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ABSTRACT

Algorithms for recognizing human actions in a video sequence are needed in applica-

tions such as video surveillance and video search and retrieval. Developing algorithms

that are not only accurate but also efficient is challenging due to the complexity of

the task and the sheer size of video.

In this thesis, we develop a general framework for compactly representing, quickly

comparing, and accurately recognizing actions using empirical covariance matrices of

features. With each pixel we associate a feature vector which provides a localized

description of the action. This generates a spatio-temporally dense collection of ac-

tion feature vectors. We use the empirical covariance matrix of this feature vector

collection as a low-dimensional representation of the action. We use two supervised

learning methods, the nearest-neighbor classification and sparse-linear approximation

classification, for action recognition using labeled training dictionaries of action co-
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variance matrices. Common to both methods is the novel idea that classification

algorithms that have been developed for vectors can be re-purposed for covariance

tensors by using a log-nonlinearity to map the convex cone of covariance matrices to

the vector space of symmetric matrices.

We illustrate the approach on two types of action feature vectors. One is based on

silhouette tunnels of moving objects, and the other is based on optical flow. Action

feature vectors of the first type describe the shape of the silhouette tunnel. Action fea-

ture vectors of the second type describe various motion characteristics such as velocity,

gradient, and divergence. We demonstrate state-of-the-art recognition performance

for both types of action feature vectors on the Weizmann, KTH, YouTube and the

low-resolution ICPR-2010 challenge data sets under modest CPU requirements.

We also demonstrate how our approach can be used for sequentially detecting

changes in actions in an adaptive, unsupervised manner so as to parse a long video

into sub-videos, each containing only a single action class. We use a non-parametric

statistical framework to learn the distribution of the nearest-neighbor Riemannian

distances between feature covariance matrices of video segments. Then, we use binary

hypothesis testing to determine if new video segments include action changes. Our

algorithm can detect 98.36% of action boundaries with 0.19% false alarm rate.

We conclude by discussing how our framework can be adapted to recognize human

interactions, which is usually a more challenging problem due to occlusion between

moving individuals. We develop an approach based on dividing human interactions

into separate sequences, each containing a single individual, and then combining the

estimated action likelihoods for each individual sequence.

The excellent performance of log-covariance-matrix representation combined with

sparse-linear approximation classification demonstrated here for action recognition

should encourage the use of this framework for other recognition problems.
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Chapter 1

Introduction

The proliferation of network cameras in the last decade has led to surveillance video

overload. The volume and complexity of generated visual information far exceeds

the capacity of human operators to manage, analyze and respond in real-time. It

is, therefore, critical to develop efficient and effective automatic methods to analyze

video data with the goal of understanding the visual environment. Of the many facets

of video analysis, action recognition stands out as particularly important, since it can

lead to many practical applications in such areas as video surveillance, video search

and retrieval and human-computer interaction.

This thesis concentrates on the problem of action recognition, which is defined as

follows: given a dictionary of annotated training action videos, recognize the unknown

action of a query video. The problem is illustrated in Fig. 1·1. We would like to

recognize the action “walking” based on the prior knowledge of several actions.

This chapter contains a general introduction to the problem and motivation for

this thesis. First, we discuss some practical issues of action recognition. Some inter-

esting applications follow. Finally, we describe our contributions and present outline

of the thesis.

1.1 Action recognition challenges

Despite significant efforts by the computer vision and image processing communities,

recognizing actions in video is still a challenging problem on account of the following
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Figure 1·1: Illustration of action recognition: input is a query video
with an unknown action, output is an action label of this query video.

issues:

• Scene complexity: many videos are captured under uncontrolled conditions that

may involve clutter and occlusions, as shown in Fig. 1·2. Given a video with a

number of persons performing various activities, it is hard to track each individ-

ual and recognize his/her action. Occlusions, by hiding part of a moving object,

may also hinder effectiveness of action recognition, if discriminative information

of an action is missing from the video.

• Acquisition complexity: in many situations, a camera’s field of view (FOV) is

not fixed during video recording. A camera which is panned, tilted or zoomed-

in/-out can make a truly static background in real life appear to be “moving“ in

the video. Although humans can easily distinguish a truly moving foreground

from a “moving” background based on experience, computers are not intelligent

enough to do so. Therefore, action recognition may be severely affected by non-

stationary background in videos. Another acquisition complexity results from
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the dependence of object appearance on viewpoint. An action captured from

different viewpoints may look significantly different, as shown in Fig. 1·3.

• Action complexity: there exists intra-class motion variability and inter-class

motion ambiguity. No two individuals perform the same action in exactly the

same manner. On the other hand, different actions may look similar in some

particular poses, such as jumping and skipping.

Figure 1·2: Example of a video frame captured under uncontrolled
conditions that involves clutter and occlusions.

Figure 1·3: The action “walking” looks quite different from different
viewpoints.
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Due to the practical issues discussed above, the focus of this research is on the key

sub-problem in which the video footage only involves actions from a single moving

object without significant occlusions. Such footage may be obtained by detecting,

tracking and isolating object trajectories, although in some scenarios it may be non-

trivial. In addition to the three sources of complexity described above, the volume

of video data is an issue. Discriminative representations that are amenable to rapid

processing (to enable close to real-time operation) and have a low storage cost are

needed.

1.2 Applications

Action recognition can lead to interesting applications in many areas, such as:

• video surveillance,

• sports and entertainment,

• wildlife monitoring,

• human computer interaction.

We discuss some of these applications in detail below.

1.2.1 Video surveillance

Video surveillance is an important tool to enhance public safety and privacy protec-

tion. It has long been deployed in public places such as airports, train stations and

city centers. An example of surveillance cameras and monitors is shown in Fig. 1·4.

Millions of cameras have been mounted in large cities, such as London, Chicago and

New York. Those cameras produce endless video streams, while only a tiny fraction

of them can be processed. Since most of the surveillance videos are not critical, one

just wants to discover unusual actions from videos. If each video camera embeds an
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Figure 1·4: Surveillance cameras and monitors.

algorithm that can distinguish unusual actions and only transmits the relevant videos,

it can save a great deal of bandwidth and human labor.

1.2.2 Sports and entertainment

Figure 1·5: Examples of sports and entertainment that can use action
recognition.

Action recognition may be a useful tool to understand the content of sports and en-

tertainment videos (Fig. 1·5). Today, with the popularity of video websites (YouTube,

MegaVideo, etc.), it is quite easy to share sports and entertainment videos with friends

and family. Sometimes we are interested in searching videos that are similar to our
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own videos. Currently, this is based on metadata matching. However, labeling videos

to produce metadata is time-consuming and tedious. Actions are usually the most

important information in videos, and therefore a better video retrieval technique may

be based on action matching. A new video search engine can be developed where

input is a query video and output is its matched video that has most similar action

to that in the query video.

1.2.3 Wildlife monitoring

Figure 1·6: Wildlife monitoring example.

Action recognition includes human actions as well as animal actions. Researchers

who study wildlife behavior usually cannot stay in animal habitats for a long time.

Also, the presence of a human may affect animals’ behavior. Video cameras can

replace humans and help better understand wildlife behavior. An intelligent camera

can be triggered to record videos when an animal’s movement is detected. Based on

action recognition, perhaps different animals can be even distinguished.

1.2.4 Human-computer interaction

Action recognition can also be used for human-computer interaction. Microsoft has

developed a sensor called Kinect that can provide “controller-free gaming and enter-

tainment experience” (Fig. 1·7). It enables users to control and interact with Xbox
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Figure 1·7: Kinect sensor and human-computer interaction.

360 without using a physical controller but instead by using gestures and voice. Per-

haps in the coming years, a new Windows operating system will have a more natural

integrated user interface instead of traditional keyboard and mouse interface.

1.3 Thesis goals and contributions

Our goals in the thesis can be summarized as follows:

• develop a systematic framework for action recognition, including action repre-

sentation and classification;

• propose an action change detection algorithm;

• study the human interaction recognition problem.

1.3.1 Action recognition framework

The accuracy and efficiency of an action recognition method critically depends on:

• how to model and represent actions;

• how to classify actions.

In the thesis, we develop a novel method for action representation, based on covari-

ance matrix of a bag of local features. Covariance matrix is a compact representation
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since it extracts the second order statistics of local features and lies in a much lower

dimensional space than local features themselves. The selected features need to in-

clude discriminative properties for action classification. We implemented two types of

local features, those based on silhouette tunnel and those based on optical flow. Sil-

houette tunnel describes the shape of an action and optical flow describes the motion

dynamics of an action. Both of them include important characteristics for classifying

human actions.

Action recognition can be considered as a supervised learning problem, in which

we can determine the query action class based on the dictionary of labeled action

samples. In this thesis, we recognize an action using two classifiers: the nearest

neighbor (NN) classifier and the sparse linear approximation (SLA) classifier. The

NN classifier has been widely used in many supervised learning problems since it

is simple, effective and training free. The SLA was proposed by Wright et. al to

recognize human faces (Wright et al., 2009). The classification is based on sparse

linear approximation of a query sample with respect to an overcomplete dictionary

of training samples (base elements).

1.3.2 Action change detection

Our action recognition framework assumes that each video sequence includes only one

action class, which is not the case in many practical scenarios. Therefore, we need to

parse a long video sequence into sub-sequences, each of which only includes a single

action class. In this context, we develop a method that can identify time instants

when an action change happens (e.g., from walking to running). In other words, we

partition a video into many sub-videos so that each of them contains only one single

action. We use the non-parametric statistical framework to learn the distribution of

the nearest-neighbor distance between covariance matrices of video segments. Then,

we use binary hypothesis testing to examine if a new video segment includes action



9

change. It is an unsupervised learning method that can discover temporal boundaries

of actions without knowing action labels.

1.3.3 Human interaction recognition

We also study how to recognize human interactions, such as kissing, handshaking,

hugging, etc. It is a more challenging problem because:

• partial occlusions often happen between moving individuals;

• individual actions may not be sufficiently informative to help us fully understand

the interaction.

In this thesis, given an interaction video, we firstly divide it into individual actions

using object tracking. Then, we estimate a confidence measure for each individual

that reflects the likelihood of each action class. Finally, we combine the confidence

measure to obtain the interaction label.

1.3.4 Summary of main contributions

The main contributions of our work are summarized as follows.

• We develop a new action recognition framework based on log-covariance matri-

ces of bags of local action features;

• We generalize the vector-based NN and SLA Classification algorithms to co-

variance matrices;

• We discover discriminative features for action recognition from object silhouette

tunnels and optical flow;

• We extend the feature covariance matrix framework to the unsupervised action

change detection problem;
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• We develop a feature covariance based method for human interaction recogni-

tion.

1.4 Outline of the thesis

The outline of the thesis is as follows:

Chapter 2 reviews related work on action recognition. It categorizes past work

with respect to action representation model and classification algorithm used.

Chapter 3 introduces our proposed action recognition framework, including ac-

tion representation and classification. Log-covariance matrices of features are used to

represent actions. Both NN and SLA classifiers are employed for action classification.

In NN classifier, two distance metrics for covariance matrices (affine-invariant Rie-

mannian metric and log-Euclidean metric) are used instead of the Euclidean distance.

Chapter 4 discusses two examples of action feature vectors, one based on silhou-

ette tunnels and the other based on optical flow.

Chapter 5 discusses practical implementation issues for our action recognition

framework, i.e., how to process continuous video with limited memory, how to deal

with temporal misalignment between training and query segments, etc.

Chapter 6 shows experimental results for our action recognition framework,

based on four benchmark datasets: Weizmann, KTH, UT-Tower and YouTube. This

chapter also tests the robustness of our method to action variability and viewpoints,

followed by computational complexity analysis.

Chapter 7 proposes an algorithm to detect action changes in a video, based on

a non-parametric framework and binary hypothesis testing. Experimental results are

provided to show the effectiveness of our method.

Chapter 8 is dedicated to human interaction recognition. The basic idea is

to separate interaction into individuals, analyze each individual’s action and finally
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obtain the interaction label by considering the most likely concurrence of individual

actions.

Chapter 9 discusses contributions of this thesis, draws conclusions and presents

possible directions for future work.



Chapter 2

Related Work

In this chapter we review related work in action recognition. There are basically two

important issues in action recognition: action representation and action classification.

Accordingly, the existing literature on action recognition, which is vast and rapidly

growing, can be loosely grouped by the type of model used to represent actions and

the type of classification algorithm used.

2.1 Action representation

There are roughly five types of features for action representation that have been stud-

ied in the literature: shape-based features, motion-based features, geometric human

body features, interest-point features and dynamic models. These are discussed in

more detail in the following sections.

2.1.1 Shape-based features

Shape-based action representation is widely used in action recognition today. A

partial listing of papers using shape models includes (Bobick and Davis, 2001; Yilmaz

and Shah, 2005; Gorelick et al., 2007; Chen et al., 2008; Guo et al., 2009; Wang

et al., 2007; Ikizler and Duygulu, 2007; Zhang et al., 2009; Ahmad et al., 2010). This

representation relies on accurately capturing the silhouette of a moving object at each

time instant. A sequence of such silhouettes forms a silhouette tunnel, i.e., a spatio-

temporal binary mask of the moving object changing its shape in time. A silhouette

12
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tunnel is desirable for action recognition as it is invariant to luminance, color, and

texture of the moving object as well as the background. Although silhouette tunnels

do not capture motion inside objects, the moving silhouette boundary leaves a very

distinct signature of occurring activity.

An effective method based on silhouette tunnels was developed by Gorelick et al.

(Gorelick et al., 2007). At each pixel, the expected length of a random walk to the

silhouette tunnel boundary, which can be computed by solving a Poisson equation,

is treated as a shape feature of the silhouette tunnel. An action classification based

on this approach was shown to be remarkably accurate suggesting that the method

is capable of extracting highly-discriminative information. Collins and Gross (Collins

et al., 2002) have also used silhouettes to identify human actions, but their method

extracts key frames from the query video sequence and matches them with key frames

from training videos. The classification is performed by the nearest-neighbor rule

based on normalized correlation scores. This method is conceptually simple and easy

to implement, but it is based on 2-D silhouettes without considering the dynamics

of silhouette evolution. The dynamic nature of video has been also exploited by

Bobick and Davis (Bobick and Davis, 2001) who proposed a motion energy image

(MEI), that represents where motion has occurred in an image sequence, and motion

history image (MHI), that is a scalar field depicting how recently the motion occurred.

Together, MEI and MHI act as a two-component version of a temporal template, and

are compared with known actions in a database to determine the best action match.

In our work, we use silhouette-based features that fall into the category of shape-

based features. We extract various spatial and temporal distances that describe the

shape of silhouettes and thus implicitly characterize actions.
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2.1.2 Motion-based features

Motion features extract dynamic characteristics of actions, which are some of the most

discriminative attributes of actions. A partial listing of papers using motion models

includes (Lowe, 2004; Ke et al., 2005; Danafar and Gheissari, 2007; Scovanner et al.,

2007; Liu et al., 2008; Fathi and Mori, 2008; Ali and Shah, 2010; Seo and Milanfar,

2011; Wang et al., 2011). Recently, Ali et al. (Ali and Shah, 2010) proposed kine-

matic features derived from optical flow for action representation. Each kinematic

feature gives rise to a spatio-temporal pattern. Then, kinematic modes are computed

by performing Principle Component Analysis (PCA) on the spatio-temporal volumes

of kinematic features. Multiple Instance Learning (MIL) is employed to recognize ac-

tions. The idea of MIL is to represent each action video as a collection or a “bag“ of

kinematic modes in which each kinematic mode is referred to as an instance represent-

ing that video. Seo and Milanfar (Seo and Milanfar, 2011) used a 3D local steering

kernel (3D-LSK) as an action feature that can reveal global space-time geometric

information. The idea behind 3D-LSK is based on analyzing the radiometric (pixel

value) differences based on estimated space-time gradients, and using this structure

information to determine the shape and size of a canonical kernel (descriptor). They

also employed Matrix Cosine Similarity (MCS) as a similarity measure between pairs

of activity sequences, which generalizes the notion of cosine similarity between two

vectors. Wang et al. (Wang et al., 2011) proposed an approach to describe actions by

dense trajectories. They sample dense points from each frame and track them based

on displacement information from a dense optical flow field. The dense trajectories

well characterize actions and a descriptor based on motion boundary histograms is

used to encode the trajectory information.

In our work, we also use optical-flow features which fall into the category of

motion-based features. The optical-flow features extract dynamic motion attributes
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to represent actions. Some of our features have been successfully used for action

recognition in Ali et al.’s work (Ali and Shah, 2010), such as divergence, vorticity,

etc.

2.1.3 Geometric human body features

Geometric human body model can be built with static and dynamic body parameters.

They are mostly used in controlled environments where human body parts, such as

legs and arms, are easy to identify. A partial listing of papers using geometric human

body models includes (Rohr, 1994; Goncalves et al., 1995; Cunado et al., 2003; Wang

et al., 2004; Xie et al., 2011). Rohr et al. (Rohr, 1994) incorporate a 1 DOF pose

parameter to aid in model fitting. All the poses in a walking action are indexed by

a single number. The work of Goncalves et al. (Goncalves et al., 1995) promotes

three-dimensional tracking of the human arm against a uniform background using a

two-cone arm model and a single camera. However, acquiring the three-dimensional

information from videos is still a very complicated process. Xie et al. (Xie et al.,

2011) proposed a pose-based approach for locating and recognizing human actions in

video using a deformable body part model.

2.1.4 Interest-point features

Interest points, e.g., corners, SIFT features (Lowe, 1999), etc., have also been em-

ployed to represent actions. A partial listing of papers using interest-point features

includes (Dollar et al., 2005; Smith et al., 2005; Schuldt et al., 2004; Wong and

Cipolla, 2007; Niebles et al., 2008; Laptev et al., 2008; Wu et al., 2011; Le et al.,

2011; Kovashka and Grauman, 2010). Interest points are sufficiently discriminative

and are usually sparse (far fewer interest points than the number of pixels in a video

sequence). Niebles (Niebles et al., 2008) and Dollar (Dollar et al., 2005) use 2D Gaus-

sian and 1D Gabor filters to select interest points in a spatio-temporal volume. Laptev
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et al. (Laptev et al., 2008) utilize the Harris corner detector to locate local salient

pixels with significant local variations in both spatial and temporal domains. Wong

et al. (Wong and Cipolla, 2007) extract interest points by considering structural in-

formation and detecting cuboids in regions that have large probability of containing

motion. Wu et al. (Wu et al., 2011) recently proposed a new spatio-temporal context

distribution feature of interest points for human action recognition. Each action video

is expressed as a set of relative XY T coordinates between pairwise interest points in

a local region. Then, Gaussian Mixture Model (GMM) was adopted to model the

distribution of context features for each video. Le et al. (Le et al., 2011) developed an

extension of the Independent Subspace Analysis algorithm to learn spatio-temporal

features of interest points from unlabeled video data. Their method performs well

when combined with deep learning techniques such as staking and convolution to

learn hierarchical representations. Kovashka et al. (Kovashka and Grauman, 2010)

extracted local motion and appearance features, quantized them into visual vocab-

ulary and then formed candidate neighborhoods that are very discriminative for a

given action category.

Recently, probabilistic latent semantic analysis and latent Dirichlet allocation have

been applied to recognize actions. Distributions of spatio-temporal words and inter-

mediate topics are learned corresponding to human action categories in an unsuper-

vised manner. The algorithms are able to localize multiple actions in complex motion

sequences. Wang et al. proposed an unsupervised learning framework to model activ-

ities and interactions in complicated scenes (Wang et al., 2009) by using hierarchical

Bayesian models to connect low-level features, simple “atomic” activities and inter-

actions. Three hierarchical Bayesian models were proposed: the Latent Dirichlet

Allocation (LDA) mixture model, the Hierarchical Dirichlet Processes (HDP) mix-

ture model and the Dual Hierarchical Dirichlet Processes (Dual-HDP). Wang and
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Mori proposed a new “bag-of-words” representation that characterizes each frame as

a single word (Wang and Mori, 2009). Additionally, they use the semi-Latent Dirich-

let allocation (S-LDA) model and the probabilistic Latent Semantic Indexing (pLSI)

for action recognition.

2.1.5 Dynamic models

Dynamic models are among the earliest models used for human action recognition. A

partial listing of papers using dynamic models includes (Yamato et al., 1992; Starner

and Pentland, 1995; Raptis et al., 2010). The general idea is to define each static

posture of an action as a state, and describe the dynamics (temporal variations) of the

action by using a state-space transition model. An action is modeled as a set of states

and connections in the state space using a Dynamic Probabilistic Network (DPN).

Hidden Markov Model (HMM), the most commonly used DPN, has the advantages of

directly modeling time variations of features of data. The parameters of the dynamic

model can be learned from a set of training action videos. To classify an action,

the joint probability with the maximum value is selected as the criterion for action

recognition.

Kale et al. (Kale et al., 2004) used an HMM to model human gait. Each in-

dividual is characterized with one HMM and several typical silhouettes are used as

hidden states for HMM training. Brand et al. (Brand and Kettnaker, 2000) proposed

a Multi-observation-mixture-counter HMM (MOMC-HMM) to factorize the observa-

tion space. Oliver et al. further proposed a Coupled HMM (CHMM) (Oliver et al.,

2000) to model the temporal and causal correlations among hidden states. Another

model, called Dynamically-multi-linked HMM (DML-HMM) was recently developed

by Xiang and Gong (Xiang and Gong, 2006). Shi et al. (Shi et al., 2008) proposed a

semi-Markov discriminative approach by employing a Viterbi-like column generation

algorithm.
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The models adopted in the literature have their own properties. Shape mod-

els are invariant to luminance, color, and texture of the moving object as well as

background. The quality of silhouettes greatly affects the success of shape models.

Motion models extract the most discriminative attributes of actions, but sometimes

background motion can bias the motion models. Geometric human body models can

work well in and only in the controlled environment. Interest-point models extract

salient features related to moving pixels, but these features are usually sparse and

sometimes inadequate to describe an action. Dynamic models can characterize an

action very well, but it is complicated and time-consuming to estimate the model

parameters. In this thesis, we will focus on shape models and motion models, since

they are discriminative for action recognition and they are fairly easy to obtain.

2.2 Action classification

In terms of action classification, algorithms from machine learning community have

been heavily borrowed. Some action recognition methods are based on the NN classi-

fier (Gorelick et al., 2007; Bobick and Davis, 2001; Dollar et al., 2005; Cunado et al.,

2003; Wang et al., 2004; Seo and Milanfar, 2011; Liu et al., 2008; Lowe, 2004), a

straightforward method that requires no explicit training. Other methods recognize

actions by using support vector machine (SVM) (Ikizler and Duygulu, 2007; Ahmad

et al., 2010; Schuldt et al., 2004; Danafar and Gheissari, 2007; Scovanner et al.,

2007; Hoai et al., 2011). The objective of SVM is to maximize the separation margin

between classes. The approach uses a kernel function to map the training samples

to a high-dimensional feature space and finds an optimal separation hyperplane in

this feature space. Recently Hoai et al. (Hoai et al., 2011) proposed a method that

can jointly perform video segmentation and action recognition using multi-class SVM

framework and dynamic programming. Another classification technique used for ac-
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tion recognition is boosting (Zhang et al., 2009; Smith et al., 2005; Fathi and Mori,

2008; Ke et al., 2005) which improves performance of any classifier by combining a

number of weak classifiers into a strong one. A discussion of various classifiers can be

found in (Duda et al., 2001).

In recent years, classification algorithms based on sparse linear representation,

which have connections to the area of compressive sensing, have started receiving

significant attention in the computer vision and pattern recognition communities

(Wright et al., 2009; Mahoor et al., 2011; Mairal et al., 2008; Elad and Aharon,

2006; Yang et al., 2008; Mei and Ling, 2009; Ying et al., 2010; Concha et al., 2010).

Successful applications of sparse representation include face recognition (Wright et al.,

2009), facial expression recognition (Ying et al., 2010; Mahoor et al., 2011), object

recognition (Mairal et al., 2008), image denoising (Elad and Aharon, 2006), super

resolution image processing (Yang et al., 2008) and object tracking (Mei and Ling,

2009).

Concha et al. (Concha et al., 2010) developed an approach for action recognition

based on compressive sensing principles. In their method, feature vectors extracted

from each frame are randomly projected into a lower-dimensional space, and the

projected features are used in a classification algorithm based on a Hidden Markov

Model (HMM). Although compressive sensing and sparse linear representations share

a common mathematical foundation, in the work of Concha et al., compressive sensing

is mainly used for feature dimensionality reduction rather than classification based

on the characteristics of a sparse representation as in (Wright et al., 2009; Mahoor

et al., 2011; Mairal et al., 2008; Ying et al., 2010).

In our work, we use the NN classifier and sparse representation classifier for action

classification.
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Chapter 3

Proposed framework

In the previous chapter, we reviewed state-of-the-art methods for action recognition.

In this chapter, we will introduce our proposed framework, including action represen-

tation and action classification. Our approach represents an action using covariance

matrix of local feature vectors. Then, an action video is classified using supervised

learning algorithms: the nearest neighbor classifier or sparse linear approximation

(SLA) classifier.

3.1 Action recognition as a supervised learning problem

Action recognition is a supervised learning problem: given annotated training samples

and a query sample, the goal is to classify the query sample based on the training

set. There are roughly three classes of supervised learning methods: global methods,

global methods with local structure, and local methods.

Global methods treat data as abstract vectors living in high-dimensional Euclidean

space and train classifiers directly in the high-dimensional representation, as shown

in Fig. 3·1. The advantage of global methods is its compatibility with any classifier.

Although it takes full consideration of the global structure of data, it ignores local

structure that is useful for classification. Moreover, in the action recognition context,

few training samples are available but they lie in extremely high-dimensional space

(e.g., a 128×128×20 video clip is approximately vectorized into a 3×105-dimensional

vector). It is thus unfeasible, in practice, to learn the global statistical characteristics
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Figure 3·1: Action representation using global methods.

of the high-dimensional vector.

As an alternative to global methods, over the last decade or so, global methods

with apriori local structure have emerged, as shown in Fig. 3·2. These methods only

Figure 3·2: Action representation using global methods with local
structure.

consider partial correlation within data by using graphical models, e.g., Markov Ran-

dom Fields (MRF), as an a priori local data structure. Such methods are, however,

still complex and the parameters of a graphical model are difficult to estimate on the

account of very few training samples.

With data dimensionality orders of magnitude larger than the number of training

samples, in order to reliably represent an action video, we can extract a dense set of

localized features from this video, the so-called “bag of local features”, as illustrated

in Fig. 3·3. The advantage of such a “bag-of-features” action representation is that

even from a single training video clip one can extract a very large number of local
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Figure 3·3: Action representation using local methods.

features (one per pixel) from which one can reliably learn the statistical properties of

local features. As an example, a single 128 × 128 × 20 training video provides more

than 3 × 105 local features. If the local features are sufficiently discriminative, then

a high classification accuracy can be realized.

3.2 Action representation

3.2.1 Feature Covariance matrices

One undesirable aspect of the bag of local features is that as a representation its

dimensionality is even larger than the video clip from which it was extracted –the

number of pixels is multiplied by the size of the feature vector. It is, therefore, desir-

able to reduce its dimensionality in the feature space. Ideally, one would like to learn

the probability density function (pdf) of these local feature vectors. This, however,

is not only computationally-intensive, but it may not lead to a lower-dimensional

representation: a kernel-based density estimation algorithm needs to, in-effect, store

all the samples used to form the estimate. The mean feature-vector, which is low-

dimensional, can be learned reliably and rapidly but may not be sufficiently discrim-

inative. This is corroborated by our results in Chapter 6.5, where action recognition

based on just the mean feature vector performs poorly. Inspired by Tuzel et al.’s

work (Tuzel et al., 2006; Tuzel et al., 2008), we discovered that if features are well-
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chosen, then the feature-covariance matrix can provide a remarkably discriminative

representation for action recognition. The main claim of this thesis is that a feature

covariance matrix is “sufficient” for action recognition. In addition to their sim-

plicity and effectiveness, covariance matrices of local features have low storage and

processing requirements. Our action representation based on a bag of local features

and their low-dimensional covariance matrix is illustrated in Fig. 3·4. For example,

13-dimensional local feature vectors described in Section 4.1 (see Fig. 4·3) lead to a

13 × 13 covariance matrix that has 91 independent entries due to its symmetry.

Figure 3·4: Action representation based on a low-dimensional covari-
ance matrix of a bag of local feature vectors.

Let I(x, y, t) denote a video sequence and F = {fk} denote a “bag of feature

vectors” extracted from the video. Let the size of the feature set |F| be N . The

empirical covariance matrix defined on F is

C :=
1

N − 1

N∑

k=1

(fk − µ)(fk − µ)T , (3.1)

where µ is the mean feature vector: µ =
∑N

k=1 fk. The covariance matrix provides a

natural way to fuse multiple feature vectors. The dimension of the covariance matrix

is only related to the dimension of the feature vectors. If fk is d dimensional, then C

is a d × d matrix. Due to its symmetry, C has only (d2 + d)/2 independent numbers.

Since d is usually much less than N , C usually lies in a much lower dimensional space

than the “bag of feature vectors” that need N × d dimensions.



24

3.2.2 Log-covariance matrices

Covariance matrices do not lie in Euclidean space, but instead they form a convex

cone. For example, the space of covariance matrices is not closed under multiplica-

tion with negative scalers. Most of the common machine learning methods work on

Euclidean spaces and thus covariance matrices are not suitable features. One idea

to solve this problem is to map the convex cone of covariance matrices to the vector

space by using the matrix logarithm, proposed by Arsigny et al. (Arsigny et al.,

2006), as shown in Fig. 3·5. The log-covariance matrix LS of a covariance matrix

CS is computed as follows. Suppose that the eigen-decomposition of CS is given by

CS = V DV ′, where the columns of V are orthonormal eigenvectors and D is the

diagonal matrix of eigenvalues. Then LS = log(CS) = V D̃V ′, where D̃ is a diagonal

matrix obtained from D by replacing D’s diagonal entries by their logarithms.

Figure 3·5: Matrix logarithm that maps covariance matrices from a
convex cone to Euclidean space.

There are three key ingredients in our action representation method:

• Dense bag of local features,

• Feature covariance matrices,

• Log-covariance matrices.
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We define an operator Ψ which transforms an input video clip into an output log-

covariance matrix representation, as shown in Fig. 3·6.

Figure 3·6: Operator Ψ composed of three ingredients in action rep-
resentation.

3.3 Classification

We have introduced an action representation using low-dimensional log-covariance

matrices of a “bag of features”. The next problem is how to classify a query action

sample based on the representations of training samples. The general framework for

action classification is shown in Fig. 3·7. In this thesis, we investigate two learning

approaches for action classification: the nearest neighbor classification and sparse

linear approximation (SLA) classification.

3.3.1 Nearest-neighbor classification

Nearest-neighbor (NN) classification is one of the most widely used algorithms in

supervised learning. The idea is simple and straightforward: given a query sample,

find out the most similar sample (under some distance measure) in the annotated

training set and assign its label to the query sample as described in Fig. 3·8.

The success of NN classification strongly depends on the distance measure that

is used. Therefore, we firstly introduce two appropriate distance metrics for covari-

ance matrices: affine-invariant Riemannian metric and log-Euclidean metric. Then,
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Figure 3·7: Ψ operator that includes the three ingredients in action
representation.

Figure 3·8: Diagram of NN-based classifier.

we analyze the possible reason why log-Euclidean metric outperforms the Euclidean

metric in NN classification.
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Distance metrics

The set of covariance matrices of a given dimension does not form a vector space (it

forms a convex cone). The Euclidean distance does not correctly capture the topology

of the convex cone of symmetric non-negative definite matrices. This is corroborated

by the experimental results of Chapter 6.5, where a simple NN classification algo-

rithm using the Euclidean metric to measure distances between covariance matrices

performs poorly. There are at least two metrics defined on the Riemannian manifold

of covariance matrices that have been studied in the literature, namely, the affine-

invariant Riemannian metric (Forstner and Moonen, 1999) and the log-Euclidean

metric (Arsigny et al., 2006).

A. Affine-invariant Riemannian metric

The affine-invariant Riemannian metric ρ1 defined below was proposed by Forstner

and Moonen (Forstner and Moonen, 1999), and has been successfully used in object

tracking and face localization (Tuzel et al., 2006; Tuzel et al., 2008). If C1 and C2

are two covariance matrices, then,

ρ1(C1, C2) : = || log(C−1
2 C1)||2 =

√√√√
d∑

k=1

log2 λk(C1, C2), (3.2)

where log(·) denotes the matrix-logarithm, || · ||2 denotes the Frobenius norm on

matrices, and λk(C1, C2) are the generalized eigenvalues of C1 and C2, i.e.,

λkC1uk = C2uk, (3.3)

where uk 6= 0 is the k-th generalized eigenvector. This distance measure captures the

manifold structure of covariance matrices and satisfies the metric axioms of positivity,

symmetry, and triangle inequality. It is also invariant to invertible affine transforma-

tions of the local features, that is, if C1 and C2 are respectively the covariance matrices
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of F1 and F2 and C̄1 and C̄2 are respectively the covariance matrices of AF1 +b1 and

AF2 + b2, where A is an invertible matrix, then,

ρ1(C1, C2) = ρ1(C1, C2).

B. Log-Euclidean metric

The log-Euclidean metric ρ2 defined below and proposed by Arsigny et al. (Arsigny

et al., 2006), is another Riemannian metric on the manifold of covariance matrices.

We know that log-covariance matrices lie in a vector space. Then, distances between

covariance matrices can be simply measured by any norm (the Frobenius norm in

particular) in the transformed Euclidean space, specifically,

ρ2(C1, C2) : = || log(C1) − log(C2)||2 (3.4)

where log(·) denotes matrix-logarithm and || · ||denotes the Frobenius norm on ma-

trices.

3.3.2 Sparse linear classification

In this subsection, we exploit discriminative nature of sparse linear representations

(Wright et al., 2009) to perform action classification. This approach is generic and has

been applied to many vision tasks, such as face recognition, image super-resolution

and image denoising. The key idea underlying this approach is that if the training

vectors of all the classes are pooled together and a query vector is expressed as a linear

combination of the fewest possible training vectors, then the majority of the training

vectors in the linear combination are likely to be of the same class as the query

vector. The pooling together of the training vectors of all the classes is important

for classification because the training vectors of each individual class may well span

the space of all query vectors. The pooling together induces a “competition” among
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the training vectors of different classes to approximate the query using the fewest

possible training vectors. We extend this approach to action recognition by applying

it to (column-wise) vectorized log-covariance matrices that we refer to as samples.

Specifically, we approximate the log-covariance matrix of a query segment by a sparse

linear combination of log-covariance matrices of all training segments.

If there are sufficiently many training samples, it is likely that the log-covariance

vector of the query sample can be well-approximated by a sparse linear combination

of the log-covariance vectors of training samples that only come from the category

of the query sample. Thus, the sparse coefficients of the linear combination are very

informative since the non-zero coefficients, especially large ones, are likely to indicate

the label of the query sample. This sparse representation can be obtained by solving

an l1− minimization problem using linear programming. We can then annotate the

query sample based on the coefficients of the sparse linear representation. In this sec-

tion, we first explain how the log-covariance matrix of a query action segment can be

approximated by a sparse linear combination of log-covariance matrices of all train-

ing action segments by solving an l1−norm minimization problem. We then discuss

how the locations of large non-zero coefficients in the sparse linear approximation can

be used to determine the query label. The overall classification framework based on

these ideas is shown in Fig. 3·9.

Sparse linear combination

Suppose we have obtained the log-covariance vectors of training samples for each

action class: Pi = [pi,1,pi,2, · · · ,pi,ni
], where i denotes the i-th class and ni is the

number of training samples in class i. We can stack up all the training samples

column by column to form a matrix P := [P1, P2, · · · , PM ] ∈ R
K×N , where K is the

dimensionality of log-covariance vectors, M is the number of training action classes

and N =
∑M

j=1 nj .
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Figure 3·9: Diagram of SLA classification.

Given a query sample pquery, one may attempt to express it as a linear combination

of training samples by solving the matrix-vector equation given by:

pquery = Pα ∈ R
K , (3.5)

where α ∈ R
N is the coefficient vector. Since N ≫ K, the system of linear equa-

tions associated with pquery = Pα is underdetermined and thus its solution α is not

unique. We seek a sparse solution to (3.5) where, under ideal conditions, the only

nonzero coefficients in α are those which correspond to the class of the test sample.

Such a sparse solution can be found, in principle, by solving the following NP-hard

optimization problem:

α
∗ = arg min ‖α‖0, s.t. pquery = Pα, (3.6)

where ‖ · ‖0 denotes the l0-norm, which counts the number of non-zero entries in a
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vector. A key result in the theory of compressive sensing is that if the optimal solution

α
∗ is sufficiently sparse, then solving the l0-minimization problem (3.6) is equivalent

to solving the following l1-minimization problem

α
∗ = arg min ‖α‖1, s.t. pquery = Pα. (3.7)

This problem is a convex optimization problem that can be solved in polynomial time.

So far we have dealt with the l1-minimization problem where pquery = Pα is

assumed to hold exactly. Since action segments may be noisy, it is more accurate to

introduce a noise term z in this system as follows:

pquery = Pα + z, (3.8)

where z is an additive noise term whose length is assumed to be bounded by ε, i.e.,

‖z‖2 ≤ ε. This leads to the following robust l1-minimization problem:

α
∗ = arg min ‖α‖1, s.t. ‖Pα − pquery‖2 ≤ ε. (3.9)

SLA-based classification algorithm

We have introduced the SLA framework in which we are interested in finding the

sparsest linear approximation α
∗ of a test sample using training samples from a

dictionary. We now describe how to use this framework for action recognition. Each

coefficient of α
∗ weighs the contribution of its corresponding training sample to the

representation of the test sample. Ideally, the sparse non-zero coefficients should

be only associated with the class of the test sample. However, in practice non-zero

coefficients often relate to multiple action classes. Therefore, we need to examine

these classes and estimate the class of the test sample. To this end, we follow Wright

et. al, 2009, and use a measure called the reconstruction residual error (RRE). Let

α
∗
i = [α∗

i,1, α
∗
i,2, · · · , α∗

i,ni
] denote the coefficients associated with class i, corresponding
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to training matrix Pi. The RRE measure of class i is defined as:

Ri(pquery) = ‖pquery − Piα
∗
i ‖2. (3.10)

To annotate the sample pquery we assign the class label that leads to the minimum

RRE. The action recognition algorithm based on sparse representation framework can

be summarized as follows:

1. Compute the log-covariance descriptor for each action segment;

2. Given pquery, solve the l1-minimization problem (3.9) to obtain α
∗;

3. Compute RRE for each class i based on (3.10);

4. Annotate the query sample pquery as: label(pquery) = arg mini Ri(pquery)



Chapter 4

Features

In previous chapter, we introduced a framework for action recognition, including

action representation using log-covariance matrices and action classification based on

NN or SLA algorithms. This framework is generic and can be applied in different

supervised learning scenarios. The success of this framework requires that the selected

features represent motion dynamics. In this section, we will introduce two examples

of local feature vectors that extract discriminative characteristics of actions in videos.

4.1 Silhouette tunnel shape features

Objects which undergo similar actions can have very different photometric, chromatic

and textural properties in different scenes. Motion characteristics are relatively in-

variant to these properties. One example of features that obey these invariance prop-

erties is to base them directly on a sequence of 2-D silhouettes of the moving and

deforming object (see Fig. 4·1). Simple background subtraction techniques (Elgam-

mal et al., 2002) and more-advanced spatio-temporal video segmentation methods

based on level-sets (Ristivojević and Konrad, 2006) are capable of producing an ob-

ject silhouette sequence from raw video action sequence. Under ideal conditions, each

frame in the silhouette sequence would contain a white mask (white = 1) which ex-

actly coincides with the 2-D silhouette of the moving and deforming object against a

“static“ black background (black = 0). A sequence of such object silhouettes in time

forms a spatio-temporal volume in x-y-t space that we refer to as a silhouette tunnel.

33
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Figure 4·1: Example of a human action sequence from the Weizmann
Human Action Database: Three frames from a “jumping-jack” action
sequence (top row) and corresponding silhouettes (bottom row).

Since changes in object position are of secondary importance for action recognition,

we need to remove object motion. We can do this by aligning the centroids of object

silhouettes in the background-subtracted sequence to the same spatial coordinates.

Silhouette tunnel actually depicts an action as a 3-D shape. Thus, action comparison

is converted into shape comparison, i.e., how to measure the similarity between pairs

of 3-D shapes. There is an extensive body of literature devoted to the representation

and comparison of shapes of volumetric objects. A variety of approaches have been

explored ranging from deterministic mesh models used in the graphics community

to statistical models, both parametric (e.g., ellipsoidal models) and non-parametric

(e.g., Fourier descriptors). In this dissertation, 3-D silhouette shapes are compared

based on the covariance matrices of local feature vectors, extracted from their silhou-

ette tunnels. Fig. 4·2 shows a block diagram of the proposed action representation

using silhouette shape features.
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Figure 4·2: Operator Ψsilh that extracts normalized 13×13 covariance
matrix of an action in the video.

4.1.1 Shape feature vectors

Let s = (x, y, t)T denote the horizontal, vertical, and temporal coordinates of a pixel.

Let A denote the set of coordinates of all pixels belonging to an action segment

which is W pixels wide, H pixels tall, and N frames long, i.e., A := {(x, y, t)T : x ∈

[1, W ], y ∈ [1, H ], t ∈ [1, T ]}. Let S denote the subset of pixel-coordinates in A which

belong to the silhouette tunnel. With each pixel located at s within the silhouette

tunnel, we associate the following 13-dimensional feature vector f(s) that captures

certain shape characteristics of the tunnel (Guo et al., 2009):

f(x, y, t) :=[x, y, t, dE, dW , dN , dS, dNE, dSW , dSE, dNW , dT+, dT−]T , (4.1)

where (x, y, t)T ∈ S and dE , dW , dN , and dS are Euclidean distances from (x, y, t)

to the nearest silhouette boundary point to the right, to the left, above and below

the pixel, respectively. Similarly, dNE, dSW , dSE, and dNW are Euclidean distances

from (x, y, t) to the nearest silhouette boundary point in the four diagonal directions,

while dT+ and dT− are similar measurements in the temporal direction. Clearly, these

10 distance measurements capture silhouette tunnel shape as “seen” from location
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(x, y, t)T . Fig. 4·3 depicts these features graphically.

Figure 4·3: Each point s0 = (x0, y0, t0)
T of a silhouette tunnel within

an N -frame action segment has a 13-dimensional feature vector asso-
ciated with it: 3 position features x0, y0, t0, and 10 shape features
given by distance measurements from (x0, y0, t0) to the tunnel bound-
ary along 10 different spatio-temporal directions shown in the figure.

There is one shape feature vector f associated with each pixel of a silhouette

tunnel, and thus there are a large number of feature vectors. The collection of all

feature vectors F(S) := {f(s) : s ∈ S} is an overcomplete representation of the shape

of the silhouette tunnel because S is completely determined by F and it contains

additional data which are redundant. It is instructive to see how individual feature

components change with the change of pixel location. Fig. 4·4 depicts each of the

13 features for a single silhouette frame (x-y slice of a silhouette tunnel for a fixed

value of t) as an intensity image, where higher brightness means larger value of that

feature. In this figure, the origin of the coordinate system is in the left-top corner of

the image.

Note that the intensity of the x-component image increases linearly from left to

right inside the silhouette whereas the intensity of the y-component image increases

from top to bottom. However, the intensity of the t-component image is spatially-
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x y t

dE dN dNE dSE dT+

dW dS dSW dNW dT−

Figure 4·4: Individual components of feature vector f(x, y, t) depicted
as intensity images with t fixed and (x, y) variable. The origin is at the
top left corner and brighter points denote larger values.

constant since all pixels in the same frame have the same value of t. Similarly, the

dW image has lower values (dark) at the left of the silhouette since it measures the

distance to the left silhouette boundary whereas the dT
−

and dT+
images are very

bright (large distance) in the torso and darker (shorter distance) within the limb

areas. This is to be expected since the position of the torso is largely unchanged

across time after centroid alignment whereas legs and arms move significantly. This

potentially shortens the temporal distance to the silhouette tunnel boundary.
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4.1.2 Shape covariance matrix

After obtaining 13-dimensional silhouette shape feature vectors, we can compute their

13 × 13 covariance matrix CS , defined as follows. Let S = (X, Y, T )T denote a

random location vector which is uniformly distributed over S, i.e., the probability

mass function of S is equal to zero for all locations s /∈ S and is equal to 1/|S|

at all locations in S, where |S| denotes the volume of the silhouette tunnel. Then,

CS := cov(F) where F := f(S). More explicitly,

CS := cov(F) =
1

|S|

∑

s∈S

(f(s) − µF )(f(s) − µF )T (4.2)

where µF = E[F] =
∑

s∈S
1
|S|

f(s) is the mean feature vector. Thus, CS is an empirical

covariance matrix of the collection of vectors F(S). It captures the second-order

empirical statistical properties of the collection. Note, that the volume of a silhouette

tunnel |S| is typically more than 104, often more than 105 (e.g., a 128 × 128 × 20

video). Since a covariance matrix is symmetric, only (132+13)/2 = 91 of its entries are

independent thus affording a low-dimensional representation of all feature samples,

independently of their number.

4.1.3 Normalization for spatial scale invariance

The shape covariance matrix CS in (4.2) computed from the 13 features in (4.1) is

not invariant to spatial scaling of the silhouette tunnel, i.e., two silhouette tunnels

S and S ′ that have identical shape but differ in spatial scale will have different co-

variance matrices. To illustrate the problem, ignoring integer-valued constraints, let

a > 0 be a spatial scale factor and let S ′ := {(ax, ay, t)T : (x, y, t)T ∈ S} be a sil-

houette tunnel obtained from S by stretching the horizontal and vertical dimension

(but not time) by the factor a. Then |S ′| = a2|S|. Consider the covariance between

the x-coordinate and the distance to the top boundary dN (both are spatial features)
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for both S and S ′. These are respectively given by cov(X, DN) and cov(X ′, D′
N)

where X ′ = aX and D′
N = aDN . Consequently, cov(X ′, D′

N) = a2cov(X, DN).

An identical relationship holds for the covariance between any pair of spatial fea-

tures. The covariance between any spatial feature and any temporal feature for S ′

will be a times that for S (instead of a2) and the covariance between any pair of

temporal features for S ′ and S will be equal. To see how the shape covariance ma-

trix can be made invariant to spatial scaling of the silhouette tunnel, observe that

cov(X ′/
√
|S ′|, D′

N/
√
|S ′|) = cov(X/

√
|S|, DN/

√
|S|). Thus, in order to obtain a

spatially scale-invariant shape covariance matrix, we must divide every spatial fea-

ture by the square root of the volume of the silhouette tunnel before computing the

empirical covariance matrix using (4.2).

A similar approach can be used for temporal scaling which can arise due to frame

rate differences between the test and dictionary action segments. However, since

most cameras run at either 15 or 30 frames/fields per second, in this work we assume

that the frame rates are identical and the segment size N is the same for the test

and dictionary action segments. By construction, the shape covariance matrix is

automatically invariant to spatio-temporal translation of the silhouette tunnel. It

is, however, not invariant to rotation of the silhouette tunnel about the horizontal,

vertical, and temporal axes. Rotations about the temporal axis by multiples of 45◦

have the effect of permuting the spatial components of the feature vector. In this

work, however, we will assume that the test and dictionary silhouette tunnels have

roughly the same spatial orientation. Rotations about the horizontal and vertical

axes are less of a problem in practice because they may not correspond to meaningful

real-world silhouette tunnels.
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4.2 Optical flow features

In Section 4.1 we have introduced 13-dimensional silhouette shape feature vectors.

However, silhouette tunnels are sometimes noisy and unreliable due to the complex-

ity of real-life environments and intrinsic deficiencies of background subtraction algo-

rithms. Thus, we explore another type of local feature vectors, obtained from optical

flow of action videos. There have been hundreds of papers written in the past few

decades focusing on optical flow computation. Here we use a variant of the Horn-

Schunck method, which optimizes a functional based on residuals from the intensity

constraint and a smoothness regularization term (Zach et al., 2007). Let I(x, y, t)

denote the raw video sequence and let u(x, y, t) represent the corresponding optical

flow vector u = (u, v) at each pixel position (x, y, t). Based on I(x, y, t) and u(x, y, t),

we define the following feature vector f(x, y, t) (Guo et al., 2010c):

f(x, y, t) :=[x, y, t, It, u, v, ut, vt, Div, V or, Gten, Sten]T , (4.3)

where (x, y, t)T ∈ A. It is the 1-st order partial derivative of I(x, y, t) with respect to

t, i.e.,

It =
∂I(x, y, t)

∂t
,

u and v are optical flow components, and ut and vt are respectively the 1-st order

partial derivatives of u(x, y, t) and v(x, y, t) with respect to t. Div is the spatial

divergence of the flow field and is defined at each pixel position as:

Div(x, y, t) =
∂u(x, y, t)

∂x
+

∂v(x, y, t)

∂y
. (4.4)
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Divergence can capture the amount of local expansion in the fluid, which can indicate

action differences. V or is the vorticity of flow fields and is defined as:

V or(x, y, t) =
∂v(x, y, t)

∂x
−

∂u(x, y, t)

∂y
. (4.5)

In fluid dynamics, vorticity is used to measure local spin around the axis perpendicular

to the plane of the flow field. Thus, it is useful to highlight locally circular motion

of the moving object. Before explaining Gten and Sten, we need to introduce two

matrices, called gradient tensor of optical flow ∇u(x, y, t) and rate of strain tensor

S(x, y, t):

∇u(x, y, t) =

(
∂u(x,y,t)

∂x

∂u(x,y,t)
∂y

∂v(x,y,t)
∂x

∂v(x,y,t)
∂y

,

)
(4.6)

S(x, y, t) =
1

2
(∇u(x, y, t) + ∇u(x, y, t)T ). (4.7)

Gten and Sten are tensor invariants that remain constant no matter what coordinate

system they are referenced in. They can be written as follows:

Gten(x, y, t) =
1

2
(tr(∇u(x, y, t))2 − tr(∇u(x, y, t)2)), (4.8)

Sten(x, y, t) =
1

2
(tr(S(x, y, t))2 − tr(S(x, y, t)2)), (4.9)

where tr(·) stands for the trace operation.

Similarly to silhouette-based action representation, we compute the empirical

12 × 12 covariance matrix CS of feature vectors. Note that only some of these fea-

ture vectors are related to the action of moving objects while the remaining feature

vectors just indicate background characteristics. Therefore, we select feature vectors

associated with a moving object whose corresponding It is greater than a threshold.



42

Only those feature vectors whose corresponding It is greater than some threshold are

used to calculate the covariance matrix. Fig. 4·5 shows a block diagram of the action

representation based on optical flow feature vectors.

Figure 4·5: Operator Ψopti that extracts 12× 12 covariance matrix of
an action in the video.



Chapter 5

Practical considerations

We have described our proposed framework for action recognition, as well as two

examples of localized features. There are still some practical considerations in action

recognition that we need to consider (Guo et al., 2010b).

5.1 Processing continuous video

In practical cases, we usually need to recognize actions in a continuous video. How-

ever, with limited memory, sometimes it is impossible to process the whole video. It

is therefore necessary to partition a video into segments (Fig. 5·1), and each time

we just need to process a video segment. Additionally, using video segments can

enhance the robustness of our action recognition approach. A query video, without

being partitioned into segments, can only lead to one feature log-covariance matrix.

If it is misclassified, there will be no chance to obtain the correct label for the query

action. On the contrary, if the query video is divided into segments, it can still be

correctly classified even if a few segments are misclassified.

5.2 Length of segments

Many actions, such as walking, running, jumping etc., are roughly repetitive (Fig. 5·2).

Therefore, for repetitive actions, an appropriate segment length is the approximate

number of frames in an action period. The typical period for many human actions

is on the order of 0.4-0.8 second (except for very fast or very slow motion). For a

43
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Figure 5·1: Illustration of video segments.

camera operating at 25 fps, the typical length of an action segment is 10–20 frames.

Figure 5·2: Illustration of the repetitive nature of action “walking”
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5.3 Temporal misalignment

Suppose there are two videos A and B that include the same action class. Both of

them are partitioned into video segments. It is possible that a video segment from A

cannot find a good match in video B, due to temporal misalignment. This motivates

the need to break a video sequence into successive overlapping action segments, as

shown in Fig. 5·3. By doing so, actions in video segments can be better synchronized

and it is more likely to find well-matched segments. Overlapping video segments can

also enrich the training set so that action classification can be more reliable.

Figure 5·3: Illustration of overlapping segments.

5.4 Majority rule

After partitioning a query video into overlapping segments, we can apply our action

recognition approach to each video segment and obtain a sequence of action labels.

Suppose each query video only involves one action class, then segment-level action

labels can be fused into sequence-level decision based on the majority rule, which

take the most frequent segment label as the label of sequence. An example is shown

in Fig. 5·4.
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Figure 5·4: Illustration of the majority rule.

5.5 Summary of overall approach

Based on our action recognition framework and practical considerations, the overall

approach can be summarized as follows:

1. Partition videos into overlapping action segments (Fig. 5·5);

2. Represent each action segment using the log-covariance matrix of features (Fig. 5·6);

3. Classify each query segment based on NN or SLA classification algorithms

(Fig. 5·7);

4. Use the majority rule to decide the action label of the query video (Fig. 5·4).
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Figure 5·5: Illustration of segment partitioning.

Figure 5·6: Illustration of action representation.
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Figure 5·7: Illustration of action classification.



Chapter 6

Experimental results

In previous chapters, we introduced the overall approach for action representation.

Specifically, we used two different features based either on a silhouette tunnel or opti-

cal flow to represent action dynamics. Then, NN and SLA classifiers were respectively

employed for action classification. Thus, there are four possible implementations (2

types of feature vectors × 2 types of classifiers) to recognize actions. We evaluate

their performance on four publicly-available datasets: Weizmann (Gorelick et al.,

2007), KTH (Schuldt et al., 2004), UT-Tower (Chen et al., 2010) and Youtube action

datasets (Liu et al., 2009).

Our performance evaluation was based on leave-one-out cross validation (LOOCV),

as illustrated in Fig. 6·1. First, we divided each video sequence into N -frame long

overlapping action segments. Then, we selected one of the action segments as a query

segment and used the remaining segments as the training set (except those segments

that came from the same video sequence as the query segment). Finally, we identified

action class of the query segment. We repeated the procedure for all query segments

in the dataset and calculated the correct classification rate (CCR) as the percentage

of query segments that were correctly classified. We call this rate the segment-level

CCR, or SEG-CCR. In practice, however, one is usually interested in classification

of a complete video sequence instead of one of its segments. Since segments provide

time-localized action information, in order to obtain classification for the complete

video sequence we employed the majority rule (dominant label wins) to all segments

49
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in this sequence. This produces a sequence-level CCR, or SEQ-CCR, defined as the

percentage of query sequences that are correctly classified.

Figure 6·1: Illustration of leave-one-out cross validation.

We also tested our method using “leave-part-out” cross validation (LPOCV), a

more challenging test sometimes reported in the literature (Fig. 6·2). In LPOCV,

we divided the action segments into non-overlapping training set and test set. After

selecting a test segment from the test set, we assigned a class label based on the

training set. We repeated this procedure for all test segments. The main difference

between LPOCV and LOOCV is that the training set in LPOCV is fixed with less

training samples than in LOOCV if both are based on the same dataset. Thus, it is

expected that LPOCV will attain poorer performance than LOOCV if other settings

remain the same.



51

Figure 6·2: Illustration of leave-part-out cross validation.

6.1 Tests on the Weizmann dataset

We conducted a series of experiments on the Weizmann Human Action Database

available online1 (Gorelick et al., 2007). Although this is not a very challenging

dataset, many state-of-the-art approaches report performance on it thus affording

an easy comparison. The database contains 90 low-resolution video and silhouette

sequences (180×144 pixels) that show 9 different people each performing 10 different

actions, such as jumping, walking, running, skipping, etc. Some action examples are

shown in Fig. 6·3.

We first measure the performance of our action recognition method using silhou-

ette features, and then using optical flow features.

1http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeActions.html
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Figure 6·3: Action examples from Weizmann dataset.

6.1.1 Silhouette features

We tested the action recognition performance using NN and SLA classifiers. When we

use NN classifier, we obtain SEG-CCR of 97.05% and SEQ-CCR of 100% for segment

length N = 8. Table 6.1 shows the action “confusion” matrix based on SEG-CCR.

The element in row i and column j of the matrix indicates the percentage of action

i segments which were classified as action j. The sum of all elements in every row is

100%. The confusion matrix indicates that while some actions are more confusing,

such as “skipping” and “jumping”, others are easier to distinguish, such as “bending”

and “jumping-jack”.

If we use the SLA classifier, we obtain SEG-CCR of 96.74% and SEQ-CCR of

100% for N = 8. Table 6.2 shows the segment-based action “confusion” matrix. In

order to compare the efficacy of NN and SLA classifier, we compute their SEG-CCR

and SEQ-CCR under different segment length (N = 8 and N = 20) and different

cross validation methods (LOOCV and LPOCV), as shown in Table 6.3. In Table

6.4, we compare the proposed method with some recent action recognition algorithms

that are based on LOOCV.

The above experimental results indicate that:
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Table 6.1: Segment-based action confusion matrix for the proposed
method (Silhouette features + NN classifier) on 8-frame segments
(SEG-CCR = 97.05%).
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bend 98.6 0 0 0 0 0 0 0 0 1.4
jack 0 100 0 0 0 0 0 0 0 0
jump 0 0 96.1 0 0 0 3.9 0 0 0
sjump 0 0 0 99.3 0 0 0 0 0 0.7
run 0 0 0 0 94.0 1.2 2.4 2.4 0 0
side 0 0 0 0 0 100 0 0 0 0
skip 0 0 1.0 0 10.3 0 86.7 2.1 0 0
walk 0 0 0 0 1.3 0 0 98.7 0 0
wave1 0 0 0 0 0 0 0 0 98.0 2.0
wave2 0 0 0 0 0 0 0 0 4.9 95.1

Table 6.2: Segment-based action confusion matrix for the proposed
method (optical flow features + SLA classifier) on 8-frame segments
(SEG-CCR = 96.74%).
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bend 91.9 1.3 0 0.7 0 0 0 0 4.1 2.0
jack 0 99.4 0 0.6 0 0 0 0 0 0
jump 0 95.1 0 0 2.0 2.9 0 0 0
sjump 0 0.8 0 96.7 0 2.5 0 0 0 0.7
run 0 0 0 1.2 91.6 0 1.2 6.2 0 0
side 0 0 0 0 0 100 0 0 0 0
skip 0 0 1.0 0 4.2 0 92.7 2.1 0 0
walk 0 0 0 0 0 0 0 100 0 0
wave1 0 0 0 0.6 0 0 0 0 99.4 0
wave2 0 1.4 0 0 0 0 0 0 1.4 97.2

Table 6.3: Comparison of NN and SLA classifiers based on silhouette
features for Weizmann dataset.

NN classifier SLA classifier
SEG-CCR SEQ-CCR SEG-CCR SEQ-CCR

N=8 LOOCV 97.05% 100% 96.74% 100%
LPOCV 90.88% 91.11% 91.35% 95.56%

N=20 LOOCV 98.68% 100% 99.49% 100%
LPOCV 91.82% 95.56% 93.61% 95.56%

• the proposed framework for action recognition achieves remarkable performance

(up to 97% SEG-CCR and 100% SEQ-CCR);
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Table 6.4: Comparison of silhouette-based action recognition (N=8)
using LOOCV on Weizmann dataset.

NN SR-based
Method classifier classifier Gorelick Niebles Ali Seo Xie Ikizler

SEG-CCR 97.05% 96.74% 97.83% - 95.75% - - -
SEQ-CCR 100% 100% - 90% - 96% 95.6% 100%

• larger N leads to better classification performance;

• using LPOCV results in lower CCR than using LOOCV since LPOCV has a

smaller training set and accordingly is more challenging;

• in most cases, the SLA classifier has similar or better performance compared to

the NN classifier;

• the majority rule improves the recognition performance.

6.1.2 Optical flow features

In contrast to previous tests, we now use optical flow features to represent action

dynamics, and either NN or SLA classifier. For the NN classifier, we obtain SEG-

CCR of 89.74% and SEQ-CCR of 91.11% (N = 8). Table 6.5 shows the action

confusion matrix based on SEG-CCR. If we use the SLA classifier, we attain SEG-

CCR of 92.69% and SEQ-CCR of 94.44%. Table 6.6 shows the action “confusion”

matrix based on SEG-CCR. Additionally, we compute their SEG-CCR and SEQ-CCR

under different segment length (N = 8 and N = 20) and different cross validation

methods (LOOCV and LPOCV), as shown in Table 6.7.

6.1.3 Variation of CCR in LPOCV

In LPOCV we partition an action dataset into non-overlapping query set and training

set, and then recognize actions in query videos. However, our previous results only

show one particular leave-part-out partition, which may not be indicative of the
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Table 6.5: Segment-based action confusion matrix for the proposed
method (optical flow features + NN classifier) on 8-frame segments
(SEG-CCR = 89.74%).
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bend 100 0 0 0 0 0 0 0 0 0
jack 0 99.4 0 0.6 0 0 0 0 0 0
jump 0 0 66.7 0 7.1 6.1 20.1 0 0 0
sjump 0 5.8 0 93.3 0 0.8 0 0 0 0
run 0 0 1.3 0 69.6 0 27.9 1.3 0 0
side 0 0 4.2 0 3.2 83.2 3.2 6.3 0 0
skip 0 0 11.7 0 29.8 0 58.5 0 0 0
walk 0 0 0 0 0 0 0 100 0 0
wave1 0 0 0 0 0 0 0 0 98.7 1.3
wave2 0 0 0 0 0 0 0 0 1.4 98.6

Table 6.6: Segment-based action confusion matrix for the proposed
method (optical flow features + SLA classifier) on 8-frame segments
(SEG-CCR = 92.69%).
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bend 98.4 0 0 0 0 0 0 0 1.6 0
jack 0 100 0 0 0 0 0 0 0 0
jump 0 0 71.7 0 1.0 4.0 19.2 3.0 0 1.0
sjump 0 0.9 0 99.1 0 0 0 0 0 0.7
run 0 0 1.3 0 82.3 1.3 8.9 5.0 1.2 0
side 0 0 2.1 0 0 96.9 0 1.0 0 0
skip 0 0 11.2 0 12.8 0 74.0 2.0 0 0
walk 0 0 0 0 0 0 0 100 0 0
wave1 3.3 0 0 0 0 0 0 0.7 94.0 2.0
wave2 0 0 0 0 0 0 0 0 0 100

Table 6.7: Comparison of NN and SLA classifiers based on optical
flow features for Weizmann dataset.

NN classifier SR-based classifier
SEG-CCR SEQ-CCR SEG-CCR SEQ-CCR

N=8 LOOCV 89.74% 91.11% 92.69% 94.44%
LPOCV 79.45% 80.00% 83.20% 88.89%

N=20 LOOCV 91.93% 92.22% 94.09% 94.44%
LPOCV 81.80% 82.22% 87.35% 88.89%

overall classification performance under LPOCV. Thus, we randomly partition the

action dataset in 100 trails, and each time we compute SEG-CCRs and SEQ-CCRs
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under each partition. Finally, we can compute the mean and variance of all SEG-

CCRs and SEQ-CCRs, to obtain an average classification performance and its spread,

as shown in Table 6.8.

Table 6.8: Mean and standard deviation (Std) of SEG-CCRs and
SEQ-CCRs based on random partitions in LPOCV using NN classifier.

Feature Mean Std Mean Std
SEG-CCR SEG-CCR SEQ-CCR SEQ-CCR

Silhouette 94.95% 1.84% 98.56% 2.12%
Optical flow 82.45% 4.12% 84.56% 5.10%

We see that the mean of SEG-CCR and SEQ-CCR in Table 6.8 are greater than

the corresponding CCRs in Tables 6.3 and 6.7. It implies that the particular leave-

part-out partition in Tables 6.3 and 6.7 was more challenging than the 100 partitions

on average. Additionally, it is clear that the variances of SEG-CCR and SEQ-CCR

are small. Therefore, we see that our approach is robust to different partitions in

LPOCV.

6.2 Tests on the KTH dataset

We then conducted experiments on the KTH action dataset. This dataset contains six

different human actions: handclapping, handwaving, walking, jogging, running and

boxing, performed repeatedly by 25 people in 4 different scenarios (outdoor, outdoor

with zoomed camera, outdoor with different clothes, and indoor). Action examples

are shown in Fig. 6·4. This is a more challenging dataset because:

• the camera is no longer static (vibration and zoom-in/zoom-out);

• there are large variations in human body shape, view angles, scales and appear-

ance.
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Due to the difficulties mentioned above, we are not able to obtain a reliable silhouette

shape representation of actions.

Figure 6·4: Action examples from KTH dataset.

Thus, in this section, we test our methods using optical flow features, combined

with NN classifier and SLA classifier. For the NN classifier and LOOCV, the SEG-

CCR is 89.55% and SEQ-CCR is 98.17% (N = 20). Tables 6.9 and 6.10 show action

confusion matrices based on SEG-CCR and SEQ-CCR for LOOCV with N = 20. If

we use the SLA classifier and LOOCV with N = 20, the SEG-CCR is 90.84% and

SEQ-CCR is 98.50%. Likewise, Tables 6.11 and 6.12 show the corresponding action

confusion matrices.

Table 6.9: Segment-level action confusion matrix for the proposed
method (optical flow features + NN classifier) on 20-frame segments
(SEG-CCR = 89.55%).
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clap 90.6 5.9 2.8 0.1 0.2 0.3
wave 4.9 90.3 4.2 0 0.1 0.5
walk 1.9 3.0 94.9 0.1 1.0 0.1
jog 1.1 0.7 0.4 76.6 13.1 8.1
run 0.3 0.4 0.3 10.3 85.1 3.6
box 0.6 1.7 0.5 3.1 1.3 93.0

In LPOCV test we followed the training/query set breakup as proposed by Schuldt

et al. (Schuldt et al., 2004). When we use the NN classifier, we obtain SEG-CCR

of 85.42% and SEQ-CCR of 96.88%. When we use the SLA classifier, we obtain

SEG-CCR of 86.04% and SEQ-CCR of 97.40% in this case.
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Table 6.10: Sequence-level action confusion matrix for the proposed
method (optical flow features + NN classifier) on 20-frame segments
(SEQ-CCR = 98.17%).
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clap 100 0 0 0 0 0
wave 0 100 0 0 0 0
walk 0 1 99 0 0 0
jog 0 0 0 97 2 1
run 0 0 0 6 93 1
box 0 0 0 0 0 100

Table 6.11: Segment-based action confusion matrix for the proposed
method (optical flow features + SLA classifier) on 20-frame segments
(SEG-CCR = 90.84%).

cl
ap

w
av

e

w
al

k

jo
g

ru
n

b
ox

clap 94.1 2.8 0.8 0.1 0.2 2.0
wave 4.5 90.9 2.7 0.4 0.4 1.2
walk 1.2 1.2 97.4 0 0.1 0.2
jog 0.2 0.5 0.2 81.4 10.0 7.7
run 0 0.1 0 10.5 86.4 3.0
box 0.3 0.2 0 4.1 3.1 92.3

Table 6.12: Sequence-level action confusion matrix for the proposed
method (optical flow features + SLA classifier) on 20-frame segments
(SEQ-CCR = 98.50%).
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clap 99 1 0 0 0 0
wave 0 100 0 0 0 0
walk 0 0 100 0 0 0
jog 0 0 0 97 2 1
run 0 0 0 5 95 0
box 0 0 0 0 0 100

We compared the proposed method with some recent action recognition algo-

rithms. Table 6.13 shows results for LOOCV tests and Table 6.14 shows results for

LPOCV tests. Since we know that LPOCV is more challenging than LOOCV, it is

unfair to compare method A that is tested under LOOCV with method B that is
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tested under LPOCV. Although the SEG-CCR for our method is a little worse than

that for Ali et al.’s method (Ali and Shah, 2010), our SEQ-CCRs are in line with the

best methods today.

Table 6.13: Comparison of our optical-flow-based approach (N=20)
using LOOCV on KTH dataset.

NN SR-based
Method classifier classifier Kim Wu Wong Dollar Seo

SEG-CCR 89.55% 90.84% - - 81.0% 81.2% -
SEQ-CCR 98.17% 98.50% 95.3% 94.5% - - 95.7%

Table 6.14: Comparison of the optical-flow-based approach (N=20)
using LPOCV on KTH dataset.

NN SR-based
Method classifier classifier Ali Laptev Le Wang Kovashka

SEG-CCR 85.42% 86.04% 87.7% - - - -
SEQ-CCR 96.88% 97.40% - 91.8% 93.9% 94.2% 94.5%

6.3 Tests on the UT-Tower dataset

We also conducted experiments on the UT-Tower action dataset. The UT-tower ac-

tion dataset comes from the “Aerial View Activity Classification Challenge” in ICPR

2010 Contest on Semantic Description of Human Activities (SDHA). This dataset

contains video sequences of a single person performing various actions recorded from

the top of the University of Texas at Austin’s main tower. The dataset consists of

108 video sequences of 360 × 240 pixel resolution and frame rate of 10 fps. The

contest required classifying video sequences into 9 categories of human actions: {1:

pointing, 2: standing, 3: digging, 4: walking, 5: carrying, 6: running, 7: wave1, 8:

wave2, 9: jumping}. Each of the 9 actions is performed 2 times by 6 individuals for a

total of 12 video sequences per action category. The pointing, standing, digging, and

walking video sequences have a concrete background whereas the carrying, running,

wave1, wave2, and jumping video sequences have a lawn background. The cameras
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are stationary but have jitter. The average height of human figures in this dataset is

about 20 pixels. In addition to the challenges associated with the low resolution of

objects of interest in this dataset, there are additional challenges from shadows and

blurry visual cues. Ground truth action labels for all video sequences were provided

for training and testing. In addition, in order to alleviate segmentation and tracking

issues and make participants focus on the classification problem, ground truth bound-

ing boxes as well as foreground masks for each video sequence were also provided.

Action samples are shown in Fig. 6·5.

Figure 6·5: Action examples from UT-Tower dataset.

6.3.1 Silhouette features

We first tested action recognition performance using the NN classifier and we obtained

SEG-CCR of 93.53% and SEQ-CCR of 96.30% (N = 8). Tables 6.15 and 6.16 show

the action “confusion” matrices based on SEG-CCR and SEQ-CCR. For the SLA

classifier, we obtained SEG-CCR of 96.15% and SEQ-CCQ of 97.22%. Tables 6.17

and 6.18 show the action “confusion“ matrix based on SEG-CCR and SEQ-CCR.

6.3.2 Optical flow features

Then, we used optical flow features to represent action dynamics, together with NN

and SLA classifiers. For the NN classifier, we obtained SEG-CCR of 82.25% and

SEQ-CCR of 86.11% (N = 8). Tables 6.19 and 6.20 show the corresponding action

“confusion” matrices based on SEG-CCR and SEQ-CCR. For the SLA classifier, we
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Table 6.15: Segment-based action confusion matrix for the proposed
method (silhouette features + NN classifier) on 8-frame segments (SEG-
CCR = 93.53%).
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point 72.3 18.0 9.7 0 0 0 0 0 0
stand 5.8 92.8 1.4 0 0 0 0 0 0
dig 4.5 0.5 94.5 0 0 0 0.5 0 0

walk 0 0 0 97.3 0 2.7 0 0 0
carry 0 0 0 0 97.7 2.3 0 0 0
run 0 0 0 0 0 100 0 0 0

wave1 0 0 0 0 0 0 85.6 14.4 0
wave2 0 0 0 0 0 0 0 100 0
jump 0 0 0 0 0 1.0 0 0 99.0

Table 6.16: Sequence-based action confusion matrix for the proposed
method (silhouette features + NN classifier) on 8-frame segments (SEQ-
CCR = 96.30%).
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point 75.0 16.7 8.3 0 0 0 0 0 0
stand 8.3 91.7 0 0 0 0 0 0 0
dig 0 0 100 0 0 0 0 0 0
walk 0 0 0 100 0 0 0 0 0
carry 0 0 0 0 100 0 0 0 0
run 0 0 0 0 0 100 0 0 0

wave1 0 0 0 0 0 0 100 0 0
wave2 0 0 0 0 0 0 0 100 0
jump 0 0 0 0 0 0 0 0 100

Table 6.17: Segment-based action confusion matrix for the proposed
method (silhouette features + SLA classifier) on 8-frame segments
(SEG-CCR = 96.15%).
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point 88.0 6.0 6.0 0 0 0 0 0 0
stand 4.4 94.2 1.4 0 0 0 0 0 0
dig 2.0 1.5 96.0 0 0.5 0 0 0 0
walk 1.4 0 0 98.6 0 0 0 0 0
carry 0 0 0 0 99.5 0.5 0 0 0
run 0 0 0 0 0 100 0 0 0

wave1 0 0 0.5 0 0 0 94.1 5.4 0
wave2 0 0 0 0 0 0 7.5 92.5 0
jump 0 0 0 0 0 0 0 0 100
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Table 6.18: Sequence-based action confusion matrix for the proposed
method (silhouette feature vectors + SLA classifier) on 8-frame seg-
ments (SEQ-CCR = 97.22%).
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point 91.7 0 8.3 0 0 0 0 0 0
stand 16.7 83.3 0 0 0 0 0 0 0
dig 0 0 100 0 0 0 0 0 0
walk 0 0 0 100 0 0 0 0 0
carry 0 0 0 0 100 0 0 0 0
run 0 0 0 0 0 100 0 0 0

wave1 0 0 0 0 0 0 100 0 0
wave2 0 0 0 0 0 0 0 100 0
jump 0 0 0 0 0 0 0 0 100

obtained SEG-CCR of 81.18% and SEQ-CCR of 85.19%. Tables 6.21 and 6.22 show

segment-based and sequence-based action “confusion” matrices.

Table 6.19: Segment-based action confusion matrix for the proposed
method (optical flow features + NN classifier) on 8-frame segments
(SEG-CCR = 82.25%).

p
oi

n
t

st
an

d

d
ig

w
al

k

ca
rr

y

ru
n

w
av

e1

w
av

e2

ju
m

p
point 53.0 27.7 14.5 0 0 0 4.8 0 0
stand 45.5 51.5 1.5 0 0 0 1.5 0 0
dig 1.5 1.0 96.5 0 0 0 0.5 0.5 0

walk 0 0 0 93.2 4.1 2.7 0 0 0
carry 0 0 0 0 87.6 12.0 0.5 0 0
run 0 0 0 0 9.1 90.9 0 0 0

wave1 1.1 1.6 0 0 0 0 66.9 30.4 0
wave2 0 0 0 0 0 0 17.5 82.5 0
jump 0 0 0 0 0 0 0 0 100

Clearly, the proposed silhouette-based action recognition outperforms its optical-

flow-based counterpart by over 10%. This is not surprising when one closely examines

two special actions: pointing and standing. These actions, strictly speaking, are not

actions as they involve no movement. Thus, optical flow computed in each case is

zero (except for noise and errors) leading to failure of optical-flow-based approaches.

On the other hand, silhouette-based approaches are less affected since pointing and
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Table 6.20: Sequence-based action confusion matrix for the proposed
method (optical flow features + NN classifier) on 8-frame segments
(SEQ-CCR = 86.11%).
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point 83.3 8.3 8.3 0 0 0 0 0 0
stand 66.7 25.0 8.3 0 0 0 0 0 0
dig 0 0 100 0 0 0 0 0 0

walk 0 0 0 100 0 0 0 0 0
carry 0 0 0 0 100 0 0 0 0
run 0 0 0 0 0 100 0 0 0

wave1 0 0 0 0 0 0 75.0 25.0 0
wave2 0 0 0 0 0 0 8.3 91.7 0
jump 0 0 0 0 0 0 0 0 100

Table 6.21: Action confusion matrix for the proposed method (optical
flow feature + SR-based classifier) on 8-frame segments (SEG-CCR =
81.18%).
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point 53.0 35.0 8.4 0 0 0 3.6 0 0
stand 36.4 55.7 6.82 0 0 0 1.1 0 0
dig 1.0 1.0 96.0 0 0 0.5 1.5 0 0

walk 0 0 1.4 91.8 1.4 4.1 0 0 1.4
carry 0 0 0 0 95.9 4.2 0.5 0 0
run 0 0 0 4.6 18.2 77.3 0 0 0

wave1 1.1 0.5 1.1 0 0 0 81.0 16.3 0
wave2 0 0 0 0 0 0 52.6 47.4 0
jump 0 0 0 0 0 0 0 0 100

Table 6.22: Action confusion matrix for the proposed method (optical
flow feature + SR-based classifier) on 8-frame segments (SEQ-CCR =
85.19%).
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point 66.7 33.3 0 0 0 0 0 0 0
stand 33.3 66.7 0 0 0 0 0 0 0
dig 0 0 100 0 0 0 0 0 0

walk 0 0 0 100 0 0 0 0 0
carry 0 0 0 0 100 0 0 0 0
run 0 0 0 0 0 100 0 0 0

wave1 0 0 0 0 0 0 91.7 8.3 0
wave2 0 0 0 0 0 0 58.3 41.7 0
jump 0 0 0 0 0 0 0 0 100
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standing can still be described by 3-D silhouette shape. Also, note a much higher

silhouette-based CCR for wave1. Examining the confusion matrix (not shown here)

we realized that around 50% of wave1 videos are misclassified by our optical-flow-

based action recognition as wave2. It indicates that the optical-flow features are also

not quite discriminative when representing wave1.

6.4 Tests on the YouTube dataset

YouTube dataset is a very complex dataset based on YouTube videos (Liu et al., 2009).

This dataset contains 11 action classes that are grouped into 25 groups: basketball

shooting, biking/cycling, diving, golf swinging, horse-back riding, soccer juggling,

swinging, tennis swinging, trampoline jumping, volleyball spiking, and walking with

a dog (Fig. 6·6). This dataset is very challenging due to large variations in camera

motion, acquisition viewpoint, cluttered background, etc. Since silhouette tunnels

are not available for this dataset, we only tested the optical flow features. For the

NN classifier, we obtained SEG-CCR of 50.4% and SEQ-CCR of 78.5% (N = 20,

LOOCV). Table 6.23 shows the SEQ-CCR comparison of our proposed method with

state-of-the-art methods. The performance of our method is in line with state-of-the-

art methods today.

Figure 6·6: Action examples from YouTube action dataset.
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Table 6.23: Comparison of our proposed approach (N=20) and state-
of-art methods based on LOOCV on YouTube dataset.

Method Proposed Liu Ikizler Le Wang Noguchi
SEG-CCR 50.4% - - - - -
SEQ-CCR 78.5% 71.2 75.2 75.8% 84.2% 80.4%

6.5 Representation and metric comparison

The experiments so far indicate that feature covariance matrices are sufficiently dis-

criminative for action recognition, and the Euclidean distance based on log-covariance

matrices is an appropriate metric. However, how would other representations or met-

rics fair against them? To answer this question, we performed several experiments

using silhouette features and the NN classifier on Weizmann dataset. First, rather

than using second-order statistics to characterize localized features we have tested

first-order statistics, i.e., the mean, under the Euclidean distance metric. As is clear

from Table 6.24, recognition performance using mean representation is vastly infe-

rior to that of covariance representation with log-covariance metric (over 50% drop).

Secondly, we used a covariance matrix instead of a log-covariance matrix. Again, the

performance dropped dramatically compared to the log-covariance representation.

Finally, we assumed that feature vectors are drawn from a Gaussian distribution and

we estimated this distribution’s mean vector and covariance matrix. Then, we used

KL-divergence to measure the distance between two Gaussian distributions. This

approach fared much better however it still trailed the log-covariance representation

under the Euclidean metric by over 6%.

Table 6.24: Recognition performance for various formulations using
silhouette features and NN classifier with N=8 on Weizmann dataset.

Representation Log-Covariance Mean Covariance Gaussian fit
Metric Euclidean Euclidean Euclidean KL-divergence

SEG-CCR 97.1 45.8 43.6 91.3
SEQ-CCR 100 48.9 56.7 93.4
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6.5.1 Analysis of feature importance

In Chapter 4, we introduced two examples of local feature vectors: silhouette fea-

tures and optical flow features, consisting of 13 and 12 features, respectively. It is,

therefore, necessary to investigate the contribution of each feature component to the

classification performance. In this section, we will analyze the importance of feature

components by conducting experiments on the Weizmann dataset based on LOOCV

and segment length N = 8 using only subsets of feature components.

Silhouette features

The silhouette feature vector f(x, y, t) is defined in (4.1). In order to verify usefulness

of individual features, we partition f(x, y, t) into three subsets:

• (x, y, t): spatio-temporal coordinates,

• (dE, dW , dN , dS, dNE, dSW , dSE, dNW ): spatial distances,

• (dT+, dT−): temporal distances.

The spatio-temporal coordinates provide localization information for moving objects.

Spatial and temporal distances describe local spatial and temporal shape deforma-

tions, repectively. Table 6.25 shows the classification performance (SEG-CCR and

SEQ-CCR) using subsets of feature components on the Weizmann dataset. The

results indicate that the subset (dNE, dSW , dSE, dNW ) is the most significant one. In

contrast, the subset (dT+, dT−) contributes the least to action classification. However,

the combination of (x, y, t) and (dT+)/(dT−) leads to a remarkable classification per-

formance (up to 95.56%). Thus, even if (dT+, dT−) themselves are not discriminative

enough for action recognition, they can still provide auxiliary action characteristics

when combined with other features.
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Table 6.25: Classification performances using subsets of silhouette
features on Weizmann dataset using LOOCV (N = 8).

Subset of feature components SEG-CCR SEQ-CCR
(x, y, t) 69.84% 84.44%

(dE , dW , dN , dS) 69.29% 80.00%
(dNE, dSW , dSE, dNW ) 81.83% 89.99%

(dT+, dT−) 33.02% 41.11%
(x, y, t, dE) 76.59% 90.00%
(x, y, t, dW ) 76.83% 91.11%
(x, y, t, dN) 82.06% 92.22%
(x, y, t, dS) 79.60% 90.00%

(x, y, t, dE, dW , dN , dS) 90.71% 96.67%
(x, y, t, dSE) 80.56% 94.44%
(x, y, t, dNW ) 78.65% 88.89%
(x, y, t, dSW ) 79.68% 92.22%
(x, y, t, dNE) 81.35% 93.33%

(x, y, t, dNE, dSW , dSE, dNW ) 91.11% 98.89%
(x, y, t, dT+) 84.92% 95.56%
(x, y, t, dT−) 85.56% 93.33%

(x, y, t, dT+, dT−) 88.83% 95.56%
All features 97.05% 100%

Optical-flow features

The optical-flow feature vector is defined in (4.3). The optical-flow feature compo-

nents can be partitioned into three groups:

• (x, y, t): spatio-temporal coordinates,

• (It, u, v, ut, vt): optical flow and temporal gradients,

• (Div, V or, Gten, Sten): optical-flow descriptors derived from fluid dynamics.

Table 6.26 shows the classification performance (SEG-CCR and SEQ-CCR) using

subsets of optical-flow feature on the Weizmann dataset. From this table we see that

(It, u, v, ut, vt) is the most significant feature subset for action recognition. Specifi-

cally, u is the most discriminative feature when combined with the localization subset

(x, y, t), that achieves SEQ-CCR of 87.78%.
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Table 6.26: Classification performance using subsets of optical-flow
features on Weizmann dataset using LOOCV (N = 8).

Selected features SEG-CCR SEQ-CCR
(x, y, t) 71.92% 73.33%

(It, u, v, ut, vt) 72.33% 83.33%
(Div, V or, Gten, Sten) 57.14% 78.89%

(x, y, t, It) 73.23% 77.78%
(x, y, t, u) 83.09% 87.78%
(x, y, t, v) 82.43% 84.44%
(x, y, t, ut) 80.13% 83.33%
(x, y, t, vt) 79.64% 81.11%

(x, y, t, It, u, v, ut, vt) 85.63% 88.24%
(x, y, t, Div) 79.72% 82.22%
(x, y, t, V or) 80.54% 81.78%
(x, y, t, Gten) 76.35% 77.78%
(x, y, t, Sten) 77.59% 81.11%

(x, y, t, Div, V or, Gten, Sten) 81.77% 83.33%
All 89.74% 91.11%

6.5.2 Robustness experiments

The proposed framework has performed well when the query action was similar to

dictionary actions. In practice, however, the query action may be “distorted”, e.g.,

person carrying a bag, or may be captured from a different viewpoint. We tested

the robustness of our approach to action variability and camera viewpoint on videos

originally used by Gorelick (Gorelick et al., 2007) that include 10 walking people in

various scenarios (walking with a briefcase, limping, etc.). We tested both silhouette

features and optical-flow features using the NN classifier. Experimental results for

action variability are shown in Table 6.27. Since there is only one instance of each type

of test sequence, SEQ-CCR must be either 100% or 0%. Clearly, all test sequences

were correctly labeled even if some segments were misclassified. Also, the optical-flow

features perform better overall than the silhouette features (except for “Knees up” at

segment level).

Experimental results for viewpoint dependence are shown in Table 6.28. The

test videos contain the action of walking captured from different angles as shown in
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Figure 6·7: Action examples of walking variations.

Table 6.27: Results of a robustness test to action variability; query
actions differ significantly from dictionary actions.

Silhouette features Optical-flow features
SEG-CCR SEQ-CCR SEG-CCR SEQ-CCR

Swing a bag 94.9% 100% 100% 100%
Carry a briefcase 100 % 100% 100% 100%
Walk with a dog 82.4% 100% 100% 100%

Knees up 73.5% 100% 62.7% 100%
Limping man 100 % 100% 100% 100%

Sleepwalk 100 % 100% 100% 100%
Occluded legs 94.9% 100% 100% 100%
Normal walk 100 % 100% 100% 100%

Occluded by a pole 88.1% 100% 100% 100%
Walk in a skirt 100 % 100% 100% 100%

Fig. 6·8 (varying from 0◦ to 81◦ with steps of 9◦ with 0◦ being the side view). The

action samples in the training dataset (Weizmann dataset) are all captured from the

side view. Thus, it is expected that the classification performance will degrade when

the camera angle increases. The results indicate that silhouette features are robust for

walking up to about 36◦ in viewpoint change and that confusion starts at about 54◦

(walking recognized as other actions). Optical-flow features perform slightly better

in this case; good performance up to about 54◦ and misclassification starts around

72◦.



70

Figure 6·8: Action examples of walking from different viewpoints.

Table 6.28: Results of a robustness test to camera viewpoint; query
action captured from different angles than those in the dictionary.

Silhouette features Optical-flow features
SEG-CCR SEQ-CCR SEG-CCR SEQ-CCR

Viewpoint 0◦ 100 % 100% 100% 100%
Viewpoint 9◦ 100 % 100% 100% 100%
Viewpoint 18◦ 100 % 100% 100% 100%
Viewpoint 27◦ 92.3% 100% 100% 100%
Viewpoint 36◦ 90.8% 100% 100% 100%
Viewpoint 45◦ 76.8% 100% 100% 100%
Viewpoint 54◦ 38.5% 0% 98.1% 100%
Viewpoint 63◦ 20.2% 0% 69.1% 100%
Viewpoint 72◦ 13.8% 0% 40.4% 0%
Viewpoint 81◦ 5.4 % 0% 30.2% 0%

6.5.3 Computational complexity analysis

The proposed approaches are computationally efficient and easy to implement. Our

experimental platform is Intel Centrino (CPU: T7500 2.2GHz + Memory: 2GB) with

Matlab 7.6. The extraction of 13-dimensional feature vectors from a silhouette tunnel

and calculation of covariance matrices take together about 10.1 sec for a 180 × 144-

pixel, 84-frame silhouette sequence (0.12 sec per frame). The computation of 12-

dimensional optical-flow feature vectors and their covariance matrices takes about 6

sec (0.07 sec per frame) for the same sequence. Note that silhouette and optical flow

estimation are not included. Given a query sequence with 613 query segments and
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a training set with 605 training segments, the NN classifier requires about 52 sec

to classify all query segments (0.08 sec per query segment), while the SLA classifier

needs about 44 sec (solving 613 times l1-norm minimization problem, i.e., 0.07 sec

per query segment). The computation time indicates that optical-flow features have

lower computational complexity than silhouette-based features, and the NN classifier

has very close computational complexity to the SLA classifier. This method is also

memory efficient, since the training sets and test sets essentially store 13 × 13 or

12 × 12 covariance matrices, instead of video data.



Chapter 7

Action change detection

So far we have studied action recognition based on the assumption that each video

only contains a single action class. In practical cases, however, a given a video se-

quence may contain multiple action classes. For instance, a walking pedestrian may

stop to hug a friend, and then start running towards an approaching bus. This ex-

ample involves three actions, and if we parse the whole video into three sub-videos

(single action in each sub-video), we can employ our proposed approach to get the

three action labels of the whole video. This temporal parsing can be achieved by iden-

tifying time instants when an action changes, i.e., detecting when one action stops

and another action begins. Finding these temporal action boundaries is akin to scene

cut detection in video, but in the space of actions. The problem is fundamental to

action analysis; even if actions can be reliably described (i.e., action representation

is established) and even if they can be accurately compared (i.e., action comparison

metric is known), it is still unclear to what segment of a video should both be ap-

plied. In other words, should the action representation be applied to 5, 10, 20 or more

frames? Action change detection establishes temporal boundaries between which no

action change takes place and thus action representation is meaningful. This is useful

when comparing an observed action with a dictionary of annotated actions, but can

also be used for unsupervised action segmentation, i.e., identification of actions as A,

B, C, ..., that can be later annotated by a human operator.

The detection of abrupt changes is a classical topic that has been widely stud-
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ied in the past few decades (Basseville and Nikiforov, 1993). It has been applied in

many areas, such as quality control, time series signal analysis, fault detection and

monitoring, etc. Many algorithms have been developed for abrupt change detection,

such as the cumulative sum algorithm (CUSUM), statistical algorithms, Shewharts

control charts, etc. In this thesis, we apply a statistical algorithm to detect abrupt

action changes. We develop a sequential, adaptive, and unsupervised action change

detection algorithm based on our action representation framework, centered around

covariance descriptors of local features. The main contribution of this work is the

use of a non-parametric statistical framework to learn the distribution of the distance

between covariance descriptors and detect action changes as covariance-distance out-

liers.

7.1 Framework

The goal of action change detection is to partition a video into many sub-videos so

that each of them contains only one single action. This may be viewed as finding

temporal action boundaries inside a video, as shown in Fig. 7·1.

To reliably detect action change one must assume that the action persists for

some time, i.e., actions don’t keep changing at an arbitrarily fast rate. We make

the assumption that actions persist for at least M frames. The main idea here is

as follows. Given M frames as the dictionary of an action class, we examine the

subsequent segments. If a segment is not similar to any of the segments in the

dictionary, we claim that a new action class is detected (Guo et al., 2010a). The key

problem here is how to measure the similarity between a segment and the dictionary.

A straightforward idea is to find the nearest neighbor of this segment in the dictionary

and use the NN distance as the measure of similarity. However, the issue is that an

absolute threshold on the NN distance does not capture the extent of its variability
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A c t i o n c h a n g eb o u n d a r i e s
Figure 7·1: Illustration of action change boundaries.

within the same action class and would therefore not be a reliable outlier detection

method. In order to solve this problem, we learn the statistical characteristics of the

NN distance. If the new segment’s NN distance corresponds to a low probability, it

indicates that this segment comes from a new action class. The overall algorithm of

action change detection is summarized as follows and illustrated in Fig. 7·2:

1. Learn the probability density function (pdf) of the NN distance between all

pairs of segments in the dictionary of M training frames;

2. Compute the NN distance between a new segment and the dictionary. If it

corresponds to a high probability, examine another segment by repeating this

step. Otherwise, declare the detection of an action change, designate the next

M frames for training and go back to the first step.
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Figure 7·2: Action boundary detection approach.

7.1.1 Training phase

In the training phase, our goal is to learn the conditional pdf p(dNN |H0) of the

NN distance between a segment and dictionary, under the null hypothesis H0 that

this segment has the same action class as training segments in this dictionary. Let

F := {F1, . . . , Fk} denote the set of k overlapping N -frame-long training segments

forming the M-frame dictionary. For each training segment Fi we calculate dNNi
the

nearest distance of Fi to the remaining segments in the dictionary.

dNNi
:= min

j=1,...,k,j 6=i
ρ(Fi, Fj). (7.1)

Repeating this procedure k times provides k dNNi
(7.1) values which can be used

to estimate p(dNN |H0) using a Parzen window kernel density estimation (KDE):

p(x|H0) :=
1

k

k∑

i=1

φ(x − dNNi
). (7.2)

where φ(x) is a non-negative kernel function that integrates to one.
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7.1.2 Test phase

If Ft denotes a test action segment, we firstly compute its NN distance dtest
NN to the

dictionary:

dtest
NN := min

i=1,...,k
ρ(Fi, Ft).

Since p(dNN |H0) has been estimated, we can obtain the conditional probability of dtest
NN

under the null hypothesis: p(dtest
NN |H0). We can claim a detection of action change

if p(dtest
NN |H0) is low. If the test segment is very similar to the dictionary, i.e., dtest

NN

is very small, clearly there should be no action change. However, small values of

dtest
NN are also typically associated with small p(dtest

NN |H0) values, which clearly do not

correspond to the presence of an action change. This may happen if distances similar

to dNN test occurred infrequently during training. In order to solve this problem, we

use the cumulative probability function P (dNN |H0) instead of p(dNN |H0):

P (dNN |H0) :=

dNN∫

0

p(x|H0)dx. (7.3)

We use a binary hypothesis test to decide if the test action segment is within or outside

the limits of normal variability by comparing P (dtest
NN |H0) against a confidence level.

If it is greater than the confidence level, then we declare an action change.

7.2 Experimental results

In order to test the performance of the proposed method, we conducted a series of

experiments both on ground-truth synthetic data as well as a time-continuous camera-

captured video. In each video, we applied the following pre-processing steps. First,

we performed background subtraction (McHugh et al., 2009) to obtain moving object

silhouettes (silhouette tunnels). We applied our action change detection algorithm

with M = 30, i.e., we assumed a 30-frame training set. A judicious selection of this
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parameter is essential for the performance of our algorithm; it must be long enough

to capture salient characteristics of an action, but short enough to span a single

action only. The precision of detected action boundaries depends on the length of

action segments. Clearly, a large segment length increases the uncertainty of action

boundary location. In our experiments, we used segments of length N = 8 for action

comparison with a 4-frame overlap. We examined different confidence levels (0.60-

0.95) in the hypothesis test.

In the ground-truth experiment we used the Weizmann dataset used earlier in 6.1

(Fig. 7·3). In order to measure the performance of our approach, we created 9 single-

person multi-action test video sequences (jumping-jack, jump, sjump, run, side, skip,

walk, wave1 and wave2) with exactly known action boundaries, by concatenating all

the action videos in the database belonging to the same individual leaving out those

action videos which have less than M = 30 frames. There are two types of action

Figure 7·3: Action samples of the concatenated video sequence from
Weizmann dataset.

detection errors: (i) false positive errors which occur when segments that have no

action changes are classified as having action changes and (ii) false negative errors

which occur when segments that have action changes are classified as having no

action changes. The combined total number of action segments across all 9 test video
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sequences is 597 out of which 61 segments have action changes and 536 do not. The

proposed action change detection method produces 1 false negative error (Percent

false negative error PFN = 100/61 = 1.64%) and 1 false positive error (Percent false

positive error PFP = 100/536 = 0.19%) for a confidence level of 0.9. The values of

PFN and PFP change by less than 1% for a range of confidence levels from 0.6–0.95.

Fig. 7·4(a) shows the nearest-neighbor distances between each test segment and all

segments in the immediately-preceding training set for one individual. Note that the

detected change-points always correspond to large spikes in the distance measure,

indicating a dissimilarity with respect to the training set. However, the nearest-

neighbor distances for the detected change-points vary from 2.1 to 3.8, and this range

is different for different video sequences. Finding an optimal threshold to detect the

action change-points by thresholding the nearest-neighbor distance would be quite

challenging. In contrast, it is clear from Fig. 7·4(b) that the cumulative probability

of the nearest-neighbor distance is a more robust quantity to base the action change

detection on; it adaptively adjusts the scale of nearest-neighbor distances.

In the second set of experiments, we tested our algorithm on a video sequence

of single person performing 7 different actions (walk, jumping-jack, sjump, wave1,

wave2, crouch and run) with natural transitions between consecutive actions, that

we captured ourselves (Fig. 7·5). Although there are no ground-truth boundaries

available, we subjectively identified the transitions between actions. As shown in

Fig. 7·6, our algorithm has detected action change in 6 segments with index numbers:

7, 53, 92, 119, 157 and 196, exactly coinciding with the subjective transitions we had

found.
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Figure 7·4: Nearest-neighbor distances (top) and corresponding cumu-
lative probability values (bottom) for consecutive action segments from
ground-truth, multi-action video sequence built from Weizmann Human Ac-
tion Database for “Daria”. Ground-truth actions are shown schematically
above the top plot. The circles mark correctly-identified action boundaries
(center of a segment in which action change takes place), while the squares
mark erroneous boundaries.
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Figure 7·5: Action samples of a camera-captured video sequence.
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Figure 7·6: Nearest-neighbor distances (top) and corresponding cu-
mulative probability values (bottom) for consecutive action segments
from time-continuous, camera-captured video. Ground-truth actions
are shown schematically above the top plot. The circles mark correctly-
identified action boundaries (center of a segment in which action change
takes place).



Chapter 8

Human interaction recognition

So far we have discussed how to recognize actions and how to detect action changes,

based on the assumption that each action is performed by a single person. In practical

scenarios, many actions actually involve multiple persons, such as kissing, hugging,

handshaking, etc. We call such actions human interactions. In this chapter, we will

study how to adapt our framework for recognizing human interactions, which is a

challenging problem. This problem has begun to receive attention in the research

community in the past decade. In Section 8.1, we review some related work in this

area. In Section 8.2, we introduce the framework to solve this problem. Experimental

results are shown in Section 8.3.

8.1 Overview of related work

The problem of human action interaction recognition has received attention in re-

search community only in the last 10 years or so. (Sato and Aggarwal, 2001; Oliver

et al., 2000; Aggarwal and Park, 2004; Park and Aggarwal, 2004; Park and Aggarwal,

2000; Waltisberg et al., 2010). There are two types of human interactions one is usu-

ally interested in. The first one is closely related to the relative positions, velocities

and trajectories of two persons, for example, one person is following another, two

people meet coming from different directions, or one person passes by another person

(Sato and Aggarwal, 2001; Oliver et al., 2000). All these interactions are composed

of walking, running and standing. The only differences are due to different motion
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trajectories, relative velocities and positions. The second type of human interactions

involves more detailed information about an individual’s action, such as handshaking,

hugging, pushing, etc (Aggarwal and Park, 2004; Park and Aggarwal, 2004; Park and

Aggarwal, 2000; Waltisberg et al., 2010). Trajectories, velocities and positions are

only secondary factors here, since each interaction is composed of different individual

actions. In this thesis, we only focus on the second type of human interaction.

Sato et al. (Sato and Aggarwal, 2001) proposed a method to recognize the first

type of human interactions. It consists of two major components: trajectory ex-

traction (human segmentation and tracking) and trajectory classification (interaction

classification). The trajectory extraction process outputs human trajectories as the

physical positions of humans in the scene over time by recognizing and tracking human

images. The interaction classification process extracts some features, such as relative

distance and velocity of each person, from the trajectory shape. Then, it selects the

most likely behavior type in the training dataset based on feature similarity. Oliver

et al. (Oliver et al., 2000) proposed a Bayesian system for modeling the first type

of human interactions. They use a Kalman filter to track an individual’s position,

velocity and coarse shape, and then model the relationship between individuals by

using the coupled Hidden Markov Model (CHMM).

In order to recognize the second type of interactions, Park et al. (Park and

Aggarwal, 2004) developed a method using a hierarchical Bayesian network (BN).

First, body parts are tracked and their poses are estimated at a low level of BN. The

overall body pose is estimated at a high level of BN. The pose estimation results are

then concatenated to form a sequence, and sequence classification is performed by a

dynamic Bayesian network. The recognition of two-person interactions is expressed in

terms of semantic verbal descriptions at multiple levels: individual body-part motions

at low level, single-person actions at middle level, and two-person interactions at
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the highest level. Park et al. (Park and Aggarwal, 2000) also proposed a method

based on the nearest neighbor classifier applied to a parametric human-interaction

model, which describes the interpersonal relationship. Waltisberg et al. (Waltisberg

et al., 2010) proposed a hough-voting action recognition system that recognizes each

individual’s action separately and then combines the classification results to obtain

an action label of the interaction.

8.2 Proposed framework

In previous section, we reviewed state-of-art methods for human interaction recogni-

tion. In this section, we propose a new framework, which involves individual action

recognition followed by a combination of individual action labels. There are basi-

cally two approaches for human interaction recognition: the universal approach and

divide-and-conquer approach.

The universal approach treat interacting persons as a single object with multi-

ple disconnected parts. The advantage of this approach is that it is simple and can

directly fit into our previous action recognition framework in Chapter 3 without con-

cerning how many moving persons are involved in the human interaction. However,

as we will see, this approach would require more training samples to well represent

human interactions.

The divide-and-conquer approach, in contrast, divides video spatially to isolate

individuals, analyze them separately, and fuse the results. This approach is more

complicated since we need object tracking to isolate moving individuals and analyze

each action separately. The advantage is that it needs less training samples to well

represent human interactions compared with the universal approach. Consider the

following example: a human interaction e.g. punching involves two individuals - an

attacker who is hitting and a defender who is dodging. If we assume that there are
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10 action variations for each individual, then the total number of possible realiza-

tions of punching is 10 × 10 = 100. In other words, the universal approach needs

100 training samples to well represent punching in this example. In contrast, the

divide-and-conquer approach only needs 10 + 10 = 100 samples to well represent the

interaction. In general, if there are multiple individuals involved in a human interac-

tion and Mk denotes the number of training samples needed for reliably recognizing

the k-th action in the interaction, then the number of examples of human interaction

needed to reliable recognize the interaction would be N1 =
∏

k Mk. Since N1 is at least

an order of magnitude larger than Mk, it is much more difficult to obtain sufficient

training samples for interaction, compared to an individual’s action. This motivates

us to recognize human interaction by dividing it into individuals and classifying each

of them separately. Then, we only need Mk training samples to recognize each in-

dividual’s action, and thus the sufficient number of training samples for recognizing

human interaction is vien by N2 =
∑

k Mk, which is at least an order of magnitude

less than N1.

Assume that we have divided a human interaction sequence into individual se-

quences. Each individual’s action label can be obtained based on our previous ap-

proach described in Chapter 3. Then, a human interaction’s label can be obtained

based on individuals’ actions. Ideally, if each individual is correctly recognized, the

interaction will be correctly recognized as well. However, in practice, an individual

may be misclassified, which may make the decision fusion ambiguous. Consider the

previous punching example. If the defender’s action is misclassified as handshaking,

then the label combination of hitting and handshaking will make no sense. We can,

of course, treat such confused decisions as misclassifications. The outcome is that our

method will be sensitive to individual errors. In other words, any individual’s mis-

classification will lead to the misclassification of the interaction. A better alternative
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is to estimate confidence measures for each individual, that reflects the confidence

of each action class to be the best class. Then, in the decision fusion step, we can

combine the confidence measures to obtain an interaction label. A hard fusion , i.e.,

combining labels, only make use of the best action class of each individual. On the

contrary, a soft fusion, i.e., combining confidence measures, merges more information

(not only the individual’s best-matched class but also the confidence of each action

class), and can effectively resolve ambiguities occurring in hard fusion.

The overall framework of our approach is as follows, as also shown in Fig. 8·1.

1. Divide a human interaction video into separate individuals by using an object

tracking algorithm;

2. Estimate confidence measures for each individual that reflects the confidence of

each action class to be the best class.

3. Combine the confidence measures to obtain the interaction label.

Figure 8·1: Proposed framework for human interaction recognition.

8.2.1 Individual action recognition

We now discuss how to compute the confidence measures given a query individual

action. The distance between query video and each action class is apppropriate
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to indicate the confidence of each class. The smaller the distance, the higher the

confidence, and vice versa. Now, the question is how to define the distance between

query video and each action class. Given a query video, we can partition it into

overlapping segments. Then, for each query segment, we find its nearest neighbor

segment among all training segments in action class k and record the NN distance.

Finally, after obtaining NN distances of all query segments, we take the average

and use this mean distance as the distance between query video and action class k,

as shown in Fig. 8·2. More formally, let Cq
i be the covariance matrix of ith query

segment (there are N query segments in the query video) and let Ck,j be the covariance

matrices of training segments in action class k. The mean distance dk between query

video and each action class can be expressed as:

dk =
1

N

∑

i

min
j

ρ(Cq
i , Ck,j), (8.1)

where ρ is the affine-invariant Riemannian metric (3.2) or the log-Euclidean metric

(3.4) between covariance matrices. So far we have assumed that all the segments

have the same length (number of frames). Actually, segment length may include

useful information to discriminate different actions. The fixed segment length can

be treated as a special case of variable segment length. Suppose we have obtained

a series of appropriate segment lengths for all training classes: L1, L2, · · · , LK (K is

the number of action classes). Then, segment length of each class is Lk. In order

to measure the distance between query video and each training class, we need to

partition the query video into K segment sets according to K segment lengths. For

the kth set of query segments, we can measure the distance between query video and

the kth training class using (8.1), shown in Fig. 8·3. Cq,Lk

i is the covariance matrix of

ith query segment based on segment length Lk, dNN,Lk

i is the NN distance between

the ith query segment and its nearest neighbor in training class k, and dLk is the
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distance between query video and kth training class. The use of variable segment

length increases the flexibility of training video partitioning. The success of this

method relies on the appropriate selection of segment lengths for each action class.

However, it seems difficult to develop a systematic approach to find the optimal

variable segment lengths for different classes, and we use a heuristic to manually

adjust the segment lengths. The basic rule of our manual adjustment is that if class i

and class j are confused in classification, the difference between their corresponding

segment lengths should be increased.

8.2.2 Decision fusion

Once we obtain the confidence measures of each individual in a human interaction

video, the next step is to determine the action label of this interaction by fusing the

confidence measures. We need to pay attention to two observations:

• Individual action classes and human interaction action classes may not be ex-

actly the same. Take the punching as an example again, the action dodging is

not an interaction action.

• Some combinations of individual actions are inconsistent with each other. For

example, the combination of handshaking and punching is not a valid interac-

tion.

The first observation above suggests that we may need to introduce extra action

classes for recognizing an individual action, e.g., dodging. The second observation

suggests that we should only focus on those combinations of individual actions that

make sense when performing the decision fusion. If there are K individual action

classes, the possible number of combinations is K2, but the actual number of inter-

action that are consistent is usually much lower than K2.
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The process of decision fusion is shown in Fig. 8·4. For each real human inter-

action, find its individual actions’ distance measures in the ranking lists. Then, the

mean of these distances indicates the distance between the query interaction video

and this interaction class. We select the interaction class that is closest to the query

video.

Our approach to human interaction recognition has unique properties, compared

with our single-person recognition method. At the segment level, it measures the

distance between a query segment and each training class, rather than determining

the label of this segment. At the sequence level, it uses “soft fusion” rather than

“hard fusion”(majority rule) to label the query video. The experimental results are

presented in the next section.

8.3 Experimental results

In order to test the performance of our method, we conducted some experiments

on the so-called UT-interaction dataset. This dataset was used at the “High-level

Human Interaction Recognition Challenge” in the ICPR 2010 Contest on Seman-

tic Description of Human Activities (SDHA). The UT-Interaction dataset contains

videos of continuous executions of 6 classes of human interactions: shaking hands,

pointing, hugging, pushing, kicking and punching. Several participants in more than

15 different types of clothing appear in the videos. The videos are taken at the reso-

lution of 720×480, 30fps, and the height of a person in the video is about 200 pixels.

This dataset is challenging, because pair of individuals performs each action once. In

other words, all actions in this dataset are non-repetitive. Therefore, we do not have a

sufficient number of samples to represent each action. Additionally, we introduce one

more individual action of dodging, which appears in kicking, punching and pushing.

Thus, there are 7 individual actions in total. We tested the interaction recognition
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performance based on both fixed segment length and variable segment length. The

fixed segment length we chose was 20. We manually selected the variable segment

lengths follows: 10,14,10,16,8,20,10. In our tests, we used feature covariance matrices

based on optical flow, and LOOCV. Table 8.1 shows the confusion matrix based on

fixed-length segments. We see that punching and pushing, kicking and pushing, hug-

ging and handshaking are difficult to discriminate. Thus, we adjusted the segment

lengths so that these actions’ segment lengths are quite different. Table 8.2 shows the

confusion matrix based on variable-length segments, which improves the performance

by more than 20%. Table 8.3 shows results from Waltisberg et al. (Waltisberg et al.,

2010). The performance of our approach is in line with state-of-the-art methods

today.

Table 8.1: Interaction confusion matrix obtained by the proposed
approach based on fixed length segments (SEQ-CCR = 61.67%).
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handshake 9 1 0 0 0 0
hug 4 6 0 0 0 0
kick 0 0 5 1 1 3
point 3 0 1 5 1 0
punch 0 0 2 0 5 3
push 0 0 1 0 2 7
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Table 8.2: Interaction confusion matrix obtained by the proposed
approach based on variable length segments (SEQ-CCR = 85.0%).
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handshake 10 0 0 0 0 0
hug 0 10 0 0 0 0
kick 0 1 7 0 2 0
point 2 0 2 6 0 0
punch 0 0 0 0 10 0
push 0 2 0 0 0 8

Table 8.3: Interaction action confusion matrix obtained by the method
of Waltisberg et al. (Waltisberg et al., 2010) (SEQ-CCR = 88.33%).
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handshake 7 2 1 0 0 0
hug 0 10 0 0 0 0
kick 0 0 10 0 0 0
point 0 0 0 10 0 0
punch 0 0 2 0 7 1
push 0 0 1 0 0 9
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Figure 8·2: Computation of confidence measures based on fixed seg-
ment length.
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Figure 8·3: Computation of confidence measures based on variable
segment length.
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Figure 8·4: Flow chart illustrating the process of decision fusion in
human interaction recognition.
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Chapter 9

Conclusions and future work

This chapter summarizes this thesis, and proposes ideas for future work. The main

inspiration for this work was the rapid development of content-based video analy-

sis. In the past decades, many researchers have been working in video processing.

Most of the work has focused on low-level processing, such as motion detection, video

segmentation, object tracking, etc. Although low-level processing can detect motion

and isolate moving objects, it cannot classify motion. Thus, it is desirable to de-

velop automatic methods to analyze video data with the goal of understanding the

visual environment. Action recognition is a content-based technique that can provide

semantic information about a video. It can lead to many applications, e.g., video

surveillance, video search and human-computer interaction. The action recognition

task is made complex by the complexity of the scene (multiple interacting moving

objects, clutter, occlusions, illumination variability, etc.), the camera (imperfections,

motion and shake, and viewpoint), and the complexity of actions (non-rigid objects

and intra- and inter-class action variability).

9.1 Summary of contributions

In this work, we studied a sub-problem of action recognition in which there is only

one action in a video performed by an individual. We proposed a systematic action

recognition framework, including action representation and action classification. An

action is represented by log-covariance matrix of a bag of local features. These features
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are associated with moving pixels, providing a coarse localized description of the

action. Feature covariance matrices provide a compact representation since they

extract second order statistics of local features and lie in a much lower dimensional

space than the local features. In order to be effective, the selected local features should

involve discriminative properties of motion dynamics. There are two examples of local

features in this thesis, those based on silhouette tunnel and those based on optical

flow. Silhouette tunnel describes the shape of an action and optical flow describes

the motion dynamics of an action. Both of them include important information for

classifying human actions.

In action classification, we used two supervised learning classifiers: the nearest

neighbor (NN) and sparse linear approximation (SLA) classifiers. In the SLA classi-

fier, we approximate the logarithm of a query action covariance matrix by a sparse

linear combination of the logarithm of training action covariance matrices using a fast

linear program and determine the action label from sparse coefficients. Common to

both classifiers is the novel idea that classification algorithms that have been devel-

oped for vectors can be re-purposed for covariance tensors by using a log-nonlinearity

to map the convex cone of covariance matrices to the vector space of symmetric

matrices.

We also demonstrated how our approach can be used for sequentially detecting

changes in actions in an adaptive unsupervised manner so as to parse a long video se-

quence into sub-sequences, each of which only includes a single action class. Then, we

can employ our proposed approach to get action label of each sub-sequence. We used a

non-parametric statistical framework to learn the distribution of the nearest-neighbor

Riemannian distances between feature covariance matrices of video segments. Then,

we used binary hypothesis testing to determine if new video segments include action

changes.
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We also proposed a method how to recognize human interactions, which is usually

a more challenging problem than single action recognition. Given an interaction

video, first we spatially divide it into individual actions using object tracking. Then,

we estimated a ranked list for each individual. Each entry in this list reflects the

chance of each action class to be the best class. Then, in the decision fusion step, we

combined the ranked lists to obtain the interaction label. We tested the performance

on UT-Tower interaction dataset, and our method turned out to perform very closely

to state-of-the-art algorithms.

Overall the contributions of this thesis can be summarized as follows:

• We developed a new action recognition framework based on log-covariance ma-

trices of bags of local action features;

• We generalized the vector-based NN and SLA Classification algorithms to co-

variance matrices;

• We discovered discriminative features for action recognition from object silhou-

ette tunnels and optical flow;

• We extended the feature covariance matrix framework to the unsupervised ac-

tion change detection problem;

• We developed a feature covariance based method for human interaction recog-

nition.

9.2 Future work

This section briefly describes a few directions that could extend our work.
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9.2.1 Alternative features

In this thesis, we introduced two examples of local features based on silhouette tunnel

and optical flow. However, there may exist more discriminative features that can

better represent motion dynamics. Recently, we have adapted our action recognition

framework to perform real-time gesture recognition using the Kinect camera from

Microsoft. Kinect provides robust and reliable skeleton model of a person in front

of it, and we used parameters of this model as features for gesture recognition. Our

action recognition framework proved very useful even in this very simple scenario of a

skeleton model. Clearly, our action recognition framework is general, and we believe

that the performance of our approach can be further improved if better features are

judiciously selected.

9.2.2 Group action recognition

Here, we primarily focused on the problem in which there is one or two moving persons

in a video. In practice, a camera usually captures several people simultaneously. Due

to occlusions and low resolution of individuals, it is difficult to recognize a group

action. Additionally, it is also challenging to recognize if there is an unusual action

in a crowded scene. These are practical issues that arise from video surveillance

applications, which are worthwhile to study and resolve.

9.2.3 Extension of current assumptions

In Chapter 1 we listed challenges associated with action recognition and made some

assumptions in order to make our problem tractable. However, some assumptions are

not practical and make our approach difficult to adapt to real-life scenarios. Thus,

in the future, action recognition should be studied without constraining assumptions,

such as clutter, occlusions, camera motion, zoom-in/zoom-out and camera viewpoint

change. All these are practical issues that prevent us from accurately recognizing
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actions.

The datasets we have focused on are limited. In the future, it would be desirable

to work on more challenging datasets, such as the VIRAT dataset (Oh et al., 2011).

This dataset is designed to be realistic, natural and challenging for action recognition

in terms of camera motion, background clutter and diversity in the recorded scenes.

There are frequent incidental movers and background activities in videos. This is a

very challenging dataset that relaxes most of our assumptions and thus requires more

effort to achieve satisfactory action recognition performance.

9.2.4 Action recognition via static scenes

Our approach has only studied action recognition by focusing on the moving person.

Sometimes, the scene and individual objects in videos can also help understand ac-

tions. For example, if we can recognize a swimming pool in a video, it is likely that

persons in this video are swimming. Action characteristics are not the only factor

that can help us recognize it. However, recognizing scene or objects in a video is

still very challenging, perhaps even more challenging than recognizing actions. This

approach may be useful in scenarios where we can easily recognize scenes and objects.
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