One can do the previous experiment to observe this fact,

too. Put your thumb about 5 inches away from your eyes. While looking at a distant object,

close and open one eye at a time. It is easy to notice that your thumb ‘moves’ quite a

bit, while the distant object ‘moves’ very little. As mentioned before, disparity is a very

important concept in stereo vision because it gives the depth information of an image point.

This will be elaborated upon when we discuss camera structures next.

2.2 Acquisition: Camera models

2.2.1 Pinhole camera model

Before discussing multiple-camera setups, we would like to first introduce pinhole cam-

era model, the simplest camera model. Although very simple, this model describes the

geometry and optics of most modern cameras quite accurately (Faugeras, 1993).

Acquisition of an image using a pinhole camera model is illustrated in Fig. 2·2.a. Light

rays departing the scene pass through a small hole, C, called the center of projection or

optical center, which resides on the focal plane, F , and fall onto the projection plane R to
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form an inverted image. The distance between planes F and R is called the focal length

and denoted by f . The focal length controls the size of the projection of the object. This is

why a 100mm lens has more zooming properties than a 35mm lens. Equations describing

projection of a point onto image plane are derived in Appendix A. We would like to refer

the reader to a book by Faugeras (Faugeras, 1993) for an extensive analysis of camera

models.

As we mentioned, stereo images are captured by two identical cameras mimicking the

human anatomy. There are two primary camera configurations used in stereoscopic vision.

The parallel camera configuration is composed of two cameras with parallel optical axes

(Fig. 2·2.b). This configuration is often used because of the simplicity of its mathemat-

ical derivations. The second configuration is toed-in or converging camera configuration

(Fig. 2·2.c). In this configuration, cameras are rotated towards each other by a small

angle, so that the optical axes of the cameras converge at some point other than infinity.

2.2.2 Parallel cameras

Parallel cameras have parallel optical axes which intersect at infinity. The horizontal

distance between the optical centers of the two cameras is defined as the baseline distance

(denoted by b in Fig. 2·2.b). Consider the point X in 3D world with coordinates (X, Y, Z)

and its projections xL and xR on image sensors of the left and right cameras. Assuming

that two identical cameras with identical zoom settings are used, let the focal length of the

cameras be f . Disparity d is then defined as

d = xL − xR =


 −f b

f−Z

0


 . (2.1)

A detailed derivation for xL,xR and d can be found in Appendix A. The disparity vector

indicates that there is no vertical shift between the images, the most important property of

parallel cameras. The Z component, which is the depth of the point X, can be computed
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using similarity of triangles (X,xL,xR) and (X, CL, CR) in Fig. 2·2.a as follows:

Z = f
b + d

d
. (2.2)

The advantage of this setup is that the geometric relations governing parallel cameras

are simple. Moreover, the vertical component of disparity is always zero. This property is

very valuable for computational simplicity of disparity estimation; homologous points must

lie on the same image scan line. On the other hand, one of the disadvantages of this setup

is that since the optical axes of the cameras are parallel to each other, they will converge

at infinity, therefore there are not going to be any points in the images whose disparity is

zero. Due to this, stereo images captured by the parallel camera setup can demonstrate

excessive disparities, especially for closer objects. Viewing of such stereo images will not

be comfortable. Another problem is that for larger baselines the common field of view is

small. This creates problems for disparity estimation methods as these methods match

points in one image with points in the other image.

2.2.3 Toed-in cameras

The projection of a 3D point in a toed-in camera setup is more complicated than in the

parallel cameras case. A full derivation can be found in Appendix A. There is an inter-

esting geometrical concept for toed-in cameras. A 3D point that lies on the circle called

Vieth-Müller circle (Franich, 1996), (Fig. 2·2.c) which passes through the optical centers

of cameras and the convergence point Pconv, has zero disparity after projection onto the

image planes.

The advantage of toed-in setup is that it creates positive and negative parallax in

captured images. Therefore the absolute value of maximum or minimum disparity is usually

smaller than that of parallel cameras, which in turn leads to more comfortable viewing

experience. This can also be used to create desired 3D effects e.g., object can be perceived

as ‘sticking’ out of the 3D display. Moreover since the optical axes of cameras intersect at

a physical point, the common field of view is increased compared to parallel cameras. On
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the other hand, the analysis of geometry is much more complicated than that of parallel

cameras. Another disadvantage is that this configuration introduces opposing keystone

distortions in the stereo pair. Keystone distortion can be described as a distortion that

projects a rectangular frame onto a trapezoid. Finally, disparity has a vertical component

and therefore must be represented by a two-dimensional vector. This, in turn, brings extra

computational complexity into the disparity estimation methods.

A detailed comparison of toed-in and parallel camera configurations along with resulting

distortions can be found in the paper of Woods et al. (Woods et al., 1993). Subjective

evaluations of each setup can be found in the paper of IJsselsteijn et al. (IJsselsteijn et al.,

2000)

2.2.4 Camera arrays

Recent computer graphics and vision applications extended two camera setups to many

cameras, usually called camera arrays (Moravec, 1980; Wilburn et al., 2002; Matusik and

Pfister, 2004; Wilburn et al., 2005). The number of cameras can range from 8 up to 128

cameras. Impressive applications are created using these setups, however special hardware

is required to control and synchronize the cameras. The geometrical relationship between

pairs of cameras in an array can be derived by extending parallel camera setup after

including location of cameras in 3D space.

2.3 Communication: Data transfer for multiview displays

Transmission of multiview data is another major obstacle in a 3D system. Although efficient

compression methods are available for a single video sequence, transmission of multiview

data is a new research area. The trade off here is that increasing the number of cameras

improves the quality of 3D experience at the expense of increased transmission bandwidth.

The trivial solution would be to compress multiple video streams independently of each

other, however, since the redundancy between video sequences is not exploited, this would

not be an efficient technique (Smolic and Kimata, 2003; Vetro et al., 2004). Considering



19

3D displays

Volumetric

Non-Volumetric

With glasses

Without glasses

Stereo

Multiview
Active

Passive
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this problem, there is currently an MPEG activity to standardize compression of multiview

data. Possible solutions include reconstructing intermediate views (Kimata and Kitahara,

2004; Martinian et al., 2006a; Ince et al., 2007b) to increase compression efficiency (to be

discussed in Section 2.5) or exploiting advanced prediction orders in existing video coders

(Merkle et al., 2006).

2.4 Display: Classification of 3D displays

Having discussed the perception, acquisition, and, finally, transmission of stereo images, let

us now explain how these images are presented to the viewer so that he/she can perceive

depth. There are many different types of 3D displays. We will present only a coarse

classification. More detailed and different types of classifications can be found in (Benton,

2001; Konrad and Halle, 2007)

As shown in Fig. 2·3, 3D displays can be divided into volumetric and non-volumetric

(projected or perceived) displays. Volumetric displays create actual bright points in a 3D

volume explicitly, thus mimicking a 3D structure. Two examples of volumetric displays

are rotating screens and multiple semi transparent screens (Sullivan, 2005).

On the other hand, non-volumetric displays create the 3D perception by multiplexing

many images projected onto the same screen. Since the results of our work apply to

non-volumetric displays, we will concentrate on such displays from now on.

A non-volumetric 3D display can be either stereo (2 views) or multiview. The multi-

view displays deliver a more complete 3D experience since they are able to show different



20

R
L

R
L

R
L

R
L

Right eye

Left eye

LCD
Parallax barrier

(slits in opaque sheet)

(a) Parallax barrier

R
L

R
L

R
L

R
L

Right eye

Left eye

LCD
Lenticular screen

(microlenses)

(b) Lenticular sheet

Figure 2·4: Autostereoscopic displays.

perspectives of the scene as the viewer changes his position. In real world, when we are

looking at a static object, if we move our heads we can see around objects due to motion

parallax cue discussed earlier. This so-called ‘look around feeling’ is possible on a 3D dis-

play only if it can deliver multiple views. On the other hand, stereoscopic displays show

the scene from only a single viewpoint. If the viewer changes his position, he/she always

sees the same images, leading to the impression that the scene rotates, a clearly unrealistic

experience.

Since both left and right images of the scene are shown simultaneously on the screen,

a separation step is needed to deliver proper image to each eye. Many 3D systems solve

this problem using glasses that the viewer must wear.

There are many examples of such glasses. Anaglyph glasses have a red lens on the

left eye and a blue (sometimes cyan) lens on the right eye. Anaglyph stereo images are

produced in such a way that two images, a red and blue image, are superimposed through

red and blue channels of a color image. Since anaglyph glasses have colored lenses, the

left and right eyes see the red and blue images respectively. Since two different images

are perceived by each eye, viewer can perceive depth. Anaglyphs offer acceptable quality

for black and white images, however, a true color image is not possible since viewing is

through the colored glasses (McAllister, 1993).

Another example are polarization-multiplexed displays. In this setup, two views are

projected through light polarizers onto the screen by using two projectors. These superim-
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posed images are then separated by polarized (circular or linear) glasses worn by the user

(Pastoor and Wöpking, 1997). Alignment of the projectors is a challenge for this kind of

displays.

One final example is the time-multiplexed displays which exploit the fact that human

visual system can retain an image for some time. The left and right views are sequentially

shown on the screen and lenses of liquid crystal shutter glasses open and close in synchro-

nization with the displayed images. When the left view is displayed, the right lens occludes

the right eye and vice versa. The operation of glasses is controlled by an infrared emitter

placed close to the monitor or the glasses are directly connected to the display (Pastoor

and Wöpking, 1997).

Recently, researchers eliminated the necessity of eyewear. Examples of systems without

eyewear include parallax barrier (Fig. 2·4.a) and lenticular sheet (Fig. 2·4.b). Parallax

barrier is a thin opaque material with a series of regularly-spaced vertical slits (Halle,

1997). Each slit acts as a window to the stripe of the image behind the parallax barrier.
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The visibility of a strip depends on the horizontal viewing angle. A stereoscopic image

is displayed by interleaving columns of the two images. If the viewer is positioned at the

appropriate location, the left and right eyes will see different images, therefore depth will

be perceived.

The other type of monitors uses lenticular sheets (sometimes called lens sheets or micro

lenses) which can be regarded as many miniature lenses arrayed on a flat sheet. This sheet

covers the surface of a flat panel monitor. The screen and the lenticular sheet are precisely

aligned so that at a specific position of the viewer, the left and right views are properly

delivered to the viewer’s eyes as a result of diffraction of light.

As we said, a multiview display can deliver different perspective if the viewer changes

position. Some systems use a tracking device to track the position of the viewer and they

are called active systems. This type of systems includes wearing a head tracker or using

software that tracks the eyes of the viewer. As the position of the viewer changes, the system

adjusts to the new position by either painting new images on the screen or sometimes even

by changing the physical structure of the display. On the other hand, passive systems do

not track the position of the viewer. They accommodate the change in the position of

the viewer by displaying different views at different positions simultaneously. Obviously,

active systems cannot be used by two viewers at the same time since the system cannot

adjust two different positions at the same time. Passive systems, such as lenticular sheets,

let many viewers use the same screen effortlessly, but with reduced spatial or temporal

resolution due to the view multiplexing. However, the availability of very high resolution

displays remedy this problem.

After giving information about several different types of 3D systems, we show a classi-

fication in Fig. 2·5.

2.5 Applications of IVR in an end-to-end 3D system

Having discussed the individual components of a 3D system, let us now summarize the

applications of IVR in a 3D system. As mentioned in Chapter 1, IVR can be used in all
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steps of an end-to-end 3D system.

Acquisition and perception stages: As mentioned in the previous chapter, the

comfort of the viewer is highly dependent on the amount of parallax, therefore, the distance

between cameras. Intermediate view reconstruction can be used to virtually adjust the

distance between cameras so that a viewer finds the most comfortable position, as shown

in Fig. 1·4.c. It is possible to consider this as a ‘3Dness’ knob much like the volume knob

found on TV sets (Konrad, 2001).

Communication stage: The goal of video compression is to eliminate redundancy, by

predicting the current data from previously-transmitted data. Therefore, high-quality ref-

erences are needed to effectively eliminate the redundancy. Intermediate view reconstruc-

tion can be used to generate additional reference pictures by using available cameras. For

example, in Fig. 1·4.a, cameras C1 and C3 can be used to create an additional reference

for C2 to increase compression efficiency.

Similar to display stage, it is also possible to reduce the number of cameras by using

view reconstruction. It may be possible not to transmit any data regarding C2 in Fig. 1·4.a

and save significant amount of bandwidth. C2, then, can be reconstructed in the decoder

side by using C1 and C3.

Display stage: As pointed out in the classification of 3D displays, current technology

eliminated the need for glasses. However, these displays require many images of the scene

(usually around 10 individual images). One approach to solve this problem is to use camera

arrays, however this may be an expensive solution. Intermediate view reconstruction can

generate multiple views using a small number (2-3) of cameras.

Similarly, it is possible to migrate vast amount of historical stereo images to new mul-

tiview 3D displays by generating additional views for these images.

Finally, intermediate view reconstruction can offer a scalable 3D broadcast. If the

number of cameras in the acquisition step is not equal to the number of required input

images of 3D display on the receiver side, then additional views can be generated on the

receiver side so that requirements of the display are satisfied. This, of course, brings a
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computational load to the decoder but as the processing power increases, this would be

less of a concern.

2.6 Conclusions

In this chapter, we presented basics of an end-to-end 3D system, an example of which can

be found in (Matusik and Pfister, 2004). After describing required steps and challenges

in such a system, we outlined many applications of view reconstruction to solve these

problems. It is clear that view reconstruction can improve 3D systems and enhance the

viewer experience.



Chapter 3

Intermediate view reconstruction: state-of-the-art

and challenges

This chapter reviews the prior work on intermediate view reconstruction. However, it first

starts by stating assumptions and envisioned applications of our work so that it will help

us position our work with respect to prior art.

Computer graphics, computer vision and image processing communities have proposed

many solutions to IVR to date. We will give a classification of past methods depending

on their requirements vis-a-vis the number of input images and their need to know camera

geometry. We will point out the occlusion-awareness of algorithms as well. The chal-

lenges in view reconstruction, which are going to be elaborated upon in more detail in the

subsequent chapters, will be briefly introduced.

3.1 Applications and constraints of this work

Considering the emergence of automultiscopic (i.e., multiview, eyewear-free) displays, our

work envisions the following applications:

• Migrating available stereo images to multiview displays. Similarly extending readily

available stereo acquisition setups to multiview displays.

• Content generation for multiview displays using small number of cameras.

• Applications where using a large number of cameras is unrealistic such as medical

applications or space exploration.

The constraints and assumptions in this work will be as follows:

25
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Figure 3·1: A schematic illustration of occlusions. (a) Images of a 3D
scene are captured at four different locations generating four images I1 to
I4 shown in (b)-(e). The gray object gradually occludes the text from I1

(first image) toward I4 (last image). The intermediate images I2 and I3

show the partial occlusion of text.

• We will mainly focus on using two input images. There must be at least two input

images for a stereo application. If the proposed approaches can successfully handle

two input images, extension of algorithms to multiple cameras will be trivial by

choosing any pair of images. However, for the sake of completeness, we will focus on

multiple images in Chapter 8 as well.

• We will assume that the images are captured by small/medium-baseline cameras

which corresponds to 6-7 times of interocular distance. Larger baseline distances are

not suitable for multiview displays since humans cannot fuse such images.

• We will be flexible on camera geometry restrictions. Most methods can work solely

on parallel camera structure which is hard to achieve. Methods proposed in this work

will allow flexible camera geometry. However, the generated views will be on a line

connecting the focal points of the real cameras, again due to the specific application

of multiview displays.

• We will focus on images captured by uncalibrated cameras. The reason is that stereo

images usually do not have the required calibration data. Related to this, we will
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Figure 3·2: A rough classification of view reconstruction algorithms based
on the requirements of number of images required, geometric information
and effect of occlusions. Required number of images decreases from top to
bottom.

not use rectification which practically introduces blur in the reconstructed images.

The main focus and effort in our work is to work with small number of images and to

focus on the occlusion areas. The occlusion effect is illustrated in Fig. 3·1. Assume that

images of a 3D scene, shown in Fig. 3·1.a, are captured at four different locations denoted

by arrows in the image. Since the gray object is closer to the camera, it will have a larger

disparity value than the text in the background. Therefore, as the gray object in I1 displaces

between images and it will gradually occlude the text. In I4 the texture is completely

occluded while intermediate views demonstrate partial occlusion. The reconstruction in

occlusion areas is particularly difficult as will be explained in subsequent chapter. Now let

us review prior work in the area.
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3.2 Prior work on view reconstruction

Intermediate view reconstruction (or image based rendering) is basically creating an image

at a specific position at a specific time. Adelson and Bergen (Adelson and Bergen, 1991)

formulated all possible images by the so-called plenoptic function that records all light rays

at every possible 3D location (Vx, Vy, Vz) that is looking towards every possible direction

(θ, φ) at every time t for every wavelength λ. Considering this seven-dimensional function,

P (Vx, Vy, Vz, θ, φ, λ, t), generating new images means simply sampling this function. How-

ever, due to its many dimensions and complexity, capturing a full plenoptic function is

difficult, if not impossible. Researchers usually make assumptions to reduce the dimension

of function P . For example, if we consider a static scene (i.e., fixed time) and assume

grayscale images (i.e., fixed wavelength), the number of dimensions immediately reduces

to five. It is possible to classify prior work depending on the number of dimensions of the

plenoptic functions used as in the paper by Zhang and Chen (Zhang and Chen, 2004).

However we would like to classify the methods depending on their need for geometry in-

formation (similar to (Shum et al., 2003)) and, more importantly, the number of required

input images. This will also help us analyze the methods from the occlusion-awareness

point of view.

A coarse classification is shown in Fig. 3·2. The number of input images required by

the methods decreases from top to bottom.

Category #1: Methods that rely on oversampling: The first type of methods

such as lightfield rendering (Levoy and Hanrahan, 1996) and lumigraph (Gortler et al.,

1996) rely on oversampled data of the scene. In both works researchers create a 4D repre-

sentation of the scene using many input images. The intermediate views are then created

simply by slicing (sampling) this 4D representation, i.e., 4D plenoptic function. The input

images are captured by regularly spaced cameras on a 2D array. The difference between

lumigraph and light field rendering is that lumigraph can use images taken from arbitrarily

placed cameras by using special markers in the scene. However, these images are eventually
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projected onto a regular array of images, a process called re-binning by the authors.

There are no assumptions made about scene geometry, however if the number of images

is small, then artifacts are observed in the reconstructed images. Another problem is that

the illumination must be fixed and cannot change during acquisition. However, the main

disadvantage of this method is its need for many input images as many as thousands.

Since the scene is oversampled, the rendering process in both of these approaches is

independent of the geometry and simply blends input images. The presence occlusions is

not a problem because, thanks to oversampling, occlusions between nearest cameras are

negligible and all texture in the scene is visible in at least a few cameras.

A multiple camera system was also proposed by Kanade et al. (Kanade et al., 1997) to

create intermediate views for dynamic scenes. The input images are acquired in a specially

built dome which consists of 51 cameras. The main limitation of the method is its need

for a special acquisition step; a multi camera dome.

Category #2 : Methods that use undersampled data sets with available

geometric information: Given the geometry of a scene, it is possible to reduce the

number of images needed. Such a method was proposed by McMillan (McMillan, 1997).

If the depth (equivalent to disparity) of the input images is readily available, it is possible

to project pixels of the original images to a new viewpoint and reconstruct a new image.

Obviously, it is not guaranteed that all pixels in the new image will be visible in the input

images. Therefore, occlusions should be handled in some way. However, since the geometry

of the scene is known, at least locations of occlusions are known.

In another approach, called view-dependent texture mapping, given scene geometry

and scene texture, it is possible to render new images. Debevec et al. (Debevec et al.,

1998) proposed such a method that first creates a 3D model of the scene and then maps

the texture onto this model. Camera geometry and camera locations are assumed to be

known. The results of the method are shown for aerial pictures where objects have well-

defined geometric shapes (e.g., buildings), however arbitrary objects may pose difficulties.

For example, only the buildings are modeled while smaller objects such as trees are not
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considered in the 3D model.

Similarly, Buehler et al. (Buehler et al., 2001) proposed a method, called unstructured

lumigraph rendering, which is a generalization of some image based rendering algorithms.

The method becomes a lumigraph-style approach in one extremity (lack of geometry with

many input images) while it behaves like view-dependent texture mapping (small number of

input images with scene geometry). The advantage of the method is its ability to generate

a virtual view when presented with different number of input images and camera geometry.

Another method, which uses small number of cameras, was proposed by Matusik et al.

(Matusik et al., 2001) to recover a 3D shape of an object by computing a visual hull. A

visual hull is the intersection of projections of object boundaries. Due to the nature of

projections, visual hull cannot contain any concavities, which is a major limitation. Also,

object boundaries are extracted using segmentation methods which are prone to errors.

These errors are visible around object boundaries.

As we said, in these methods occlusions are a problem to a degree because they must be

handled carefully. However, thanks to the known geometric information, at least occlusion

areas can be detected in advance.

Category #3: Methods that use heavily undersampled data sets with un-

known geometry: In the final category that we are considering are the methods that

have no access to the scene geometry and work on a small number (2-3) of input images.

Therefore, they use heavily-undersampled data sets. Most of these methods do not use any

camera calibration information either. These methods implicitly compute the geometry

(usually from disparity) of the scene either using correspondence matching or projective

geometry. The work presented in this dissertation is closest to this type of methods.

These methods can be categorized based on two criteria. The first criterion is whether

these methods compute disparity by using backward- or forward-projection. In backward-

projection, disparity and intensity of each pixel of the intermediate view are estimated

by pivoting on the unknown intermediate image and by back-projecting this pixel onto

the known images to extract disparity and intensity information. In the complementary,
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forward-projection approach, the disparity is estimated on the known input images and

then intensities of input images are projected onto the intermediate view to reconstruct

the intermediate view. These two approaches will be discussed in detail in Chapter 4.

Here, we would like to classify the methods based on a second criterion: the type of

disparity method used to infer the geometry of the scene.

Projective geometry-based methods: Two examples that rely on projective geometry are

works of Seitz and Dyer (Seitz and Dyer, 1996) and Avidan and Shashua (Avidan and

Shashua, 1997). Seitz and Dyer proposed a view morphing algorithm to generate a morph-

ing between two available images which can also be used to generate intermediate views.

The method is composed of three main steps: First, original images are rectified and then

two intermediate views are reconstructed using projective geometry, which is computed us-

ing feature points. The final intermediate view is generated by blending these two images

using weighted averaging. The third and final step is to inverse-rectify the reconstructed

image into the desired viewpoint. Although being an effective method, it suffers from the

low-pass filtering effect of the rectification steps. Moreover, since occlusion areas are not

handled explicitly, these areas demonstrate a ‘ghosting’ effect during transition. Exposed

areas in the intermediate view are filled using texture synthesis; an implicit property of the

method. However, efficacy of texture synthesis is limited.

Avidan and Shashua (Avidan and Shashua, 1997) utilized tensor spaces to create in-

termediate views. Point correspondences between input images are used to compute a

trilinear tensor, which can be considered as a mapping from reference images to the new

image. Then, this tensor and optical flow information between available images are used

to generate virtual views. Occlusions are noted as one of the major problems by authors

as the method is unaware of the visibility of points.

Scharstein (Scharstein, 1996) combined rectification with disparity estimation to han-

dle occlusions. The method computes a disparity field between input images and then

creates two intermediate views at the same position by forward mapping (i.e. disparity

compensating the images using disparity vectors) both the left and the right images. The
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pixel positions are rounded to nearest integer, a process which degrades quality of images.

Newly-exposed areas are filled by using either texture of one of the frames or texture syn-

thesis algorithms. Occlusions, which the author calls overdefined points i.e., more than two

points in the original image falling on the same location in the intermediate view, are han-

dled by ordering the depth of points. This method being simple, suffers from the forward

mapping part. Filling the holes using texture synthesis is problematic for reconstructed

views, especially in areas with detail.

Optical flow (disparity) based methods: Actually, creating virtual views using the opti-

cal flow between input images dates back to the work of Chen and Williams (Chen and

Williams, 1993) where they proposed a method to generate multiple view of a scene using

a few closely spaced viewpoints. The idea was to compute correspondences between images

and create a viewpoint using these correspondences. Their method focused on synthetic

images. Occlusions are not effectively handled as they use texture synthesis algorithm to

generate parts of the frame. This is the most similar method to the method that we envi-

sion. However, we are considering real images that requires the extraction of both depth

and occlusion information.

Most recently, Zitnick et al. (Zitnick et al., 2004) proposed a full system for view

synthesis of dynamic scenes. Their system is composed of 8 calibrated cameras placed on

a line. The system first segments all images using color information and then computes

the depth of the scene using 3 neighboring cameras. Original videos along with disparity

maps, boundaries of objects and matting information are all stored using a specially-built

multi-view encoder. The view generation is achieved in real-time.

Block-based methods: Block-based techniques have been used in the context of interme-

diate view reconstruction. However, their inherent assumption that all points in a block

should have the same disparity does not always hold. Therefore, it is suggested to change

the block size when required. Mancini and Konrad (Mancini and Konrad, 1998) proposed

a quadtree block matching technique which first calculates the disparity values for larger

blocks and then reduces the block size at possible boundary locations. The reconstruction
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of intermediate view is achieved by pivoting-based method which is discussed in Chapter

4. However, occlusions are not addressed by Mancini and Konrad.

In another block-based approach, McVeigh et al. (McVeigh et al., 1996) explicitly

detect occlusion areas and handle them by assuming that depth stays constant within the

neighborhood of occlusions. The equations used for formation of the intermediate view

indicate that they use full-pixel precision to avoid irregularly-spaced intensities, which is

the main limitation of the method.

Pivoting-based (back-projection-based) techniques use linear interpolation (weighted

averaging of intensities at endpoints of the disparity vector) methods which tend to result

in blurry intermediate views. Mansouri and Konrad (Mansouri and Konrad, 2000) proposed

a winner-take-all approach to overcome this problem. In their approach, the intermediate

view is reconstructed by tilings from either left or right images. In other words, every

block in the intermediate view is equal to the corresponding disparity-compensated block in

either the left or the right image. Although this method decreases blur in the reconstructed

image, it also introduces a “patchiness” effect when left and right views have significant

differences in intensities. Although using either left or right image hints a method of

handling occlusion areas (because occlusion areas are visible in either image), authors do

not address occlusions explicitly.

Dynamic programming-based methods: Redert et al. (Redert et al., 1997) introduce a

method which can reconstruct views at non intermediate positions. Their motivation is to

overcome the restriction that fixes the new viewpoint between the cameras. They compute

disparity fields using dynamic programming. Then, they compute the intermediate view

at the center point between the two cameras. For the rest of the algorithm, they use this

center view and a single disparity map D (either right-to-center or center-to-left). Image

rendering using this method also suffers from problems like in Scharstein’s case. Occlusions

are handled via depth ordering of points, while newly-exposed areas are filled in by linear

interpolation of available intensities, which can offer only limited quality.

Feature-point-based method: Siu and Lau (Siu and Lau, 2005) propose an image regis-
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tration technique for view rendering. Their aim is to reduce the number of required images

for the matching step. Their method, similar to (Kardouchi and Konrad, 2003), first ex-

tracts feature points using the Harris operator and matches these points between images.

Unlike our method, they use three images to verify correspondences. This step is followed

by Delaunay triangulation and topological consistency checks. Once a full disparity field

is computed, a virtual view is reconstructed. A deficiency of this method, which can be

observed in their results, is the ‘ghosting effect’ (blurring of the edges) in the reconstructed

images which is especially significant in textured areas that are being occluded/exposed.

This is an indicator of unsuccessful handling of occlusion areas. Also, due to Delanuay

triangulation, areas closer to boundaries of the images cannot be reconstructed properly.

Resulting images are cropped such that the boundaries of original images are excluded.

Multi-camera methods: Utilizing more than two cameras for view synthesis was also

proposed in the literature. The advantage is that occluded parts may be better defined

using additional views. Park and Inoue (Park and Inoue, 1997) proposed an arbitrary view

generation algorithm using five cameras. Their camera system consists of a center camera

and four additional cameras (above, below, left and right) separated by the same distance.

In their algorithm, they exploit a depth map of the central camera computed assuming

texture in this camera is visible in other cameras. They forward map the image of the

central camera to that of a virtual camera. However, the problem of having overdefined

or undefined points again arises due to the forward mapping and due to occlusions. They

use various assumptions such as depth constancy to fill in the occlusion areas. In the

event of the failure of all assumptions, they resort to texture synthesis that blends colors of

neighboring positions, which is another deficiency of their method because texture synthesis

algorithms often fail in high-detail areas.

As we mentioned in the beginning of this category, all these methods reviewed in

category use either forward (e.g., Redert et al., McVeigh et al., and Scharstein) or backward

(e.g., Mancini and Konrad, Mansouri and Konrad) projection to reconstruct images. It

should be noted forward projection based methods such as Redert et al., McVeigh et al., and
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Scharstein share common features with the work of McMillan (McMillan, 1997) where depth

was readily available. More recent work eliminated the challenge of disparity estimation

by using special cameras that record not only the photometry but also depth information.

This so-called ‘depth-image-based rendering’ became a reference tool for new 3D displays

from Philips (Redert et al., 2002).

When compared to the previous two categories we presented, the occlusion effects are

most problematic in this category for two reasons. First of all, geometry (depth, disparity

or projective mapping) should be extracted from the images, and secondly these methods

are uninformed about occlusion areas. Therefore, they should properly detect and handle

the occlusion areas. Moreover, as we will discuss later in this dissertation, since occlusion

areas cause significant problems in correspondence estimation stage, these algorithm should

pay close attention to the such areas. As we mentioned, our work falls into this category

as well.

Overall, the main problems in prior algorithms are as follows:

• Occlusions are not handled or they are handled in a simplictic way.

• Full-pixel precision is used to avoid irregularly-spaced intensities.

• Forward-projection based methods use simple approaches (usually nearest neighbor-

hood interpolation) to convert irregularly-spaced data to regularly-spaced data.

• Many input images are required.

• Additional input parameters such as focal length, baseline distance etc. are required.

Finally, there is an important point that we would like to emphasize. The results of

view reconstruction are usually evaluated subjectively. Since the underlying true image is

not always available, the quality of reconstruction cannot be assessed numerically, e.g., with

mean square error. In this work, by using data sets that contain many views of a scene, we

will try to present reconstruction results with Peak-Signal-to-Noise-Ratio (PSNR) values.
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Figure 3·3: (a) Illustration of occlusion areas. Point B is visible in both
cameras while A is visible only in the left-camera image and C is visible
only in the right-camera image (b) Disparity estimation method creates
irregularly-sampled intensities in intermediate view.

PSNR, a measure of mean square error, of two images is defined as follows:

εMSE =

Nx∑

x=1

Ny∑

y=1

(
I(x, y) − Î(x, y)

)2

Nx × Ny
, PSNR = 10 log(

2552

εMSE
), (3.1)

where Nx and Ny are horizontal and vertical dimensions of the images. As it can be seen

from this equation, higher PSNR values indicate smaller reconstruction error and therefore,

higher quality images.

3.3 Challenges in view reconstruction

Reviewing prior work in the field, we can conclude that there are three main challenges in

view reconstruction:

1. Estimation of disparity: The first main challenge in intermediate view recon-

struction is the estimation of disparity field, or in other words finding the structure in the

scene. As shown in Section 2.2, disparity field of a scene can be used directly to recover the

depth map of the scene. The higher the quality of the depth map, the higher the quality

of the reconstructed intermediate view. Unfortunately, disparity estimation is ill-posed,

therefore, it is very challenging to obtain an accurate disparity field using two images.
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2. Handling of occlusion areas: The second challenge in intermediate view recon-

struction is handling of the occlusion areas. As we have defined in Section 3.1, an area

is called an occlusion area if it is not visible in both cameras. This results from different

positions of the cameras and scene structure. An example is shown in Fig. 3·3.a. Point B

is visible in both cameras but points A and C are visible in either one of the cameras but

not both.

There are several sub-problems related to occlusions. First, a disparity estimation

method that relies on matching intensities will not be able to match point A with any

point in the right image, simply because it does not exist there. Therefore, the disparity at

this point cannot be defined. However, since a disparity estimation algorithm usually has

no information about occlusions when starting the estimation process, it usually tries to

find the best match of an occluded point with a non-occluded (visible) point in the other

image, obviously a flawed approach. Two additional sub-problems arise at this point:

First, is there a way to estimate occlusion areas? Secondly, even if we are able to estimate

these occlusion areas, the disparity will not be defined there. How can this ambiguity be

resolved?

Yet another challenge is that, as shown in Fig. 3·1, some of the texture in the scene

is visible in one of the cameras and when forming the intermediate view, this information

should be used to reconstruct a proper intermediate image. A reconstruction algorithm

should be able to explicitly find areas that are visible only in one image and extract the

texture from the original image which carries the correct information. Overall, the detection

and handling of the occlusion areas belong to the most crucial steps in intermediate view

reconstruction.

3. Formation of intermediate view (estimation of texture): Yet another dif-

ficulty is the formation of the intermediate view, or in order words how to estimate the

texture of intermediate view. Consider that we would like to estimate the disparity of point

x of the left image (Fig. 3·3.b). Now, consider that a disparity vector d is computed at x

under constant brightness assumption, thus yielding IL(x) = IR(x+d). If the intermediate
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image is positioned at α (α = 0 and α = 1 correspond to positions of the left and right

images respectively; 0 < α < 1 indicates a position between two input images) then we can

write that J(x + αd) = IL(x) or J(x + αd) = IR(x + d).

The main problem here is that it is unlikely that αd will yield an integer vector repre-

senting a point on sampling grid of the intermediate view. Therefore, we can only compute

intensities at irregular points. How can one convert intensities of the irregular points to

an image or can this irregularity be avoided in the first place?

3.4 Conclusions

In this chapter, we first reviewed prior work on view reconstruction. We classified the

prior work into three categories: methods that rely on (i) oversampled data, (ii) under-

sampled data with available geometry, and (iii) heavily undersampled data with unknown

geometry. Our work falls into the third category. Next, we pointed out challenges in view

reconstruction from undersampled data. Starting in the next chapter, we will provide so-

lutions to each of these challenges and finally we will combine our solutions to achieve an

occlusion-aware intermediate view reconstruction algorithm.



Chapter 4

Spline-based intermediate view reconstruction

In this chapter we address one of the challenges, formation of intermediate view or texture

estimation, mentioned in the previous chapter. Considering the prior work discussed, it can

be seen that most reconstruction algorithms, from simple two-view disparity-compensated

interpolation, to complex image-based rendering schemes, share the need to model and

estimate the scene depth first. Once the scene depth is known, either explicitly or implicitly

(through disparity), texture of the unknown view is estimated based on views from the real

cameras and the known camera geometry.

In this chapter we focus only on the estimation of texture given a disparity field. Our

motivation is to propose a better alternative to simple methods found in the literature.

By extending a recently proposed method based on B-splines (Vázquez et al., 2005), we

propose a view reconstruction algorithm (Ince et al., 2007a) and compare this method to

widely-used pivoting based reconstruction.

4.1 Introduction

The problem of texture estimation given disparities between left and right images of a

stereo pair can be better understood by examining how the disparities are computed. Let

IL and IR be two images captured on 2-D sampling grid Λ by two closely-spaced cameras.

We assume the distance between the two cameras is normalized to 1. Consider that we

would like to create an intermediate view J , also defined on Λ but at a distance 0 < α < 1

from IL, by computing disparities between IL and IR. Clearly, for α = 0, we have J = IL,

whereas for α = 1, we have J = IR (Fig. 4·1). It is possible to compute two vector fields:

dL when disparity vectors are pivoted (anchored) on the sampling grid of IL (Fig. 4·1.a)

39
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Figure 4·1: View reconstruction when disparity vectors are pivoted in (a)
left, (b) right, and (c) intermediate image.

and dR when they are pivoted on the sampling grid of IR (Fig. 4·1.b). Under the constant-

brightness assumption (Horn and Schunck, 1981), the following relationships can be written

using these disparity fields:

IL(x) = IR(x + dL(x)), IR(x) = IL(x + dR(x)), ∀x ∈ Λ. (4.1)

Since brightness constancy holds along the whole disparity vector, the following relation-

ships can be derived:

J(x + αdL(x)) = IL(x), J(x + (1 − α)dR(x)) = IR(x), ∀x ∈ Λ. (4.2)

The reconstructions of J(x + αdL(x)) and J(x + (1 − α)dR(x)) are trivial; respectively,

substitute IL(x) or IR(x). However, the locations x+αdL(x) and x+(1−α)dR(x) usually

do not belong to Λ. In fact, due to the space-variant nature of disparities, the above

locations are irregularly spaced, whereas J defined on lattice Λ is being sought; the very

problem we would like to focus on in this chapter. The two approaches typically used to

solve this problem to date are described in the following sections.

4.1.1 Approach #1: Backward disparity compensation with disparity pivoting

In reconstruction based on backward disparity compensation, disparity vectors are defined

(anchored or pivoted) on lattice Λ (i.e., sampling grid ) of the view to be reconstructed
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and bi-directionally point toward the known images (Mancini and Konrad, 1998; Konrad,

1999; Zhai et al., 2005). We will refer to this type of methods as pivoting-based methods.

As shown in Fig. 4·1.c, the disparity field dJ is defined on Λ in J thus forcing disparity

vectors to pass through pixel positions of the intermediate view (i.e., vectors are pivoted in

the intermediate view, thus the name of the method). The constant-brightness assumption

now becomes:

IL(x − αdJ(x)) = IR(x + (1 − α)dJ(x)), ∀x ∈ Λ. (4.3)

Compared to equations (4.1), each lattice point of J is guaranteed to have a disparity

vector and, therefore, two intensities associated with it. Although this disparity vector’s

end points will not necessarily intersect Λ in IL or IR, since intensities of both images are

available on Λ, intensities off Λ can be easily calculated using spatial interpolation.

In order to reconstruct view J at a distance α, a disparity field pivoted at α is needed.

This necessitates a disparity estimation for each view to be reconstructed, a significant

computational burden. On the other hand, view reconstruction becomes a byproduct of

disparity estimation; once left- and right-image points are selected to satisfy equation (4.3),

either left or right luminance/color can be used for the intermediate-view texture. An even

better reconstruction is accomplished when weighted averaging (linear interpolation) of

both intensities is applied as follows (Mancini and Konrad, 1998):

J(x) = (1 − α)IL(x − αdJ(x)) + αIR(x + (1 − α)dJ(x)), ∀x ∈ Λ. (4.4)

The final step of how attributes from known images (may be more than two) are

combined to recover the needed intensities is where algorithms of this type differ ; linear

filtering (Franich, 1996; Mancini and Konrad, 1998; Zhai et al., 2005) and non-linear

winner-take-all algorithms (Mansouri and Konrad, 2000) are some of the choices.

It is clear from (4.4) that all intermediate-view pixels are assigned an intensity and post-

processing is not needed. However, in addition to the need to compute a disparity field for



42

each intermediate view, pivoting-based methods tend to produce somewhat blurred images

due to the multiple interpolation steps involved (Mansouri and Konrad, 2000). Spatial

interpolation in each view due to sub-pixel disparities (i.e., IL(x − αdJ(x)), IR(x + (1 −

α)dJ(x))) plus interpolation between views as shown in (4.4) both induce blurring.

One should note that methods which employ ray-tracing (Gortler et al., 1996; Levoy

and Hanrahan, 1996) essentially use pivoting as well. Usually, these methods apply ray-

tracing at the required pixel position and find the corresponding texture in 3D model

or input 2D images by using the underlying camera calibration information. Therefore,

effectively, they pivot on the intermediate view to be reconstructed.

4.1.2 Approach #2: Forward disparity compensation with disparity rounding

Alternatively, in reconstruction based on forward disparity compensation, disparity vectors

are defined on a sampling grid of a known image (or several images) while pointing, in

general, to off-grid locations in the plane of the virtual image. Under constant-brightness

assumption (Horn and Schunck, 1981) these locations inherit texture attributes of known

images but, unfortunately, are irregularly spaced. The main issue, thus, is how to recover

a regularly-spaced virtual view from these samples.

One option is to avoid the reconstruction of intermediate-view intensities off Λ by forcing

the disparity-compensated locations x+αdL(x) and x+(1−α)dR(x) to belong to Λ. For

orthonormal lattices typically used, this means forcing αdL(x) and (1−α)dR(x) to be full-

pixel vectors (Scharstein, 1996; McVeigh et al., 1996). This can be accomplished either by

rounding intermediate-view positions to the nearest integer after disparity estimation (i.e.,

J(nint(x+αdL)(x)) = IL(x)) or by estimating disparities under the constraint αdL(x) ∈ Λ

or (1 − α)dR(x) ∈ Λ. In consequence, most pixels in the intermediate view will have a

unique intensity assigned, but some may have either no intensity or multiple intensities.

Although additional post-processing using texture synthesis (to fill in the missing intensity)

or depth ordering (to choose from multiple intensities) can handle such problematic areas,

the resulting images are usually severely distorted. These distortions are due to disparity
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rounding, that effectively implements the nearest-neighbor intensity interpolation known to

cause noticeable aliasing (Keys, 1981). In case of constraining disparities during estimation,

it is the coarse disparity resolution needed to meet intermediate-view lattice constraints

that is the main culprit.

4.1.3 Proposed approach: Irregular to regular conversion

Recently, a solution to the problem of regularly-spaced image recovery from irregularly-

spaced samples has been proposed based on spline models (Vázquez et al., 2005). We

propose to adapt this approach to view reconstruction because it avoids the oversmooth-

ing and disparity-per-view problems associated with backward disparity compensation al-

though, admittedly, its computational complexity is higher. The main idea is based on

minimization of a cost function that balances a spline-model fit to the irregularly-spaced

intensity samples and spline-model smoothness. We propose an extension to this approach

by overconstraining the solution using intensity projections from both left and right images.

We will evaluate the performance of the proposed reconstruction method against stan-

dard pivoting-based interpolation (backward disparity compensation). An added benefit

of the spline-based reconstruction is the ability to handle occlusions more effectively. Ba-

sically, by projecting only the texture that will be visible in the intermediate view, and

eliminating the occluded texture, the final view can be made free of occlusion artifacts.

This will be discussed later in this dissertation.

4.2 Intermediate view reconstruction based on approximation in the

space of splines

First, we will introduce B-splines, and describe a method for image reconstruction from

irregularly-spaced samples using B-splines developed by Vázquez et al (Vázquez et al.,

2005). Then, we will discuss extension of this method to view reconstruction.
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4.2.1 B-splines

The computation of regularly-spaced data from irregularly-spaced input can be achieved

via B-splines (Unser, 1999), which are commonly used as interpolation kernels. A 1D

continuous function can be represented using B-splines as follows:

f(x) =
N∑

i=1

ciβ
n(x − i), (4.5)

where ci are spline coefficients and βn(x) is a B-spline of order n, defined as n-fold convo-

lution of zeroth-order spline functions β0(x):

βn =

n+1 terms︷ ︸︸ ︷
β0(x) ∗ β0(x) ∗ ...β0(x), β0(x) =





1, |x| < 1/2

1/2, x = ∓1/2

0, otherwise

(4.6)

A separable extension of 1D splines to multiple dimensions is trivial: β(x1, x2, ..., xN ) =

ΠN
i=1β(xi). The main advantage of working with splines is that although the underlying

model is a continuous representation, all computations are conducted on discrete data,

specifically the spline coefficients.

4.2.2 Image reconstruction from irregularly-spaced data using cubic B-splines

Consider a set of irregular image samples, each at xk = (xk, yk), with corresponding in-

tensities Ĩk where k = 1, . . . , M , and M is the number of samples. For compactness let

us denote each pair by Pk = {xk, yk, Ik}, k = 1, . . . , M , which will be useful in the next

section.

A continuous function f(x, y) =
∑Nx

i=1

∑Ny

j=1 cijβ
3(x − i)β3(y − i) is sought, where Nx

and Ny are dimensions of the image, such that it best matches all samples P = {x, Ĩ} by

minimizing the following error:

D =
M∑

k=1

|f(xk) − Ĩk|2. (4.7)
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Although D = 0 can be achieved for an interpolating function f , this would not necessarily

be the best solution because the data may contain erroneous values (local outliers). More-

over, an interpolating function could yield extreme fluctuations in areas void of input data.

Therefore, a regularization term should be added to prevent such behavior. Vázquez et al.

(Vázquez et al., 2005) proposed to apply the thin plate model as follows:

R =

Nx∑

i=1

Ny∑

j=1

(
f2

xx + 2f2
xy + f2

yy

)
, (4.8)

where the subscripts indicate derivatives of the continuous function f with respect to x

and y. Combining the data matching and regularization terms, the cost function to be

minimized is defined as E = D + λR where λ is the regularization factor. Minimizing E

with respect to coefficients cij yields a continuous function, that, sampled on Λ, permits

recovery of regularly-spaced intensities.

4.2.3 Overconstrained intermediate view reconstruction

The above spline-based reconstruction could be applied to irregularly-spaced intermediate-

view intensities derived from either IL or IR (4.2). However, we propose to overconstrain

the intermediate view by using samples derived from both views simultaneously as follows:

• Compute disparity fields dL(x) and dR(x) anchored in IL and IR, respectively, that

satisfy (4.1).

• Create sets of irregular points P = {x, Ĩ} by forward-disparity compensating intensi-

ties of IL and IR. In other words, create positions xk and corresponding intensities Ĩk

(as used in (4.7)) in the intermediate image (where k = 1, ..., M and M = NL + NR;

M being number total points from left (NL) and right (NR) images) as follows:

PL
n = {xn + αdL(xn), IL(xn)} for n = 1, ..., NL, and xn ∈ ΛL, (4.9)

PR
m = {xm + (1 − α)dR(xm), IR(xm)} for m = 1, ..., NR, and xm ∈ ΛR, (4.10)

P = PL ∪ PR. (4.11)
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• Find optimal function f(x) that minimizes the cost function E (Section 4.2.2) for

the set of positions and intensities Pk, k = 1, ..., M .

• Find values of f(x) for all x ∈ Λ.

The solution will be overconstrained because for an intermediate image of size N ×M , we

use approximately 2×N ×M intensities. There is a number of benefits of overconstrained,

spline-based intermediate view reconstruction. First, it allows us to use an arbitrary num-

ber of disparity fields that jointly overconstrain the solution, thus facilitating an extension

to multiple views. Secondly, due to camera noise, the intensities of homologous points in

IL and IR are rarely identical; using intensities from both images in the minimization (via

Ĩ) leads to a compromise solution that, in a sense, implements averaging between views

(similarly to reconstruction based on disparity pivoting). Thirdly, by the very nature of

spline-based reconstruction if similar intensities from both images are almost co-located,

the solution will emphasize this location (sort of a weighting mechanism). Fourthly, im-

proved image quality can be expected due to the use of original intensities in IL and IR,

unlike in pivoting-based reconstruction that uses spatially-interpolated intensities. Fifthly,

having a continuous function that represents the image can be beneficial for warping or

changing scale of the image. Sixthly, the spatial regularization involved in the spline-

based formulation makes the algorithm more robust to image noise than pivoting-based

methods. Finally, unlike the pivoting-based method, spline-based reconstruction does not

require separate disparity field for every virtual position.

4.3 Comparison of pivoting and spline-based view reconstruction

4.3.1 Comparison on ground-truth texture and ground-truth disparity

In order to compare pivoting- and spline-based view reconstruction in isolation from dispar-

ity errors, we prepared a ground-truth data set with left (IL), right (IR) and true midpoint

(J) images. The disparity of the data set is known, and is free of noise and occlusion effects.

This ensures a comparison of only reconstruction capabilities of both methods. In order
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Table 4.1: Parameters used to create three ground-truth data sets (N is
the downsampling factor).

Data set N Image size Disparity from IL to IR

#1 6 350×300 (2.333,2.333)
#2 10 210×180 (1.4,1.4)

#3 15 140×120 (0.9333,0.9333)

Table 4.2: PSNR of reconstruction error for spline-based method with var-
ious regularization factors (times 10−3).

50 20 9 5 1 0.1

#1 42.04 47.46 50.62 51.11 50.52 50.20
#2 36.91 39.43 40.39 40.43 40.04 39.88

#3 31.73 32.12 31.81 31.30 29.64 28.47

to create ground-truth data set with sub-pixel disparities, we pre-filter a high-resolution

image (2100×1800) to avoid aliasing after downsampling and then shift it by (7,7) and

by (14,14) pixels. We downsample the original filtered image and the two filtered/shifted

images by factors of N = 6, 10 and 15 to generate three sets of IL, J , and IR images.

Parameters used to generate each data set are given in Table 4.1 and the left image of one

set is shown in Fig. 4·2. In the following tests, a reconstruction Ĵ , at the position of the

midpoint image is computed from the other two images using pivoting- and spline-based

algorithms, and then average reconstruction error J − Ĵ is calculated via PSNR (given in

(3.1)).

Since the spline-based reconstruction method requires specification of the regularization

factor λ, we start by evaluating its impact on PSNR of the reconstruction error. As is clear

from Table 4.2, very small and very large regularization factors (on the scale of 10−3) result

in higher reconstruction error (lower PSNR). This is because for low regularization factors,

the continuous function modeled by splines is allowed to fluctuate in areas void of input

samples. On the other hand, high regularization factors inhibit fluctuations altogether thus

creating oversmoothed (blurry) image.
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Figure 4·2: Left image of data set #1.

Table 4.3: PSNR of the reconstruction error in absence of noise in images
and error in disparities (λ1 = 50 × 10−3, λ2 = 9 × 10−3).

Pivoting Spline

Bilinear Bicubic λ1 λ2

#1 40.00 47.28 42.04 50.62
#2 33.37 36.50 36.91 40.39

#3 29.31 30.91 31.73 31.81

With λ calibrated, let us compare spline- and pivoting-based reconstructions under

several scenarios. First, consider a noiseless case for both images and the disparities. It

is clear from Table 4.3 that spline-based reconstruction performs significantly better than

pivoting-based reconstruction (0.9-3.9dB improvement), if λ is carefully selected. The same

test is conducted using only one set of intensities for both reconstruction algorithms, either

from the left or right image (i.e., either P L or PR instead of P ), and the results are shown

in Tables 4.4.a and 4.4.b. It is clear that although the spline-based reconstruction consis-

tently outperforms the pivoting-based reconstruction, reconstruction from either left-image

intensities or right-image intensities is numerically inferior to using both images; overcon-

straining the solution leads to higher image quality for reasons detailed in Section 4.2.3.

In the next test, we evaluate the impact of disparity errors (e.g., resulting from dis-

parity estimation) on reconstruction quality; uniformly-distributed white noise with range

varying from [-0.1,0.1] to [-4,4] pixels is added to the ground-truth disparity field. Results

shown in Table 4.5, indicate that pivoting-based reconstruction is more robust to disparity
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Table 4.4: PSNR of the reconstruction error in absence of noise in images
and error in disparities when reconstructing only from: (a) left image, and
(b) right image (λ1 = 50× 10−3, λ2 = 9× 10−3), i.e., no overconstraining of
intermediate view.

Pivoting Spline

Bilinear Bicubic λ1 λ2

#1 38.49 41.37 37.89 42.99
#2 32.45 34.40 33.71 35.79

#3 29.23 30.78 30.82 31.83

(a)

Pivoting Spline

Bilinear Bicubic λ1 λ2

#1 39.12 42.18 38.38 43.88
#2 33.89 36.99 35.24 37.96

#3 29.37 31.00 30.99 32.19

(b)

Table 4.5: PSNR of the reconstruction error in presence of uniformly-
distributed white noise added to disparities (λ1 = 50×10−3, λ2 = 9×10−3)
(Test conducted on data set #1 only.)

Pivoting Spline

Range Bilinear Bicubic λ1 λ2

[−4, 4] 25.09 24.88 24.46 22.64
[−2, 2] 30.19 30.59 29.50 27.34
[−1, 1] 35.20 37.88 35.49 34.34
[−1

2 , 1
2 ] 38.60 43.60 39.44 40.39

[−1
4 , 1

4 ] 39.70 46.10 41.21 45.36

[− 1
10 , 1

10 ] 39.96 47.10 41.91 49.27

estimation errors until the error becomes negligible, after when spline-based reconstruction

performs better. This behavior is not unexpected, because in pivoting-based reconstruc-

tion, each pixel is independently reconstructed using its disparity vector and therefore the

errors related to disparity estimation are isolated. On the other hand, since spline-based

reconstruction works on all irregular points jointly, one incorrect disparity vector affects

all points in its neighborhood.

In the final test, we added white Gaussian noise with different variances to the original

left and right images to better understand the impact of image noise on the reconstruction.

It can be seen from Table 4.6 that spline-based reconstruction outperforms pivoting-based

reconstruction, especially when regularization parameter is adjusted to the noise level.
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Table 4.6: PSNR of the reconstruction error in presence of Gaussian white
noise added to the original images (intensity assumed between 0 and 1, and
regularization factor times 10−3). (Test conducted on data set #1 only.)

Pivoting Spline

σ2 Bilinear Bicubic 90 50 25 9

10−2 25.91 24.44 26.46 25.65 24.76 23.76
10−2.5 30.53 29.34 30.96 30.44 29.66 28.72
10−3 34.59 34.21 34.69 34.86 34.46 33.70
10−3.5 37.45 38.76 37.14 38.42 38.90 38.57
10−5 39.07 42.78 38.30 40.60 42.50 43.16

10−4.5 39.69 45.37 38.71 41.53 44.70 46.76

This can be explained again by the nature of reconstruction algorithms. Since spline-based

reconstruction incorporates prior thin-plate model that can be thought of as a smoothing

operator or low-pass filter, the algorithm is able to combat the noise better than pivoting-

based reconstruction.

Our overall conclusion from these tests is that overconstrained spline-based reconstruc-

tion significantly outperforms pivoting-based reconstruction. Also, while spline-based re-

construction is more robust to image noise than pivoting-based reconstruction, the latter

is more robust to disparity errors.

4.3.2 Comparison on ground-truth texture

In this part, we compare the two approaches on ground-truth texture data but with un-

known disparities; any errors from disparity estimation affect view reconstruction per-

formance. For ground-truth texture, we constructed several data sets using a graphics

program TrueSpace
TM

, which allows to create realistic 2D renderings of 3D scenes. For the

3D objects in the scene, we used VRML files courtesy of I3S Laboratory from the Univer-

sity of Nice at Sophia-Antipolis, France. Each data set consists of left, midpoint and right

images. Again, by using left and right images, we reconstructed an intermediate image

at the position of the midpoint image and calculated the reconstruction error. An optical

flow algorithm with isotropic diffusion (Horn and Schunck, 1981; March, 1988) was used
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(a) (b) (c)

(d) (e) (f)

Figure 4·3: View reconstruction for parallel camera setup: original (a) left,
(b) midpoint and (c) right image; (d) disparity pivoted in IL; and locations
of reconstruction error (white) greater than zero in (e) spline-based (f)
pivoting-based reconstruction.

to estimate the disparities. Although for spline-based reconstruction we could have used

a more advanced optical flow algorithm based on image-driven anisotropic diffusion (Ince

and Konrad, 2007), it would have been unfair to the pivoting-based method as we would

like to compare only the reconstruction capabilities of the methods.

Figure 4·3.a shows the midpoint image to be reconstructed. Since the data are smooth,

the reconstruction quality was very good with a slight edge to the spline-based method

(48.85dB) over the pivoting-based one (48.33dB). Instead of showing reconstructed images

(difficult to see differences at this quality level), we are showing locations where errors are

non-zero (white pixels in Figs. 4·3.e-f). It can be noticed that the number of white pixels

(indicators of reconstruction error) is smaller in spline-based reconstruction. The disparity

of the object (no information for background) is shown in Fig. 4·3.d.

We also tested both algorithms on the Flowergarden sequence, popular for its 3D qual-
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ities. Although this is a monocular sequence, since the camera moves at a constant speed,

while the scene is static, this setup is equivalent to multiview capture. Considering three

consecutive frames (3rd, 4th and 5th) of the sequence, we reconstructed the mid-point frame

using the other two and compared the result to the original mid-point frame. The PSNR

values were 29.84dB and 29.47dB for pivoting and spline-based reconstructions, respec-

tively. Again, since the reconstruction quality was high (difficult to distinguish in print),

we are giving PSNR values only.

The reconstructions presented so far have been of high quality since occluded areas

were rather small. In case of significant occlusions, difficulties arise since neither pivoting-

based nor spline-based method is equipped to handle them; as texture disappears between

left and right images, no match can be found during disparity estimation. Consequently,

incorrect disparity values are assigned to occlusion areas that, in turn, leads to poor view

reconstructions. Figure 4·4 shows a stereo sequence that exhibits significant occlusions,

especially near image boundaries. Part of the speaker is not visible in one of the images,

moreover, there are occlusions on the picture between objects. The disparity computed by

pivoting on the intermediate view and the reconstruction using this disparity field are shown

in Fig. 4·4.c and d respectively. As it is clear, there are gross errors on the left boundary of

the image (on the speaker, shown in closeup Fig. 4·4.f) due occlusions. Also, an area on the

left-bottom of the image is not reconstructed at all, because the disparity in this area was

completely incorrect. These artifacts are all due to poor disparity estimates and lack of

occlusion handling. We also estimated disparity fields on the input images and then used

these fields to reconstruct an intermediate image using splines. The reconstruction shown

in Fig. 4·4.e (closeup in Fig. 4·4.g), although better than pivoting-based reconstruction, is

not satisfactory either. Again, there are artifacts on the left boundary of the image (on

the speaker and on the wall). Finally distortions on the picture between objects are shown

in closeups Fig. 4·4.h-j. The arm in the left images is ‘split’ in intermediate images of both

methods because of occlusions.

This example, once again, shows the need for accurate disparity and occlusion infor-
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(a) (b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4·4: View reconstruction for a stereo sequence : (a) left (b) right
image; (c) isotropically-estimated disparity pivoted in J ; (d) pivoting- and
(e) spline-based reconstruction; (f) closeup of (d); (g) closeup of (e); closeups
of (h) left image; (i) pivoting- and (j) spline-based reconstructions.
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mation, which we will focus on the rest of this dissertation. Later, in Chapter 7, we will

revisit this test sequence.

Let us summarize the experimental results. Although in absence of image and disparity

errors spline-based reconstruction significantly outperforms pivoting-based reconstruction,

in practice, when disparity estimation introduces errors and images contain noise, the

two methods have comparable performance. As for computational complexity, if a single

view is to be reconstructed, pivoting-based reconstruction is less costly (single disparity

field, simple averaging), but when several views need to be reconstructed, the complexity

between the two methods is more comparable (spline-based reconstruction always needs

two disparity estimations plus minimization).

However, a significant difference exists between the two algorithms in terms of their

ability to estimate reliable disparities and to adapt to occlusions. The pivoting-based re-

construction computes disparities anchored on the sampling grid of the intermediate image

that is unknown. This leads to oversmooth and inaccurate disparity maps. The spline-

based reconstruction, however, uses disparity fields anchored in the known left and right

images thus permitting to use underlying image to regularize the disparities. This allows

to use anisotropic regularization (to be discussed in Chapter 6) which greatly improves the

accuracy of disparity fields. More accurate disparity fields naturally can help us to handle

occlusion areas more effectively.

Considering the problems caused by occlusions and seeing the potential of spline-based

method to handle occlusion, starting from next chapter we will focus on estimation and

handling of occlusion areas.

4.4 Conclusions

In this chapter, we proposed to use splines to recover intensities of the intermediate

view. We first compared relative merits of pivoting-based view reconstruction and spline-

based view reconstruction. We concluded that the spline-based approach outperforms the

pivoting-based method except for its slightly higher sensitivity to disparity errors.
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A significant computational advantage of spline-based method is that a single set of dis-

parity fields is enough to reconstruct an intermediate view while in pivoting-based method

a separate disparity field must be computed for each of the intermediate views.

Although the pivoting-based approach performs well in the absence of occlusions, the

reconstruction fidelity suffers in the presence of significant occlusions. In fact, both methods

fail to reconstruct high quality views in the presence of occlusions; an issue that must be

addressed.

We pointed out that pivoting-based method is ineffective when handling occlusions

because the disparity is anchored on the image that is being reconstructed; neither the

image nor the disparity is available. On the other hand, since the spline-based method

allows disparities to be computed on the grid of available views (therefore off the grid

of the intermediate view), it can achieve better disparity by using the known images, and

therefore can also use this reliable disparity information to extract more reliable occlusions.

In the next chapter, we focus on this occlusion problem.



Chapter 5

Estimation and handling of occlusion areas

Improving the quality of reconstructed view in occlusion areas requires solving a few sub-

problems. First, one needs to detect where occlusions occur. This is a problem of occlusion

area detection. As mentioned in previous chapters disparity cannot be computed in oc-

clusion areas. Therefore, second problem is to fill-in occlusion areas with correct disparity

(or correct texture) that is missing. This is essentially disparity extrapolation, or we will

sometimes refer to this problem as occlusion handling.

We will give a detailed analysis of problems related to occlusion areas in the next

section. The remaining part of this chapter is divided into two parts. We will first discuss

estimation of occlusion areas in stereo pairs and then focus on handling of occlusion areas.

5.1 Introduction

Occlusion effects in a video sequence are the result of object displacement or camera motion.

What happens is that some of the texture in one frame becomes invisible in the another

frame (Fig. 5.1). Occlusion effects occur in stereo images as well but this time they are

due to different viewpoints of the cameras and scene structure.

By the term “occlusion area” we will refer to an area in the first image disappearing

in the second image (e.g., area A in Fig. 5.1). Note that a disappearing area becomes an

appearing area (also known as uncovered or newly-exposed area) and vice versa if the order

of views is reversed , i.e., “left-to-right” versus “right-to-left”.

The knowledge of occlusion and newly-exposed areas is valuable in intermediate view

reconstruction for a few reasons.

The illustration in Fig. 5.1 shows, left image, IL, right image, IR, and the intermediate

56
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Figure 5·1: Illustration of occlusion effects in (a) two images and (b) on a
horizontal cross-section of two images depicting position change of a simple
object (black): Area A from IL is being occluded in IR by the object,
while area B is being uncovered (area B would undergo occlusion had the
direction of arrows been reversed).

image, J (Fig. 5.1.a) and their cross-sections (Fig. 5.1.b). Due to the displacement of

the square, areas A and B are occluded/exposed between the views. Let us analyze the

problems related to this occlusion effect.

1. First of all, it is important to note that disparity is undefined in occlusion areas,

simply because such areas cannot be found in the other image. For example, in

Fig. 5.1 points in area A of the left image IL have no match in the right image IR.

Therefore, the disparity values in occlusion areas should not be computed so as not

to yield incorrect estimates.

2. However, since disparity estimation algorithms are unaware of where occlusion areas

are, they compute a disparity vector for such areas by employing some sort of regu-

larization. These incorrect vectors will decrease the quality of disparity fields and of

reconstructions that use these disparity fields.

3. Another challenge is that reconstructing texture in occlusion areas of an intermediate

view is not possible without knowing where these areas are, i.e., occlusion detection

problem.

4. Another implicit challenge is that even if we are able to estimate the pixels that

are going to be occluded, depth (disparity) needs to be known for all pixels to be
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rendered (Fig. 5.1.b). The reason is that if we do not know depth of areas A and

B, then we would not know their locations in 3D space, therefore we cannot know

whether they will be visible or not in intermediate image.

5. Finally, texture in the occlusion areas is visible only in one of the images. Therefore

if J is to be reconstructed, the algorithm should explicitly find the correct source

image. For example, partially visible area A in J is only visible in IL and similarly

partially visible areas B is only visible in IR.

In view of all these problems, this chapter concentrates on the estimation and conse-

quently on the handling of occlusion areas when reconstructing intermediate views. We

will, first, briefly review popular methods used to estimate occlusion areas and then pro-

pose an accurate and robust, yet simple, occlusion/newly exposed area detection method

(Ince and Konrad, 2005a).

In the second part of the chapter, we will focus on given occlusion areas, what can be

done to recover the disparity in these areas. We will propose an image-driven disparity

inpainting method for occlusion handling (Ince and Konrad, 2007) and show its better

performance when compared to other methods.

5.2 Part I: Estimation of occlusion areas

Estimation of occlusion and newly-exposed areas is an inverse problem and thus is ill-posed.

Occlusion detection methods proposed in the past rely on 3 or more frames (Depommier

and Dubois, 1992; Chahine and Konrad, 1995; Iu, 1995; Lim et al., 2002; Ristivojević and

Konrad, 2004). The idea behind these methods is that they compare intensity consistency

along a trajectory formed by displacement vectors in 3 or more frames. In general, this

improves reliability of occlusion estimation but requires larger buffers and is computation-

ally more complex. More importantly, however, it requires more input data, i.e., at least

three frames, that might not be always available. Considering stereo image pairs, we will

focus on two-frame methods.
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We start by reviewing some widely used photometric and geometric approaches to

occlusion area detection.

5.2.1 Photometric approach

The usual assumption in a photometric approach is that excessive intensity matching error

(disparity-compensated prediction) is observed when reference-frame pixels cannot be ac-

curately matched in the target frame, because they disappear (Thoma and Bierling, 1989;

Driessen and Biemond, 1991). This disappearance induces significant errors. If dL denotes

a forward disparity field anchored on the sampling grid of the left image and pointing to

the right (target) image, while dR denotes a backward (i.e., right-to-left) disparity field,

then the corresponding disparity-compensated prediction errors at x are:

εLR(x) = IL(x) − IR(x + dL(x)), (5.1)

εRL(x) = IR(x) − IL(x + dR(x)). (5.2)

Typical occlusion detection methods then declare a pixel in the left image as being occluded

in the right image if |εLR| > Θ for the left image, where Θ is a threshold. Similarly a point of

the right image will be declared as occluded if |εRL| > Θ. Note that although newly-exposed

areas cannot be detected by this mechanism explicitly (pixels are not visible), effectively

the occluded areas in the right image (computed using dR) are the newly-exposed areas

for the left image.

5.2.2 Traditional geometric approach

An alternative to the photometric detection of occlusion areas is a geometric detection.

Such a detection is based on the assumption that a mismatch of left-to-right and right-to-

left disparity vectors is due to disappearing image areas. In particular, the following vector

matching errors have been used in the past to detect occlusion and newly-exposed areas in
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reference frame IL (Proesmans et al., 1994; Izquierdo, 1997):

ρLR(x) = ‖dL(x) + dR(x + dL(x))‖, (5.3)

ρRL(x) = ‖dL(x + dR(x)) + dR(x)‖. (5.4)

By comparing the above errors with a threshold, decision can be made as follows:

• if ρLR > ∆, then x in IL is occluded in IR or x in IL is newly exposed point that

was not visible in IR,

• if ρRL > ∆ then x in IR is occluded in IL or x in IR is newly exposed point that was

not visible in IL.

For increased robustness, this decision can be averaged over a window, however this will

sacrifice resolution of the result.

5.2.3 Ordering constraint

An ordering constraint assures that the order of pixels in a row of one input image will

be preserved in the same line of the other image. If the order of occurrence of a point

is different, then it is marked as occlusion (Geiger et al., 1995). The problem with this

method is that it cannot handle thin foreground objects or narrow holes. In particular, if

the disparity of an object is larger than its width, then the order will not be preserved.

This method must be applied to each row of pixels independently thus often producing

uncorrelated results between rows. Finally, this method must be modified significantly, if

the cameras are not parallel, because this will lead to epipolar lines that do not coincide

with image scan lines.

5.2.4 Uniqueness constraint

A uniqueness constraint assures one-to-one mapping of pixels on corresponding rows (Marr

and Poggio, 1976). In particular, a point of an image can be matched by only one point of

the other image. However, this constraint fails in the presence of transparent objects. One
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of the ways to implement uniqueness constraint is the traditional geometric approach as

we discussed before, as it measures the match between forward and backward vector fields.

5.2.5 Other methods

Some other methods to estimate occlusion areas are:

• Continuity constraint assumes that disparity varies smoothly everywhere except ob-

ject boundaries (Marr and Poggio, 1976).

• Given a disparity map, visible areas will have smaller disparity gradient, while oc-

clusion areas will exhibit excessive gradient (Pollard et al., 1985). This is due to the

smoothness constraint often used in disparity estimation methods, which assures that

neighboring points have similar disparities. Since occlusion areas are near the object

boundaries and a good match cannot be found in the other image, they exhibit a

transition (i.e., high gradient) between neighboring objects.

• Visibility constraint (Sun et al., 2005) is a variant of the uniqueness constraint. It

assures the consistency of uncovered pixels in one image with disparity of the other

image, but it permits many-to-one matches in visible areas. In other words, this

constraint assumes that if a pixel is newly exposed, there should not be any disparity

vectors pointing to this point.

5.3 Proposed approach: A new geometric approach to the detection of

occlusion areas

In the previous section, we summarized some simple methods for occlusion detection. Now

we will propose a new method for the detection of occlusion and newly-exposed areas that

is based on geometric properties of the disparity field. The method is applicable to any

disparity field derived from an image pair. No assumption of parallel camera geometry is

used; cameras can be arbitrarily arranged.

The principle of the method is based on the observation that a regular grid in the

reference image plane, on which the disparity vectors are anchored, forms an irregular grid
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in the target image plane after disparity compensation. Since the target image will contain

no disparity-compensated projections in the newly-exposed areas, such areas can be easily

detected by a simple neighborhood test. This is the basic idea behind the method; we will

give more details in the next section.

It should be noted that the simple approaches discussed in Section 5.2 did not at-

tempt to detect occlusions based on actual physical mechanism occurring during occlu-

sions. They tried to relate mismatches in the data to occlusions. Here, we propose a new

occlusion/newly-exposed area detection method based on another geometric principle of a

vector field. Our approach is closer to the underlying physical model of occlusions; that is

as objects displace, they leave gaps behind.

5.3.1 Detection of occlusions using the proposed method

A typical disparity field computed under some form of spatial regularization leads to con-

verging motion vectors originating in occlusion areas of the reference frame (area A in

Fig. 5·2). Such vectors cannot provide a good intensity match and assume compromise

coordinates with respect to the neighboring vectors from, e.g., a moving object and static

background. This convergent behavior is a compromise between the lack of intensity match

and enforced spatial smoothness, and potentially leads to multiple vectors pointing to the

same location in the target frame. This might suggest that a high spatial density of

motion-compensated positions in the target frame (IR in Fig. 5·2) is indicative of an occlu-

sion area. However, in practice, it turns out that results are very sensitive to the selected

density threshold. On the other hand, pixels in the target frame that did not exist in the

reference frame (newly-exposed pixels in area B) have no relationship with the reference

frame and, as such, cannot be pointed to by forward disparity vectors. Thus, areas in the

target frame that are void of disparity-compensated projections can be relatively easily

detected. This is the basis of the proposed detection algorithm.

The detection algorithm is very simple, and is equally applicable to occlusion detection

if IR is the reference frame and IL is the target frame. Let Λ be a 2-D sampling lattice



63

A{

}B

IL(x) IR(x)

Figure 5·2: Simple occlusion process and typical disparity field; A – area
to be occluded, B – area newly exposed.

for IL and IR limited to the domain of each image. This is unlike the standard definition

of a lattice that does not constrain its extent. Also, let Γ be a set of irregular spatial

positions in IR obtained by disparity compensation of pixels from IL, i.e., Γ = {y : y =

x + dL[x],x ∈ Λ}. Note that card{Λ} ≥ card{Γ} because certain points from IL may

project to the same location in IR. Let us define an indicator function as follows:

ξi(x) =





1, ||x − zi|| ≤ r

0, otherwise
x ∈ Λ, zi ∈ Γ.

For each lattice point x and irregular point zi, both in IR, ξi(x) is 1 if zi is within a disk

of radius r from x. By accumulating ξi(x):

M(x) =

card{Γ}∑

i=1

ξi(x),

we can measure the local density of disparity-compensated projections at each x ∈ Λ, and

by thresholding M(x) we can find which areas of IR exhibit the lowest density of such

projections: x is declared newly-exposed if M(x) < Ψ, i.e., if sufficiently few irregular

points are in the vicinity of x. We use r=2, but we test a range of values of Ψ. For

areas where the motion field dL is uniformly translational (regular projections), we have

M(x) = 13 for r = 2. At M(x) = 6 more than half of the projections are missing suggesting

vicinity of a newly-exposed area. Since it is easier to find regularly-spaced neighbors than
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those spaced irregularly, the algorithm is implemented differently in practice. For each

projection zi ∈ Γ, its neighbors x ∈ Λ, such that ‖zi − x‖ ≤ r, are found, and each

neighbor’s counter is incremented by 1. After all zi have been scanned, each counter

contains the number of projections within distance of r. A computational trick that we

suggest is using r = 2
√

2, which leads to a rectangular area of pixels rather than a circle.

A clever implementation using this fact will lead to even faster computation.

5.3.2 Experimental results

Now let us show some experimental results using the new approach. In all the results shown,

disparity was computed using 8×8 block matching under spatial regularization (neighboring

blocks are encouraged to have similar motion vectors). The resulting vector fields are

diffused on the occlusion side and have sharp boundary on the newly-exposed side of the

moving object (left column of Fig. 5·3 and middle row in Fig. 5·5). In Fig. 5·3, we show

results of experiment with synthetic motion of natural intensities. We measure the accuracy

of detection of occluded and newly-exposed areas using symmetric difference1 between the

ground-truth pixels and the detected pixels (union of false-positives and misses), shown

in the center column of Fig. 5·3 as a function of a threshold parameter for each detection

method (Θ, ∆ or Ψ, see Section 5.2). For each method, we show the detection result for

parameter value with the lowest detection error.

Clearly, the photometric approach provides a globally-correct result that is locally very

fragmented; extension of the method to a window instead of single pixel would solve this

but at the cost of a significant resolution loss. The two geometric approaches result in

similar occlusion/newly-exposed area descriptors, but the one based on vector mismatch

leaves gaps in otherwise compact regions. In terms of the detection error the new geometric

approach outperforms the traditional one by approximately 10%. As shown in Fig. 5·4, the

photometric approach performs very poorly under noisy conditions. This is not unexpected

1Symmetric difference of two sets S1 and S2 is defined as (S1\S2)∪ (S2\S1), equivalent to XOR boolean
operator.
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Figure 5·3: Occlusion estimation results for a synthetic sequence. In the
middle column, two error plots are included, one for the detection from left
to right, and the other – from right to left. In the right column, white
denotes occluded area, and gray denotes newly-exposed area. (a) I1 (b) I2

(c) Ground-truth occlusion newly-exposed areas (d) dL overlaid on I1 (e)
Photometric detect. error vs Θ (f) Photometric est. (g) dL as intensity
(h) Geometric detect. error vs ∆ (i) Traditional geometric est. (j) dR as
intensity (k) New geometric detect. error vs. Ψ (l) New geometric est.
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(a) I1 + noise (b) Photometric est.(c) Traditional geometric est.(d) New geometric est.

Figure 5·4: Results for the synthetic motion sequence with additive white
Gaussian noise with standard deviation σ=36 (PSNR=17.44dB).

since the detection is based directly on (noisy) intensities; using a window, again, would

sacrifice resolution. The traditional geometric approach also fails in the presence of noise;

disregarding the effects at image boundaries (vectors are incorrect due to the selected image

boundary handling), the new method results in much more accurate estimates.

We also applied the proposed method to some well-known test sequences. As can be

seen in Fig. 5·5, relatively accurate occluded and newly-exposed areas were obtained on

Flowergarden and Map using this very simple, fast method. The results are not as accurate

on Tsukuba and Teddy because of their relative complexity; the detected areas are in correct

positions but are very fragmented. The accuracy of detection results is directly related to

the quality of computed motion/disparity; better results should be possible with more

sophisticated motion estimation than block-based.

5.4 Importance of the proposed occlusion detection algorithm for view

reconstruction

Finally, we would like to elaborate on why the proposed method is particularly useful in

intermediate view reconstruction, especially to detect the visibility of points. We mentioned

this issue in Section 5.1 item #5. Let us explain how the method can be used in estimating

visibility of the points.

Consider Fig. 5·6, where parts of IL and IR are being occluded between images. An

intermediate view J is to be reconstructed. Assuming distance between IL and IR is

normalized to 1, J is placed at α distance from IL and at 1 − α distance from IR. Note
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I1 I1 I1 I1

dL as intensity dL as intensity dL as intensity dL as intensity

New geometric est. New geometric est. New geometric est. New geometric est.

Figure 5·5: Occlusion estimation results for four well-known test sequences
Flowergarden, Map, Tsukuba and Teddy (Last three test sequences are avail-
able at http://vision.middlebury.edu/stereo/.)

that 0 < α < 1.

Without losing generality, let us assume that the background is static. If we estimate

a disparity field dL pivoted on IL toward IR, then we can use the proposed method and

estimate OR ∪ VR as shown in Fig. 5·6.a. Similarly OL ∪ VL can be estimated using dR

(Fig. 5·6.b). Although this information is valuable in itself, it is insufficient to estimate

what parts of occlusion areas are going to be visible in the intermediate image.

Fortunately, we can adapt the method to estimate VL and VR as follows. Since dL

yields OL ∪ VL, αdL will yield a partially exposed area which will be equivalent to VR as

shown in Fig. 5·6.c. Also, since this is an exposed area in J , it is not visible in IL, thus

must be reconstructed using texture of IR. This way, we can also estimate which input

image must be used to reconstruct the occlusion areas of J . Similarly (1 − α)dR will be
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Figure 5·6: (a) dL is used to estimate OR ∪ VR (b) dR is used to estimate
OR ∪ VR (c) αdL is used to estimate VR (d) (1 − α)dR is used to estimate
VL.

used to estimate VL as shown in Fig. 5·6.d.

In summary, the idea here is that if full vector fields can be used to estimate large

exposed areas in the known images, the vector fields multiplied by α or 1 − α will yield

partially exposed areas.

Therefore, information that we can extract using this method is

(a) What part of occluded areas is visible in intermediate image?

(b) Which of the input images must be used to reconstruct occlusion areas of interme-

diate image?

We will later return to this topic and show experimental results by using this detection

method in Chapter 7.
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5.5 Part II: Handling occlusion areas: What to do in occlusion areas?

As mentioned earlier, the disparity in occlusion areas cannot be computed because texture

in such areas disappears between images. This leads to difficulties when reconstructing an

intermediate view. We previously mentioned this issue in Section 5.1 item #4. The basic

problem is that since we have no disparity, thus no geometry information for occlusion

areas, we cannot conclude whether those areas are fully occluded in intermediate view or

partially visible.

Let us illustrate this problem using Fig. 5·6 again. We would like to reconstruct interme-

diate view J from views the IL and IR. In a simple scenario, first disparity between IL and

IR would be computed, and then intensities of IL and IR would be disparity-compensated

onto J to create the intermediate view, for example using splines as proposed in Chapter

4.

However, the area OL ∪ VL of IL undergoes occlusion in IR, and so does OR ∪ VR of

IR. Therefore disparity cannot be computed here. Although, VL and VR are visible in the

intermediate view, there is no disparity information for either area, and thus rendering these

areas is impossible. Therefore, in order to reconstruct these areas successfully, a proper

correspondence with IL and IR, respectively, needs to be established through disparity.

Therefore, the problem we would like to focus on in this section is the recovery or

assignment of plausible disparity values in occlusion areas, or in other words, handling of

occlusion areas.

The simplest and most popular method to extrapolate disparity is to use a depth

constancy assumption; disparity in a small neighborhood is assumed to be constant. For

example, if there is a point x in the occlusion area between the points x1 and x2, a simple

method to fill the area is to assume d(x) = min(d(x1), d(x2)) for x1 < x < x2 (McVeigh

et al., 1996; Park and Inoue, 1997; Kim and Sohn, 2005). The idea behind this approach is

that larger disparities indicate closer points, therefore the occlusion area should have larger

depth values, i.e., small disparities. The main problem with this approach is that, such an
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assumption will hold only for parallel camera structures. Also, there is no guarantee that

depth in a scene is constant. The objects and background may have varying depth values.

In another, more sophisticated approach, Bertalmio et al. (Bertalmio et al., 2000)

solved an analogous problem for images. They proposed an algorithm to fill in, or inpaint,

missing areas in an image using surrounding intensities and their gradients. Their approach

consists of two steps: first, extending available gradients into a missing area, and then

applying anisotropic diffusion to propagate the available intensities into this area. The

image gradients are extended first so that the subsequent anisotropic diffusion can preserve

them (e.g., intensity/color discontinuities).

It is easy to notice that we would like to achieve a similar goal as Bertalmio et al. but

with respect to disparities. Fortunately, in the case of disparity inpainting, we have a great

advantage; image intensities are known in occlusion areas, and thus the first step is not

needed under the assumption that image and disparity discontinuities coincide. Therefore,

we propose to extrapolate disparities using anisotropic diffusion driven by image gradient

as will be discussed next.

5.6 Proposed approach: Image-driven disparity inpainting

Let x = (x, y)T ∈ Ω be a spatial position in image I defined on Ω. Also, let {d(x)}x∈Ω be a

disparity field to be computed; d = [u, v]T with u and v being, respectively, horizontal and

vertical components of the disparity vector d. Finally, let O ⊂ Ω be an occlusion area in

image I. To inpaint disparities, we exploit the underlying image structure by minimizing

the following cost function with respect to u(x),x ∈ O:

Fx(u, I) = ∇T u(x)


g(|Ix(x)|) 0

0 g(|Iy(x)|)


∇u(x), (5.5)

where g(·) is a monotonically-decreasing function and Ix, Iy are horizontal and vertical

derivatives of I, respectively. A similar cost function, Fx(v, I), can be written for the
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vertical component v(x) as follows:

Fx(v, I) = ∇T v(x)


g(|Ix(x)|) 0

0 g(|Iy(x)|)


∇v(x). (5.6)

Therefore, in order to inpaint both components of d(x) we minimize Fx(u, I) + Fx(v, I).

This leads to anisotropic diffusion; disparities in occlusion areas are diffused while

accounting for the underlying image gradient. Assuming that the gradient magnitude

within an object is small, an iterative algorithm minimizing (5.5,5.6) will diffuse disparities

inside each object only. The edge-stopping function g(·) will prevent diffusion across object

boundaries because gradient is usually large there.

The cost function (5.5) is very similar to the one proposed by Perona and Malik (Perona

and Malik, 1990). However, while in Perona and Malik’s case image intensity undergoes

smoothing and at the same time drives the edge-stopping function g(·) to control anisotropy

during diffusion, in our case horizontal and vertical disparity components are being (sep-

arately) smoothed but anisotropy is controlled by the underlying image intensity. This

approach has also been used by others to regularize disparities in optical flow based dis-

parity estimation methods (Kim and Sohn, 2005; Huang and Dubois, 2005).

5.6.1 Experimental results

In Fig. 5·7, we compare results of the proposed image-driven anisotropic disparity diffusion

with those of other extrapolation approaches on a synthetic image. We assume that we are

given a stereo pair (left image shown in Fig. 5·7.a) and a partially estimated horizontal (1D)

disparity map with occlusions marked in black (Fig. 5·7.b). We would like to extrapolate

the disparity map in occlusion area closely approaching the ground-truth disparity shown

in Fig. 5·7.c as an intensity image and in Fig. 5·7.d as a 3D surface.

A simple extrapolation using depth constancy along epipolar line (Kim and Sohn, 2005)

leads to a patch-like result shown in Fig. 5·7.e, because depth constancy approach does

not hold here. On the other hand, isotropic diffusion where g(x) = 1 (Fig. 5·7.f) is overly
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5·7: Comparison of disparity extrapolation methods on synthetic
images: (a) IL; (b) partial disparity map with ground-truth occlusions
(black); ground-truth disparity as (c) intensity image and (d) 3D surface;
and the extrapolated disparity based on (e) depth constancy along epipolar
line; (f) isotropic diffusion; (g) standard inpainting; (h) proposed approach;
(i-l) corresponding 3D surfaces of disparity extrapolated in occlusion areas.

smooth, because it disregards the underlying image gradient and diffuses into occlusion

area from all sides. The results of standard inpainting method of Bertalmio et al. and the

proposed approach are shown in Figs. 5·7.g and 5·7.h, respectively. The last row in Fig. 5·7

shows the same results as a 3D surface around occlusion area.

Although standard inpainting preserves structure much better than depth constancy

and isotropic diffusion, there is still unwanted smoothing especially at the bottom part

of the white rectangle. This is due to a weaker gradient in the image around that area.

Standard inpainting fails to recognize that area as an edge because it does not use under-



73

lying image. The image-driven anisotropic diffusion, however, produces an extrapolated

disparity field with a clear discontinuity and is barely distinguishable from ground-truth.

5.7 Can we jointly estimate and handle occlusion areas?

Above, we showed the efficacy of image-driven disparity inpainting on a synthetic image.

Although it works very well, this approach stands out as a post-processing step. If there

were errors in occlusion estimation step, then these errors would not be corrected in the

occlusion handling stage. Even worse, if there were errors in the disparity estimation stage,

estimated occlusion areas would be erroneous as well.

Clearly, step-by-step approach will have limited capabilities. The question that we

would like to further elaborate is whether it is possible to jointly solve both problems in

a single formulation that will lead to better results. In the next chapter, we will focus on

this problem.

5.8 Conclusions

This chapter first concentrated on how to estimate occlusion areas. We proposed a simple

yet effective way of estimating occlusion and newly exposed areas. We pointed out why this

method is especially important in view reconstruction as it is able to find areas that will

be occluded in the intermediate view. In the second part, we proposed an image-driven

disparity inpainting method to assign disparities to occlusion areas. The experimental

results demonstrate better performance compared to other methods. Finally, we discussed

why a step-by-step approach is inefficient in disparity and occlusion estimation. In the

next chapter, we will utilize image-driven inpainting in an optical flow framework that will

jointly solve both problems.



Chapter 6

Occlusion-aware optical flow estimation

In this chapter, we propose an optical flow method which estimates disparities, implicitly

estimates occlusion areas and assigns plausible disparities to occlusion areas. We will start

by introducing optical flow work of Horn and Schunck (Horn and Schunck, 1981) and review

various improvements to this method. Then, we will introduce our occlusion-aware optical

flow algorithm (Ince and Konrad, 2007).

6.1 Introduction and motivation for a joint formulation

As we pointed out in the previous chapter, disparity1 is undefined in occlusion areas and,

when only two images are available, a usual remedy is to extrapolate (inpaint) optical

flow in occlusion areas. Ideally, one would identify occlusion areas in advance and use the

detected labels in an occlusion-adaptive optical flow estimation, relying solely on spatial

regularization to fill-in the occlusion areas. However, it is unclear how to find occlusion

areas without first computing optical flow. Hence, in practice, occlusion-unaware optical

flow is computed first, resulting in incorrect vectors in occlusion areas; a best-effort match

is forced despite the fact that a feature being matched is absent from the other image.

Then, occlusion areas are identified, and, finally, the optical flow is corrected in these areas

(Kim and Sohn, 2005). This three-step approach is often ineffective since incorrect vectors

from occlusion areas had already affected their neighbors in visible areas due to spatial

regularization typically used. Moreover, this approach does not bootstrap optical flow

estimates to improve occlusion detection results.

1In this chapter, displacement of points between images are called disparity or motion or more generally
optical flow depending on the context.
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Our motivation is to recover dense disparity (depth) from two images everywhere in

the domain of either image and also to minimize the impact of occlusion areas on dis-

parity estimates at visible points. We deal with deficiencies of the three-step approach

by proposing a variational formulation that jointly estimates disparity vectors, implicitly

detects occlusions and extrapolates disparities in occlusion areas.

The basic idea behind the method is that the evolving occlusions force disparity extrap-

olation (via diffusion) by automatically disabling an intensity matching term at occluded

pixels, but permit standard disparity estimation at visible pixels. By using anisotropic

diffusion driven by image gradient, the interaction between occlusion-area and visible-area

disparity vectors is inhibited. At the same time, this joint formulation solved iteratively

facilitates interaction between disparity vectors and occlusion labels, thus leading to more

coherent solutions.

Let us first start by introducing optical-flow estimation.

6.2 Optical-flow-based disparity estimation

As shown in Section 2.2, disparity field of a scene can be used directly to recover the

depth map of the scene. The higher the quality of the depth map, the better will be the

reconstructed intermediate view. Unfortunately, since disparity estimation is ill-posed, it

is very difficult to extract reliable disparity fields using only two images.

Among many disparity estimation methods (see (Scharstein and Szeliski, 2002) for an

overview) we would like to focus on optical flow methods due to their accuracy.

Optical-flow-based motion estimation was introduced by Horn and Schunck in their

seminal paper (Horn and Schunck, 1981) and was later studied by March (March, 1988) in

the context of disparity estimation. The main constraint in motion and disparity estimation

is the constant brightness assumption which assumes that intensity of point does not change
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between images. This constraint leads to the following minimization2:

arg min
u(x),v(x)

∫∫

ΩL

(IL(x, y) − IR(x + u(x), y + v(x)))2 dx. (6.1)

where u(x) and v(x) are velocities (equivalent to displacement when unit time step is used)

that are sought in horizontal and vertical directions.

The second constraint proposed by Horn and Schunck is the smoothness constraint

which states that points in a small neighborhood usually have similar velocities. Alterna-

tively, this means that sudden changes in velocity fields are unlikely, which can be written

as follows:

arg min
u(x),v(x)

∫∫

ΩL

|∇u(x)|2 + |∇v(x)|2dx. (6.2)

By combining these two constraints using a smoothness (or regularization) factor λ, we

obtain

arg min
u(x),v(x)

∫∫

ΩL

(IL(x, y) − IR(x + u(x), y + v(x)))2 dx + λ

∫∫

ΩL

|∇u(x)|2 + |∇v(x)|2dx. (6.3)

The final iterative solution can be found in (Horn and Schunck, 1981). The smoothness

factor λ controls the relative importance of both terms. If λ is increased, variations in the

displacement field will be penalized, therefore a smoother field will be obtained.

We focus on optical flow methods because they yield a dense vector field which means

that every point in the image has a distinct vector as opposed to, for example, block

matching which yields a piecewise-constant field. Secondly, optical flow methods are able

to generate floating-point (i.e., sub-pixel) disparity vectors, that can highly increase pic-

ture quality in some applications. Yet another reason is their ability to generate two

dimensional vectors fields, unlike methods such as dynamic programming. Stereo images

2We should note that Horn-Schunck originally derived optical flow equation by expanding the constant
brightness assumption dI/dt = 0 as follows: ∂I/∂x · ∂x/∂t + ∂I/∂y · ∂y/∂t + ∂I/∂t = 0 . The equation in
(6.1) is valid, but more related to the approach of March.
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will always have a vertical disparity component unless images are captured by perfectly

parallel cameras.

As we mentioned, many reliable disparity estimation methods fail in presence of vertical

disparity. Although, the parallel camera setup has been extensively studied, even a slight

rotation of cameras, e.g., toed-in structure, creates two dimensional disparity as well as

keystone distortions. Therefore, algorithms designed for parallel camera setup usually

preprocess images using a method called rectification (Papadimitriou and Dennis, 1996) so

that images are aligned in order to eliminate vertical disparity. This kind of setup, however,

poses two problems. First, rectification involves resampling of the original images, which

decreases image quality. The resampling process uses interpolation which is equivalent to

low pass filtering and causes blur. The second problem is that the algorithms require extra

computation time for rectification and need to access internal camera parameters, such as

focal length. By using optical flow methods, we avoid both of these problems and we can

work on any pair of images without any need to access calibration parameters. Moreover,

the ability to capture vertical disparities will also help when we would like to apply our

algorithm to monoscopic video sequences to capture motion instead of disparities in order

to generate intermediate frames.

6.2.1 Prior improvements to optical flow methods

One of the main problems with the Horn-Schunck formulation is that the regularization

term disregards object boundaries. The main assumption of Horn and Schunck for the

regularization term was that objects in real world are rigid, and, therefore, neighboring

points in an image should have similar velocities. Although being a reasonable assumption,

it fails in the presence of object boundaries. Therefore, two neighboring points in an image,

one of them belonging to an object and the other to the background, will be forced to have

similar velocities. This kind of regularization is called isotropic regularization (stemming

from equation (6.2)). Since the objects and background have different displacements, an

ideal vector field should exhibit a discontinuity at object boundaries. Unfortunately, the
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result of isotropic diffusion is that object boundaries, which are semantically important

cues, are not preserved in vector fields. What happens is a gradual change from object

displacement towards background displacement.

Methods have been proposed to deal with such smoothing by assuming that intensity

discontinuities coincide with object boundaries, such as image-adaptive, isotropic diffusion

(Alvarez et al., 1999). In this case the smoothing term is multiplied by the inverse of image

gradient at that point. In case of a strong gradient, i.e., an edge, the smoothness term is

disabled.

Others have used image-adaptive anisotropic diffusion (Nagel and Enkelmann, 1986;

Mansouri et al., 1998; Alvarez et al., 2002b; Kim and Sohn, 2005; Huang and Dubois,

2005). These methods replace the isotropic regularization term ∇T d(x)∇d(x) in equation

(6.2) with ∇T d(x)D(∇I)∇d(x) where D(∇I) is a projection matrix defined, for example,

as follows (Alvarez et al., 2002b) (other Ds are possible):

D(∇I) =
1

2λ + |∇I|2


 I2

x −IxIy

−IxIy I2
y


 + λ2


 K 0

0 K


 (6.4)

where K is a scalar.

It is also possible to control smoothness by using the estimated vector field to determine

the gradient information. For example, if there happens to be a high gradient area in the

vector field, this will be enhanced as the estimation progresses. We refer the reader to a

paper of Weickert and Schnörr (Weickert and Schnörr, 2001) for a detailed taxonomy of

regularizers.

In another type of approach it is possible to replace the quadratic function of the

regularization term with non-quadratic robust smoothness terms such as the Lorentzian

(Black and Anandan, 1996; Robert and Deriche, 1996). These types of methods do not

rely on image gradient but on robust properties of non-quadratic regularizers.

These improved optical flow methods lead to discontinuity-preserving vector fields, as

shown in Fig. 6·1, but still produce erroneous results at object boundaries since incorrect
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Figure 6·1: Results of disparity estimation of Truck (only horizontal dis-
parity is shown). Stereo pair is from http://www.stereovision.net.

intensity matches are allowed despite occlusions. As mentioned earlier, the problem could

be corrected to a degree in three steps (occlusion-ignorant optical flow estimation, detec-

tion of occlusions, and correction of the flow), however such a procedure is cumbersome

and there is no interaction between visible-area flow vectors, occluded-area flow vectors

and occlusion labels. Therefore, of interest are methods that would perform optical-flow

estimation, occlusion detection, and optical flow extrapolation jointly.

Since occlusion models are inherently discrete in amplitude (image point is occluded,

newly-exposed or visible), their representation within the variational framework is usually

implicit, for example by means of a continuous-amplitude inconsistency field (Proesmans

et al., 1994). Using such a representation, Proesmans et al. (Proesmans et al., 1994) pro-

posed an edge-preserving optical flow estimation with forward/backward vector differences

(geometric constraint) serving as inconsistency field. This field was used to control the

local strength of image-adaptive, isotropic diffusion. A similar idea was also proposed by

Alvarez et al. (Alvarez et al., 2002a); forward/backward vector field consistency was en-

forced via an energy term in variational framework, while each vector field was regularized
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using anisotropic diffusion. In both works, occlusions were detected by thresholding the

final disparity field (geometric) mismatch.

Strecha and Van Gool (Strecha and Gool, 2002) introduced the idea of disabling a

data-matching energy term in optical flow formulation in order to select the best prediction

among camera pairs in a multiple-camera system. Since weights used for disabling exploit

a geometric constraint, this approach can be considered occlusion-adaptive. Although

similar disabling idea is used in our approach, the rest of our formulation is quite different.

More importantly, however, our approach uses only two images and cannot seek optimal

prediction from other images.

Sun et al. (Sun et al., 2005) also proposed joint disparity estimation and occlusion de-

tection using a visibility constraint but treated the disparity correction in occlusion areas

as a post-processing step. Moreover, this corrective step assumed that depth in occlusion

areas and surrounding pixels is constant on epipolar line. Although often valid, this as-

sumption fails for image backgrounds with varying depth. The discrete disparity prior used

was equivalent to anisotropic diffusion in variational formulations, while the overall discrete

formulation was solved using belief propagation. Lim et al. (Lim et al., 2002) also proposed

to jointly estimate bidirectionally-consistent (forward/backward) motion fields and occlu-

sion labels from a pair of images using Markov random fields in a Bayesian framework.

However, the occlusion detection mechanism relied on a photometric constraint and no

vector correction was performed in occlusion areas. Graph cut methods (Kolmogorov and

Zabih, 2001; Xiao and Shah, 2005) have been used in disparity/motion estimation under

occlusions as well. These methods explicitly define an occlusion term in the formulation,

however intensity matching term and occlusion term are usually not directly coupled unlike

in the approach proposed here.

Very recently, Xiao et al. (Xiao et al., 2006) proposed a similar approach to ours, that

implemented in a loop, can be considered a joint approach. Although occlusion detection

is embedded into the formulation like in our method, there are important differences as

well. First, Xiao et al. employ a bilateral filter and locally adjust filter strength by using
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precomputed occlusion labels in each iteration, while we use anisotropic diffusion and let

the joint formulation drive the diffusion process by using “soft” occlusion information

(no explicit occlusion labeling step). Secondly, the occlusion detection uses a photometric

constraint, that is unreliable under image noise and illumination changes (Ince and Konrad,

2005a), while we use a geometric constraint (Section 5.2.2).

In view of the prior work, our approach, resembling the approach of Xiao et al. (Xiao

et al., 2006), makes an important contribution. Namely, we propose a joint variational

formulation for disparity estimation, (implicit) occlusion detection, and disparity extrapo-

lation. Benefits of our new formulation are threefold. First, the image-driven anisotropic

diffusion fills-in disparities in occlusion areas respecting image structure (intensity discon-

tinuities), therefore providing plausible solutions (unlike constant-disparity extrapolation

along epipolar line). Secondly, the joint formulation permits interaction between disparities

and occlusions during estimation, thus allowing mutual corrections (unlike in the case of

three-step approaches). Thirdly, by disabling the data-matching term in occlusion areas,

the estimation bias of disparity vectors is eliminated since the system relies exclusively on

anisotropic diffusion there (in visible areas data-driven flow and diffusion work together).

6.3 Proposed approach: Joint disparity estimation/inpainting

As shown in Section 5.6, image-driven anisotropic disparity diffusion can be an effective

tool in extrapolation of disparities in occlusion areas. However, we assumed there that the

disparity field and occlusion map are known, and thus disparity inpainting is basically a

post-processing step. Now, we propose a new approach that combines disparity estimation,

occlusion detection and disparity extrapolation in a single formulation.

Let IL : ΩL →R+, IR : ΩR → R+, and let x belong either to ΩL or ΩR. We would like

to compute two disparity fields:

{dL(x) = [uL(x), vL(x)]T }x∈ΩL
, (6.5)

{dR(x) = [uR(x), vR(x)]T }x∈ΩR
(6.6)
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that, for pixels visible in both images, minimize some metric of the following photometric

errors:

ρLR(x) = IL(x) − IR(x + dL(x)),

ρRL(x) = IR(x) − IL(x + dR(x)).

(6.7)

However, to distinguish occluded and visible image areas, we propose to use the disparity

mismatch (geometric constraint):

εL(x) = ‖dL(x) + dR(x + dL(x))‖,

εR(x) = ‖dR(x) + dL(x + dR(x))‖,
(6.8)

where ‖ · ‖ denotes Euclidean norm. Both εL(x) and εR(x) are expected to be small for

visible pixels and larger for occluded pixels. Note that although photometric errors (6.7)

could have been used as occlusion detectors as well, they are less robust to noise and

intensity variations (Ince and Konrad, 2005a).

In order to model data-matching, disparity and occlusion constraints, we propose three

pairs of energy functions that combined together will lead to the final formulation.

Photometric constraint: Since photometric constraints, expressed through errors

(6.7), do not hold in occlusion areas (errors are large), we need to disable their impact on

the overall cost function whenever εL or εR is large. We can achieve this by multiplying

magnitude (or square) of the photometric error by a weight function inversely proportional

to the disparity mismatch; the larger the mismatch, the smaller the contribution of this

photometric error to the overall cost function. We propose a monotonically decreasing

weight function D(z) = 1/(1 + Kz2), with constant K > 0 controlling function’s slope

(Fig. 6·2). It is possible to use other functions such as a Gaussian function for D. As

shown in Fig. 6·2, D(εL(x)) and D(εR(x)) approach zero as the disparities dL,dR are less

and less capable of compensating each other. We define the first pair of energy functions
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Figure 6·2: Weights: (a) D(z) and (b) 1 − D(z) for various values of K.

(photometric) as follows:

EP
L =

∫∫

ΩL

D(εL(x))[ρLR(x)]2dx,

EP
R =

∫ ∫

ΩR

D(εR(x))[ρRL(x)]2dx.

(6.9)

These energies differ from the usual optical flow formulation by their ability to disable the

impact of photometric error when the disparities do not compensate each other. This is

essential because these areas are most likely occluded and the intensity matching term is

not beneficial. On the contrary, it may lead to false solutions.

Inpainting (diffusion) term: We embed the idea of image-driven disparity extrapo-

lation through the second pair of energy functions:

ES
L =

∫∫

ΩL

(Fx(uL, IL) + Fx(vL, IL))dx,

ES
R =

∫ ∫

ΩR

(Fx(uR, IR) + Fx(vR, IR))dx,

(6.10)

with Fx defined in (5.5). Note that energies (6.9) and (6.10) jointly lead to edge-preserving

regularization (no disparity smoothing across strong intensity gradients) when D(·) is close

to 1, but result in disparity inpainting when D(·) is around zero (i.e., possible occlusion

area), since the data-matching terms are disabled.

Occlusion prior term: The energies (6.9) can be easily made arbitrarily small by
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choosing vector fields with sufficiently large εL and εR (6.8) for all x. In order to prevent

this, we propose an explicit occlusion model through the following energies:

EO
L =

∫∫

ΩL

(1 − D(εL(x)))dx,

EO
R =

∫ ∫

ΩR

(1 − D(εR(x)))dx.

(6.11)

Note that 1 − D(εL(x)) and 1 − D(εR(x)) approach 1 as the disparity mismatches εL(x)

and εR(x) grow (Fig. 6·2) and can be thought of as occlusion indicators in IL and IR, re-

spectively. The above energy terms, by introducing a penalty at each occlusion point, keep

the total area of occlusions from growing indefinitely. Otherwise, all image points declared

as occluded would result in a low-energy, but degenerate, solution. Since minimization of

these terms encourages D(z) close to 1, the computed vector fields are also forced to be

close inverses of each other, and thus local outliers are prevented.

Final cost function: In order to perform a joint disparity estimation, implicit occlu-

sion detection and disparity extrapolation, we combine the above energy terms and carry

out the following minimizations:

min
dL

EL, EL = EP
L + ηES

L + µEO
L ,

min
dR

ER, ER = EP
R + ηES

R + µEO
R

(6.12)

where η and µ are regularization factors. Note that although minimized independently,

energies EL and ER are coupled through weights D(εL) and D(εR) used in (6.9) and

(6.11). The functionals are minimized in an interleaved fashion; dL is assumed constant

when computing dR and vice versa. A derivation of Euler-Lagrange equations in this case

can be found in the Appendix B.

6.4 Why minimize EL and ER separately?

We decided to minimize EL and ER simultaneously but independently; we minimize EL

for one iteration and then use the estimated dL in the next iteration when minimizing ER,
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then use the estimated dR when minimizing EL and so on.

Instead of separate minimization of EL and ER, we also attempted minimization of

EL + ER with respect to dL and dR, however the results proved inferior. This may seem

counter-intuitive, therefore we would like to elaborate on this issue.

A minimization of EL +ER may look reasonable from the cost function’s point of view.

After all, we would like both EL and ER to be small (ideally zero), so why not their sum

be zero as well?

It turns out that EL + ER may lead locally (in occlusion areas) to contradictory con-

straints. When minimizing EL+ER, dL(x) and dR(x) must be computed one after another

but this interleaving, unlike in (6.12), takes place at pixel level, or x. Consider minimizing

EL + ER with respect to dL(x). Since ES
R does not depend on dL, this minimization is

equivalent to the minimization of EP
L + ηES

L + µEO
L + EP

R + µEO
R . Clearly, compared to

the minimization in (6.12) with respect to dL, there are two additional constraints, via

energies EP
R and EO

R . Suppose that a pixel at x in IL is visible in IR, but the same pixel

in IR is a newly-exposed pixel (has no correspondence in IL). Then, although dL(x) can

be accurately found by minimization (6.12), it will be biased when minimizing EL + ER

because of the EP
R + µEO

R term. In particular, since ρRL(x) (6.7) is fixed (depends on

dR only), we have EP
R + µEO

R = αD(εR(x)) + µ(1 − D(εR(x))) = (α − µ)D(εR(x)) + µ,

where α = ρRL(x) is large because the pixel at x in IR is newly exposed. Assuming that

α > µ, this constrains D(εR(x)) to be small or, equivalently, εR(x) to be large, causing

a forward/backward vector mismatch. This is in contradiction to the constraints imposed

by EP
L + µEO

L , and leads to erroneous results in occlusion areas.

However, if both pixels (in IL and IR) are visible, no bias takes place when minimizing

EL + ER since α = ρRL(x) ≈ 0 and thus EP
R + µEO

R is minimized by D(εR(x)) ≈ 1 or,

equivalently, by εR(x) ≈ 0 (no forward/backward vector mismatch). This is consistent

with the constraint imposed by EP
L +µEO

L . Clearly, erroneous solutions occur only around

occlusions, which we confirmed experimentally.

We can also notice contradictory constraints from the total cost function’s point of view.
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Consider this: Let us assume that uL(x) achieved a value that is close to the true value

for this position, i.e., ρLR(x) = 0, εL(x) = 0, Fx(uL, IL) = 0 and, finally, since εL(x) = 0,

1-DL(εL(x)) = 0. Therefore, all penalty terms originating from IL are minimized.

Now, consider that the corresponding x in the right image is an occlusion point i.e.,

εR(x) > 0. Even if this uR(x) value somehow minimizes ρRL(x) and Fx(uR, IR), since

εR(x) > 0, there will definitely be some penalty due to the 1 − D(εR(x)) term.

If all these prediction, smoothness and occlusion penalty terms are summed together,

the total cost would not be zero (because εR(x) > 0). Therefore, both uL(x) and uR(x)

should evolve so that the total cost is further minimized. Then, obviously, uL(x) will

deviate from the close-to-true value it had reached. However, if we separate the cost

functions, then uL(x) would stay at the optimal solution and would not be biased toward

a wrong solution.

Our experimental results also confirmed that minimization of EL +ER leads to inferior

results.

6.5 Implementation and experimental results

We discretized the resulting partial differential evolution equations using finite differences

(see (Perona and Malik, 1990) for the discretization of anisotropic diffusion). We used an

explicit discretization scheme for its simplicity, and a small time step (∆t = 1.5 × 10−5)

to assure stability of calculations. All subpixel (non-integer position) values, e.g., IR(x +

dL(x)), were computed using bicubic interpolation.

We used a hierarchical implementation to avoid local minima. Images were prefiltered

with a Gaussian filter and downsampled so that at the lowest resolution the maximum

disparity did not exceed 1-2 pixels. The estimation was started at the lowest resolution

and the result propagated to the next higher resolution by interpolation. We used rectified

stereo pairs, i.e., d = [u 0]T ; the vertical disparity component was set to zero.

In order to carry out evaluation of the proposed algorithm, we introduce two different

weighting functions D in our energy formulation: D1(z) = 1/(1 + K1z
2) which weights
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Table 6.1: Optical flow (OF) estimation algorithms tested.

Algorithm K1 K2 g(z)

Original OF (Horn and Schunck, 1981) 0 0 1

Edge-preserving OF (Alvarez et al., 2002b) 0 0 monotonically-decreasing

Symmetric OF (Alvarez et al., 2002a) 0 >0 monotonically-decreasing

Proposed algorithm >0 >0 monotonically-decreasing

the photometric error in (6.9) and D2(z) = 1/(1 + K2z
2) which keeps the total area of

occlusions from growing indefinitely (6.11). As shown in Table 6.1, for different values of

K1 and K2, and different functional forms of g(z) our formulation may be simplified to

the original optical flow (Horn and Schunck, 1981), edge-preserving optical flow (Alvarez

et al., 2002b), or symmetric optical flow (Alvarez et al., 2002a) estimation, the latter one

forcing the two disparity fields to be close inverses of each other. The symmetric optical

flow algorithm includes energy E3 (6.11) but does not disable the data-matching term in

(6.9). This is of interest for state-of-the-art video coding based on the discrete wavelet

transform (DWT) as it is able to ensure a close invertibility of vector fields, important for

such coders (Konrad and Božinović, 2005). Also, note that for K1=K2=0 and g(z)=1,

minimizations in (6.12) reduce to two original optical flow algorithms executed in parallel.

In all experiments, whenever K1 and K2 are non-zero we use the value of 10, while η=6000,

µ=2000.

First, we tested the four optical flow approaches on two synthetic sequences. Fig. 6·3

shows an unusually-shaped object which is displaced horizontally by 15 pixels over a sta-

tionary background. The original images and corresponding ground-truth occlusion area

for IL are in the top row of Fig. 6·3. The ground-truth disparity map for IL and its four

estimates, presented as intensity, as well as the recovered occlusions, are shown in the

remaining two rows.

The second synthetic sequence (Fig. 6·4) is more challenging; two circles displace in

opposite directions. There are three occlusion regions between images and a significant
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Table 6.2: Absolute error per pixel in computed disparity fields.

Image #1 (Fig. 6·3) Image #2 (Fig. 6·4)
uL uR uL uR

Original OF 4.57 4.67 1.63 1.44

Edge-preserving OF 1.55 1.51 0.81 0.52

Symmetric OF 1.61 1.83 0.60 0.45

Proposed algorithm 0.58 0.53 0.35 0.36

portion of occlusions is due to one object covering the other. Table 6.2 shows the ab-

solute error per pixel for the estimated disparities. The error is estimated as follows:

1
NM

N∑
x=1

M∑
y=1

||dest(x, y) − dtrue(x, y)||, where N and M are numbers of columns and rows

respectively.

It is clear that the proposed method (Figs. 6·3.h and 6·4.h) outperforms the original

(Figs. 6·3.e and 6·4.e) and edge-preserving optical flow (Figs. 6·3.f and 6·4.f) algorithms,

both subjectively and numerically. Note a significant improvement offered by the edge-

preserving regularization compared to the original optical flow algorithm. The symmetric

optical flow algorithm (Figs. 6·3.g and 6·4.g) offers some subjective and numerical advan-

tage over the edge-preserving optical flow but since it enforces forward/backward vector

consistency at occluded pixels, the improvement is limited. Had the occlusion areas been

very small, the symmetric optical flow would have improved the results significantly (Al-

varez et al., 2002a). In our images, however, disparity mismatch over large occlusion areas

affects visible pixels through diffusion and results in disparity errors. Still, this method

is of interest for DWT-based video coding due to close mutually-inverse properties of the

resulting vector fields (Konrad and Božinović, 2005).

Table 6.3: The threshold vs. symmetric difference of true occlusion areas
and estimated occlusion areas.

ζ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Symmetric difference 1515 1577 1615 1646 1666 1688 1725 1782 1886
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6·3: Results for a computer-generated pair of images: (a) IL; (b) IR;
ground-truth: (c) occlusions for IL and (d) disparity for IL; and disparities
for IL computed using progressively more complex formulations: (e) original
OF; (f) edge-preserving OF; (g) symmetric OF; (h) proposed method; and
(i) likely occlusion areas obtained by thresholding 1−D(εL(x)). In disparity
images, black and white graylevels represent 0 and 15 pixels of disparity,
respectively.
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(d) (e) (f)

(g) (h) (i)

Figure 6·4: Results for a computer-generated pair of images: (a) IL; (b) IR;
ground-truth: (c) occlusions for IL and (d) disparity for IL; and disparities
for IL computed using progressively more complex formulations: (e) original
OF; (f) edge-preserving OF; (g) symmetric OF; (h) proposed method; and
(i) likely occlusion areas obtained by thresholding 1 − D(εL(x)). In the
disparity images, black, gray and white graylevels represent -10, 0, and 10
pixels of disparity, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6·5: (a) True occlusion areas; occlusion areas estimated at different
threshold values (b) ζ = 0.9 (c) ζ = 0.8 (d) ζ = 0.7 (e) ζ = 0.6 (f) ζ = 0.5
(g) ζ = 0.4 (h) ζ = 0.3 (i) ζ = 0.2 (j) ζ = 0.1. Symmetric difference between
true and estimated disparity ranges from 1515 at ζ = 0.9 to 1886 at ζ = 0.1
(Table 6.3).

Figures. 6·3.i and 6·4.i show thresholded values of 1 − D(εL(x)). White areas show

1−D(εL(x)) > ζ, which are the likely occlusion areas. In our experiments, we use ζ = 0.9,

thus we assume that if D(εL(x)) < 0.1, then x is likely an occlusion area. The reason

for this specific value of 0.1 is simple: at K = 10, if D(εL(x)) < 0.1, then ||εL(x)|| >

1 pixel, which is enough to warrant an occurrence of an occlusion. Although ζ seems to be

another parameter to set, we would like to show that the results are not sensitive to this

parameter. Figure 6·5 show the estimated occlusions for various values of ζ and Table 6.3

show symmetric difference of true occlusion areas and estimated occlusion areas. It is clear

that results in Fig. 6·5 are visually indistinguishable and symmetric difference values are

similar. The reason is that in occlusion areas, 1 − D(εL(x)) is very close to one (because

D(εL(x) ≈ 0) whereas in visible areas it is very close zero, therefore any ζ between zero

and one results in similar estimates.

We also compared the four optical flow approaches in the presence of noise; we added

zero-mean white Gaussian noise to the test image from Fig. 6·3. The absolute disparity
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Table 6.4: Absolute disparity error per pixel for uL on test image from
Fig. 6·4 at different levels of zero-mean white Gaussian noise.

Resulting Original Edge- Symmetric Proposed

PSNR(dB) OF preserving OF OF algorithm

No noise 1.63 0.81 0.60 0.35

27.01 1.66 0.91 0.74 0.50

24.09 1.69 1.08 0.81 0.60

23.12 1.69 1.00 0.87 0.64

20.35 1.80 1.18 0.96 0.72

error per pixel for uL is shown in Table 6.4 for different levels of noise. Clearly, the proposed

method performs well under noise as well. This can be explained by the adaptive nature of

the algorithm; since disparities at noisy pixels usually lead to significant geometric errors

(6.8), the contribution from these pixels is disabled in (6.9). It should be also noted that

the hierarchical scheme used, which includes a prefiltering step, acts as a noise suppressor

and helps all tested methods deal with noise.

Finally, we tested the algorithms on camera-acquired images: Exit (Fig. 6·6) and Michel

(Fig. 6·7). For Exit, the improvements are clear in occlusion area to the right of the person

closest to the camera, visible especially in close-up images (Fig. 6·6.g-i). Original optical

flow result is very unsatisfactory. Although results of the symmetric and edge-preserving

optical flow are much better, there is a clear spillover of disparities from person’s body

into the background in both results (pixels in the occlusion area fail to find correspondence

in the other image). However, such errors are largely corrected by the proposed method,

because the matching term (6.9) is disabled in occlusion areas. The estimated occlusion

areas are shown in Fig. 6·6.j. Similar improvements can be observed for Michel in Fig. 6·7.

Note the large occlusion areas, e.g., behind the head, lead to incorrect large disparities

for symmetric and edge-preserving optical flow (Fig. 6·7.d and 6·7.e), but are corrected by

the proposed method (Fig. 6·7.f. Close-ups in Fig. 6·7.g-i clearly show the improvements.

In this example, we used µ = 5000, because the occlusion area is much larger; unless the
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occlusion count is penalized, it will grow beyond reasonable limits.

6.6 Convergence of energy minimization

In this section, we would like to comment on the convergence of energy minimizations in

(6.12). An analytic proof of convergence of the the algorithms minimizing energies EL

and ER in (6.12) is very difficult and beyond the scope of this thesis. In practice, these

algorithms have converged in all our experiments (we used a large but fixed number of

iterations). Fig. 6·8 shows the evolution of energies EL and ER per pixel against iteration

number. These plots show the change in both energies at the final level of hierarchy (i.e.,

no downsampling) for the synthetic sequence from Fig. 6·4.

It is clear that the energies decrease rapidly in the first few hundred iterations and then

reach a relatively steady state. Figs. 6·8.c and d show the last 2000 iterations, where we

note that slight oscillations take place. However, the amplitude of oscillations is negligible

when compared to the initial energies (around 0.25% and 0.13% of initial energies for EL

and ER, respectively). To prove that oscillations have negligible effect on the results, we

measured the lowest and highest values of ER in the last 2000 iterations. The lowest value

is achieved at iteration #11556, while the maximum value is achieved at iteration #10839.

The resulting disparity fields at iterations #10839, #11556 and #12000 (final iteration)

are shown in Fig. 6·9. It is clear that the resulting disparities are visually indistinguishable.

This suggests that the algorithms can be stopped after a few thousand iterations and that

a precise selection of the number of iterations is not critical.

6.7 Parameter selection

As in many other methods, an important issue is one of parameter selection. In the

proposed formulation, three parameters K, η and µ influence the results. We chose η =

6000 and µ = 2000 experimentally. While a larger η would force an even smoother disparity

field, a larger µ would further reduce the number of (implicitly) estimated occlusion pixels.

We chose K to be 10 because when ε, i.e., mismatch between vector fields, is larger than 1
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i) (j)

Figure 6·6: Experimental results for Exit image pair (property of Mit-
subishi Electric Research Labs) : (a) IL; (b) IR; estimated disparity for IR:
(c) original-OF; (d) edge-preserving-OF (e) symmetric-OF; and (f) pro-
posed method; and (g-i) close-ups of results from (d-f), (j) likely occlusion
areas obtained by thresholding 1 − D(εR(x)).
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i) (j)

Figure 6·7: Experimental results for Michel image pair (property of Mi-
crosoft Research Cambridge, UK):(a) IL; (b) IR; estimated disparity for
IR: (c) original-OF; (d) edge-preserving-OF (e) symmetric-OF; and (f) pro-
posed method; and (g-i) close-ups of results from (d-f), (j) likely occlusion
areas obtained by thresholding 1 − D(εL(x)).
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Figure 6·8: Plots of energy per pixel with respect to iteration number for
(a) EL; (b) ER. Final 2000 iterations are shown for (c) EL; (d) ER.

pixel, D(ε) falls below 0.1, a small enough value to significantly reduce contribution of the

intensity matching term. Note that there exist methods such as expectation maximization

(Dempster et al., 1977), min-max principle (Gennert and Yuille, 1988) and unbiased risk

estimator (Ng and Solo, 1997) that can be used to automatically select parameter values.

In order to demonstrate that a very precise selection of parameters is not necessary

in our method, Table 6.5 shows the absolute disparity error per pixel for the test image

from Fig. 6·4 while changing either K, or η, or µ. It can be seen that as parameters are

increased threefold, the error changes at most by 10-20%. We also tested a relatively very

small value of µ = 100; almost half of the pixels were marked as occlusion. This was to be
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(a) (b) (c)

Figure 6·9: Resulting disparity fields after (a) 10839; (b) 11556 and (c)
12000 iterations.

Table 6.5: Absolute disparity error per pixel for the test image from
Fig. 6·4 and different parameter values. In each experiment one param-
eter is adjusted while other parameters are unchanged.

η = 6000, µ = 2000

K uL uR

3 0.52 0.46

7 0.47 0.43

10 0.35 0.36

12 0.37 0.36

K = 10, µ = 2000

η uL uR

1000 0.54 0.45

3000 0.43 0.40

6000 0.35 0.36

9000 0.37 0.37

K = 10, η = 6000

µ uL uR

100 1.00 1.16

1000 0.53 0.47

2000 0.35 0.36

3000 0.44 0.43

expected since, as we mentioned earlier, this leads to mismatched disparities dL and dR

and, consequently, to disabling of the photometric error (6.9).

6.8 Computational load and limitations of the proposed method

We observed that the proposed approach brings only about 40% of additional computa-

tional load to the standard optical flow algorithm due to the additional interpolation oper-

ations stemming from terms such as ṽx
· . If the occlusion areas are significant, the number

of iterations must be increased so that diffusion can fill-in these areas using neighboring

values. One shortcoming of the method is evident in highly-textured images because image-

driven disparity diffusion is inhibited due to the high local intensity gradient; a common

problem of image-driven regularizers.
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6.9 Conclusions

In this chapter, we presented a variational framework for joint disparity estimation, oc-

clusion detection, and disparity extrapolation based on two images only. The new formu-

lation calculates two closely-symmetric disparity fields and also inpaints the disparity in

occlusion areas. The proposed algorithm shows significant improvement over original and

edge-preserving optical flow formulations both subjectively and numerically. Moreover, the

symmetric variant of the proposed algorithm may be interesting for DWT-based video cod-

ing because of the particular relationship between the resulting vector fields (close mutual

inverses).

By the end of this chapter we proposed methods to solve the challenges that we men-

tioned at the beginning of this dissertation. In the next chapter, we will utilize these tools

to reconstruct intermediate views.



Chapter 7

Occlusion-aware spline-based view reconstruction

We discussed the main challenges in view reconstruction in Chapter 3. These were: estima-

tion of disparity and occlusions, and formation of intermediate view. In Chapters 4, 5 and

6, we proposed various methods to address each of these challenges. In this chapter, we

combine the proposed methods in a novel occlusion-aware intermediate view reconstruc-

tion algorithm. The chapter will start with an introduction to occlusion awareness in view

reconstruction, and then will discuss how the proposed methods can be used to achieve

this goal. Finally, we will show experimental results on both synthetic and real images.

7.1 Introduction

Let us first review the steps required in occlusion-aware view reconstruction from two

images captured in a small-baseline stereo setup.

Intermediate view reconstruction can essentially be separated into five steps, hence five

challenges to solve, as follows:

1. Find the structure: Estimation of disparity field or depth map

2. Find the innovation areas or problematic areas: Estimation of occlusion areas

3. Handle the problematic areas: Recover (extrapolate) disparity in occlusion areas

4. Estimate visibility of points in intermediate view

5. Estimate texture of intermediate view.

Although it is possible to handle each of these steps separately, one of the ideas in our

work was to combine as many sub-components as possible into the same formulation. The

99
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Figure 7·1: Block diagram showing the proposed method as well as input
and output of each step.

reason is that we have observed that the above sequence of steps usually leads to sub-par

reconstructions.

One source of sub-par results is that each step introduces errors which are propagated

or even magnified in subsequent steps. Also, the unknown disparity and partitioning into

occluded/newly-exposed/visible areas are closely related. For example, disparities can

be used to infer occlusion information, while occlusion information is required to estimate

reliable disparities. Therefore, interaction between these unknowns is essential during their

estimation.

7.2 Proposed reconstruction method

A block diagram explaining the proposed method is shown in Fig. 7·1. The five steps

described earlier are implemented as follows:

Steps #1, 2, 3: In view of a need for joint estimation, we use the occlusion-aware

disparity estimation algorithm proposed in Chapter 6 in order to accomplish the first three

steps above.

Although the occlusion-aware disparity estimation recovers disparities and occlusion

areas, they are both defined on lattice Λ of either IL or IR, whereas in order to reconstruct
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Figure 7·2: Illustration of the need of selective forward-mapping. (a) Three
images and (b) their cross sections. Areas A and D are visible intermediate
view despite being occluded between IL and IR.

an intermediate view, visibility and occlusion labels of the points are needed on lattice Λ

in the intermediate view J .

Step #4: The estimation of visibility of points is a crucial step. We briefly discussed

this problem in Section 5.4. We would like to illustrate this problem with an example.

Consider images in Fig. 7·2.a and their cross-section in Fig. 7·2.b where an object displaces

between IL and IR. For the sake of simplicity let us assume that the background has zero

disparity, i.e., does not move between IL and IR.

The occlusion-aware optical flow can estimate reliable disparities for both images as

well as occlusion areas {A ∪ B} in IL and {C ∪ D} in IR. However, the important fact is

that the occlusion area {A∪B} from IL is not fully occluded in J . As it can be noticed, A′

(whose texture can only be derived from A in IL) is visible in J . Similarly, the occlusion

area {C ∪ D} from IR is not fully occluded in J . The area D′ (whose texture can only be

derived from D in IR) is visible in J .

However, the disparity estimation stage cannot distinguish these partially visible areas.

It will only estimate {A ∪ B} and {C ∪ D}. Therefore we need a mechanism to estimate

the visibility of points, or in other words, to identify each area.

In order to compute the pixel visibility in J , we will use the method proposed in Section

5.3. One of the most important properties of this algorithm is that it allows to estimate
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Figure 7·3: Selective forward compensation. All points of IL and IR are
forward disparity-compensated except areas B and C.

the areas that will be occluded/exposed off the domain of source images IL and IR at an

intermediate position 0 < α < 1 (0 being IL and 1 being IR, respectively). Therefore, this

method permits identification of pixels that will be occluded in the intermediate view. For

example, in Fig. 7·2.b, the algorithm can detect areas D′ and {C ∪ D} by using vector

fields αdL and dL respectively. This topic was previously covered in Section 5.4.

We want all points from IL and IR to be used in texture estimation in J except the

areas B and C, because they are occluded in the intermediate view. Therefore, our final

task in this step is to detect and eliminate these areas. This can be achieved through the

following relationship (Fig. 7·3):

∀x ∈ {A ∪ B} :





x ∈ A

x ∈ B

if (x + αdL) ∈ A′

otherwise
. (7.1)

A similar relationship can be written for C and D in IR as follows:

∀x ∈ {C ∪ D} :





x ∈ D

x ∈ C

if (x + (1 − α)dR) ∈ D′

otherwise
. (7.2)

These relationships test whether a forward-compensated pixel from IL (7.1) or IR (7.2)

belongs to visible or occluded area. In other words, we would like to fill in the texture of

exposed area by using the texture from the other input image. For example, since area A′
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is exposed from IR to J , this area must be predicted from A of IL. On the other hand,

B of IL will be occluded on J and thus must be excluded from the reconstruction. The

relations (7.1-7.2) allow us to identify which point will be visible or be occluded. Note that

for the special case of static background (i.e., dL = dR = 0 in A and D), A and D are

equal A′ and D′, respectively.

One may ask why disparity of A ∪ B would be reliable. They are expected to be

reliable with the help of the occlusion-aware optical flow method. These areas will be

assigned plausible disparities via diffusion.

This step is the crucial step in the occlusion awareness. In contrast, pivoting-based

reconstruction, for example, is hampered by occlusions as illustrated in Fig. 7·4. A typical

field estimated using pivoting in J and spatial regularization results in a “rubber” effect (no

sharp boundary between the object and the background). The reason is that the absence

of an underlying image makes edge-preserving regularization impossible. Additionally, it is

not clear how to estimate occlusion by using a single disparity field. Even if occlusions were

somehow estimated, assigning disparity values to these areas would be impossible as well,

again due to absence of underlying image (no diffusion is possible). Finally, estimating the

visibility of points would not be possible, because given a single disparity field, there is not

enough information to infer this data.

Steps #5: The last step is forward disparity compensation and, consequently, spline-

based reconstruction as proposed in Chapter 4. However, as we have mentioned, the areas

of IL and IR that are going to be occluded in the intermediate image must be excluded

from the reconstruction. Thanks to the previous step, areas to be occluded in J have been

identified and we are free to choose areas in IL and IR to forward-compensate onto J as

illustrated in Fig. 7·3.

Therefore, we propose to selectively forward-compensate only what will be visible in

the intermediate view (i.e., A of IL and D of IR), and eliminate occlusion areas (i.e., B of

IL and C of IR). In order to recover J from the resulting irregular intensities, we slightly
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Figure 7·4: Illustration of occlusion effects on a horizontal cross-section
(single row) of IL, J , IR in pivoting-based reconstruction. Typical (incor-
rect) disparity fields dL and dR computed under spatial regularization in
presence of occlusions.

modify the formulation in (4.9-4.11) such that occlusion areas are excluded as follows:

PL
n = {xn + αdL(xn), IL(xn)} for n = 1, ..., NL, and xn ∈ ΛL\B (7.3)

PR
m = {xm + (1 − α)dR(xm), IR(xm)} for m = 1, ..., NR, and xm ∈ ΛR\C (7.4)

P = PL ∪ PR (7.5)

The difference is that the domains are changed from ΛL to ΛL\B and ΛR to ΛR\C where

B and C are occlusion areas of each image. The idea behind this selective projection is

that unless occlusion areas are eliminated, intermediate views will exhibit “double-texture”

effects, because occluded and visible areas will overlap in the intermediate view.

The overconstrained spline-based method proposed in Chapter 4 will estimate an opti-

mal function f(x) that minimizes cost function E (Section 4.2.2) for the set P in 7.5.

7.3 Experimental results

In this section we compare our results for occlusion-aware and unaware view reconstruction.

Specifically, we compare the following:

1. Pivoting-based reconstruction: Method introduced in Chapter 4, which is occlusion-

unaware
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2. Spline-based reconstruction (Fig. 7·1) that uses occlusion-aware optical flow estima-

tion and handles visibility of points; this method employs all steps listed in Section

7.2.

In order to show benefits of the proposed approach, we constructed a synthetic image set

with significant occlusions, shown in Figs. 7·5.a-c. The object displaces 19 pixels between

IL and IR on a static background. The ground-truth disparities for left and right images

are shown in Figs. 7·5.d and e. The ground-truth occlusion areas between the left and right

images are shown in Figs. 7·5.f and g.

The computed disparity fields using occlusion-aware optical flow algorithm proposed in

Chapter 6 are shown in Figs. 7·5.h and i. Note the sharp discontinuities in the disparity

field and accurately inpainted disparity in occlusion areas. Estimated occlusions are shown

in Figs. 7·5.j and k, and are very accurate when compared to the true occlusion areas.

Figures. 7·5.l-m show the areas that will be occluded in the intermediate view computed

using the newly-exposed area detection algorithm proposed in Section 5.3 (areas corre-

sponding to B and C in Fig. 7·3). Although there are a few false positives, such errors will

have minimal impact on the reconstruction quality due to overconstraining the solution

(texture in the intermediate view will be forward-projected from at least one source im-

age). The final reconstruction is shown in Fig. 7·5.n (to be compared with Fig. 7·5.b). The

difference between ground-truth and spline-based intermediate view is shown in Fig. 7·5.o.

The PSNR value is 31.59dB.

Since image-driven anisotropic diffusion (Nagel and Enkelmann, 1986) is not possible

in pivoting-based methods, the resulting disparity field (Fig. 7·5.p) can neither capture the

shape of the object nor give any occlusion information. The pivoting-based reconstruction

is shown in Figs. 7·5.q (to be compared with Fig. 7·5.b) with a PSNR value of 26.77dB.

Numerically, the spline-based reconstruction outperforms the pivoting-based approach by

almost 5dB. Although visible points have comparable reconstruction quality in both ap-

proaches, occlusion areas show a significant improvement in spline-based reconstruction as

is clear from prediction error images in Figs. 7·5.o and r. The texture in the background
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is properly reconstructed in the spline-based method but distorted in the pivoting-based

reconstruction. The only problem that can be noticed in the spline-based result is on ob-

ject boundary, where larger errors are present. The reason for this is that occlusion and

disparity estimation results, although very good, are not perfect.

Finally, Fig. 7·5.s shows prediction error for spline reconstruction if step #4 is skipped.

As it can noticed, there is a significant distortion in occlusion areas. This is due to the

double-texture effect. Since the to-be-occluded texture (marked with red in Fig. 7·5.l and

m) is not eliminated, the final reconstructed image had conflicting data in the occlusion

area (both object and background texture). The reconstructed image has PSNR is 25.83dB.

Reconstruction results with explicit occlusion handling improves results on real-world

images as well. The stereo sequence in Fig. 4·4 showed significant artifacts without occlu-

sion handling. Let us show the results when occlusions are properly handled.

Disparity fields estimated for this sequence using occlusion-aware optical flow are shown

in Fig. 7·6.c and d. When compared to Fig. 4·4.c, these disparity maps preserve object

shapes successfully and are subjectively more accurate. The occlusion areas estimated by

using the proposed approach in step #4 are shown in Fig. 4·4.e and f. In Fig. 4·4.f, the

occlusions marked on the bottom left of the image (on the table) seem to be incorrect,

however, these are due to the shadow of the speaker, which have the same disparity with

speaker.

The pivoting-based reconstruction (reproduced from Fig. 4·4.d) and occlusion-aware

spline-based reconstruction are shown in Fig. 7·6.g and h, respectively. It is clear that

object shapes are well preserved and spline-based reconstruction outperforms pivoting-

based reconstruction (shown in closeups Fig. 7·6.i and j).

The closeups of the texture around occlusion area from left image, pivoting-based

and spline-based reconstruction also show that spline-based reconstruction preserves tex-

ture better than pivoting-based approach. The arm is ‘split’ in pivoting-based approach

(Fig. 7·6.l) but is properly reconstructed in spline-based approach (Fig. 7·6.m). The im-

provements are due to more accurate disparity fields and successful occlusion handling.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p) (q) (r) (s)

Figure 7·5: Original images: (a) left (IL), (b) intermediate (J), and (c)
right (IR); true disparity: (d) left-to-right, and (e) right-to-left ; true occlu-
sions: (f) left-to-right, and (g) right-to-left; estimated OF: (h) left-to-right
(dL), and (i) right-to-left (dR); estimated occlusions: (j) left-to-right, and
(k) right-to-left; pixels to be occluded in midpoint image J that come from:
(l) left image (IL), and (m) right image (IR); (n) spline-based reconstruction
(31.59dB), and (o) its error; (p) disparity for the pivoting-based approach;
(q) pivoting-based reconstruction (26.77dB), and (r) its error; (s) error of
spline-based reconstruction without step #4 (25.83dB).
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However, as in the synthetic sequence, there are a few small artifacts on the edges of

the objects (for example on left edge of the speaker). This is again due to less-than-perfect

disparity and occlusion estimates. Nevertheless, the gain in overall quality makes these

small errors insignificant.

Finally, we show the views reconstructed for Ballroom sequence (property of Mit-

subishi Electric Research Laboratories). Figures 7·7.a and f show left and right images

and Fig. 7·7.b-e show reconstructed intermediate views. Again, the intermediate views are

of high quality.

7.4 Conclusions

In this chapter, we proposed an occlusion-aware spline-based intermediate view reconstruc-

tion algorithm. In combination with occlusion-aware disparity estimation, it produces much

better results visually on data sets with significant occlusions than the pivoting-based ap-

proach. The main advantage of the method stems from accurate disparity fields which

can utilize the underlying image to account for object boundaries. Since occlusions are

properly handled, the spline-based results do not exhibit the ‘rubber’ effect, typical of

pivoting-based methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m)

Figure 7·6: Original images: (a) left (IL), and (b) right (IR); estimated
OF: (c) left-to-right, and (d) right-to-left ; pixels to be occluded in midpoint
image J that come from: (e) left image, and (f) right image ; (g) pivoting-
based reconstruction (h) spline-based reconstruction; (i) closeup of (g); (j)
closeup of (h); closeups of (k) left image, (l) pivoting-based (m) spline-based
reconstructions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7·7: Ballroom sequence: (a) left image at α = 0; intermediate views
at (b) α = 1/8; (c) α = 3/8; (d) α = 5/8; (e) α = 7/8; (f) right image at
α = 1; disparity maps of (g) left and (h) right images.



Chapter 8

Occlusion-aware view reconstruction using

multiple input images

So far, we focused on view reconstruction and occlusion detection from two images only. In

this chapter, we would like to extend our work to multiple input images. The main idea is

that disparity and occlusion information can be more reliably estimated if there are more

images available, i.e., what is not visible in two images is likely to be visible in other input

images.

This chapter will start by briefly presenting how spline-based method can be easily

extended to multiple images. Our main focus in this chapter, however, will be on improving

pivoting-based methods by using additional images. We will propose a new method that

adaptively estimates pivoted disparity by using multiple images. The method first estimates

labels, and then uses these labels to direct a new variational formulation that chooses proper

image pairs when computing disparity. The labels and computed disparities are then

used in an adaptive reconstruction algorithm. The final reconstruction shows significant

improvements over pivoting-based reconstruction that uses two images only.

8.1 Multi-view spline-based view reconstruction

An extension of method presented in Chapter 7 to multiple input images is trivial and

requires no change in the method itself. As many images as available can be forward-

compensated onto the intermediate view, thus creating additional intensity/color points.

In this case, multiple images will be beneficial to estimate more reliable disparities of

available images. In Chapter 6, the proposed algorithm was able to estimate disparity of

111
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visible areas and it solved the problem in occlusion areas by using a diffusion process. The

proposed diffusion process essentially compensated for the lack of information and allowed

us to intelligently guess disparity in occlusion areas.

On the other hand, if there are additional images, an optical flow algorithm can utilize

these images to estimate disparity in occlusion areas instead of using diffusion.

There are many such works in the literature, for example Strecha and Van Gool (Strecha

and Gool, 2002) proposed an optical flow method for N -images. This or other methods

can be utilized to estimate more reliable disparities. Subsequently, these disparity fields

can be used in multi-view spline-based reconstruction.

8.2 Multi-view pivoting-based view reconstruction

As we mentioned at the beginning of this chapter, we would like to focus on improving the

pivoting-based approach. Let us first start by examining the problems in pivoting-based

method.

8.2.1 Deficiencies of pivoting-based view reconstruction

1. Absence of an underlying image in disparity estimation: Pivoting-based method

can be characterized as a backward-projected method (Section 4.1.1). The disparity

of a pixel of the intermediate view is estimated by backward-projecting this point

onto available images. This is in contrast to what we have proposed in spline-based

method, where disparity of an input image is estimated first and then the intensities

of the input image are forward-projected onto the intermediate view.

Although this difference may seem to be insignificant, there is a crucial difference in

estimating the disparity. In the forward-projected method, the disparity of a known

image is estimated, therefore it is possible to use the underlying image for edge-

preserving regularization purposes. As we have seen in Chapter 6, utilizing gradient

information of the underlying image when estimating the disparity significantly im-

proves the quality of the estimated disparity. Unfortunately, when estimating the
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pivoted disparity, we have, obviously, no access to the intermediate view (that is

what we are trying to estimate!).

Due to this problem, disparity estimated using the pivoted-based method is not

of high accuracy, specifically the estimated disparity is usually excessively smooth,

because there is no underlying image that will guide the regularization. An example

pivoted disparity was previously shown in Fig. 4·4.c. Although it is possible to utilize

robust statistics in the regularization term, as in the work of Black and Anandan

(Black and Anandan, 1996), edge-preserving regularization leads to sharper disparity

maps because discontinuities coincide with object boundaries.

2. Insufficient information to estimate occlusion areas: Given only a single disparity

field pivoted on the intermediate view, it is unclear how to estimate occlusion areas.

For example, in Chapter 6, we measured the compatibility of left-to-right and right-to-

left disparity fields, however, in the pivoting-based method, one can estimate a single

disparity field, therefore no such compatibility measurement can be done. Thus, we

have no clear mechanism of finding occlusion areas in pivoting-based method.

In fact, even if we were able to estimate occlusion areas on the intermediate view,

handling of occlusion areas would be problematic as well. For example, we proposed

an image-driven disparity inpainting method in Chapter 5. However, we cannot use

such a method to handle occlusions because, yet again, we have no underlying image

to guide the inpainting.

In the following sections, we will propose methods to solve both problems. A coarse

intermediate image will be used to solve the first problem and multiple input images will

be used to solve the occlusion problem.

8.2.2 Edge-preserving regularization using coarse intermediate image

In this section, we will solve the first deficiency mentioned in the previous section. As

demonstrated in Chapter 6, edge-preserving (anisotropic) regularization preserves disparity
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j) (k)

Figure 8·1: Experimental results for a synthetic image. Original (a) left
(b) intermediate and (c) right images; (d) pivoted-disparity estimated us-
ing isotropic diffusion; (e) intermediate image reconstructed using pivoted
disparity from (d); (f) prediction error; edge map of (g) true intermedi-
ate view and (h) reconstructed intermediate image; (i) pivoted-disparity
estimated using anisotropic diffusion; (j) intermediate image reconstructed
using images in (a), (c) and pivoted disparity in (i); (k) prediction error.
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edges better than isotropic diffusion, but requires an image gradient to guide the diffusion

process. The main difficulty is in providing such a gradient.

The pivoting-based method using two images (as described in Section 4.1.1) results in

intermediate views which have distorted texture but, surprisingly, the edge information

is usually reliable. Although this seems to be counter-intuitive, the reason is that visible

edges are matched easily and edges near occlusion areas belong to the object closer to the

camera, therefore its edges are visible as well. Figure 8·1 shows an experimental result

proving the point. The images shown in Fig. 8·1.a and c are the input left and right

images and Fig. 8·1.b is the true intermediate image. The estimated disparity without

using edge-preserving diffusion is shown in Fig. 8·1.d. It is computed via the following

minimization:

arg min
d(x)

∫ ∫

x∈ΩJ

(IL(x − αd(x)) − IR(x + (1 − α)d(x)))2 + λ
(
||∇u||2 + ||∇v||2

)
dx (8.1)

where u and v are the horizontal and the vertical components of disparity. Clearly the re-

sulting disparity is excessively smooth. The reason for smoothness is the isotropic diffusion

in the formulation.

The image in Fig. 8·1.e shows the reconstructed image using this disparity. Although

there are gross prediction errors (shown in Fig. 8·1.f), the edge maps obtained using Canny

edge detector from the true and reconstructed intermediate images (Fig. 8·1.g and h) are

very similar.

Therefore, we propose to use the coarse intermediate image shown in Fig. 8·1.e to guide

the edge-preserving diffusion as follows:

arg min
d(x)

∫ ∫

x∈ΩJ

(IL(x − αd(x)) − IR(x + (1 − α)d(x)))2 + λ (Fx(u, Jc) + Fx(v, Jc)) dx,(8.2)

where Jc is the coarse intermediate image and Fx is edge-preserving diffusion term defined

in (5.5). The difference between (8.1) and (8.2) is that (8.2) achieves edge-preserving

diffusion using Jc.



116

The disparity shown in Fig. 8·1.i is computed by minimizing (8.2). It is clear that the

object shape is very well-preserved. The intermediate view obtained using this disparity

field and its prediction error are shown in Fig. 8·1.j and k respectively. As is clear from the

prediction error, the distortions on the top and the bottom of the object in Fig. 8·1.f are

highly reduced because the excessive smoothness of disparity field is eliminated. The reason

is that although these areas are not occlusion areas, due to isotropic regularization, they

were previously assigned incorrect disparity values in (8.1). Edge-preserving regularization

in (8.2) eliminated this problem and these areas are now assigned accurate disparity values,

thus are properly reconstructed.

To summarize this section, by proposing to use a coarse image for disparity estimation,

we solved the first deficiency mentioned in Section 8.2.1. However, in the experimental

result, we see that areas on the left and right of the object are still problematic because

these areas are occlusion areas and edge-preserving regularization is not sufficient to solve

the occlusion problem. The problem is due to insufficient information; a point is visible

only in one of the images, thus no matching is possible. Therefore, next, we propose to

use additional images to solve the problems in these areas. The idea is that given multiple

images, these areas are expected to be visible in at least two of the input images, therefore,

can be matched to compute an accurate disparity value.

8.2.3 Utilizing multiple images in occlusion areas

In this section, our aim is to solve the second deficiency mentioned in Section 8.2.1 by

using multiple images. Let us discuss how using multiple images will improve the disparity

estimation in occlusion areas.

Without losing generality, let us consider four input images as shown in Fig. 8·2. Al-

though simple, this figure can successfully convey the idea of using multiple images. Images

and their cross-sections are shown at the top and bottom, respectively. We would like to

reconstruct the intermediate image J using input images I1, I2, I3 and I4. Note that areas

A and B are being occluded/exposed between the four images.
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Figure 8·2: Using four images is sufficient for multi-view pivoting based
reconstruction. Occlusion areas A and B (shown in images above and cross-
sections below) can be estimated either from (I1, I2) or (I3, I4). All other
points that do not belong to A or B can be estimated from (I2, I3).

In the case of pivoting that uses two input images, I2 and I3 would be the input images

and a disparity field pivoted on J would be estimated. For most points of J , it is possible

to estimate accurate disparity values because they are visible in both I2 and I3. However,

areas A and B are occluded between the images, therefore it is not possible to estimate

disparities for these areas.

If there are additional images to the left and right of I2 and I3, then areas A and

B would be visible in at least two images. Then, it should be possible to estimate the

disparity of area A using I1 and I2 and disparity of area B using I3 and I4. Therefore,

we need a formulation that will estimate disparity of J by choosing among three pairs:

(I1, I2), (I3, I4) or (I2, I3).
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8.2.4 Estimation of labels

In order to implement the idea of switching between image pairs from the previous section,

obviously we need to first find where areas A and B are. We propose to use the method

developed in Section 5.3 for this purpose:

It is possible to estimate a disparity field d12 from I1 to I2 pivoted on I1. The method

proposed in Section 5.3 will yield the area B by using (1+α)d12. The coefficient (1+α) is

used to normalize the disparity field so that it is correctly mapped onto J . The estimated

area B is exposed between I1 and I2, and therefore is visible in I3 and I4.

Similarly a disparity field d43 from I4 to I3 pivoted on I4 can be estimated. Using

(2−α)d43 will yield area A, which is visible in I1 and I2. Therefore, by using d12 and d34,

we can find the labels of points in J : visible, occluded, exposed.

Now that we have the labels, in the next section we will propose a new variational

formulation that utilizes these labels.

8.2.5 Proposed variational formulation

Let I1 : Ω1 → R+, I2 : Ω2 → R+, I3 : Ω3 → R+, I4 : Ω4 → R+ be input images, and let

J : ΩJ → R+ be the intermediate image to be reconstructed, let x ∈ ΩJ . We would like to

compute a disparity field: {d(x) = [u(x), v(x)]T }x∈ΩJ
and we would like the formulation

be directed by a label field L : ΩL → R+.

Let us first propose three sets of prediction errors as follows:

θ12(x) = I1(x − (1 + α)d(x)) − I2(x − αd(x)), (8.3)

θ23(x) = I2(x − αd(x)) − I3(x + (1 − α)d(x)), (8.4)

θ34(x) = I3(x + (1 − α)d(x)) − I4(x + (2 − α)d(x)). (8.5)

θ12, θ23, θ34 measure prediction errors for image pairs (I1, I2), (I2, I3) and (I3, I4), respec-

tively. The (1 − α), (1 + α), (2 − α) coefficients normalize the disparity vectors depending

on the distance between images.
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For every x ∈ ΩJ , it is possible to evaluate these prediction errors. Most points, except

points in the occlusion areas in A and B, will yield small prediction errors in all three

cases. However, in the occlusion areas only one of them will yield a small prediction error.

Specifically, in area A, θ12 will be small whereas in area B, θ34 will be small.

Let us define a label field L(x) as follows: if L(x) is -1, 0 or 1, we would like θ12, θ23

and θ34 be used as prediction errors, respectively1. Combining these labels and prediction

errors we propose three prediction errors to be used in our formulation as follows:

P12(x) = δ(L(x) + 1)(θ12(x))2, (8.6)

P23(x) = δ(L(x))(θ23(x))2, (8.7)

P34(x) = δ(L(x) − 1)(θ34(x))2, (8.8)

and then combine them in a single cost term as follows:

eP (x) = P12(x) + P23(x) + P34(x), (8.9)

where δ(x) is the Kronecker delta function. Since this function is not continuous, we

propose to use an approximation such as δ(x) = lim
k→∞

e−kx2

. For example, k = 1010 yields

a very good approximation.

Clearly, eP adaptively selects different pairs of input images depending on the labels,

L . For example, if L(x) = −1, then P12 is used because, δ(L(x) + 1) = 1 and δ(L(x)) =

δ(L(x) − 1) = 0.

Now that we have a prediction term, we propose to use the following smoothness term,

which will enforce edge-preserving diffusion:

eS(x) = Fx(uL, Jc) + Fx(vL, Jc), (8.10)

with Fx defined in (5.5) and Jc being coarse intermediate image reconstructed using

1The values of labels have no significance and are chosen randomly. It is possible to use other values for
labels such as 1, 2 and 3.
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isotropic disparity estimation as proposed in 8.2.2.

Combining these terms we propose to minimize the following energy with respect to d:

E =

∫ ∫

x∈ΩJ

eP (x) + λeS(x)dx (8.11)

Derivation of Euler Lagrange equations is given in Appendix C.

Once a disparity field is estimated, it is possible to reconstruct J(x) by using any in-

tensity value along the disparity vector, but weighted averaging, or simply averaging of

intensities lead to better results. Considering this, we propose to reconstruct the interme-

diate view as follows:

J(x) = δ(L(x) + 1) ξ12 + δ(L(x)) ξ23 + δ(L(x) − 1) ξ34 ∀x ∈ ΩJ , (8.12)

where L is the estimated label field and ξ· are the intensity averages along disparity vector

d(x) defined as follows:

ξ12 =
1

2
[I1(x − (1 + α)d(x)) + I2(x − αd(x))],

ξ23 =
1

2
[I2(x − αd(x)) − I3(x + (1 − α)d(x))], (8.13)

ξ34 =
1

2
[I3(x + (1 − α)d(x)) − I4(x + (2 − α)d(x))].

Note that for every J(x), only one of the values in (8.13) is used in (8.12) because of the

δ(·) terms.

Estimate 

disparities

d
12
 and 
d
43


Find labels 
L

using 


d
12
 and 
d
43
 


Estimate disparity 
d 
of 
J 

by minimizing 
(8.11) 
using 

labels and 
J
c
. R
econstruct 


intermediate image using (8.13) 


Estimate 

disparity
d 
by 


minimizing (8.1)


Reconstruct coarse

intermediate image


J
c
 
using 
d


Figure 8·3: The steps of the proposed occlusion-aware pivoting-based mul-
tiview intermediate view reconstruction method.
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Table 8.1: PSNR values of intermediate views with different reconstruction
methods for synthetic test sequence.

Description of method PSNR

Pivoting-based method using two images 30.77dB

Pivoting-based method using two images and a coarse intermediate image 32.84dB

Proposed method 34.15dB

To summarize the proposed method, we show the steps in Fig. 8·3. The proposed

formulation solves both deficiencies of pivoting-based method mentioned in Section 8.2.1.

We will show the efficacy of the proposed method on synthetic and real-world images in

the next section.

8.2.6 Experimental results

We generated two additional images for the synthetic test sequence shown in Fig. 8·1. Four

input images are shown in Fig. 8·4.a-d. True disparity, intermediate image and label map

are shown in Fig. 8·4.e-g. The labels estimated using the method proposed in Section 5.3

are shown in Fig. 8·4.h. Black, gray and white colors indicate that (I1, I2), (I2, I3) and

(I3, I4) image pairs should be used in these areas, respectively. Although there are false

positives on top and bottom of the object, since these areas are visible in all images, they

can be predicted from any pair.

Disparity estimated using the formulation proposed Section 8.2.5 is shown in Fig. 8·4.i.

When compared to Fig. 8·1.i, which used only two images, the improvement in occlusion

areas is clear. The intermediate image reconstructed using this disparity and label field

from Fig. 8·4.h is shown in Fig. 8·4.j. The prediction error in Fig. 8·4.k clearly shows the

improvement. Numerical results of different methods are shown in Table 8.1. Proposed

edge-preserving diffusion improved results of pivoting-based method that uses two images

by more than 2dB, and proposed multiview method improved this result by another 1dB.

We also tested the proposed method on natural images. We used four frames (10th,

16th, 22nd, 28th frames) of Flowergarden sequence to reconstruct the 19th frame. The four
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

Figure 8·4: Experimental results for a synthetic sequence. (a) I1, (b) I2,
(c) I3, (d) I4; ground truth (e) disparity, (f) intermediate image, (g) label
map; (h) estimated labels (black, gray and white indicate (I1, I2), (I2, I3)
and (I3, I4) image pairs to be used) (i) estimated disparity by minimizing
(8.11); (j) reconstructed intermediate image; (k) prediction error.

original images are shown in Fig. 8·5.a-d. It can be noticed that the tree trunk occludes the

house in the background. The disparity estimated using pivoting-based method that uses

two images, i.e., 16th and 22nd frames, is shown in Fig. 8·5.e. It is excessively smooth. The

reconstruction using this disparity field and the two input images is shown in Fig. 8·5.f.

The occlusion area is poorly reconstructed; the texture around the tree trunk is highly

distorted (closeup in Fig. 8·5.k).

The label map that is estimated using the method proposed in Section 8.2.4 is shown in

Fig. 8·5.g. Black areas are to be predicted from frames (#22, #28), white areas from (#10,
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#16), and gray areas from (#16, #22). Estimated disparity using the method proposed

in Section 8.2.5 is shown Fig. 8·5.h. When compared to the previous result in Fig. 8·5.e,

the new disparity has object boundaries. Reconstructed intermediate view using (8.12) is

shown in Fig. 8·5.i. Since the input sequence is a video, we can subjectively compare the

reconstructed view to the 19th frame of the sequence. Closeup of the original 19th frame

and reconstructions are shown in Fig. 8·5.j-l. Although there are slight shifts, texture in the

background is clearly distinguished in new reconstruction and very similar to the original

frame. For example, the windows of the house cannot be identified in Fig. 8·5.k, while

they are easily identified in Fig. 8·5.l. Similarly, the tree branches behind the house are

distorted in Fig. 8·5.k, but are better reconstructed in Fig. 8·5.l.

8.3 Why not estimate labels and disparity simultaneously?

The method in the previous section, although successful, is composed of a few steps: first

estimation of labels and coarse intermediate image, followed by estimation of disparity

using these labels and the coarse image.

We explored the possibility of a new cost function that simultaneously estimates labels

and disparity without using a coarse image. Our aim was to propose a joint formulation

that estimates all unknowns simultaneously. Specifically, we formulated the joint problem

as the following minimization:

E =

∫ ∫

x∈ΩJ

Φ(d12, dJ)θ12(x)2 + Φ(d23, dJ)θ23(x)2 + Φ(d34, dJ)θ34(x)2︸ ︷︷ ︸
Prediction terms

+

λ1Ψ(d, Jc)︸ ︷︷ ︸
Regularization term

+

λ2(1 − Φ(d12, dJ)) + λ3(1 − Φ(d23, dJ)) + λ4(1 − Φ(d34, dJ))︸ ︷︷ ︸
Occlusion priors

. (8.14)

The formulation is similar to the formulation of the occlusion-aware optical flow. The

idea is to disable the prediction terms, θs, that are not reliable. Specifically, θ· are individual

prediction errors as given in (8.5). Φ(·,dJ) functions measure the reliability of dJ , by
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8·5: Original frames (a) #10, (b) #16, (c) #22, (d) #28; (e) es-
timated disparity using pivoting-based method that uses two-images; (f)
reconstructed intermediate view by using disparity shown in (e); (g) esti-
mated label map (white: frames (10,16), black: frames (22,28), gray: frames
(16,22)); (h) estimated disparity using the proposed variational approach;
(i) reconstructed intermediate view using proposed approach; (j) closeup
of true frame #19; (k) closeup of the result of the method that uses two-
images; (l) closeup of the result of proposed approach.
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comparing to the other disparity fields, similar to the D(·) function in (6.9). If the vector

field dJ is estimated to reliable, then Φ(·) will be close to one, therefore allowing the use

of corresponding prediction term. If dJ is not reliable then Φ will disable the prediction

term because Φ(·) will be close to zero.

Unfortunately, this method offered limited improvement. Upon investigating, we con-

cluded with the following reasons for limited performance:

1. Ambiguity : If the pivoted location is not in between available images, there are at

least two disparity values that satisfy the prediction error which leads to an ambiguous

solution. Consider Fig. 8·6, where the intermediate image is positioned outside of

input images. Without losing generality, let us assume that the background is static.

We would like a disparity vector to be pivoted on J and pass through I1 and I2, and

minimize θ12. The ambiguity is that since we do not have the underlying image, any

solution that minimizes prediction error and satisfies the smoothness constraint will

be an acceptable solution. In this case, for the upper part of the object, there are two

solutions ||d|| = 0 (which matches background that is static) and ||d|| 6= 0 (which

matches the object in I1 and I2). Both of these solutions would reasonably satisfy

the smoothness constraint as well, because these areas are near the object boundary

and are affected by disparity values in both object and background.

Note that this ambiguity was not present in the method proposed in previous section,

because precomputed labels explicitly (and correctly) directed the solution method.

2. Complex formulation: The formulation has several terms which should be weighed

properly. Our experimental results show that there is usually not a single optimal set

of parameters that would work with any data and adjusting parameters for each set

is not practical at all. Therefore this problem rendered the formulation unpractical.

3. Lack of anisotropic diffusion: Yet, again, the lack of anisotropic diffusion led to

unsatisfactory results. Although, as we proposed in the previous section, one can use
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Figure 8·6: Illustration of ambiguity when disparity is not pivoted between
the input images. Shaded area in J can be assigned two disparity values
that minimize prediction error.

a coarse intermediate image for diffusion purposes, the other difficulties made a joint

approach unrealistic.

8.4 Conclusions

In this chapter, we first discussed how the method proposed in Chapter 7 can be extended

to multiple views. Next, we pointed out the limitations of pivoting-based disparity esti-

mation, specifically the absence of an underlying image (thus the lack of edge-preserving

regularization), and its inability to handle occlusion areas. Next, we proved that although

pivoting-based reconstruction using two images creates distorted texture in intermediate

view, it reconstructs reasonable edge information. Exploiting this fact, we proposed to

use a coarse intermediate image in disparity estimation for edge-preserving regularization

purposes. Then, we proposed a new variational pivoting-based method that works on mul-

tiple images. The basic idea is that when multiple images are available, a point in the

intermediate image is visible in at least two images. The formulation uses this fact to

choose proper image pairs and estimate disparity vectors. The selection process is guided

by labels computed using the method proposed in Section 5.3. The results show significant

improvements over pivoting-based method that uses two images only.

Finally, let us point the difference between the method proposed in this chapter and in
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Chapter 6. In Chapter 6, since we had only two input images, the estimation of disparity in

occlusion areas was impossible. However, by using available disparities of visible points, we

intelligently guessed the disparity of occlusion areas via a diffusion process; and effectively

compensated for the lack of information. On the other hand, in this chapter, we utilized

additional images that enabled us to estimate reliable disparities in the occlusion areas for

all points.



Chapter 9

Applications of proposed methods

This chapter presents several applications of methods presented in this dissertation. The

application areas are health care, personal communication, video compression and space

exploration.

9.1 Health care: Virtual reality for bedridden patients

In collaboration with NeuroMuscular Research Center at Boston University, we worked

on building an exercise bed for bedridden patients that will help to recover their balance

after recovery from illnesses (Oddsson et al., 2007; Oddsson et al., 2006). Our part in the

project was to utilize 3D displays and proposed view reconstruction algorithm to create a

virtual reality environment for a patient in bed.

9.1.1 Introduction

3D visualization equipment finds various application areas; we have mentioned some of

these applications in Chapter 1. Mainly, these applications focus on creating a better

representation of medical data so that medical personnel can improve their diagnosis. These

applications rarely utilize 3D tools to help patients with decreasing their recovery time.

Recently, we collaborated with NeuroMuscular Research Center at Boston University

to create a system that utilizes 3D displays and head-mounted 3D glasses to create a vir-

tual reality environment. The system focuses on patients that had to stay in bed for an

extended time period due to a spinal cord injury or neurological diseases. The results of

neuromuscular research indicates that having stayed in bed for such a long time, these

patients have difficulties in maintaining their balance when standing, even after they re-

128
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Figure 9·1: The prototype bed. Treadmill shown on the left acts as ground
and promotes walking. Computer is used to control 3D monitors positioned
on the left and above the bed.

covered from illnesses.

Moreover, previous research shows that if the patients are trained while they are still

in bed, so that they experience the gravitational force as if they were standing on their

own, then patient’s recovery time of motor functions reduces significantly.

Considering this potential, Oddsson et al. (Oddsson et al., 2004) created a training

system in a 90-degree tilted room. The room contains objects that would be in an ordinary

room, such as a table and a chair, but they are mounted on the wall to create a standing

feeling when lying on a mat on the floor. The subject wears a harness that pulls him/her

toward the wall (which is perceived as the ground) therefore also delivering the sense of

gravity.

Although encouraging, the system was obviously non-portable. Considering the severity

of injuries of patients, it is difficult to see this system being used in any hospital. In order

to solve this issue, they proposed to build a portable system, that can be easily transported

to patients instead of transporting patients to the system.



130

9.1.2 System design

The system is mounted on an ordinary hospital bed as shown in Fig. 9·1. In order to create

a similar feeling as the one delivered by the tilted room, we utilized two automultipscopic

3D displays from Stereographics Corp. namely SynthaGram SG222, with a resolution of

3840 × 2400 pixels and SynthaGram SG202 with a resolution of 1600×1200 pixels. The

high resolution and quality SG222 is directly in front of the subject. The other display

is placed on the side of the subject since a user will spend less time looking to sides; this

display is enough to provide the desired effect.

These 3D displays are intented to be virtual “windows” to an outside environment.

The images displayed on these screens promote a visually-induced reorientation illusion.

Since patients are able to “look out of a window” they, in fact, experience the sense of

being upright with respect to gravity.

Both of the these displays require nine individual views as input. Since we do not

have nine individual cameras, we captured two (rarely three) views of a scene and used

the proposed view reconstruction algorithm to generate additional views. The algorithm

is further enhanced by using anti-aliasing filters (Konrad and Agniel, 2006).

In the first stage of the project, images around Boston University were captured using

a stereo camera setup that is composed of two Olympus digital still cameras. To further

improve the effectiveness of the system, the system will be tailored to each patient by

capturing images that are familiar to him/her such as his/her own backyard or living

room. The setup and software for this step have been completed and applied in practical

experiments.

This specific application demonstrates the versatility of methods proposed in this dis-

sertation. The 2-camera setup can easily be carried by health care professionals to the

home of a patient. Such a professional, very likely unskilled in camera calibration and

other technical details, will easily capture a stereo pair. Later, this pair will be displayed

on the automultiscopic display with little effort by using the proposed view reconstruction

method.
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Finally, as an alternative to automultipscopic 3D displays, we utilized a head-mounted

stereo display (HMSD), 3DVisor. This specific HMSD is able to deliver a virtual reality

environment given a 3D model. We designed virtual rooms using a 3D modeling software

Blender. When a subject wears this HMSD, he/she perceives that he/she is standing in a

room upright and interacts with objects surrounding him/her. This alternative method will

be more cost-effective as HMSDs are substantially cheaper than automultiscopic displays.

However, the subject may not be as comfortable as in the case of 3D displays because of

the interocular vs. intercamera distance problem as we mentioned in Chapter 2.

9.1.3 Experimental results

Experimental results on healthy subjects show that the strength and balance functions

improved significantly. More details can be found in (Oddsson et al., 2007; Oddsson et al.,

2006). The system will soon be used on patients at Boston Medical Center.

9.1.4 Conclusions

We presented a system where 3D displays and view reconstruction algorithms are used for

a health care application. The system can be used by any medical professional without

learning technical details of 3D vision. This system illustrates a very good example of

application of our work.

9.2 Personal communications: Frame rate conversion to enhance videos

captured by mobile phones

This application demonstrates that view reconstruction algorithm used along time axis

in monoscopic video sequences can increase frame rate of low-quality videos. Specifically,

we use the proposed view reconstruction algorithm to generate 30 frames-per-second (fps)

videos from 5-6fps mobile phone videos.
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Figure 9·2: Virtual frames can be reconstructed from available frames.

9.2.1 Introduction

So far, we focused on intermediate view reconstruction in stereo or multi-camera setups.

However, view generation can be used to increase the frame rate of a monoscopic video

sequence. This can be achieved by applying view reconstruction along time in monoscopic

video sequences (Fig. 9·2). The disparity estimation step in the reconstruction algorithm

is replaced by motion estimation. We use the optical flow algorithm proposed in Chapter

6 for motion estimation, as it can be used with both stereo and video data.

The main application of this work is the enhancement of video sequences captured by a

mobile phone. Since mobile phones have limited processing power, they typically capture

5-6fps. This rate is insufficient when compared to 30fps which is the required minimum

rate for a smooth playback of a video sequence. Therefore, video sequences captured by

mobile phones are perceived as ‘jerky’, i.e., object motion is perceived as unnatural.

When creating a system for view generation in video sequences we exploit the poor

human perception when watching a video. Namely, we cannot perceive slight texture

distortions in a video sequence since it is shown on the screen for a fraction of a second.

Moreover, unless there is a very fast moving object in the scene, the occlusion effects

are minimal between frames. Therefore, as we will show in experimental results, we can

reconstruct intermediate views by skipping the occlusion handling step (i.e., Step #4 in

Chapter 7).

We should note that we assume that the frames are captured in equal time intervals.

In rare cases, the processor of the phone cannot keep up with the amount of motion in the
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scene due to the time spent on motion estimation during compression. In these cases, the

frame rate drops below the average 5-6 fps. Yet, even when we used such very low frame

rate videos as input, the reconstructed video sequences were still perceived as smooth.

9.2.2 Proposed method

We utilize the view reconstruction algorithm presented in Chapter 7. We estimate the

vector field between input frames using occlusion-aware optical flow estimation (Chapter

6) and use spline-based reconstruction (Chapter 4). The important fact is that we no longer

focus on disparity therefore the occlusion-aware optical flow method successfully handles

vertical disparities as well. This is an important difference of our method from previous

work as it can successfully handle disparity as well as 2D motion.

Another additional quality of our approach is that spline-based reconstruction needs

only one set of vector fields (left-to-right, and right-to-left) and subsequent reconstruction

in between left and right frames uses the same vector fields. This is in contrast with, for

example, pivoting-based reconstruction where a new vector field must be computed for

each position of intermediate views.

Finally, we noticed that the smoothness term in spline-based reconstruction partially

eliminates blocking artifacts, which are due to compression, and improves the subjective

quality.

9.2.3 Experimental results

We first present the results on a standard test sequence, Coastguard. We use every third

frame of the sequence to reconstruct two frames in between. Since those two frames are

available in the video sequence, this allows us to measure the numerical performance of

the proposed method. Fig. 9·3.a and b shows the two input frames and Fig. 9·3.c and d

shows the two original frames in between. Fig. 9·3.e and f shows the reconstructed frames

in between. The difference images between originals and reconstructed views are shown in

Fig. 9·3.g and h. Similar results are shown for Foreman sequence in Fig. 9·4. As it can
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9·3: Coastguard sequence: (a) Frame #1 (b) frame #4 (c) frame
#2 (d) frame #3 (e) reconstructed frame #2 (f) reconstructed frame #3
prediction error for (g) frame #2 (33.29dB) (h) frame #3 (33.30dB).



135

(a) (b)

(c) (d)

(e) (f)

(g) 30.3091

Figure 9·4: Foreman sequence: (a) Frame #1 (b) frame #4 (c) frame
#2 (d) frame #3 (e) reconstructed frame #2 (f) reconstructed frame #3
prediction error for (g) frame #2 (34.34dB) (h) frame #3 (34.44dB).
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Sequence #1

Sequence #2

Figure 9·5: First and last columns show input images and middle columns
show two of the reconstructions.

be noticed the prediction errors are very small in both experiments. The PSNR values are

measured around 33dB. We should not that the distortions around the mouth of the person

in Foreman are due to the complex deformable motion of lips. Such a motion cannot be

modeled by optical flow.

Next, we captured several video sequences using a Motorola V360 mobile phone. Our

measurements reveal that the average frame rate of the videos is around 5.5fps. Con-

sidering this rate, we reconstructed five virtual frames between available frames. A sub-

jective evaluation of reconstructed video sequences shows significant improvements; the

videos are perceived as smoother. In the first and last column of Fig. 9·5, we show

the original frames from video sequence and in the middle two columns we show two

of the reconstructed views. The original and enhanced video sequences can be examined

at http://iss.bu.edu/ince/thesis/timeivr.html.

9.2.4 Conclusions

We presented an application of the proposed view reconstruction algorithms to the en-

hancement of video sequences captured by mobile phones. The experimental results show

the enhanced videos are much smoother and pleasant to the viewer. The method is suc-



137

cessful because the optical flow method can accurately estimate the motion between video

frames.

9.3 Communications: Depth estimation for view synthesis in multiview

video coding

In collaboration with Mitsubishi Electric Research Laboratories we worked on coding of

multiview video data. The contribution presented in this section was improving block-based

disparity estimation to improve compression efficiency (Ince et al., 2007b).

9.3.1 Introduction

Emerging camera arrays (Wilburn et al., 2005) and eye-wear free 3D displays (Dodgson,

2005; Matusik and Pfister, 2004) make 3D TV a feasible product in the future. In an

end-to-end 3D system, the transmission and storage of multiple video streams is of concern

because of the prohibitive amount of visual data needed. In response to this need, there

is currently an MPEG activity on efficient coding of multiview video (JTC1/SC29/WG11,

2005; Vetro et al., 2004).

One of the approaches in multiview coding is to use view synthesis to produce additional

references for the view that is being encoded (Kimata and Kitahara, 2004; Martinian et al.,

2006b; Martinian et al., 2006a). Consider Fig. 9·6 where we would like to code In(t), a

frame at time t of camera n. As shown, it is possible to use previous frames, such as

In(t−1), as references. Also, since the cameras share a common field of view, it is possible

to use frames In−1(t) and In+1(t) neighboring cameras as references as well. Moreover, by

using view synthesis, it is possible to reconstruct a virtual view Vn(t) for camera n using

other cameras. Martinian et al. (Martinian et al., 2006b; Martinian et al., 2006a) showed

that using this synthesized view as an additional reference can introduce notable gains in

compression efficiency.

As summarized in Chapter 3, among many methods to synthesize a view, one approach

is to compute the depth field of a scene using available cameras and then to use this depth
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Figure 9·6: Prediction using view synthesis in multiview coding.

map to render a virtual view (Chen and Williams, 1993; Buehler et al., 2001). However, in

the case of multiview video coding, one crucial step is the transmission of these depth maps,

as they are needed in the decoder. In most cases, the depth of the scene is unavailable

and must be extracted. Therefore, when depth maps are computed, the number of bits

required to represent them must be considered as well (Alatan and Onural, 1998; Park and

Park, 2006). Depth maps for multiview coding should be smooth enough so that they can

be coded efficiently, but they should also have enough variations to approximate the scene

structure. Considering these needs, in this application, we focus on improving block-based

depth estimation to generate smooth and accurate depth maps. We progressively improve

the results by introducing a hierarchical scheme, regularization and nonlinear filtering. We

also extend the search into color components. These additional steps not only improve the

smoothness of depth maps, but also lead to visual improvements in synthesized frames.

First, we will introduce basic depth estimation and then describe improvements to the

algorithm. Finally, we will show the efficacy of the resulting depth maps in view synthesis

and multiview coding.

9.3.2 Depth estimation for view synthesis

Let An, Rn and tn denote intrinsic matrix, rotation matrix and translation vector for cam-

era Cn. Given a point xn = [xn, yn] in image In captured by camera Cn and corresponding

depth of this point D(xn), it is possible to map xn onto image Ii from other cameras,
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where i ∈ {1 . . . N} and N is the number of cameras. First, the point is projected from

two-dimensional image plane into three-dimensional space as follows:

X = Rn · A−1
n · [xn 1]T · D(xn) + tn (9.1)

where X denotes the three-dimensional point. Next, X can be projected onto desired

camera image, for example In−1, as follows:

xn−1 = An−1 · R−1
n−1 · (X − tn−1). (9.2)

Combining these two equations we can write xn−1 as a function of xn and D(xn) within a

scaling factor:

xn−1(xn, D(xn)) = An−1R
−1
n−1(RnA−1

n [xn 1]T D(xn) + tn − tn−1) (9.3)

Using (9.3), depth estimation seeks to minimize the following prediction error among pos-

sible depth values:

P (x) = Ψ(In[xn] − In−1[xn−1(xn, D(xn))]) (9.4)

where Ψ is an error function, for example quadratic or absolute value function. This can

be written as the following minimization:

D(x) = arg min
{Di(x)}

P (x) (9.5)

where Di(x) = Dmin + iDstep, i = {0 . . . (Dmax − Dmin)/K}, and K is the number of

possible depth values.

If we consider a block-based model, then the frame In is divided into M × M blocks

and prediction error in equation (9.4) is minimized for each block. Since this cost function

minimizes the prediction error, it is an excellent choice for compression. However, the

resulting depth maps are not suitable for a multiview codec. The problem is that the

resulting depth maps are usually very noisy and lack spatial smoothness. One frame from

Ballroom sequence and its corresponding depth map estimated using 4×4 blocks are shown
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(a) (b)

(c) (d)

(e) (f)

Figure 9·7: Visual comparison of depth maps. (a) View #4, Frame #1
of Ballroom sequence. (b) Result of original block-based depth estimation.
(c)-(e) Results of hierarchical scheme for each level, 16× 16, 8× 8, 4× 4 re-
spectively. (f) Final result of improved depth estimation algorithm. Clearly,
the improved algorithm generates smoother and more accurate depth maps.
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in Fig. 9·7.a and b, respectively. Brighter pixels indicate points that are far away from the

camera while darker pixels indicate points that are closer to the camera. Due to the lack of

spatial and temporal correlation in these depth maps, conventional compression algorithms

fail to achieve a high quality reconstruction while keeping the depth bitrate low. Moreover,

the estimated depth values do not accurately represent the scene. It is clear that smoother

depth maps are essential to achieve accuracy of depth values and high compression ratios.

9.3.3 Improvements to depth estimation

In this section, we progressively improve the results of the block-based depth estimation

algorithm.

Hierarchical Estimation

In the example we show in Fig. 9·7.b, a block size of 4×4 is used to approximate the scene

structure. However, carrying only 16 pixels of information, such a block fails to capture

local texture essential for finding a good match. Although larger blocks tend to give better

matches, they cannot capture local depth variations. Depth maps resulting from large

blocks are typically too smooth and blocky. A hierarchical estimation (i.e., coarse to fine)

scheme (Grimson, 1985) is a good fit to solve both problems. The algorithm should start

from a large block size so that a reasonable, but coarse, depth is estimated and then these

values should be used as initial values and refined by smaller block sizes. Specifically, we

start with 16 × 16 blocks, and refine the results using 8 × 8 and then 4 × 4 blocks.

Regularization

Regularization, a common tool in inverse problems, introduces a priori knowledge to the

problem (Karl, 2005). In depth estimation, it can be assumed that neighboring points

should have similar depth values because objects are rigid or smooth in real world. Such

a constraint is not enforced in equation (9.5), thus yielding noisy depth maps. Therefore,

in order to enforce regularization during depth estimation, we introduce a new term that
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introduces penalty when a point x has different depth value than neighboring points:

R(x) =
∑

k∈Π

Ψ(D(x) − D(xk)) (9.6)

where Π indicates the neighborhood of the current block and Ψ is an error function. This

is a Tikhonov-type regularization, and it is the discrete equivalent of regularization term

given in (6.2).

We used second-order neighborhood (eight surrounding neighbors) in the implementa-

tion, and absolute value function for Ψ. Combining the prediction error term (9.4) and the

new regularization term (9.6), we perform the following minimization:

D(x) = arg min
{Di(x)}

P (x) + λR(x) (9.7)

where λ is the regularization (smoothness) parameter. Large values of λ result in smoother

depth maps. However, it should be noted that increasing λ to very large values yields over-

smoothed depth maps which are as unusable as the unregularized ones. Therefore, for best

results regularization parameter may need to be adjusted for different sequences. This is

a common drawback of regularized methods.

Median filtering

Despite the two previous steps which aim to achieve smooth depth maps, there may still

exist outliers in the computed depth map. Median filter is a basic nonlinear filter used

to suppress outliers in a data set. We add median filtering to our algorithm as a post-

processing step. Once a depth map is computed at each hierarchy level via minimization

of (9.7), a median filter is applied to eliminate the outliers. We used a fixed window of size

3 × 3 for median filter mask.

9.3.4 Experimental results and comparison of depth maps

Let us compare the resulting depth maps after each improvement mentioned in the previous

section. Results for each step of hierarchy are shown in Fig. 9·7.c-e. Note that after
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Figure 9·8: Bitrate of the encoded depth field vs. synthesized view quality.

successive steps, the depth map provides a better representation of objects in the scene.

When compared to the original estimation (Fig 9·7.b), immediate improvements are visible

in Fig. 9·7.e, especially in the background. However, this depth map still contains too much

variation to be compressed efficiently. The final depth map after regularization and median

filtering is shown in Fig. 9·7.f. It is clear that the resulting depth map is much smoother,

which should be easier to compress than the noisy depth map in Fig. 9·7.b. We also observe

that, subjectively, the depth values are closer to reality. For example, parts of the curtain

in the background are detected by the original algorithm as closer points (i.e., darker values

in the depth map), which is incorrect. With new algorithm, depth values in those areas

are corrected.

As mentioned earlier, smoother depth maps can be compressed more efficiently than

noisy depth maps. To verify this claim, we tested synthesized image quality vs. bitrate

required to encode depth maps using H.264/AVC reference software (JM, 2006) on the

Ballroom sequence. Results are shown in Fig. 9·8. These results show that the new

algorithm outperforms the original algorithm by up to 6dB. The original algorithm is

better only at very high (and impractical) bitrates of 3 Mbits/sec.

Finally, we tested synthesized frames generated by the original and improved depth

maps in the multiview codec described in (Martinian et al., 2006b). Since bit-rate for

depth data was omitted in that study, we focus on the decoded image quality. Compared
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Figure 9·9: All colors shown on the left have the same luminance compo-
nent shown on the right.

to results using depth maps obtained by reference block-based algorithm, we observed

approximately the same PSNR using the new depth maps with less than 3% increase in

the bit rate. This slight loss in prediction efficiency is expected due to the smoothness

constraints imposed by the new algorithm. However, it should be kept in mind that the

rate to code the new depth maps will be significantly less.

9.3.5 Improvements to visual quality

For the sake of simplicity, usually only one color component, luminance, is used in depth

estimation. However, two different textures in an image, especially areas with a smooth

color, may have comparable luminance values. For example, in Fig. 9·9, all colors shown

have the same luminance value. Due to this, depth estimation may yield incorrect depth

values which in turn may result in visual artifacts as shown in Fig. 9·10.a and c (Please

refer to electronic version of this dissertation for better quality). Therefore, whether reg-

ularized or not, an extension of depth estimation methods to include color components

should improve visual quality of the synthesized view. Once minimization in equation

(9.7) is carried out on luminance and chrominance components jointly, such artifacts are

significantly reduced as shown in Fig. 9·10.b and d.

9.3.6 Conclusions

In this application, we considered the estimation of smooth and reliable depth maps for

view-synthesis-based multiview coding. By adding several improvements, we showed that

such depth maps improve both compression efficiency and visual quality.

Further improvements in the depth estimation might be achieved by using variable

block sizes instead of fixed sizes (Mancini and Konrad, 1998). Synthesis correction vectors
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(a) (b)

(c) (d)

Figure 9·10: Synthesis results (a,c) without and (b,d) with using YUV
search. (Breakdancers is property of Microsoft.)

(Martinian et al., 2006a) can improve the results as well.

Currently, the algorithm uses a fixed number of possible depth values and it linearly

samples the depth range. Obviously, the number of possible depth values directly affects

the synthesized image quality and depth maps. Therefore, a mechanism to adjust the depth

range depending on available bandwidth may be considered. Moreover, linearly sampling

the depth may not be always effective to approximate a scene. For example, objects closer

to the camera will have more visible depth variations than objects far away, but possible

depth values may not cover all structural details of this closer object and this may lead to

artifacts in synthesized view. Visually, artifacts on objects closer to camera will have more

perceptual impact. Thus, nonlinear quantization of depth with emphasis on small depth

values should be considered.
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9.4 Space exploration: Recovery of 3D images of Mars (or helping NASA

find little green Martians)

This application demonstrates our methods applied to a real-world problem faced by NASA

(Ince and Konrad, 2005b). We use the proposed occlusion-aware optical flow estimation

and subsequently spline-based view reconstruction algorithm to reconstruct full-color 3D

images of Mars on automultiscopic displays.

9.4.1 Introduction

The recent mission of two NASA rovers, “Spirit” and “Opportunity”, to Mars has provided

a lot of information about the planet. In order to remotely explore the surface of Mars,

“Spirit” and “Opportunity” have been equipped with a cutting-edge stereo camera called

PanCam (Bell III and et al., 2003b). PanCam has been designed to take multi-spectral

stereo pictures in order to help scientists in their quest for discovery of life on Mars.

While commercial cameras usually capture three spectral bands, namely red (R), green

(G) and blue (B), PanCam is sensitive to more bands since this information is valuable

to geologists. This is achieved by means of a filter wheel in front of each camera lens

(Fig. 9·11(a)). Slightly different filters are used on wheels of both cameras; while the

left camera is equipped with red, green and blue filters, among others, the right camera

does not have a green filter on its color wheel. Therefore, since the G component of the

right image is missing, currently it is not possible to view a 3D image of Mars surface in

color. In this application, we address the issue of recovery of this missing component and

reconstruction of intermediate views to be displayed on a automultiscopic 3D display.

9.4.2 Why is green component missing?

The PanCam camera captures different colors by using the filters on a rotating wheel

placed in front of the left and right lenses (Fig. 9·11(a)). The table in Fig. 9·11(b) lists the

center wavelength λc of each filter and its bandwidth ∆λ. The filters have been designed for

multispectral sky imaging, direct Sun imaging and also for geologic and mineralogic studies
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(a)

Left camera: λc (∆λ) Right camera: λc (∆λ)

L1 739nm (338nm) R1 436nm (37nm)

L2 753nm (20nm) R2 754nm (20nm)

L3 673nm (16nm) R3 803nm (20nm)

L4 601nm (17nm) R4 864nm (17nm)

L5 535nm (20nm) R5 904nm (26nm)

L6 482nm (30nm) R6 934nm (25nm)

L7 432nm (32nm) R7 1009nm (38nm)

L8 440nm (20nm) R8 880nm (20nm)

(b)

Figure 9·11: Spectral characteristics of the PanCam: (a) photo of Pancam
and its rotating filter wheels, and (b) central wavelengths and bandwidths
of individual filters (from http://marsrover.nasa.gov).

of Mars surface (Bell III and et al., 2003b), rather than for surface color reproduction.

In order to reproduce color from the Mars surface, information from three parts of the

spectrum is needed, for example close to the the 1931 CIE primaries (red: 700nm, green:

546.1nm, blue: 435.8nm). Excluding the wideband filter L1, that covers close to half of the

visible spectrum, a good choice of filters to reproduce left-image color is: L2 for red, L5 for

green and L7 for blue. Similarly, for the right image a good choice is: R2 for red and R1

for blue. However, there are no filters in the right image close to the CIE green primary .

Since the green component is missing, it is not possible to create a full-color stereo pair of

the Mars surface. Therefore, the goal of our research is to first develop a method capable

of recovery of the missing green component of the right image using all three components

of the left image, and the available components of the right image. Then, we would like

to use the reconstructed stereo images to reconstruct intermediate views to displayed on a

multiview 3D display.
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Left images with all available color components

Right images with G components padded with zeros (i.e., unavailable)

Right images after disparity-compensated prediction of G component using
occlusion-aware optical flow estimation

Final reconstructed right images after filling missing areas using image-driven
image inpainting

Figure 9·12: Reconstruction of Mars images. Rows from top to bottom
show left images; right images with unavailable G components; right im-
ages after disparity-compensated prediction of the G component, and finally
right images after filling in missing areas.
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9.4.3 Recovery of a missing color component in stereo images

As we have seen in Chapter 2 when a 3D scene is acquired by a pair of color-sensitive

cameras, each 3D point is projected onto the sensor plane of each camera creating the

so-called homologous pair of points. These points inherit all photometric properties of the

original 3D scene point. Depending on the color space each camera uses, the photometric

information at camera’s output may be luminance and chromaticities, or red, green and blue

tristimulus values. The projection geometry, however, is independent of the photometric

properties of the 3D point, and thus all components (whether luminance and chromaticities,

or red, green and blue channels) share the same disparity.

Thus, if we recover a disparity field from only some color channels of a stereo pair,

we know that this disparity field also applies to the other channels of this stereo pair.

Therefore, the goal is to compute a disparity field using the available R and B components,

and then derive the G component of the right image from the G component of the left image.

The main step of this reconstruction algorithm is disparity estimation. We will use the

proposed occlusion-aware optical flow to estimate the disparity. Then, the recovery of G

component can be performed by means of disparity-compensated prediction.

Once the disparity field {d} has been computed for all pixels of the right image IR, a

precise correspondence between features in the left and right images for all color components

is known. Thus, value of color (tristimulus value) i ∈ {R, G, B} at location x in the right

image, namely IR,i(x), corresponds to the value of the same color at location x + d(x) in

the left image, i.e., IL,i(x+d(x)). Although these two values may not be identical, they, in

general, should be very similar, except for areas where disparity estimation may fail (e.g.,

image boundaries). Thus, IR,i(x), can be accurately predicted from Il,i(x + d(x)).

In particular, the green component of the right image can be recovered by the above

mechanism, often called disparity-compensated prediction, as follows:

IR,G(x) = ĨL,G(x + d(x)), ∀x ∈ ΛR (9.8)
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where ΛR is the domain of IR, IR,G is a predicted value of the green component, and Ĩ

denotes interpolation of intensity I since the position x + d(x) need not belong to the

sampling grid of the left image.

9.4.4 Experimental results

We applied the proposed algorithm to a number of stereo pairs from the Mars mission1. In

each pair, all components of the left image, and the R and B components of the right image

were available, and we have reconstructed the missing G component. The Mars images

are not captured with a parallel camera setup, however optical flow estimation successfully

captured vertical disparities.

The original color left images are shown in the first row of Fig. 9·12. The second row

shows the right images without the G component. In this case we simply filled the G

component with zeros. The third row shows right images predicted using equation (9.8).

The structures are very well matched and visually pleasing. However, there are gross errors

near the boundaries of the image. In close inspection it is obvious that those areas are

visible only in the right image, not in the left image. Since equation (9.8) cannot fill these

areas in, they have different color than the surroundings.

In order to solve this problem, we utilize the image-driven disparity inpainting proposed

in Chapter 5. Previously, we inpainted missing areas in a disparity map by using gradient

of the underlying image. Now, we inpaint the missing areas in a color component by using

the gradient of another color component. The idea is that edge information is independent

of color components and can be used in guiding the diffusion process. The results after

inpainting are shown in the last row of Fig. 9·12. As it can be noticed, the images are of

very high quality. Although there are still a few discolorations around boundaries of the

image, this is expected, because diffusion alone is not sufficient to create texture in those

areas.

1Mars images can be downloaded from NASA Jet Propulsion Laboratory at
http://marsrovers.jpl.nasa.gov/gallery/all/
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After the reconstruction of stereo images, we created seven additional views in between

and displayed them on an automultiscopic display (SynthaGram SG202). The resulting

3D experience was comfortable and colors were well matched.

9.4.5 Conclusions

In this application, we applied the optical flow method proposed in Chapter 6 to the

reconstruction of a missing green component of right image in a stereo pair. Then, we used

these stereo pairs to generate 3D images of Mars on an automultiscopic 3D display.

This application once again proves the versatility of our methods. Without any cal-

ibration or additional information, we were able recover a stereo pair and intermediate

views. It should also be noted that the input images were not captured by parallel cam-

eras, and therefore included vertical disparities. Yet, our algorithms successfully handled

this additional problem.



Chapter 10

Conclusions and future work

This chapter summarizes the contributions of this dissertation, outlines the potential ap-

plications and proposes ideas for future work.

The main inspiration for this work was the emergence of multiview eyewear-free 3D dis-

plays, or shortly, automultiscopic displays. Although these displays promise a revolutionary

way of 3D visualization, content to be reproduced is quite scarce; these displays require

several views of a scene that are often unavailable. This is in contrast to stereo displays

that require two views only. Considering this problem, we focused on the reconstruction

of intermediate (virtual) images from stereo images. Intermediate view reconstruction has

other applications in 3D systems such as enhancement of viewer comfort or transmission

of multiview video, or even in monoscopic video sequences for frame-rate conversion.

In this work, we focused on three main issues in intermediate view reconstruction:

proposing an alternative to the backward-projection methods, improving methods based

on backward-projection, and finally, handling of occlusion areas in view reconstruction.

As we mentioned earlier, the prior work often focused on pivoting-based or backward-

projection methods. These methods reconstruct individual pixels of an intermediate view

by pivoting on the sampling grid of intermediate view and backward-projecting this point

onto input images. These methods have two deficiencies. The first issue is related to

the way disparity of the intermediate view is computed. Since the intermediate view

is not known during disparity estimation, disparity is estimated for an unknown image

and then this disparity is used to reconstruct this unknown image. Experimental results

show that the disparity estimated using this approach is usually not of high accuracy.

More specifically, shapes of objects are not preserved mainly because of the absence of

152
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an underlying image; had the underlying image been available, disparity estimation could

have utilized the underlying image gradient to regularize disparities and, therefore, generate

disparity maps with sharp discontinuities (at object boundaries). Another deficiency of this

approach is that a new disparity map must be computed for each intermediate view, thus

imposing additional computational burden.

In our work, we proposed a forward-projection method to complement and solve defi-

ciencies of backward projection. The main difference in this case is that the disparity is

estimated for the known images, e.g., left and right images in stereo. Then, intensities of

input images are forward-compensated by using the estimated disparity field in order to

reconstruct the intermediate view. The main advantage in this case is that more accurate

disparity values can be estimated, because disparity estimation can utilize the underlying

image gradient during regularization. Forward-compensation methods were proposed in

the past, but the final reconstruction stage was less sophisticated than the spline-based

method that we used. Our forward-compensation method has a computational advantage

as well. A single disparity field is sufficient to reconstruct any intermediate view, i.e., there

is no need to estimate a new disparity field for each intermediate view.

The second main focus of the dissertation were occlusions that occur when some image

areas are visible only in one of the views. We intended to introduce occlusion awareness

into individual steps of view reconstruction in order to improve reconstruction quality

in occlusion areas, especially since reconstruction in these areas are usually overlooked by

other methods. Another reason for our focus on occlusions is that they occur in monoscopic

video sequences as well and, therefore, our methods would be applicable to other video

processing problems as well, thus having a broader impact.

Our main contribution was to address the interrelation between occlusions and dispar-

ities: occlusions occur due to scene structure (depth), that is related to disparities, while

accurate recovery of disparities requires knowing location of occlusions. Traditionally oc-

clusion areas and disparity fields were computed separately since it was unclear how to

create a feedback between them. Usually, one was estimated and the result was used in
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the computation of other and vice versa. Instead of such a step-by-step approach, we

proposed a method that jointly estimates disparities, implicitly estimates occlusion areas

and assigns plausible disparity values to occlusion areas. The proposed method is the first

joint occlusion-aware optical flow formulation to the best of our knowledge and is equally

applicable to stereo and video. In the process, we also developed a simple, yet effective,

method for the estimation of occlusions based on the diverging nature of disparity fields

around newly-exposed areas. An interesting feature of this method is the fact that it can

predict occlusion areas between the frames from which the disparity was estimated.

After this high-level discussion of contributions of the thesis, we would like to elaborate

on the methods proposed in the dissertation in more detail in the next section.

10.1 Detailed discussion of technical contributions

After analyzing the view reconstruction problem, we concluded that there are five essential

steps of view reconstruction: estimation of disparity, estimation of occlusions, handling

of occlusion areas, identifying which points are visible in intermediate view and finally

estimation of texture. In this dissertation, we addressed all of these problems and proposed

novel methods. One of the most important properties of these methods is that they are

not limited to stereo, but are directly applicable to video sequences with respect to time

axis.

First, for the estimation of texture, we proposed a spline-based view reconstruction al-

gorithm by extending a method for irregular-to-regular image interpolation. The proposed

method uses intensity values of left and right images to reconstruct a new intermediate

image. Our experimental results show that this method is superior to a reference pivoting-

based method. The main advantage of using splines and therefore forward-compensation of

intensities is that it permits to selectively use input images. This is advantageous because,

if a point is not visible (i.e., is occluded) in the intermediate image, it should not be used

by the reconstruction method at all (it should not be forward-compensated). Therefore,

this method is suitable for handling occlusion areas.
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Next, we focused on how to estimate which points are visible/occluded. In order to

estimate occlusion areas, we first proposed a simple, yet very effective method. This

method relies on a simple fact: when a disparity field is computed between two images,

pixels in the target frame that did not exist in the reference frame (i.e., newly-exposed

pixels) have no relationship with the reference frame and, as such, cannot be pointed to by

forward disparity vectors. Thus, when pixels of the reference frame are forward disparity-

compensated onto target frame, these areas are void of disparity-compensated projections.

Such areas can be detected relatively easily and are equivalent to occlusion areas when

target and reference frames are interchanged. Our experimental results show that the

method is very reliable and more robust to image noise than other methods. One of the

most important properties of this occlusion estimation method is that it allows to estimate

areas that will be occluded/exposed in the intermediate image as well. We need such a

detection method, because occlusion areas between the left and the right images are not

fully occluded in the intermediate image (please see Fig. 3·1 for an example). Therefore

the proposed method can be used to estimate visibility of the points in the input, as well

as, in the intermediate images.

Unfortunately, even if we can estimate occlusion areas, disparity in these areas is still

unknown, because it is not possible to match such areas between images. Yet, we do need to

know the disparity in occlusion areas, because without that information, it is not possible

to reconstruct partially visible areas in the intermediate view. Considering the recovery of

disparities in occlusion areas, we proposed image-driven disparity inpainting. This method

diffuses the available disparities into occlusion areas by utilizing the underlying image

gradient. Since the diffusion is guided by image gradient, the resulting depth maps exhibit

sharp object boundaries; a very valuable characteristic. Our experimental results show

that image-driven disparity inpainting is more reliable than other methods such as depth

constancy or standard image inpainting work of Bertalmio et al.(Bertalmio et al., 2000).

Although the estimation of disparities and occlusions, and the handling of occlusions can

be treated as separate steps, in fact, they are closely interrelated. Specifically, the knowl-
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edge of occlusion areas can be used to estimate more reliable disparities which should lead

to more reliable occlusion estimates. It is clear that we should allow interaction between

disparities and occlusions. Considering this, we proposed an occlusion-aware disparity

(optical-flow) estimation algorithm that facilities this interaction.

As we mentioned earlier, the main property of occlusion areas is that they are visible

only in one of the images. Therefore, it is not possible to match a point in an occlusion area

to a point in an other image. However, since disparity estimation methods are unaware of

occlusion areas at the beginning of estimation, these areas are forced to be matched with

points in an other image. Therefore, they are assigned incorrect disparity values. Even

worse, due to spatial regularization these areas adversely affect neighboring visible areas

as well. Therefore, we proposed an occlusion-aware formulation where the prediction term,

which matches intensities of the points, is disabled if a point is detected as an occlusion

point. The decision if a point is an occlusion point is made by measuring forward and

backward compatibility of the disparity fields from left to right and from right to left.

The formulation is designed so that if the prediction term is disabled, then image-driven

inpainting dominates and fills in disparity of occlusion areas by using available neighboring

of visible points. Experimental results of such occlusion-aware optical flow estimation show

significant improvements over other state-of-the-art optical flow methods. The method is

also shown to be robust to image noise. To our best knowledge, this is the first optical

method that jointly estimates occlusions and optical flow. This method also addresses three

problems of view reconstruction simultaneously, namely, estimation of disparity, estimation

of occlusions and handling of occlusions.

Finally, after proposing solutions for each sub-problem of view reconstruction, we com-

bined all these methods to achieve spline-based occlusion-aware intermediate view recon-

struction. Results on both synthetic and real images show high-quality results.

As a final contribution, we focused on extending pivoting-based reconstruction to handle

occlusions. We decided to use multiple images instead of stereo pairs to solve the occlusion

problem. Actually, there are two main issues hampering the pivoting-based methods. The
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first one is that no edge-preserving regularization can be applied because the underlying

image is unavailable. The second issue is that it is unclear how to handle occlusions. We

first proposed to use a coarse image obtained by pivoting-based method to achieve edge-

preserving regularization. This significantly improved the accuracy of estimated disparities

in visible areas, but did not offer any advantage in occlusion areas. Therefore, we proposed

a variational approach to estimate the disparity by using multiple images. The variational

method is adaptive to occlusions in that it uses different pairs of input images to estimate

the disparity; the point of interest is always visible in both images. Our experimental

results show that this new multi-view pivoting-based method outperforms pivoting-based

methods that use two images.

In the final part of the thesis, we showed several applications of the methods proposed

in this dissertation.

First, we used the proposed view reconstruction algorithms to enhance the videos cap-

tured by mobile phones. Such videos usually have very low frame rates. We interpolated

the missing frames in order to reconstruct 30 frames per second videos that look more

natural to the viewer. In another application, we utilized the proposed view reconstruction

algorithm in a neuromuscular training system. We equipped the system with 3D displays

and presented to a patient 3D images of his/her home environment. The 3D images were

generated from stereo pairs captured by medical personnel by using our view reconstruc-

tion algorithms. The system is soon to be used by bedridden patients in order to improve

their motor functions. In another application, we improved disparity estimation stage of

a multiview video codec, which utilizes view reconstruction, for better performance. In

the final application, we solved a real-world problem faced by NASA in the Mars mis-

sion. By utilizing the occlusion-aware optical flow algorithm, we recovered a missing color

component of a stereo pair. Then, we used proposed view reconstruction algorithm to

create additional views of the scene to display Mars images on an automultiscopic monitor.

All these applications demonstrate the versatility and broad applications of the methods

developed.
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Overall the contributions of this dissertation can be summarized as follows:

• Analysis of a widely used pivoting-based approach to intermediate view reconstruc-

tion

• Development of a robust and relatively accurate, yet simple, occlusion detection

method

• Analysis of interrelation between occlusions and disparities and development of a

method that simultaneously estimates disparities and occlusion areas and extrapo-

lates the disparities of visible areas into occlusion areas

• Development of a selective process combined with spline approximation for view

reconstruction

• Development of a variational approach for view reconstruction that uses multiple

images and adaptively reconstructs intermediate images

• Application of view reconstruction algorithms on video sequences for enhancement

purposes

10.2 Future work

This section briefly describes a few directions that could extend our work.

10.2.1 Improving occlusion-aware optical flow

The occlusion-aware optical flow algorithm uses an underlying image gradient for diffusion.

The formulation forces disparity discontinuities to coincide with high-magnitude image

gradients assuming that object boundaries demonstrate such high-magnitude gradients.

However, this is not always valid; texture of an object may have high gradient values as well.

Therefore, in rare cases, diffusion is incorrectly inhibited by this false edge information.

A segmentation algorithm that successfully estimates object boundaries can improve the

results.
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In a related problem, if an occlusion area contains significant texture, the extrapolation

of disparities into occlusion areas, i.e., image driven disparity inpainting, is inhibited. A

method which decomposes the image into texture and structure, such as in the paper by

Vese and Osher (Vese and Osher, 2003), may solve this problem.

10.2.2 Real-time implementation of proposed methods

The implementation of spline-based reconstruction is not fast enough to achieve a real-

time reconstruction today. Currently Gauss-Seidel iterations are used to minimize the cost

function; alternative methods such as conjugate gradient may improve the execution speed.

Similarly, the implementation of occlusion-aware optical flow algorithm can be im-

proved. In our implementation, we explicitly discretized the Euler-Lagrange equations,

because explicit discretization is straight-forward and simple to implement. However, de-

spite its simplicity, explicit discretization requires a small time step to ensure stability of

the solution. It is possible to use semi-implicit or implicit discretization, which will remove

the restriction on time step and may allow faster implementation. However, implicit dis-

cretization requires solving a system of linear equations, which is an additional burden for

the implementation.

Finally, all the methods were implemented partially in Matlab, to take advantage of

some of the built-in functions, and partially in C, for its computational efficiency. The

parts that are implemented in Matlab are usually slow. Those parts can be ported to C

for a better performance.

10.2.3 Embedding spline-based reconstruction into variational formulation

Estimate disparity

between 
I
L
 and 
I
R
 


(
d
L
 and 
d
R
)


Reconstruct 
J
 

using 
d
L
 and 
d
R


Estimate disparity 

between 
J
 and 
I
L
 (
d
JL
), 


J
 and 
I
R
 (
d
JR
)


Measure reliability 

of disparities 
d
L
 and 
d
R
 


using 
d
JL
 and 
d
JR


Figure 10·1: A feedback loop for disparities can be constructed if spline-
based reconstruction is embedded into disparity estimation.
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Currently, the proposed spline-based reconstruction is a separate step in the overall

view reconstruction method. It is worth investigating the possibility of embedding this

reconstruction into the disparity estimation stage. This will also allow the reconstructed

image to interact with the estimated disparity. Specifically, the reconstructed image can

be used to measure how reliable the disparity values are (Fig. 10·1). Such a feedback in

the formulation may lead to improved performance.

10.2.4 Mathematical representation of the proposed occlusion estimation

method

The proposed occlusion detection algorithm in Section 5.3 can be represented by a mathe-

matical model and used in occlusion-aware optical flow estimation. Currently, the occlusion

detection method assumes that the image is composed of discrete points, therefore using

such a model in a variational framework is not possible. However, if one can represent the

estimation method in continuous domain, then it would be possible to utilize the method

in occlusion-aware optical flow.

The continuous formulation could be as follows. To explain the idea better, let us first

focus on 1D case. Extension to 2D will be shown later.

Let Ω(x) be a function that measures the density of the points and be defined as follows:

Ω(x) =

Nx∑

x′=0

Π(x − x′), (10.1)

where x′ is a grid point, Nx is the number of points and Π(x) is the rectangular function

shown in Fig. 10·2.a. Since this function is not differentiable, one can use the following

continuous approximation:

Π(x) =
1

2
[tanh(K (x + w)) − tanh(K (x − w))] . (10.2)

As the constant K → ∞, this function approaches the rectangular function with w deter-

mining the width of the rectangle. For example, when K = 103 and w = 1/2 the function

approximates ideal rectangular function very well as shown in Fig. 10·2.b.
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Figure 10·2: (a) Perfect rectangular function; plot of (b) Π(x) in equation
(10.2) (c) Π(x) in equation (10.4). K = 103 and w = 1/2 in (b) and (c).

It is easy to notice that with this definition of Π(x), Ω(x) will be constant i.e., Ω(x) =

1, ∀x, because Ω will be composed of the shifted replicas of rectangular function. Now

consider that we estimated a disparity field d(x). The disparity compensated density

function Ω(x+d(x)) would no longer be a constant; there will be areas where Ω(x+d(x)) > 1

because occluded points will fall in a neighborhood. On the contrary, there will be areas

where Ω(x + d(x)) = 0 which are the exposed areas.

Therefore, by thresholding the value of Ω(x + d(x)), it is possible to conclude whether

x is an exposed area or not. Considering this idea, one can replace D(ε(x)) in (6.9), with

this new detection formula.

Finally, let us show two dimensional representations of Ω(x) and Π(x). We can write

Ω(x) as follows:

Ω(x) =

Nx∑

x′=0

Ny∑

y′=0

Π(x − x′, y − y′), (10.3)

where (x′, y′) is a grid point, Nx and Ny are the number of columns and rows respectively

and Π(x) is defined as a separable function as follows (Fig. 10·2.c):

Π(x) =
1

2
[tanh(K (x + w)) − tanh(K (x − w))] ×

1

2
[tanh(K (y + w)) − tanh(K (y − w))] . (10.4)
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10.2.5 Extension of view reconstruction method to large-baseline cameras

The methods proposed in this dissertation are applicable to cameras with a small baseline.

Especially, the proposed optical flow algorithm will have limited performance if the cam-

eras are positioned far from each other. Another future direction could be extending the

proposed algorithms to large-baseline cameras.

The main problem encountered in images captured by large-baseline cameras is that the

common field-of-view is significantly smaller. Therefore, points near image boundaries are

usually invisible in the other image. This is, in fact, another form of occlusion. However,

these occlusions are severe; as much as half of the image points may be occluded between

images.

Let us suggest some future directions to solve this problem. First of all, since occlusion

areas are large, there must be several views available, so that all points are visible at least

in two images.

Moreover, another input information that would be required is the camera calibration

data. If camera locations in 3D world are known, then it may be possible to use geometric

relations, as given in Section 9.3, to estimate if a point is visible in other images.

It is also possible to embed camera calibration data into optical flow formulation as

proposed by Alvarez et al. (Alvarez et al., 2002b). However, formulation of Alvarez et al.

does not estimate the visibility of points in input images, therefore it will have problems

around boundaries as well. As we proposed in Chapter 6, a term that estimates visibility of

points by using geometric relations and camera calibration information can be embedded

into the formulation. Such a method may successfully label the points that are not visible

between images. The formulation can further be extended to use other image pairs for

matching, as proposed in Chapter 8.
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Camera geometry

A.1 Pinhole camera

Consider point X = (X, Y, Z) in 3D space in Fig 2·2.a and its projection at x = (x, y) onto

image plane R. Using similarity of triangles (C,X,Y) and (C,x,y), following relations

can be written

Z − f

f
= −X

x
= −Y

y
. (A.1)

Rearranging this equation x and y can be written as follows:

x = −f
X

Z − f
, y = −f

Y

Z − f
. (A.2)

A.2 Parallel cameras

Let us study projection of point X = (X, Y, Z) in 3D space onto left and right cameras,

at xL and xR respectively (Fig. A·1) and derive the disparity equations. Focal length of

cameras is denoted by f and the baseline distance by b.

The projection onto the x axis of left camera is shown in Fig. A.2. By using the

similarity of triangles (xL, T,X) and (CL, T ′,X), the following can be written

b/2 − X

b/2 − X + xL
=

Z − f

Z
. (A.3)

Rearranging this equation xL is found as follows:

xL = f
X − b/2

f − Z
. (A.4)
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Figure A·1: Parallel cameras.

Similarly, xR can be computed as follows:

xR = f
X + b/2

f − Z
. (A.5)

The projection onto the y axis of left camera is shown in Fig. A.2. By using the similarity

of triangles (yL, T, CL) and (X, T ′, CL), it can be written as:

f

Z − f
= −yL

Y
. (A.6)

Rearranging this equation yL, and similarly yR, are found as follows:

yL = f
Y

f − Z
, yR = f

Y

f − Z
. (A.7)

Using these values the disparity can be computed as

dLR =


 xL

yL


 −


 xR

yR


 =


 f X−b/2

f−Z

f y
f−Z


 −


 f X+b/2

f−Z

f y
f−Z


 =


 −f b

f−Z

0


 . (A.8)

Note that vertical component of disparity is equal to zero. Finally, using similarity of

triangles in (xL,xR,X) and (CL, CR,X) in Fig. A·1, the depth of the point is defined as
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Figure A·2: Projection onto (a) x (b) y axis of left camera.

follows:

Z − f

Z
=

b

b + d
(A.9)

Z = f
b + d

d
. (A.10)

Another concept in camera geometry is the epipolar plane which is the plane defined

by CL, CR and X (Fig. A·1). The intersection of epipolar plane with an image plane forms

a straight line, called the epipolar line. Epipolar line is the projection of a ray through

the optical center and image point of one camera, onto the other camera. For example,

projection of ray passing through xR, CR and X, creates the epipolar line in the left camera.

The knowledge of epipolar geometry is important. Given an image point in one camera,

the homologous point in the other image must lie on the epipolar line in the other image.

Therefore, given camera geometry information, the search for homologous points can be

reduced to a 1D search problem rather than a 2D one. In the special case of parallel

cameras, epipolar lines coincide with image scan lines.

A.3 Toed-in (converging) cameras

In toed-in setup, the cameras are rotated to each other by a small angle of θ as shown in

Fig. 2·2.b. Unlike parallel cameras, the optical axes intersect at a physical point instead of
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infinity. The depth of convergence point can be computed as follows:

Zconv =
b

2
tan(θ). (A.11)

The projection of 3D points onto cameras is now more complicated since the camera

planes are rotated around y axis by θ (left camera) and −θ (right camera) degrees. Instead

of deriving the disparity equations using similarity of triangles, let us use available results

of projective geometry (Faugeras, 1993; Franich, 1996; Hartley and Zisserman, 2004).

Rotation matrix around y axis with θ degrees is defined as follows:

Ry =




cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)




. (A.12)

Using this rotation matrix, the new position of X is defined as follows:

X′ = RyX =




cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)







X

Y

Z




=




X cos(θ) − Z sin(θ)

Y

X sin(θ) + Z cos(θ)




. (A.13)

Since the left camera is at position (b/2, 0, 0) of the 3D coordinate system, a translation is

applied to the point as well, which yields,

X′′ =




(X − b/2) cos(θ) − Z sin(θ)

Y

(X − b/2) sin(θ) + Z cos(θ)




. (A.14)

Using the result of pinhole camera model, xL and yL are computed as follows:

xL = f
(X − b/2) cos(θ) − Z sin(θ)

f − (X − b/2) sin(θ) − Z cos(θ)
, (A.15)

yL = f
Y

f − (X − b/2) sin(θ) − Z cos(θ)
. (A.16)
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Similarly xR and yR can be computed as:

xR = f
(X + b/2) cos(θ) + Z sin(θ)

f + (X + b/2) sin(θ) − Z cos(θ)
, (A.17)

yR = f
Y

f + (X + b/2) sin(θ) − Z cos(θ)
, (A.18)

and finally disparity is computed as:

dLR =


 xL

yL


 −


 xR

yR


 =


 fT1/T3

fT2/T3


 , (A.19)

where

T1 = b(cos2(θ)Z − sin2(θ)Z − cos(θ)f) + (X2 − b2/4) cos(θ) sin(θ) +

(2 cos(θ) sin(θ)Z2) − 2 sin(θ)fZ, (A.20)

T2 = −2 sin(θ)XY, (A.21)

T3 = (f − cos(θ)Z)2 + b sin(θ)(f − cos(θ)Z) − sin2(θ)(X2 − b2/4). (A.22)

Note that when θ = 0, (A.19) becomes equivalent to (A.8).
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Euler-Lagrange equations for occlusion-aware

optical flow estimation

Let ΦL = {uL, vL}, ΦR = {uR, vR} be sets of disparity field components that we seek by

minimizations in (6.12). Assuming that ΩL = ΩR = Ω in all energy terms (6.9–6.11), we

can write (6.12) as follows:

EL =

∫∫

Ω

eL(x)dx, (B.1)

ER =

∫∫

Ω

eR(x)dx, (B.2)

where the integrands are defined as follows:

eL(x) = eP
L (x) + ηeS

L(x) + µeO
L (x), (B.3)

eR(x) = eP
R(x) + ηeR

S (x) + µeO
R(x), (B.4)

and where the individual terms are defined as follows:

eP
L (x) = DL(x)[ρLR(x)]2,

eP
R(x) = DR(x)[ρRL(x)]2,

eS
L(x) = Fx(uL, IL) + Fx(vL, IL),

eS
R(x) = Fx(uR, IR) + Fx(vR, IR),

eO
L (x) = (1 − DL(x)),

eO
R(x) = (1 − DR(x)),

(B.5)

168



169

For simplicity let DL(x)
4
= D(εL(x)), DR(x)

4
= D(εR(x)).

We will minimize EL and ER simultaneously by assuming that dL is constant when

computing dR and vice versa. This will lead to interleaved descent equations, i.e., one

iteration of dL using the values of dR from previous iteration and vice versa.

Using the calculus of variations, two Euler-Lagrange equations (one for each unknown

in Φ·) for each E· can be found in the form of

e′L(ωL) =
∂eL

∂ωL
− ∂

∂x

∂eL

∂ωx
L

− ∂

∂y

∂eL

∂ωy
L

= 0, (B.6)

e′R(ωR) =
∂eR

∂ωR
− ∂

∂x

∂eR

∂ωx
R

− ∂

∂y

∂eR

∂ωy
R

= 0, (B.7)

where e′L(wL) and e′R(wR) are the first variations with respect to ωL ∈ ΦL, ωR ∈ ΦR,

whereas ωx
· and ωy

· are derivatives with respect to x and y, respectively. Expanding each

equation and omitting derivatives that are equal to zero (e.g., ∂eP
L/∂ux

L = 0) we get two

Euler-Lagrange equations for each E as follows,

∂eP
L

∂ωL
+ µ

∂eO
L

∂ωL
− η

(
∂

∂x

∂eS
L

∂ωx
L

+
∂

∂y

∂eS
L

∂ωy
L

)
= 0,

∂eP
R

∂ωR
+ µ

∂eO
R

∂ωR
− η

(
∂

∂x

∂eS
R

∂ωx
R

+
∂

∂y

∂eS
R

∂ωy
R

)
= 0,

(B.8)

where, again, ωL ∈ ΦL and ωR ∈ ΦR . Partial derivatives with respect to uL, vL, uR, vR

can be computed as follows (x was dropped for simplicity of notation, e.g., ρLR
4
= ρLR(x)):

∂eP
L

∂uL
=

∂DL

∂uL
(ρLR)2 − 2DLĨx

RρLR,

∂eP
L

∂vL
=

∂DL

∂vL
(ρLR)2 − 2DLĨy

RρLR,

∂eP
R

∂uR
=

∂DR

∂uR
(ρRL)2 − 2DRĨx

LρRL,

∂eP
R

∂vR
=

∂DR

∂vR
(ρRL)2 − 2DRĨy

LρRL,

(B.9)
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∂

∂x

∂eS
L

∂ux
L

+
∂

∂y

∂eS
L

∂uy
L

=
∂ (2g(|Ix

L|)ux
L)

∂x
+

∂
(
2g(|Iy

L|)u
y
L

)

∂y
,

∂

∂x

∂eS
L

∂vx
L

+
∂

∂y

∂eS
L

∂vy
L

=
∂ (2g(|Ix

L|)vx
L)

∂x
+

∂
(
2g(|Iy

L|)v
y
L

)

∂y
,

∂

∂x

∂eS
R

∂ux
R

+
∂

∂y

∂eS
R

∂uy
R

=
∂ (2g(|Ix

R|)ux
R)

∂x
+

∂
(
2g(|Iy

R|)u
y
R

)

∂y
,

∂

∂x

∂eS
R

∂vx
R

+
∂

∂y

∂eS
R

∂vy
R

=
∂ (2g(|Ix

R|)vx
R)

∂x
+

∂
(
2g(|Iy

R|)v
y
R

)

∂y
,

(B.10)

∂eO
L

∂uL
= −∂DL

∂uL
,

∂eO
L

∂vL
= −∂DL

∂vL
,

∂eO
R

∂uR
= −∂DR

∂uR
,

∂eO
R

∂vR
= −∂DR

∂vR
,

(B.11)

where Ix
· and Iy

· are horizontal and vertical derivatives of I·, while Ĩx
· and Ĩy

· are derivatives

evaluated at a point off x, e.g., Ĩx
L(x) = Ix

L(x + dR(x)). Furthermore, we have:

∂DL

∂uL
= −2K

(1 + ũx
R)εL,u + ṽx

RεL,v

(1 + K(εL,u)2 + K(εL,v)2)2
,

∂DL

∂vL
= −2K

ũy
RεL,u + (1 + ṽy

R)εL,v

(1 + K(εL,u)2 + K(εL,v)2)2
,

∂DR

∂uR
= −2K

(1 + ũx
L)εR,u + ṽx

LεR,v

(1 + K(εR,u)2 + K(εR,v)2)2
,

∂DR

∂vR
= −2K

ũy
LεR,u + (1 + ṽy

L)εR,v

(1 + K(εR,u)2 + K(εR,v)2)2
,

(B.12)

where

εL,u(x) = uL(x) + uR(x + dL(x)),

εL,v(x) = vL(x) + vR(x + dL(x)),

εR,u(x) = uR(x) + uL(x + dR(x)),

εR,v(x) = vR(x) + vL(x + dR(x)),

(B.13)

are individual components of disparity errors (6.8) and ũx
· , ṽx

· , ũy
· , ṽy

· are again derivatives

evaluated at a point off x, e.g., ũx
L(x) = ux

L(x + dR(x)). Using an auxiliary time variable
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t, equations in (B.8) can be solved by discretizing the gradient descent equations

∂ωL

∂t
= −e′L(ω), (B.14)

∂ωR

∂t
= −e′R(ω), (B.15)

for wL ∈ ΦL and wR ∈ ΦR.



Appendix C

Euler-Lagrange equations for occlusion-aware

pivoting-based multiview method

We would like to minimize the following energy with respect to d:

E =

∫ ∫

x∈ΩJ

e(x)dx, (C.1)

where e(x) = eP (x) + λeS(x). The integrands eP and eS are defined as follows:

eP (x) = P12(x) + P23(x) + P34(x), (C.2)

eS(x) = Fx(uL, Jc) + Fx(vL, Jc), (C.3)

where

P12(x) = δ(L(x) + 1)(θ12(x))2, (C.4)

P23(x) = δ(L(x))(θ23(x))2, (C.5)

P34(x) = δ(L(x) − 1)(θ34(x))2, (C.6)

and

θ12(x) = I1(x − (1 + α)d(x)) − I2(x − αd(x)), (C.7)

θ23(x) = I2(x − αd(x)) − I3(x + (1 − α)d(x)), (C.8)

θ34(x) = I3(x + (1 − α)d(x)) − I4(x + (2 − α)d(x)). (C.9)
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Using the calculus of variations, Euler-Lagrange equations for u and v can be found as

follows:

e′(u) =
∂e

∂u
− ∂

∂x

∂e

∂ux
− ∂

∂y

∂e

∂uy
= 0,

e′(v) =
∂e

∂v
− ∂

∂x

∂e

∂vx
− ∂

∂y

∂e

∂vy
= 0,

(C.10)

where ux, vx and uy, vy are horizontal and vertical derivatives of horizontal and vertical

components of disparity. Expanding the equations, we get the Euler-Lagrange equations

as follows:

eP

∂u
− ∂

∂x

∂eS

∂ux
− ∂

∂y

∂eS

∂uy
= 0, (C.11)

eP

∂v
− ∂

∂x

∂eS

∂vx
− ∂

∂y

∂eS

∂vy
= 0. (C.12)

Partial derivatives are defined as follows:

eP

∂u
=

∂P12

∂u
+

∂P23

∂u
+

∂P34

∂u
, (C.13)

eP

∂v
=

∂P12

∂v
+

∂P23

∂v
+

∂P34

∂v
, (C.14)

∂

∂x

∂eS

∂ux
+

∂

∂y

∂eS

∂uy
=

∂ (2g(|Jx
c |)ux)

∂x
+

∂ (2g(|Jy
c |)uy)

∂y
, (C.15)

∂

∂x

∂eS

∂vx
+

∂

∂y

∂eS

∂vy
=

∂ (2g(|Jx
c |)vx)

∂x
+

∂ (2g(|Jy
c |)vy)

∂y
, (C.16)

with

∂P12

∂u
= 2δ(L(x) + 1)θ12(x)

∂θ12(x)

∂u
, (C.17)

∂P12

∂v
= 2δ(L(x) + 1)θ12(x)

∂θ12(x)

∂v
, (C.18)

∂P23

∂u
= 2δ(L(x))θ23(x)

∂θ23(x)

∂u
(C.19)

∂P23

∂v
= 2δ(L(x))θ23(x)

∂θ23(x)

∂v
, (C.20)

∂P34

∂u
= 2δ(L(x) − 1)θ34(x)

∂θ34(x)

∂u
, (C.21)

∂P34

∂v
= 2δ(L(x) − 1)θ34(x)

∂θ34(x)

∂v
, (C.22)

where
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∂θ12(x)

∂u
= −(1 + α)Ĩx

1 + αĨx
2 , (C.23)

∂θ23(x)

∂u
= −αĨx

2 − (1 − α)Ĩx
3 , (C.24)

∂θ34(x)

∂u
= (1 − α)Ĩx

3 − (2 − α)Ĩx
4 , (C.25)

∂θ12(x)

∂v
= −(1 + α)Ĩy

1 + αĨy
2 , (C.26)

∂θ23(x)

∂v
= −αĨy

2 − (1 − α)Ĩy
3 , (C.27)

∂θ34(x)

∂v
= (1 − α)Ĩy

3 − (2 − α)Ĩy
4 , (C.28)

where Ix
· and Iy

· are horizontal and vertical derivatives of I·, while Ĩx
· and Ĩy

· are derivatives

evaluated at a point off x, e.g., Ĩx
2 = Ix

2 (x − αd(x)).

Using an auxiliary time variable t, equations in (C.10) can be solved by discretizing the

gradient descent equations

∂u

∂t
= −e′(u), (C.29)

∂v

∂t
= −e′(v). (C.30)
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