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IMAGE CLASSIFICATION WITH

DIRECTIONAL IMAGE SENSORS

HAOCHUAN HU

ABSTRACT

Traditional electronic implementations of CNNs (Convolutional Neural Networks)

suffer from high power consumption and limited processing speed, hindering deploy-

ment in resource-constrained scenarios. Leveraging the power of photonics, an in-

novative imaging device has been developed in Prof. Paiella’s lab, that integrates a

standard image sensor with a photonic nanostructure (metasurface). This device has

a unique and asymmetric response to the angle of incident light. Combined into an

array within an imaging system, it can perform optical spatial filtering analogous to

that in the first convolutional layer of a typical CNN tailored to image recognition.

This filtering process relates an imaged object to the output of the sensor array by

a coherent transfer function (CTF) or optical transfer function (OTF), under the

illumination by coherent or spatially-incoherent light, respectively. By combining

this all-optical convolutional layer with a shallow digital CNN, it is expected that

the complexity and power consumption can be significantly reduced compared to an

all-digital CNN.

In this thesis, we propose, numerically simulate and experimentally evaluate two

types of the device targeting the problem of image recognition. First, we evaluate an

angle-selective device, characterized by an OTF, in combination with a 5-layer LeNet

CNN (fully-digital). Replacing the first digital convolutional layer of LeNet with the

OTF results in a small performance drop (0.1-0.5% reduction in accuracy), but a

significant reduction in computational complexity (28.8% fewer multply-accumulate
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operations). Further reducing the digital network’s complexity (OTF layer followed

only by pooling, activation function and one fully-connected layer) leads to a hugely-

reduced computational complexity (96.0% reduction) at the cost of a slight perfor-

mance loss (0.6-0.8%). We also evaluate a phase-imaging device characterized by a

CTF. We simulate the imaging capabilities of this device based on experimentally-

measured parameters and test it on a real cell dataset. Compared to the fully-digital

LeNet, the new architecture achieves an accuracy of 96.1% (2.5% reduction compared

to LeNet) for 3 classes of cells and complexity savings of up to 98.4%. Finally, we

propose a joint optimization of two parameters of a numerically-simulated CTF re-

sponse and of a single-layer digital network. Although performance gains compared

to using a fixed CTF are small (on average, about 0.5% points improvement in ac-

curacy), we believe this is a promising pathway for further exploring optical-digital

system co-design.

Overall, our numerical experiments, performed using realistic OTF/CTF responses,

project significant reductions in system complexity while retaining high accuracy.

These results remain to be confirmed by measurements with full sensor arrays, which

would pave the way for efficient CNN-based visual recognition hardware for mobile

applications.
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Chapter 1

Introduction

1.1 Motivation and Challenges

Convolutional Neural Networks (CNNs) extract intricate features from images using

a series of convolutional layers. They have been widely and successfully used in image

recognition and image estimation. Their architecture typically consists of multiple

convolutional layers that filter the input image and subsequent intermediate feature

maps. Each convolutional layer is usually followed by a non-linear activation function

to allow non-linear processing, much like performed by the human brain, and by a

pooling layer to reduce the intermediate feature-map dimensionality.

The advent of powerful GPU computing in the last decade and the availability

of rich datasets have allowed CNNs to approach or even surpass human-level per-

formance in various image recognition tasks (e.g., object detection (Redmon et al.,

2016) and image classification (Krizhevsky et al., 2017)). At the same time, the sharp

increase in the number of convolutional layers comprising a CNN has led to a dra-

matic rise in the number of parameters and network complexity, triggering extensive

research in neural network lightweighting, with such examples as lightweight neural

networks (Howard et al., 2017) and model pruning (Han et al., 2015). However, fast

inference on lightweight, limited-power networks, that are essential for many embed-

ded, mobile and edge applications, remains a significant challenge.

This challenge opens up novel opportunities for optical computing solutions, which

have been experiencing resurgence of interest (Wetzstein et al., 2020). Photonics
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inherently provides ultrafast processing, operating at the speed of light, along with low

power consumption and massive parallelism, making it a highly-attractive alternative

solution to digital convolutional layers.

1.2 Proposed Solution

The high demand for computing power and system storage is a significant challenge

when deploying CNNs onto lightweight mobile devices. To address these challenges

in visual recognition tasks, we propose a system that combines a digital CNN with

a novel image sensor array (Kogos et al., 2020; Liu et al., 2022). This sensor array

contains carefully-designed metasurfaces with transfer function performing band-pass

filtering along different orientations (i.e., anisotropic edge enhancement), which is

analogous to the filtering operations performed in the first layer of traditional CNNs

trained for image recognition, as well as in the first stage of human visual cortex that

extracts low-level object features (Olshausen and Field, 1996). By replacing the first

convolutional layer of a CNN with this sensor array, the combined system is expected

to benefit in several ways, as detailed below.

• Reduction of power requirements: The ever increasing number of network

layers has led to huge performance gains, but the surge in computational re-

quirements has also resulted in a proportional energy-consumption increase.

Typically, pooling layers are added between convolutional layers to reduce the

feature-map dimension which, in turn, reduces the subsequent computational

load. Hence, the first convolutional layer typically accounts for a considerable

proportion of the system complexity due to the large input size (an image).

By replacing the first digital layer with fast optical filtering with similar char-

acteristics, one can significantly reduce complexity and energy consumption,

especially in shallow neural networks.
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• Reduction of memory requirements: Parameters of a neural network (pri-

marily, network weights) and intermediate embeddings constitute a significant

portion of cache usage in a digital implementation, which is another significant

challenge when deploying on embedded devices equipped only with a microcon-

troller. By replacing the first digital convolutional layer with an optoelectronic

device, we no longer require storage of the first-layer data and thus reduce the

memory requirements, particularly in shallow neural networks where raw images

often occupy a substantial portion of the overall memory.

• Optical-digital tunability: Due to the fixed design of many optical filters, us-

ing them as a replacement for trainable digital neural-network layers inevitably

incurs performance loss. However, our proposed geometrically-tunable metasur-

faces permit response adjustment within a certain range, thus allowing adapta-

tion to different tasks and varying characteristics of datasets, and potentially

closing this performance gap.

1.3 Contributions

In this thesis, we introduce a numerical simulation and performance evaluation of

our combined optical-digital image recognition system, which comprises two distinct

approaches related to different imaging modalities. Details regarding the imaging

system have been extensively covered in prior publications (Kogos et al., 2020; Liu

et al., 2022; Liu et al., 2023), and will be discussed in Chapters 4 and 5, respectively.

The main contributions of this thesis are as follows:

• Development of two optical-filtering simulations in Matlab, one for a fixed Op-

tical Transfer Function (OTF) (Liu et al., 2022) and one for a tunable Coherent

Transfer Function (CTF) (Liu et al., 2023).
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• Integration of the two optical-filtering simulations with various configurations

of digital neural networks, implemented in Python, into an image-recognition

system.

• Analysis of theoretical computational gains offered by the optical-digital systems

compared to corresponding fully-digital systems.

• Development of an optical-digital system with tunable CTF, and joint opti-

mization of CTF parameters and neural-network parameters to improve image-

recognition accuracy.

• Performance evaluation of all proposed optical-digital systems against corre-

sponding baseline systems on MNIST (LeCun et al., 1998; Xiao et al., 2017),

CIFAR-10 (Krizhevsky, 2009), CELL (Zhang et al., 2023) datasets.
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Chapter 2

Related Work

2.1 Network Structure

Various approaches have been proposed to address the issue of high computational

complexity of large neural-network models. One intuitive way is to optimize the net-

work structure within a software implementation. For example, MobileNet (Howard

et al., 2017) introduced a novel depth-wise convolution structure as a replacement for

traditional convolutional layers, ultimately containing only 1/32 of VGG-19 parame-

ters (Simonyan and Zisserman, 2014), while suffering only 0.9% loss in performance.

In the latest version, called MobileNet-V3 (Howard et al., 2019), apart from struc-

ture improvements a network-architecture search algorithm was employed to create a

lightweight network based on target dataset’s characteristics, while maintaining high

performance. Also, model pruning techniques have been extensively researched to

remove redundant parameters, channels, and network layers in an effort to slim down

the model. For instance, Han et al. (Han et al., 2015) described a method to re-

duce the storage and computational requirements by learning important connections

within the network. By pruning the redundant connections, they reduced the num-

ber of parameters in VGG-19 from 138 million to 10.3 million with almost no loss of

accuracy.
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2.2 Imaging Systems

On the imaging side, camera technology has evolved to capture a wealth of informa-

tion beyond just traditional images. These advancements allow for the acquisition

of additional scene characteristics, such as depth information, infrared data, multi-

hyper-spectral data, etc., significantly increasing the richness of visual information..

Research in computational imaging has also advanced the development and ap-

plication of fast inference system. Similar to the approach proposed in this thesis,

such imaging systems often extract some object features optically, and follow with a

digital neural network to perform recognition/classification.

In one of the very first works in this area, Chen et al. (Chen et al., 2016) used

bio-inspired angle-sensitive pixels and custom CMOS diffractive image sensors as

a replacement for the first digital convolutional layer. Compared to digital CNNs,

they achieved accuracy within 0.1-5.6% off the baseline, with energy savings of 90% in

image sensing and 90% reduction in transmission bandwidth, across MNIST, CIFAR-

10/100 and PF-83 datasets. Pad et al. (Pad et al., 2020) introduced an interesting

approach to optical convolution based on amplitude masks. By adding an optical

convolutional layer to the digital network, they managed to increase the recognition

accuracy on Extended-MNIST dataset from 95.16% to 98.29% with much lower sys-

tem complexity compared to an all-digital CNNs at similar accuracy. Shi et al. (Shi

et al., 2022) proposed a lensless architecture to perform optical convolution and re-

ported accuracy of 89.95% on Digits-MNIST with 47.2% energy savings compared to

a digital implementation. Zheng et al. (Zheng et al., 2024) employed metasurfaces

that are characterized by a point-spread function with multiple focal spots to replace

the first convolutional layer, correspondingly reducing the total floating-point opera-

tions (FLOPs) by 94% while attaining 98.6% accuracy (0.7% point loss compared to

a fully-digital implementation) on Digits-MNIST dataset and 88.8% accuracy (1.4%
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point loss) on Fashion-MNIST dataset. Finally, Wang et al. (Wang et al., 2023) pro-

posed a nonlinear, multilayer optical neural-network encoder for image sensing based

on an image intensifer acting as an optical-to-optical nonlinear activation function.

Such non-linear optical encoder outperforms the best-case digital linear encoder on

QuickDraw dataset (79% versus 74% accuracy), without relying on a separate digital

electronic processor.



Chapter 3

Overview of the Proposed Visual

Recognition System

The diagram in Figure 3·1 succinctly describes the structure of our visual recognition

system designed to predict a label for a given object. In the imaging sensor array,

multiple metasurfaces with different transfer functions applied on different pixels per-

form fast optical filtering of the object. Subsequently, the filtered images from the

sensor array are fed into a multi-layer digital neural network, resulting in final class

prediction of the object.

3.1 Imaging System

Unlike traditional cameras, which rely solely on capturing raw images, our imaging

system introduces a novel approach through optical filtering. The key innovation

is the integration of each pixel of a standard image sensor array with a specially

designed photonic nanostructure (metasurface) that only allows detection of light

incident along a small, geometrically-tunable distribution of angles, whereas light

incident along all other directions is reflected. Such devices can be used as optical

spatial filters with unique transfer functions, based on the notion that different spatial-

frequency components of an illuminated object correspond to optical plane waves

propagating from the object along different directions.

Compared to typical, purely-digital neural-network recognition systems, such meta-

surfaces provide pre-processing capabilities with extremely low power consumption.

8
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Figure 3·1: Proposed visual recognition hardware, where the first
CNN layer is implemented with an angle-sensitive camera in the phys-
ical domain and the subsequent layers are in digital domain. The blue
and orange pixels are coated with metasurfaces of type A and B, ori-
ented along different directions.

Most importantly, the optical filtering of the metasurface can be considered an al-

ternative to the first layer of a digital neural network. It is important to note, that

a digital convolution kernel can be easily optimized for a task and dataset at hand,

whereas the proposed optical filters are not as easily reconfigurable, which can result

in reduced performance. Therefore, the design of the metasurface transfer function

is crucial. In Chapters 4 and 5 we introduce and analyze two applications of our

imaging systems for object classification, involving incoherent and coherent illumina-

tion, respectively. In the latter case, we also explore tunability of the filter transfer

function.

3.2 Backbone Digital Neural Networks

CNNs provide a powerful framework for automatic feature learning directly from raw

pixel data. Through the use of convolutional layers, batch normalization, pooling

operations, and non-linear activation functions, CNNs can efficiently extract relevant

features from images while preserving spatial information, with vastly fewer opera-
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tions compared to a fully-connected layer. This architectural innovation has propelled

CNNs to the forefront of image analysis, powering advancements in as diverse fields

as medical imaging and autonomous systems.

To evaluate different optical-digital system combinations, we first implement a

five-layer LeNet network (LeCun et al., 1989), which consists of two convolutional

layers and three fully-connected (FC) layers, as a baseline. Then, we implement var-

ious models of extremely low complexity, for example a CNN+FC model containing

only one convolutional layer, one pooling layer, one batch-normalization (BN) layer,

an activation function, and one fully-connected layer. As a baseline, we feed images

into either the fully-digital LeNet or CNN+FC network, and assess recognition per-

formance of each. In the proposed system, we simulate the optical image capture and

feed the resulting filtered images into a low-complexity digital network and also evalu-

ate its recognition performance. Detailed descriptions of the proposed optical-digital

systems are provided in Chapters 4 and 5.

It should be mentioned, that we also studied other reduced-complexity neural

networks, including different numbers of convolution kernels, convolutional layers,

fully-connected layers, etc. Taking the five-layer LeNet as the benchmark, we found

that an 8-channel convolutional layer (either digital or optical) plus an FC layer can

greatly reduce computational complexity and memory requirements without causing

large performance loss on most datasets that we tested. At the same time, the

accuracy of a CNN+FC network is much higher than that of an FC network, i.e., one

using a single fully-connected layer without any convolutional layers. Therefore, in

the remainder of this thesis we focus on LeNet and CNN+FC in a fully-digital form or

in an optical-digital combination with two variants of directional image-sensor arrays.
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3.3 Performance Evaluation

To analyze our designs, we adopt 4 metrics which comprehensively assess system per-

formance, complexity, and storage requirements. The metrics related to complexity

and storage apply to the simulation framework of the digital backbone implementa-

tion, but not to the optical component.

3.3.1 Correct Classification Rate

The Correct Classification Rate (CCR), often referred to as accuracy, measures the

proportion of correctly-classified instances out of the total number of instances. It is

a fundamental metric used to assess the performance of classification models, includ-

ing neural networks. We will use CCR to compare performance of fully-digital and

combined optical-digital image recognition systems.

3.3.2 Number of Parameters

The number of parameters in a neural network (also known as model size) refers to

the total count of trainable weights and biases. These parameters are learned during

the training process and represent the model’s capacity to capture complex patterns

in the data. A higher number of parameters generally indicates a larger and more

complex model. The number of parameters in a convolutional layer can be computed

as follows:

PConv = Co × (K2 × Ci + 1), (3.1)

where K is the kernel size, Ci and Co are the numbers of input and output channels,

and +1 indicates a bias added to each channel.

The number of parameters in a fully-connected layer can be calculated as follows:

PFC = (Ni + 1)×No, (3.2)
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where Ni is the input size, No is the output size and +1 indicates a bias added to

each output of the layer.

Finally, the number of parameters in a batch normalization (BN) layer can be

calculated as follows:

PBN = 2× Ci, (3.3)

where Ci is the number of input channels and each channel contains one scale param-

eter and one bias parameter.

3.3.3 Multiply-Accumulate Operations

The number of Multiply-Accumulate Operations (MACs) required to compute the

output of a neural network is a measure of the network’s computational complexity. It

serves as an estimate of the computational cost involved in running the network, which

is crucial for evaluating efficiency, especially in resource-constrained environments like

mobile devices or embedded systems.

The number of MACs performed by a convolutional layer can be calculated as

follows:

MACConv = K2 × Ci × Co ×W ×H, (3.4)

where W ×H is the size of the output feature maps.

The number of MACs performed by a fully-connected layer is:

MACFC = Ni ×No, (3.5)

while the number of MACs performed by a batch-normalization layer is:

MACBN = 4× Ci ×W ×H. (3.6)
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3.3.4 Memory Usage

Memory usage in neural networks refers to the amount of memory required to store

the model parameters and intermediate activations during inference. It is influenced

by factors such as the network architecture, data type, and input size. Efficient mem-

ory usage is essential, particularly for deployment on devices with limited memory

resources. The memory usage of a neural network can be computed as follows:

MEM = S × (NParams +NTensors) (3.7)

where S is the memory requirement per parameter or data sample that depends on

the data type (e.g., we use the long data type which stores each parameter in 4 bytes),

NParams is the total number of learnable parameters in a neural network, which is

related to PConv, PFC , PBN , and NTensors is the total size of the digital input image

and of intermediate tensors at the output of each layer in the network.

3.4 Potential Computational Savings

In CNNs, convolutional layers are usually at the beginning of the network and are

often followed by pooling layers to reduce complexity and eventually shrink the output

size to the number of classes to be recognized. On the other hand, fully-connected

layers typically reside towards the end of a network. Assuming that the output of

a convolutional layer with complexity MACConv (3.4) is undergoing pooling by a

factor of two in each dimension and then is fed into an FC layer, the input size of

the FC layer is Ni = 0.25 × Co ×W ×H. Consequently, the number of MACs that

must be completed by the FC layer is: 0.25 × Co × W × H × No. If the product

K2 × Ci of the convolutional layer (3.4) is greater than 0.25 × No of the FC layer,

then the number of MACs performed by the convolutional layer surpasses that of the

FC layer. This is normally the case when only a few classes need to be recognized
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(e.g., No = 3, 7 or 10 in our experiments), while K2 × Ci ranges from 32 × 4 to

52 × 8. Clearly, replacing the convolutional layer by its optical variant would lead to

significant savings in computational complexity of the overall system

As per equations (3.1) and (3.2), the number of parameters in a convolutional layer

is typically much lower than that in subsequent fully-connected layers due to the small

kernel size K and number of channels Ci, Co compared to Ni×No (especially Ni which

is typically large). This results in a relatively small portion of the total number of

parameters allocated to the convolutional layer, even in shallow CNNs.

Recall that according to (3.7), the memory requirement depends on the number of

parameters and the size of the input image and intermediate tensors, indicating that

memory savings due to the use of optical convolution include the savings due to the

removal of the first digital layer (its parameters) and of the input image. However,

as pointed out, the number of parameters in the first convolutional layer is a small

portion of the total number of parameters, while the input image size is typically

smaller than the total size of tensors produced by various layers (e.g., convolutional,

batch normalization, ReLU). Hence, by replacing the first digital convolutional layer

with its optical variant, the savings in the number of parameters and memory require-

ments are not expected to be as significant as the computational-complexity savings

(number of MACs).

The first digital convolutional layer attempts to identify features in the input

image, such as object edges. However, this is difficult to do when the input image is of

low resolution. While using an input image of larger size (capturing higher resolution)

would help extract finer features, it would also significantly increase the computational

complexity (3.4) and memory requirements (3.7) of the first convolutional layer which,

as discussed above, accounts for a large proportion of MACs in a shallow neural

network. In contrast, optical filtering operates on continuous, high-resolution signals
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(light) and can extract finer features compared to digital convolution, and can do

so with much lower power consumption and higher speed. However, the drawback

lies in the fixed design of an optical system; its characteristics cannot be as easily

tuned as can those of a digital neural network. Also, while the impact of removing

the first digital convolutional layer on the reduction of computational complexity and

(to a lesser extent) memory size is significant in a shallow neural network, when the

number of layers increases this impact proportionally fades. For this reason, the focus

of this thesis is on shallow digital neural networks.
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Chapter 4

Optical-Digital System Design for

Incoherent Illumination

In this chapter, we consider optical-domain filtering of the input object under inco-

herent illumination by simulating the Optical Transfer Function of recently-developed

metasurface sensors, followed by various digital neural networks to perform recogni-

tion of the imaged object.

4.1 Directional Image Sensor with Fixed Response

The approach is based on pixel arrays of plasmonic directional image sensors (Liu

et al., 2022) designed to selectively detect light incident along a small, geometrically-

tunable set of directions. The resulting imaging system can function as an optical

spatial filter without any external filtering elements, leading to extreme size miniatur-

ization. In the work reported in this chapter, the object is illuminated with incoherent

(natural) light, and the sensor array is partitioned into identical blocks of 3×3 adja-

cent pixels. In each block, one device is uncoated, while the remaining 8 are coated

with different metasurfaces. We use 2 different metasurface designs (labeled A and

B) oriented along 4 different directions (0°, +45°, +90°, and –45°), as shown in Fig-

ure 4·2. Pixels of each type across the sensor array record a filtered image of the object

in the field of view determined by their specific OTF. According to a fundamental

theorem in Fourier optics (Goodman, 2005), under incoherent illumination the OTF

of any optical spatial filter is nonzero at zero (DC) frequency. Therefore, to enable
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band-pass filtering, as required for edge enhancement, the normalized photocurrent

signal of each metasurface pixel is subtracted in the readout circuit from that of the

uncoated pixel in the same block, so that the DC component of the image is canceled

out. As a result, the camera simultaneously acquires 8 different band-pass filtered

images of the object, to be fed into the subsequent layers of a digital CNN.

Since plasmonic devices of these specific designs are not yet available as fully-

functional sensors, we characterize their behaviour through computer simulations.

Let I denote the spatial-domain representation of an image and let Tk denote the

frequency-domain representation of a filter with orientation k = 1, ..., 4 (i.e., the filter

OTF). We perform filtering of image I in the frequency domain as follows:

I ′k = F−1[F(I) · Tk], k = 1, ..., 4. (4.1)

where I ′k is the output image filtered by directional filter number k, and F denotes

the Fourier transform operation (implemented in software via the Discrete Fourier

Transform). Figure 4·1 shows the pipeline of OTF filtering of an image that illustrates

equation (4.1).

In this imaging system, we combine 8 different metasurface devices with distinct

differential OTFs into one compound pixel. Figure 4·2(a) shows the two types of

simulated OTF responses (type A and type B), each oriented along four different

orientations in steps of 45°. An image of the digit “5” from Digits-MNIST dataset

is shown in the middle, and the optically-filtered images I ′k, k = 1, ..., 4 obtained by

applying equation (4.1) for both device types are shown in Figure 4·2(b). Clearly, our

sensor effectively achieves edge enhancement for the object along different directions.
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Figure 4·1: Computer simulation pipeline of OTF filtering de-
scribed by equation (4.1). Image I representing an object is Fourier-
transformed and multiplied by OTF T (frequency-domain filtering),
and subsequently subjected to inverse Fourier transform.

Figure 4·2: Different types of simulated OTFs of a novel plasmonic
directional image sensor, and their impact on filtering an imaged object.
(a) Differential OTFs of 2 types of metasurface devices (types A and
B), each under 4 different orientations. (b) Computer-simulated output
of each device type and orientation when imaging digit “5” (shown in
the middle) from the Digits-MNIST dataset.
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Figure 4·3: Architecture of LeNet-5 (LeCun et al., 1989)

4.2 Digital Neural Networks for Fast Inference

We use the filtered image I ′k as the input to several shallow digital neural networks

in order to classify the imaged object. We only consider shallow networks since the

key requirement in our design is fast processing.

We study two fully-digital neural networks as a baseline for comparison with the

proposed optical/digital designs:

• LeNet (LeCun et al., 1989): LeNet-5 is a 5-layer CNN whose original network

architecture is shown in Figure 4·3. Our implementation is slightly different

to allow for a fair comparison with our optical-digital systems. Since our op-

tical layer produces 8 directionally-filtered images (channels) as a replacement

for the first convolutional layer, we use 8 channels (instead of 6) in the first

convolutional layer of our version of LeNet-5. Table 4.1 provides a detailed

description of all layers of our variant of LeNet-5. Note that we pad the input

image to 32×32 by replicating boundary pixels so that the output of the first

convolutional layer has the same size as in the original LeNet-5, and therefore

the remainder of the original network is unchanged.

• CNN+FC: This is an even shallower network than LeNet-5. It consists of

only one convolutional layer with 8 channels followed by a pooling layer, batch-
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Table 4.1: Specifications of the modified LeNet-5 used as a baseline
for comparison with the OTF-LeNet- system. For an input image of
1×28×28 size, the memory requirement can be computed as follows:
(14,978 + 62,606) × 4 Bytes = 310,336 Bytes = 303.06 KB.

Layer name Output shape Number of Number of

parameters MACs

Input 1×28×28 — —

Conv*[8] 8×28×28 208 156,800

MaxPool 8×14×14 — —

BN 8×14×14 16 6,272

ReLU 8×14×14 — —

Conv[16] 16×10×10 3,216 320,000

MaxPool 16×5×5 — —

BN 16×5×5 32 1,600

ReLU 16×5×5 — —

FC 120 48,120 48,000

ReLU 120 — —

FC 84 10,164 10,080

ReLU 84 — —

FC 10 850 840

TOTAL 14,978 62,606 543,592

normalization layer, activation function, and one fully-connected layer (Fig-

ure 4.2). Detailed specifications are shown in Table 4.2. We apply the same

padding of the input image as in LeNet-5.

During our exploration of optical-digital system design, we have studied the OTF

filtering combined with many digital-network variants. However, in this thesis we

report only the most relevant designs, combining OTF filtering with either LeNet or

single fully-connected layer, as described below.

• OTF+LeNet-: In this design, we remove the first convolutional layer (8

channels) of the modified LeNet-5 (Table 4.1) and feed 8 filtered images I ′k,
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Figure 4·4: Architecture of a very shallow CNN+FC network, where
the first digital convolutional layer (red block) can be replaced by op-
tical convolution.

k = 1, ..., 8, such as those shown in Figure 4·2(b), into the second layer. Four

of those images are obtained from type-A responses and four are from type-

B responses. The remaining layers of this truncated LeNet design, that we

call LeNet-, are identical to the modified LeNet shown in Table 4.1. Detailed

specifications of OTF+LeNet- are shown in Table 4.3.

• OTF+FC: In this design, we input the same 8 images I ′k as in OTF+LeNet-

combination directly into a max-pooling layer with a 2×2 window, followed by

batch normalization, ReLU, and a fully-connected layer. Detailed specifications

are shown in Table 4.4.

We optimize the cross-entropy loss function to find the digital parameters (the

OTF parameters are fixed and remain unchanged) using the Adam optimizer (Kingma

and Ba, 2014), a variant of stochastic gradient descent, with learning rate of 0.0003

and batch size of 64. We conduct each experiment over 50 epochs, and repeat it

5 times. At each epoch, we compute the average CCR from the 5 runs, and in

Tables 4.5-4.6 report the average of these average CCR values from the last 5 epochs.
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Table 4.2: Specifications of a very shallow network CNN+FC used as
another baseline for comparison with OTF-LeNet- system. For an input
image of 1×28×28 size, the memory requirement can be computed as
follows: (11,770 + 15,914) × 4 Bytes = 110,736 Bytes = 108.14 KB.

Layer name Output shape Number of Number of

parameters MACs

Input 1×28×28 — —

Conv*[8] 8×28×28 208 156,800

MaxPool 8×14×14 — —

BN 8×14×14 16 6,272

ReLU 8×14×14 — —

FC 10 15,690 15,680

TOTAL 11,770 15,914 178,752

4.3 Datasets

We test the baseline and the proposed optical-digital designs for recognition accuracy

on three datasets:

• Digits-MNIST (LeCun et al., 1998; Wikipedia, 2024): This is a dataset of

28×28-pixel grayscale images of hand-written 0-9 digits (10 classes). We use

60,000 training and 10,000 testing images.

• Fashion-MNIST (Xiao et al., 2017): This dataset also contains 28×28-pixel

grayscale images of 10 types of fashion items, such as shirts, coats, trousers,

snickers, sandals. Again, we use 60,000 training and 10,000 testing images.

• CIFAR-10: (Krizhevsky, 2009): This dataset is relatively more complex than

the MNIST datasets as it consists of 32×32-pixel color images of 10 types of

objects, such automobiles, airplanes, trucks, birds, dogs. It contains 50,000

training images and 10,000 testing images. In our experiments, we converted

all images to grayscale for consistency among all experiments.
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Table 4.3: Specifications of the optical-digital system OTF+LeNet-.
For an input image of 1×28×28 size, the memory requirement can be
computed as follows: (14,194 + 62,398) × 4 Bytes = 306,368 Bytes =
299.19 KB.

Layer name Output shape Number of Number of

parameters MACs

OTF 8×28×28 — —

MaxPool 8×14×14 — —

BN 8×14×14 16 6,272

ReLU 8×14×14 — —

Conv[16] 16×10×10 3,216 320,000

MaxPool 16×5×5 — —

BN 16×5×5 32 1,600

ReLU 16×5×5 — —

FC 120 48,120 48,000

ReLU 120 — —

FC 84 10,164 10,080

ReLU 84 — —

FC 10 850 840

TOTAL 14,194 62,398 386,792

4.4 Experimental Results

In this section, we report the results of our numerical simulations for each of the

fully-digital and optical-digital designs described in Section 4.2 on the three image

datasets discussed above.

4.4.1 MNIST Results

In the first set of simulations, we used both MNIST datasets. Table 4.5 shows each

design’s complexity (number of parameters, number of MACs and needed memory)

as well as performance expressed in terms of CCR.

On Digits-MNIST, our reference model, LeNet, achieves 99.02% CCR, whereas
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Table 4.4: Specifications of the optical-digital system OTF+FC. For
an input image of 1×28×28 size, the memory requirement can be com-
puted as follows: (10,986 + 15,706) × 4 Bytes = 106,768 Bytes =
104.27 KB.

Layer name Output shape Number of Number of

parameters MACs

OTF 8×28×28 — —

MaxPool 8×14×14 — —

BN 8×14×14 16 6,272

ReLU 8×14×14 — —

FC 10 15,690 15,680

TOTAL 10,986 15,706 21,952

the very shallow CNN+FC model achieves 98.53%. In contrast, our proposed optical-

digital designs, OTF+LeNet- and OTF+FC, achieve respective accuracies of 99.06%

and 98.26%. Similarly, on Fashion-MNIST, LeNet and CNN+FC achieve 90.22%

and 89.29%, respectively, almost 10% less than on Digits-MNIST, which was to be

expected since Fashion-MNIST is a more challenging dataset than Digits-MNIST.

On the other hand, our proposed OTF+LeNet- and OTF+FC achieve 89.71% and

89.65%, respectively. While there is either no or slight performance loss by the new

designs (up to 0.5% points in CCR), their complexity is markedly reduced. For exam-

ple, OTF+LeNet- requires 27.6% fewer MACs than LeNet. Even more substantially,

OTF+FC requires 87.7% fewer MACS than CNN+FC.

4.4.2 CIFAR-10 Results

We tested the same models on the relatively more complex CIFAR-10 dataset. While

LeNet achieves a CCR of 66.22%, CNN+FC achieves only 57.06%. The optical-digital

model, OTF+LeNet-, achieves 60.30% (5.9% point loss in CCR) with 27.1% fewer

MACs and 1.2% less memory than LeNet. On the other hand, OTF+FC achieves

only 47.98% (9.1% points loss in CCR) with 87.7% fewer MACs and 3.4% less memory
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compared to CNN+FC. The complete results for CIFAR-10 are shown in Table 4.6.

Table 4.5: Computational complexity and performance of the fully-
digital and OTF optical-digital models for the MNIST datasets.

Model Number of Number of Memory CCR CCR

parameters MACs [KB] D-MNIST F-MNIST

LeNet 62,606 543,592 303.06 99.02% 90.22%

OTF+LeNet- 62,398 386,792 299.19 99.06% 89.71%

CNN+FC 15,914 178,752 108.14 98.53% 89.29%

OTF+FC 15,706 21,952 104.27 98.26% 89.65%

Table 4.6: Computational complexity and performance of the fully-
digital and OTF optical-digital models for the CIFAR-10 dataset.

Model Number of Number of Memory CCR

parameters MACs [KB] CIFAR-10

LeNet 83,726 756,136 403.64 66.22%

OTF+LeNet- 83,518 551,336 398.83 60.30%

CNN+FC 20,714 233,472 140.95 57.06%

OTF+FC 20,506 28,672 136.14 47.98%

4.5 Discussion

Our optical-digital designs have achieved significant memory and complexity sav-

ings on shallow neural networks. For 28×28-pixel input images, the requirements of

OTF+FC are only 12.3% in terms of number of MACs and 96.4% in memory com-

pared to a fully-digital CNN+FC. Since the complexity (number of MACs) scales with

the input image size for both CNN+FC and OTF+FC, for larger 32×32-pixel im-

ages, the number of MACs of OTF+FC remains at 12.3% compared to CNN+FC. In

terms of accuracy, OTF+FC suffers only a 0.27% point loss compared to CNN+FC

on Digits-MNIST but performs slightly better than CNN+FC on Fashion-MNIST.

However, it suffers a 9% loss on the more complex CIFAR-10 dataset.
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Our results indicate that the proposed OTF-based visual recognition system in-

curs minimal performance loss on simple datasets while offering large complexity

reduction. However, on larger, more complex datasets it suffers a significant loss

in accuracy albeit at significant savings in terms of computational complexity and

required memory.
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Chapter 5

Optical-Digital System Design for

Coherent Illumination

In this chapter, we consider optical-domain filtering of transparent phase objects (can-

cer cells) under coherent illumination by simulating the Coherent Transfer Function

of another recently-developed metasurface sensor. We also investigate the tunability

of the parameters of this sensor in a narrow range that allows optimal co-design of

the optical and digital components of the proposed system.

5.1 Compound-Eye Image Sensor with Directional Response

Another recently-developed device, a phase imaging metasensor with asymmetric an-

gular response about normal incidence (Liu et al., 2023), has been shown to also pos-

sess directional-filtering properties similar to those of the sensors from Section 4.1.

Figure 5·1(a) shows the angular response maps obtained by measuring the photocur-

rent signal produced by this device oriented along 4 different directions in steps of 45°

as a function of the in-plane wavevector components of the incident light: horizontal

- kx = (2π/λ) sin θ cosϕ and vertical - ky = (2π/λ) sin θ cosϕ, where λ = 1,550 nm is

the wavelength of illumination, and θ and ϕ are the polar and azimuthal illumination

angles. The measured signal at the angle of peak detection is above 40% of the signal

for identical but uncoated devices, indicating a relatively small metasurface transmis-

sion penalty. Under coherent illumination (i.e., with laser light, as appropriate for

biomedical microscopy measurements of biological cells), these devices can be used
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as optical spatial filters with Coherent Transfer Function (CTF) determined by their

angular response map.

Similarly to the frequency-domain filtering of intensity objects described by equa-

tion (4.1), we simulate the filtering performed by each CTF as follows. Let CTFk

be the Coherent Transfer Function of device number k = 1, ..., 4, where each value

of k indicates a different orientation as in Figure 5·1(a). We first crop each CTF

by windowing using a circular pupil function Q that describes the effect of the lens

system used to image the object on the sensor array. This procedure produces the

overall transfer function Tk:

Tk = CTFk ·Q, k = 1, ..., 4. (5.1)

Since the numerical data I contained in the CELL dataset (described in Sec-

tion 5.4) correspond to phase distribution of transparent cancer cells, we first convert

each object in the dataset to a phase image ejI . This is the amplitude of the optical

field propagating from each cell under illumination. Next, we perform filtering in the

frequency domain, like in equation (4.1), and finally compute the magnitude squared

of the filtered data (image sensors detect intensity which is proportional to the mag-

nitude squared of the field amplitude) to produce the resulting images recorded by

the sensors:

I ′k = |F−1[F(ejI) · Tk]|2, k = 1, ..., 4. (5.2)

5.2 CTF Tuning

In the experiments described in Section 4.4, the designs of the directional sensors

(Section 4.1) were fixed (fixed shapes of the OTFs) - only the parameters of the digital

neural networks were optimized. This optimization aimed at capturing diverse image

characteristics present in the datasets used.
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Figure 5·1: Experimental CTFs (full size and cropped) of a novel
phase-imaging metasensor, and their impact on filtering an imaged cell.
(a) Experimental CTFs of the same device oriented along 4 different
directions in steps of 45°and their cropped versions. (b) Computer-
simulated output of each device type when imaging a cell from the
CELL dataset (shown in the middle).

The sensor described in Section 5.1 has fixed shape of the CTF as well. In both

cases (OTFs and CTFs) it is unclear whether the provided transfer functions are

optimal for image recognition. A tunable image sensor could enable adjustment of

its transfer function for each dataset, potentially boosting performance. However,

manual adjustments would require a cumbersome adjust CTF - design DNN - adjust

CTF - design DNN - ... cycle, that would be quite impractical. A feasible approach

would be to first approximate the CTF using a small number of parameters, then

numerically simulate this approximate CTF and, finally, plug this simulation into the

optimization loop of a digital neural network.

In order to accomplish the first step, we observe that the CTF can be analytically

described by the following function:

R(U⃗) =

√
B(|U⃗ |)× [α + βP (

|U⃗ − S⃗| − nSPP

δ
)] (5.3)
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which is a composition of a background function B(n) defined as follows:

B(n) =


1− n40, |n| < 1

0 , otherwise
(5.4)

with a peak function P (n):

P (n) =
1

1 + n2
(5.5)

In equation (5.3), U⃗ is the wavevector (kx, ky) of the incident light (as defined in

Section 5.1) rescaled by the constant 2π/λ, so that its x and y components correspond

to the normalized horizontal and vertical spatial frequencies, and S⃗ is a tunable vector

that determines the peak orientation and shift from the origin. Finally, α, β, δ, nSPP

are fixed parameters whose values are extrapolated from the measured response maps.

Figure 5·2 shows the simulated CTFs (both full size and cropped) with the tunable

parameter S⃗ selected to reproduce the experimental CTFs of Figure 5·1, together with

the corresponding filtered images of a representative object. The filtered images look

extremely similar to those produced by the experimental CTFs (Figure 5·1), which

suggests that the simulated CTFs should perform similarly to the experimental CTFs

in image classification.

Both experimental and simulated CTFs were combined with digital layers and

tested on the CELL dataset. The results reported in Tables 5.1 and 5.2 show al-

most identical accuracy for both CTFs. For example, when combined with LeNet

and tested on CELL-3 dataset, the experimental CTF achieves 98.45% in accuracy

whereas the simulated CTF produces 98.50%.

5.3 Joint Optimization of the CTF and Digital Layers

Thus far, we have used a fixed CTF design. However, for optimal results, the CTF

needs to be adjusted to each dataset and doing so manually is complicated and time-
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Figure 5·2: Simulated CTFs (full size and cropped) of a novel phase-
imaging metasensor (Figure 5·1), and their impact on filtering an im-
aged cell. (a) Simulated CTFs based on the same design for 4 different
orientations and their cropped versions. (b) Computer-simulated out-
put of each device type when imaging a cell from the CELL dataset
(shown in the middle).

consuming, as discussed above. To streamline the design of our optical-digital system,

we introduce joint automatic optimization of the CTF and digital-network parameters

by stochastic gradient descent. Using the filtering formula (5.2) and the CTF model

(5.3), an image filtered by the simulated CTFk in channel number k = 1, ..., N can

be expressed as follows:

I ′k = |F−1[F(ejI) ·R(S⃗k) ·Q]|2 (5.6)

where R contains the tunable parameters S⃗k.

The filtered image I ′k is then sent to a simple digital neural network, consisting

of a max-pooling layer with 2× 2 window, a batch normalization layer, and a ReLU

activation function:

rk = MaxPool(I ′k)

uk = BNγk,ζk(rk)

ck = ReLU(uk)

(5.7)

where γk and ζk are learnable scale and bias parameters of channel k, respectively.

Finally, the ReLU outputs from all channels are sent to a fully-connected layer to
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obtain the prediction:

Ŷ =
n∑

k=1

Wkck + bk, (5.8)

whereWk, bk are learnable parameters in the FC layer and Ŷ is the vector of prediction

probabilities for all classes.

For a more compact representation of the relationship between the input image I

and its class prediction Ŷ , let S⃗k=0,...,N denote tunable parameters for N CTFs and

let θ denote all learnable parameters of the digital layers. Then, we can combine

equations (5.6-5.8) into a compact expression as follows:

Ŷ = ModelS⃗k=0,...,N ,θ(I) (5.9)

By defining a loss function LS⃗k=0,...,N ,θ(Ŷ , Y ) between prediction Ŷ and one-hot-

encoded ground-truth label Y , parameters S⃗k=0,...,N and θ can be found via opti-

mization using stochastic gradient descent.

5.4 Dataset

One application intended for the proposed imaging system is an extremely fast classi-

fication protocol for biological specimen. For this reason, we have selected the CELL

image dataset (Zhang et al., 2023) for performance evaluation. It contains seven can-

cer cell lines, authenticated via the Human STR profiling cell-authentication service,

including three adenocarcinoma (ADC) cell lines (H358, HCC827 and H1975), two

squamous cell carcinoma (SCC) cell lines (H520 and H2170) and two small cell lung

cancer (SLCL) cell lines (H526 and H69). The dataset contains 38,001 bright-field

images (BF) and quantitative phase images (QPI) of cells, each of size 151×151. One

sample image from each of the 7 cell lines, its Fourier transform’s magnitude, as well

as the results of filtering steps for our cropped experimental and simulated CTFs, are

shown in Figures A·1, A·2 in Appendix A.
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5.5 Experimental Results

5.5.1 CELL Results with Fixed CTFs

We evaluate the performance of all 4 network models presented in Section 4.2. In

the optical-digital models, we replace the OTFs with CTFs and name these models

CTF+LeNet- and CTF+FC. Note that, unlike in the case of OTFs with 8 directional

responses (Figure 4·2), we have only 4 CTF orientations (Figure 5·1 and Figure 5·2).

Therefore, we redesign both the first digital layer (convolutional) of LeNet- in model

CTF+LeNet- and the fully-connected layer FC in model CTF+FC to accept 4-channel

inputs. For a fair comparison, we also redesign the first convolutional layer of the

baseline LeNet and of the CNN+FC model in the same way. In each case, we use

cropped versions of either experimental CTFs (Figure 5·1) or simulated CTFs (Fig-

ure 5·2). We use the same training setup as discussed in Section 4.2.

We selected the first 2,000 QPI images from each cell line in the CELL dataset for

training and the subsequent 300 QPI images for testing. Additionally, we resized the

images to 144 × 144 by removing the first three and last four rows and columns. Since

the CELL images are very smooth (and, therefore, lack high-frequency components),

we decimated all images to 36×36 by averaging over 4×4 windows to reduce the

computational complexity of all networks. By using each of the 7 cell categories, we

created a 7-class dataset for our experiments with 14,000 training images and 2,100

testing images. We also reorganized the same images into three major categories

based on 3 subtypes (ADC, SCC and SCLC) to form a 3-class dataset, with 14,000

training images (6,000 for ADC, 4,000 for SCC, 4,000 for SCLC) and 2,100 testing

(900 for ADC, 600 for SCC, 600 for SCLC).

In these experiments, we use cross-entropy loss function and the Adam optimizer

(Kingma and Ba, 2014) with learning rate of 0.003 and batch size of 128. We conduct

each experiment over 100 epochs, and repeat it 5 times. At each epoch, we compute
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the average CCR from the 5 runs, and in Tables 5.1-5.2 report the average of these

average CCR values from the last 5 epochs.

Table 5.1 shows our results for the recognition of the 7 image classes. The fully-

digital LeNet achieves 96.53% CCR while the proposed CTF+LeNet- achieves 96.21%

CCR with experimental CTFs and 95.47% with the simulated CTFs. The optical-

digital CTF+LeNet- offers a 23.3% reduction in the number of MACs and a 5.4%

reduction in the required memory compared to the fully-digital LeNet. The shallower

network, CNN+FC, achieves 92.82% CCR on the same data, while the proposed

CTF+FC achieves 93.10% CCR with experimental CTFs and 92.09% with simulated

CTFs. However, the optical-digital CTF+FC offers a 94.7% reduction in the number

of MACs and a 7.6% reduction in the required memory compared to the fully-digital

CNN+FC.

Table 5.1: Results for fully-digital and optical-digital cropped CTF
models on the 7-class CELL dataset.

Model CTF Number of Number of Memory CCR

parameters MACs [KB] 7-class CELL

LeNet — 106,719 556,268 480.43 96.53%

CTF+LeNet- Experimental 106,615 426,668 454.71 96.21%

CTF+LeNet- Simulated 106,615 426,668 454.71 95.47%

CNN+FC — 9,287 268,272 76.80 92.82%

CTF+FC Experimental 9,087 14,256 70.96 93.10%

CTF+FC Simulated 9,087 14,256 70.96 92.09%

We also evaluated the same models for the 3-class image recognition (Table 5.2).

The CCR obtained for all models slightly increased, but the gap between the fully-

digital and optical-digital models shrank. The number of MACs and memory require-

ments correspondingly dropped because of the reduced number of output classes. This

further increased savings in terms of complexity, e.g., for CTF+FC to 96.6% reduc-

tion of the number of MACs and 10.3% reduction of the required memory compared
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to CNN+FC.

Table 5.2: Results for fully-digital and optical-digital cropped CTF
models on the 3-class CELL dataset.

Model CTF Number of Number of Memory CCR

parameters MACs [MB] 3-class CELL

LeNet — 106,379 555,932 479.09 98.59%

CTF+LeNet- Experimental 106,275 426,332 453.37 98.45%

CTF+LeNet- Simulated 106,275 426,332 453.37 98.50%

CNN+FC — 4,099 263,088 56.52 96.44%

CTF+FC Experimental 3,899 9,072 50.68 95.81%

CTF+FC Simulated 3,899 9,072 50.68 96.09%

5.5.2 MNIST Results with Tunable CTFs

To validate the proposed tunable optical-digital system, where both optical and digital

parameters are jointly optimized, we implemented a CTF+FC system which follows

the same architecture as the OTF+FC system detailed in Table 4.4 with the exception

of the number of CTF channels (1, 2, 4, or 8 depending on the tested configuration,

as explained below). For simplicity, we used a pupil function with unity normalized

cutoff frequency, but this parameter could be easily changed.

As discussed in Sections 5.2 and 5.3, the CTF characteristics in channel k (CTF k)

are controlled by the vectors S⃗k. We initialize two CTFs (CTF 1, CTF 2) with S⃗1 =

[−1.12, 0] and S⃗2 = [0.80, 0.80]. These specific values were selected based on the fact

that the corresponding CTFs cover low frequencies present in the MNIST dataset and,

at the same time, show good directional filtering sensitivity, respectively, horizontally

and diagonally. Also, through rotation of CTFk by angles 0°, +45°, +90°, or –45°, we

can obtain four CTFs using single S⃗k. This increases the number of channels to the

FC layer, thus increasing diversity of the input.

In experiments, we use cross-entropy loss function and Adam optimizer (Kingma
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and Ba, 2014) with learning rate of 0.003 and batch size of 256. We conduct each

experiment over 100 epochs, and repeat it 5 times. At each epoch, we compute the

average CCR from the 5 runs, and in Table 5.3 report the maximum value of this

average CCR across all 100 epochs.

We studied the impact of optical-layer tunability on the performance of our

CTF+FC system in different scenarios. Table 5.3 shows the results of an ablation

study that we performed on Digits-MNIST and Fashion-MNIST datasets. When us-

ing a single CTF prototype with tunable parameters S⃗1, the improvement on both

datasets due to optical-layer tuning is about 0.5% points in CCR. When this sin-

gle prototype is rotated (4 channels), the gain from tuning is more pronounced for

Digits-MNIST (0.5% points) than for Fashion-MNIST (0.13% points). When two pro-

totypes are used with parameters S⃗1, S⃗2, again the improvement for Digits-MNIST

is much more substantial (1.67% points) than for Fashion-MNIST (0.08% points).

Finally, when the two prototypes are rotated (8 channels), there is a small perfor-

mance drop of 0.18% points for Digits-MNIST but an increase of 0.91% points for

Fashion-MNIST due to tuning. While not fully consistent, these results demonstrate

that by joint optimization of optical and digital parameters additional performance

gains can be achieved.

5.6 Discussion

Similarly to the use of OTFs, the replacement of the first layer of a shallow neural

network by CTFs has shown significant complexity savings on a real-image dataset.

On the more difficult 7-class cell-image dataset, our CTF+FC with experimental

CTF achieves an accuracy of 93.10% and offers 0.28% improvement compared to the

fully-digital CNN+FC, but with 94.7% savings in computational complexity (number

of MACs) and 5.8% reduction of memory requirements. These results show promise
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Table 5.3: Performance gains due to joint optimization of CTF and
FC parameters on MNIST datasets.

Initial S⃗ Rotation Number of Tunable CCR CCR

CTFs S⃗ D-MNIST F-MNIST

S⃗1 - 1 - 90.95% 83.42%

S⃗1 - 1 S⃗1 91.49% 83.93%

S⃗1 Yes 4 - 96.66% 87.80%

S⃗1 Yes 4 S⃗1 97.16% 87.93%

S⃗1, S⃗2 - 2 - 94.69% 86.13%

S⃗1, S⃗2 - 2 S⃗1, S⃗2 96.36% 86.21%

S⃗1, S⃗2 Yes 8 - 97.48% 88.73%

S⃗1, S⃗2 Yes 8 S⃗1, S⃗2 97.26% 89.64%

for potential real-life applications of our recognition system.

Furthermore, our simulated CTF approximation achieves similar complexity re-

ductions while maintaining accuracy (93.10% points for simulated CTF versus 92.09%

for experimental CTF on CELL-7 as shown in Table 5.1) which allows joint optimiza-

tion of the optical and digital parameters for different datasets.

The joint optimization we proposed showed slight improvement in accuracy on

both MNIST datasets. On Digits-MNIST, a 0.50-1.67% points improvement was

observed, except for a 0.22% points reduction for the 8-channel case (Table 5.3). On

Fashion-MNIST, a 0.08-0.91% points gain was recorded. This suggests that jointly

optimizing optical and digital parameters on different datasets can be beneficial and

can improve an optical-digital system’s recognition accuracy over an implementation

with fixed optical system.
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Chapter 6

Conclusions

6.1 Thesis Summary and Conclusions

We have introduced two innovative approaches for image classification by spatial fil-

tering: a directional image sensor with fixed response and a phase-imaging sensor

with tunable response. Both approaches have been simulated and demonstrated di-

rectional edge-enhanced imaging across various datasets, such as MNIST, CIFAR-10,

and CELL, with the goal of reducing computational complexity while maintaining

high classification performance levels. By replacing the initial digital convolutional

layer with the proposed optical filtering in popular neural-network architectures such

as LeNet-5 and a basic two-layer CNN+FC, our simulations have shown a significant

reduction in complexity and slight savings in the number of parameters and memory

requirements but without significant loss in performance. This highlights the poten-

tial of the proposed approach for use in low-power devices, such as drones and micro

robots, where efficiency and performance are critical. Moreover, our study presents

a mathematical approximation of the CTF, which allows for the joint optimization

of CTF and digital neural network using stochastic gradient descent. Initial tests

have shown some improvements on the Digits-MNIST and Fashion-MNIST datasets,

suggesting that this is a promising direction. In combination with a suitable opti-

mization strategy this may open up new avenues for further development and testing

of deeper neural-network architectures on a variety of datasets.
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6.2 Future Work

Introduction of other lightweight network architectures, e.g., depth-wise convolu-

tional, could lead to more efficient, compact neural networks, maximizing perfor-

mance with minimal resources. Additionally, the removal of redundant connections

in the networks for datasets with distinct characteristics could further reduce com-

plexity using pruning techniques. For example, the blank areas at image boundary

that surround centrally-located objects in MNIST and CELL datasets contain little-

to-no information and have little-to-no impact on inference results. Clearly, network

connections to these areas could be removed to reduce computational complexity.

The joint optical-digital optimization proposed in this thesis could be another

avenue for future work. So far, we have observed only a small improvement for

CTF response followed by a single-layer neural network on the MNIST dataset. The

effectiveness of this approach should be validated on additional datasets and network

models. In this thesis, we developed a mathematical model for the CTF response,

but the same approach and optimization could be applied to the OTF response.

In this research, we observed that for different initial CTF parameters, the optimal

CTFs obtained by joint optimization are very close to the initial ones. One possible

interpretation is that, due to the computation of CTF from its parameters that relies

on very different operations (e.g, exponential) than those used in the digital layers,

the gradient of CTF parameters may not be in the same range of values as that

of the digital-layer parameters. Thus, the digital-network parameters may converge

fast while those of the CTF may remain sub-optimal. Although one could manually

adjust the learning rate of parameters in either CTF or digital portion, this would be

impractical. Therefore, a detailed comparison of gradients of the optical and digital

parts of the system is needed, perhaps followed by finding a way to balance the

learning rates of both parts of the system.
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