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ABSTRACT

The primary aim of this thesis is to develop image processing algorithms to quantita-

tively determine the link between traumatic brain injury (TBI) severity and chronic

traumatic encephalopathy (CTE) neuropathology, specifically looking into the role

of blood-brain barrier disruption following TBI. In order to causally investigate the

relationship between the tau protein neurodegenerative disease CTE and TBI, mouse

models of blast neurotrauma (BNT) and impact neurotrauma (INT) are investigated.

First, a high-speed video tracking algorithm is developed based on K-means cluster-

ing, active contours and Kalman filtering to comparatively study the head kinematics

in blast and impact experiments. Then, to compare BNT and INT neuropathology,
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methods for quantitative analysis of macroscopic optical images and fluorescent im-

ages are described. The secondary aim of this thesis focuses on developing methods

for a novel application of metallomic imaging mass spectrometry (MIMS) to biolog-

ical tissue. Unlike traditional modalities used to assess neuropathology, that suffer

from limited sensitivity and analytical capacity, MIMS uses a mass spectrometer – an

analytical instrument for measuring elements and isotopes with high dynamic range,

sensitivity and specificity – as the imaging sensor to generate spatial maps with

spectral (vector-valued) data per pixel. Given the vector nature of MIMS data, a

unique end-to-end processing pipeline is designed to support data acquisition, visual-

ization and interpretation. A novel multi-modal and multi-channel image registration

(MMMCIR) method using multi-variate mutual information as a similarity metric

is developed in order to establish correspondence between two images of arbitrary

modality. The MMMCIR method is then used to automatically segment MIMS im-

ages of the mouse brain and systematically evaluate the levels of relevant elements and

isotopes after experimental closed-head impact injury on the impact side (ipsilateral)

and opposing side (contralateral) of the brain. This method quantifiably confirms ob-

served differences in gadolinium levels for a cohort of images. Finally, MIMS images

of human lacrimal sac biopsy samples are used for preliminary clinicopathological

assessments, supporting the utility of the unique insights MIMS provides by corre-

lating areas of inflammation to areas of elevated toxic metals. The image processing

methods developed in this work demonstrate the significant capabilities of MIMS and

its role in enhancing our understanding of the underlying pathological mechanisms of

TBI and other medical conditions.
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Chapter 1

Introduction

1.1 Traumatic Brain Injury

Traumatic brain injury (TBI) has garnered significant attention in the United States,

particularly in the past decade. It has been estimated that approximately 2.5 million

emergency department visits yearly are for TBIs (Frieden et al., 2015) with nearly

84% of these injuries being classified as mild TBIs (Meaney et al., 2014; Frieden

et al., 2015; VA and DoD, 2016). Recent US government work groups have provided

definitions and guidelines to address TBI in the civilian and military populations.

This group defined traumatic brain injury as follows (VA and DoD, 2016):

“a traumatically induced structural injury and/or physiological disruption of

brain function as a result of an external force and is indicated by new onset or

worsening of at least one of the following clinical signs immediately following

the event:

− Any period of loss of or a decreased level of consciousness

− Any loss of memory for events immediately before or after the injury (post-

traumatic amnesia)

− Any alteration in mental state at the time of the injury (e.g., confusion,

disorientation, slowed thinking, alteration of consciousness/mental state)
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− Neurological deficits (e.g., weakness, loss of balance, change in vision,

praxis, paresis/plegia, sensory loss, aphasia) that may or may not be tran-

sient

− Intracranial lesion”

Two distinct types of TBIs eliciting substantial media attention include those caused

by exposure to blast from conventional and improvised explosive devices and sports

related head-injuries. The relationship between repetitive concussion in athletes and

the neurodegenerative disease chronic traumatic encephalopathy (CTE) was first iden-

tified by Bennet Omalu and colleagues (Omalu et al., 2005, 2006). Like Alzheimer’s

disease, one of the most identifiable features of CTE is the aggregation of hypophos-

phorylated tau, markedly at the depths of the sulci and around blood-vessels in the

brain. The discovery of this distinctive neuropathology along with debilitating behav-

ioral deficits in US National Football League players was highly controversial. The

drama of this finding was even featured in the 2015 mainstream movie Concussion.

Coincidentally in those same years, US soldiers began returning from the Iraq and

Afghanistan wars with unprecedented rates of TBIs, earning it the name of “signature

injury” of the Iraq war in the media (Zoroya, 2005; Robertson, 2006; Benzinger et al.,

2009). Assessment of injury severity and the long-term deficits associated with TBI

remain ongoing areas of research.

Blast-exposed individuals have been documented to suffer from significant neuropsy-

chiatric symptoms, cognitive deficits, and neurological sequelae (Tanielian et al.,

2008; Hoge et al., 2008; Ling et al., 2009; Vasterling et al., 2009; Cernak and Noble-

Haeusslein, 2010; Hicks et al., 2010; Brenner et al., 2010; Peskind et al., 2011; Mac Don-

ald et al., 2011) that resemble the clinical signs and symptoms of head-injured athletes

diagnosed with chronic traumatic encephalopathy (CTE), a chronic neurodegenera-
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tive condition (McKee et al., 2009, 2010; Cantu, 2007). Neuropathological abnor-

malities associated with CTE suggest a pathogenic mechanism involving blood-brain

barrier (BBB) disruption induced by the shearing forces associated with the incit-

ing trauma. This vasocentric hypothesis postulates a secondary neuroinflammatory

cascade which leads to abnormal perivascular protein (tau) accumulation and cere-

brovasculature abnormalities that define CTE neuropathology.

The pathogenic cascade by which mechanical head trauma (concussive injury) and

blast exposure (percussive injury) lead to the irreparable brain damage and cognitive

dysfunction is poorly understood. Available treatment is limited to supportive mea-

sures. Development of new clinically useful diagnostic technology, disease biomarkers,

prophylactic countermeasures, and therapeutic interventions is critically dependent

on elucidating the primary pathogenesis and mechanistic details of the underlying

disease. Large knowledge gaps in our understanding of TBI and CTE pathophysiol-

ogy will continue to impede efforts toward developing new diagnostics and treatments

for improving TBI outcome. This interdisciplinary translational research is designed

to meet this urgent need by developing and implementing new analytical technology

for disease-driven mechanistic discovery.

1.2 Animal Models of Blast- and Impact-Induced Neuro-
trauma

While a number of observational studies have looked at the effects of traumatic

and concussive head-injuries in humans (Terrio et al., 2009; Gavett et al., 2011;

Barkhoudarian et al., 2011), these studies cannot establish a causal link between

injury and outcome. In addition, patient history may not be complete and the pa-

rameters of the injury are nearly impossible to establish. For these reasons, an injury
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realistic animal model is essential to a more complete understanding and characteri-

zation of the primary and secondary effects of TBI.

A variety of animal models have been developed to mimic different types of TBIs.

Figure 1·1 shows several predominant models (Xiong et al., 2013), many of which

require a craniotomy or impede movement of the head altogether. Needless to say,

these types of TBIs are not representative of the typical closed-head, nonlethal blast

neurotrauma (BNT) and impact neurotrauma (INT) injuries experienced in combat

or contact sports, respectively. This work is focused on supporting the development of

an injury-realistic animal model of BNT and INT. By designing a clinically-relevant

mouse model of these types of TBIs, the pathological developments associated with

TBI and progression of CTE-like neuropathology can be better understood. This

knowledge may inform our understanding of the mechanisms of injury and guide the

ultimate development of therapeutic measures. Ongoing research on the measurable

effects of TBI has also motivated promising avenues for biomarkers which may indicate

injury severity (Weissberg et al., 2014).

1.3 Assessment of Blood-Brain Barrier Disruption

Most imaging methods used to assess BBB disruption are qualitative, requiring either

neurobiological expertise to identify abnormalities (as with electron microscopy) or

which may elicit non-specific/non-graded activation responses (as with immunohisto-

chemistry). The few methods which are (semi-)quantitative tend to provide a single

number as an output, such as measuring gene expression level or brain edema. To

determine the role of BBB dysfunction in the development of CTE and the cytoar-

chitectural comorbidities associated with the neuropathology, spatial information is

essential. The objective of this work will is to develop methods for identification of
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Figure 1·1: Experimental set-ups for the animal models of TBI. (a)
The fluid percussion injury device uses rapid injection of a fluid pulse
into the epidural space. (b) The controlled cortical impact injury model
uses an air or electromagnetic driven piston to penetrate the brain at
a known distance and velocity. (c) The penetrating ballistic-like brain
injury involves the transmission of projectiles with high energy. (d) In
Feeney’s weight-drop model, a free weight is released directly onto the
exposed dura. (e) In Marmarou’s weight-drop model, a metal disk is
placed over the skull to prevent bone fracture. (f) Blast brain injury.
(Figure and caption from copied from (Xiong et al., 2013), Figure 1)
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BBB dysfunction in-situ and to quantitatively associate these measures with experi-

mental parameters to aid in our understanding of the progression of neuropathology

resulting from TBI.

Metallomic imaging mass spectrometry (MIMS) is a novel application of analytical

chemistry instrumentation typically used to determine the purity or metallomic con-

tent of a solution or gaseous sample. MIMS enables quantitative imaging which may

be utilized to overcome the issues of sensitivity and specificity associated with clas-

sical BBB evaluation modalities. Through the use of isotopic ratio characterization

and injection of elemental cocktails as tracers, MIMS may be used to probe specific

neural processes in the brain, such as localization and quantification of BBB disrup-

tion. More details describing the acquisition of MIMS for biological tissue are given in

Section 2.3.2. In summary, MIMS are quantitative maps which quantify the elemental

composition of the sample being imaged.

Figure 1·2 conveys the concept of using MIMS to image tissue from an animal injected

with nanoparticles and metallomic tracers of known size and composition as a means

to identify the extent of BBB compromise. The size and density of nanoparticles

extravasated indicate the severity of the BBB compromise. Fluorescent nanoparticles

have been used in this way to study BBB compromise as a result of foreign body

response in a mouse model (Sawyer and Kyriakides, 2013). These results support

the concept of using nanoparticle size and quantity in brain parenchyma to serve

as an indicator of BBB compromise. As opposed to fluorescent imaging or electron

microscopy for nanoparticle identification, as was used in the aforementioned study,

MIMS provides a more robust method for quantification and localization of nanopar-

ticles with respect to brain anatomy.
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(a)

(b) 157Gd MIMS of TBI sample

Figure 1·2: Microvascular disruption in traumatic brain injury. (a)
schematic showing the rationale for assessing blood-brain barrier (BBB)
compromise using injected nanoparticles combined with metallomic
imaging mass spectrometry (MIMS). (b) Preliminary MIMS detect-
ing elevated 157Gd signal in the left ipsilateral cortex following impact
neurotrauma indicating BBB compromise.
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1.4 Specific Aims of this Thesis

The focus of this work is on development of image processing algorithms for facilitat-

ing the comparison of behavioral and neuropathological outcomes in mouse models of

blast- and impact-neurotrauma. Using both novel and traditional neuropathological

imaging methods, quantitative assessments are developed to test the hypothesis that

biomechanical forces transmitted to structures in the brain during BNT and INT dis-

rupt BBB functional integrity and activate secondary neuroinflammatory responses

leading to progressive CTE neuropathology. While many of the methods developed

for data collected to elucidate the mechanisms of TBI are applications of traditional

techniques in computer vision and machine learning, these methods have not been

used to inform TBI in the ways described in this work. The image processing and

analytical contributions of this thesis have furthered our understanding of the fac-

tors involved in TBI outcomes in mouse models of blast- and impact-neurotrauma.

The image analysis schemes presented are used to investigate the effect of key injury

parameters (dose, fractionation, post-exposure interval) on brain microvascular struc-

ture and function in relationship to regional CTE neuropathology and supported key

findings in our recently submitted publication (Tagge et al., 2017).

The primary contribution of the work described is the development of methods to

aid in the presentation and interpretation of data from a newly-emerging analytical

imaging modality, metallomic imaging mass spectrometry (MIMS). These methods

address all aspects of the analytical elemental-isotopic imaging technique, from data

acquisition to data analysis, for exploring hypotheses related to biospecimen pathol-

ogy. The novel contributions made towards MIMS data processing and analysis are

demonstrated to provide robust, quantitative insights into the underlying pathogene-

sis of two very different biospecimens: coronal sections of the mouse brain and human
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lacrimal sac biopsy samples. Large-scale automated analysis of MIMS brain images

from mice is made possible by a newly conceived multi-modal, multi-channel image

registration (MMMCIR) method which maximizes multivariate mutual-information

between two images to determine the optimal affine transformation parameters. The

MMMCIR method is applied to MIMS brain images to facilitate the automated and

objective analysis of biological specimens uncommon in the field of translational med-

ical research. The utility and robustness of the MIMS methods described are shown

to provide unique analytical evidence of the pathological mechanisms of TBI and

human dacryolith formation.

The aims of this work can be summarized as follows:

• To develop an algorithm for tracking mouse head motion in high-speed video

footage in order to quantify injury severity and correlate relevant head kinematic

metrics with measured neuropathology

• To develop quantitative methods for quantification of pathology in photomacro-

scopic and fluorescent images

• To create a software toolkit for MIMS aiding in the data extraction, visualization

and preprocessing specific to this modality

• To develop an unsupervised approach for anatomical segmentation of rigid,

stereotyped anatomical structures

• To apply the method for automatic anatomical segmentation on a cohort of

MIMS brain images in order to evaluate the role of BBB integrity following

impact neurotrauma in a mouse model of TBI

• To evaluate elemental-isotopic content of human lacrimal sac biospy samples by

using the methods developed for MIMS
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1.5 Thesis Organization

This thesis can be divided into three main efforts: understanding the physical mech-

anisms of TBI through traditional imaging modalities, developing image processing

methods for objective and automated analysis of MIMS, and combination of tradi-

tional imaging and MIMS modalities to assess pathology in biological tissues. The

chapters are organized as follows:

• Chapter 2 presents background information on the TBI mouse models used

in this work and the traditional methods employed for neuropathological and

behavioral assessment. An overview of the MIMS properties and acquisition

procedure is provided, followed by a summary of the state-of-the-art methods

for neuropathological image analysis and image registration .

• Chapter 3 discusses the technical development and results of the high-speed

video head tracking algorithm. Assessments of tissues from Evans blue injected

mice having undergone TBI is also presented. The first method presented is a

semi-supervised per-pixel classification algorithm which constructs a photomet-

ric (RGB) model of four classes of interest. This model is then used for labeling

photomacroscopic images of the surface of the brain. The Chapter concludes

with details on the workflow developed for processing fluorescent images of thick

brain sections from Evans blue injected mice.

• Chapter 4 details the algorithms developed specifically to address properties of

the MIMS modality. Basic functions, such as those used to extract and visualize

data, as well as technical details behind MIMS calibration and normalization,

are presented. Finally, each aspect of the multi-modal, multi-channel image

registration function is discussed in detail.

• Chapter 5 applies the methods developed for MIMS on two TBI cohorts.
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Multi-modal, multi-channel image registration is used to label anatomical re-

gions in coronal brain MIMS. Anatomical subgroups are defined and signal levels

on the left and right sides of the brain within each subgroup are compared. The

results from these experiments provide preliminary evidence for local and differ-

ential BBB compromise, but also motivate the need for further improvements

to MIMS acquisition.

• Chapter 6 explores the use of MIMS for investigation of human lacrimal sac

samples. Through the acquisition of samples with matrix-matched calibration

standards, preliminary results indicate the presence of toxic heavy metals in

the surgically removed dacryoliths and suggest that foreign substances may

contribute to the development of this condition.

• Chapter 7 summarizes the contributions made as part of this work and suggests

several areas for improving and extending the research presented.
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Chapter 2

Traumatic Brain Injury Mouse Models
and Assessments

2.1 Traumatic Brain Injury Mouse Models

In order to understand how the parameters of a traumatic brain injury (TBI), such

as severity, frequency, and head kinematics, influence acute and chronic neuropatho-

logical and behavioral outcomes, a mouse model of blast neurotrauma (BNT) and

impact neurotrauma (INT) were designed and validated in the Neurotrauma Labo-

ratory at the Boston University School of Medicine. Development and validation of

these mouse neurotrauma model systems was the thesis work of two graduate stu-

dents, Andrew Fisher (graduated 2017) and Chad Tagge (graduated 2015), with the

help of post-doctoral researcher, Olga Minaeva, Ph.D., all of whom conducted re-

search in Dr. Goldstein’s laboratory. The validated TBI mouse models have been

described in recent publications (Goldstein et al., 2012; Tagge et al., 2017). The

models were designed in such a way that the physical parameters of the system, as

well as the neuropathological and behavioral outcomes, closely resemble those found

in combat soldiers and contact-sports athletes having suffered from mild TBIs.

For the BNT model, a shock tube was constructed in collaboration with Fraunhofer

Center for Manufacturing Innovation at Boston University and operated at the Neu-
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rotrauma Laboratory (part of the Dr. Goldstein’s Molecular Aging and Development

Laboratory). A schematic of the shock tube is shown in Fig. 2·1. The shock tube

was constructed to deliver highly reproducible wave fronts of pressurized gas whose

characteristics are similar to those produced by 4.5 kg of C4 explosives at a distance

of 5.5 m (Goldstein et al., 2012). Helium gas accumulates in the compression cham-

ber until the pressure causes the plastic membrane to rupture, at which point the

pressurized wave-front travels along the expansion chamber towards the mouse. The

shock wave front travels at a speed of approximately 150 m/s to the end of the shock

tube where the mouse resides in a customized restraint system allowing for free mo-

tion of the head and neck. The BNT model uses a single blast to the left-lateral side.

Significant measurements and analyses have been conducted to ensure the similarity

of the blast-wave measured in the tube to dynamics of those measured in the field.

Previous experiments have marked the similarity between the neuropathology in the

mouse brain to that observed in TBI-exposed human brains (Goldstein et al., 2012).

Further technical details on the design and validation of the blast shock tube can be

found in Fisher (2017).

The INT model was designed with the goal of inciting a left-lateral head injury com-

parable to that experienced in the BNT model and which closely mimics the acute

injuries observed in sports-related TBIs. Rather than being an inertial-loading in-

jury as in the BNT case, the INT would be contrasted by direct-contact loading.

Since rapid head acceleration is one of the postulated contributors of the chronic neu-

ropathology observed in brains of individuals having a history of concussive injuries,

the INT model parameters were adjusted such that the maximum head angular ac-

celeration was approximately equal to the head accelerations observed in the BNT

model. The impactor was designed by Chad Tagge of Dr. Goldstein’s laboratory

and its design is discussed in detail in his recent thesis (Tagge, 2016, Chapter 2). As
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Figure 2·1: Schematic of the blast tube set up. Pressurized gas is
delivered into the closed system of the pre-burst compression chamber.
Abrupt rupture of a mylar membrane diaphragm separating the com-
pression and expansion chambers initiates a blast shock wave front that
traverses the long axis of the 4.5 m shock tube at supersonic velocity
(Mach 1.26 ± 0.04). (Figure and caption from Goldstein et al. (2012),
Fig. S3)

shown in Fig. 2·2(b), the mouse is secured with the left-lateral side of its head against

the pad attached to the sled. The back-end architecture of the impactor, pictured in

Fig. 2·2(a), uses pressurized gas to accelerate a slug. The momentum generated by

the slug is transferred to a rod (mrvr), which makes contact with the sled and results

in the transfer of an angular momentum to the mouse’s head (mhvh, Fig. 2·2(c)).

2.2 Neuropathological & Behavioral Deficits in TBI

While the evidence causally linking TBI to behavioral and physiological deficits is

difficult to establish in humans, brains acquired from adolescent donors, military per-

sonnel, and high-profile professional athletes are highly suggestive of a connection.

A discussion of the link between TBI and CTE in humans is presented in Ojo et al.
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(a) Impactor architecture

(b) Before impact (c) After impact

Figure 2·2: (a) Instrument schematic for the concussive impact neu-
rotrauma mouse model. (b & c) Schematic of momentum transfer in-
strument and unanesthetized C57BL/6 mouse before (b) and after (c)
lateral impact injury. (b) Mouse is secured across the thorax with a
Velcro strap (V) and positioned such that the head is in contact with
the impactor assembly, a helmet analog comprised of an inner foam
pad (P) and an outer hard shell (Sh) that is fixed to a mobile sled (S).
Stainless steel rod (R) of known mass (mr) and empirically-measured
velocity (vr) transfers momentum to the sled. (c) Sled of known mass
(ms) and empirically-measured velocity (vs) transfers momentum to the
head resulting in traumatic acceleration. Sled motion is terminated by
a backstop (B). Distal sled gap, (G1). Proximal sled gap, (G2). (Figures
and captions from Tagge et al. (2017), Fig. 2 and Fig. S2)
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(2016) along with a variety of caveats and complications associated with studying

the association in animal models. Nevertheless, the neuropsychiatric features includ-

ing depression, cognitive impairment, and aggression, which have been reported with

CTE neuropathology (DeKosky et al., 2013), demand further investigation and estab-

lishment of the connection between TBI, CTE, and development of neuropsychiatric

deficits.

Despite many similarities between the neurodegenerative diseases CTE and Alzhiemer’s,

CTE is differentiated by the accumulation of hyper-phosphorolated tauopathy (p-tau)

primarily occurring at the depths of the sulci and near other micromechanical hetero-

geneities in the brain, such as blood vessels (Goldstein et al., 2012). The first formal

definition for CTE was provided by McKee et al. (2013) suggesting its diagnosis as

the presence of the following four components:

“1. perivascular foci of p-tau immunoreactive astrocytic tangles and neurofibrillary

tangles (NFT)

2. irregular cortical distribution of p-tau immunoreactive NFT and astrocytic tan-

gles with a predilection for the depth of cerebral sulci

3. clusters of subpial and periventricular astrocytic tangles in the cerebral cortex,

diencephalon, basal ganglia and brainstem

4. NFT in the cerebral cortex located preferentially in the superficial layers”

Mouse models of BNT and INT have demonstrated diffuse perivascular pathology

(Goldstein et al., 2012; Tagge et al., 2017). It has been postulated that damage

to local blood-brain barrier (BBB) architecture creates a hypoxic environment and

results in a complex neuroinflammatory response, potentially leading to a chronic

imbalance (Marchi et al., 2013; VA and DoD, 2016). Blood-brain barrier dysfunction

has also been implicated in other neurodegenerative diseases such as Alzheimer’s
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and Parkinson’s (Neuwelt et al., 2011). One of the greatest challenges associated

with in-vivo detection of BBB dysfunction is the local and microscopic damage to

vessels, which cannot be reliably identified using conventional imaging methods such

as computed tomography or magnetic resonance imaging (Shenton et al., 2012) and is

not recommended as a clinical assessment (VA and DoD, 2016). Using these validated

animal models for TBI, the goal of this work is to develop the metallomic imaging

mass spectrometry (MIMS) modality in order to quantitatively and spatially assess

the degree of BBB compromise.

A healthy BBB consists of a blood containing lumen formed by epithelial cells. The

epithelial cell layer is surrounded by pericytes which complete the barrier between

the cerebrovasculature and neuronal tissue. A schematic representation of the BBB

from Winkler et al. (2011) is shown in Fig. 2·3. In summary, an intact BBB is one

which completely isolates the blood from brain tissue by a layer of specialized cells

responsible for chaperoning nutrients and other molecules from one side of the barrier

to the other.

Traumatic brain injury is believed to focally induce BBB disruption resulting in

compromised microvasculature and subsequent neuronal death leading to chronic

and progressive neurodegeneration. State of the art in-vivo imaging methods have

not revealed any differences between the brains of mice in control and TBI groups

(Mac Donald et al., 2011) likely because most modern imaging technologies do not

have sufficient resolution to show the cellular level effects. Currently, neuropatholog-

ical assessments of TBI are achieved through a variety of postmortem tissue imaging

procedures including immunohistochemistry and electron microscopy.
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(a) Intact BBB (b) Compromised BBB

Figure 2·3: (a) Structure of a normal neurovascular unit (Figure copied from (Winkler et al., 2011),
Fig. 1). (b) “(1) Blood-brain barrier (BBB) breakdown due to disrupted BBB tight and adherens junctions
and increased bulk flow fluid transcytosis leads to brain influx of serum proteins (for example, albumin, im-
munoglobulin G (IgG)), causing edema, and of blood-derived vasculotoxic and neurotoxic macromolecules
(for example, fibrin, thrombin, hemoglobin (Hb)-derived iron), causing neuronal injury and neurodegener-
ative changes. RBC, red blood cell; ROS, reactive oxygen species. (2) Reductions in capillary blood flow
due to microvascular degeneration and pericapillary edema aggravate chronic hypoperfusion and hypoxia,
depriving metabolically active neurons of oxygen and other essential nutrients, which leads to neuronal
dysfunction.” (Figure and caption copied from (Winkler et al., 2011), Fig. 5a)
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2.2.1 Injury Severity Assessments (BUCS)

One of the first scoring systems for assessing TBI severity was developed by Teasdale

and Jennett (1974). This 15-point scale, called the Glasgow Coma Scale (GCS), is

still used today as a way of grading a head injury as mild (score of 13-15), moderate

(9-12) or severe (3-8) (Benzinger et al., 2009). Other common metrics which help

define TBI severity include the period of altered consciousness, the period of loss of

consciousness, and duration of post-traumatic amnesia (VA and DoD, 2016). While

behavioral and motor function impairment measures for animal models have been

proposed, such as the neurological severity score (Chen et al., 1996; Beni-Adani et al.,

2001; Stahel et al., 2000), the binary scoring for achievement or failure of each of the

ten tasks did not reflect the nuances associated with the motor-neurological deficits.

To fill this unmet need for a behavioral and motor function assessment which was

easy to administer and captured some of the nuances associated with post-TBI motor

function, such as side-specific motor neurological deficits, Tagge (2016) developed a

15-point Boston University concussion scale (BUCS). Mice perform three tasks, each

carrying a score from zero to five points. Description of the tasks and their scores

are explained in the scoring rubric in Fig. 2·4. Mice having undergone INT showed

a statistically significant decrease in BUCS by 3.2 points compared to BNT exposed

mice two minutes after TBI, with the score recovering to normal levels (mean score

of 14.5) three hours after injury (Tagge et al., 2017). These scores were used to

compare post-injury severity and confirm recovery of motor function, but have yet to

be explored in detail for how they relate to injury parameters and neuropathology.
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Figure 2·4: Boston University concussion scale scoring rubric
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2.3 Introduction to Imaging Modalities Utilized

As previously discussed, validated forms of in-vivo imaging and biomarkers which re-

liably indicate TBI severity and pathogenesis remain in development (Marchi et al.,

2013). Many common forms of assessment include western blots, enzyme-linked im-

munosorbent assays (ELISA), immunohistochemical (IHC) and immunofluorescent

(IHF) imaging, and electron microscopy. Both western blots and ELISA require tis-

sue homogenization and as such are not localized measures. As images, IHC and IHF

do inform pathogenesis while maintaining spatial integrity, but these techniques are

still largely considered qualitative and difficult to normalize. While there is promise

in their utility in automated diagnosis using machine learning, particularly for carci-

nomas (Rizzardi et al., 2012), this approach requires a large, labeled dataset which is

representative of image variability. The specifics of the two modalities used beyond

the optical images (RGB) in this work are described in this Section.

2.3.1 Evans Blue Extravasation with Fluorescent Imaging

Evans blue dye (EBD) is a blue-colored fluorescent dye (excitation peaks at 470 and

540 nm, emission peak at 680 nm (Jaffer et al., 2013)) which binds to serum albumin

(Rawson, 1943). The dye may be injected and allowed to circulate to serve as a

marker for BBB compromise in animal models (Uyama et al., 1988; Manaenko et al.,

2011). Since the dye is bound to the serum protein albumin, the presence of EBD in

the brain parenchyma indicates a compromised BBB to the extent that albumin is

extravasated. EBD may be detected by visible blue discoloration of the brain tissue

in optical images, or more quantitatively through fluorescent imaging. Previous work

has validated the ability for large-region quantification of EBD extravasation in the

brains of mouse models of stroke (Jaffer et al., 2013) and blast (Kabu et al., 2015).
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Staining with EBD allows for spatial localization of BBB disruption (del Valle et al.,

2008; Kabu et al., 2015; Tagge et al., 2017).

This principle of marking BBB dysfunction by the presence of EBD in optical and

fluorescent images was used for evaluating the effect impact neurotrauma on BBB

integrity(Tagge, 2016; Tagge et al., 2017). The experimental protocol for the optical

and fluorescent images of brain tissue from EBD injected mice is provided in Ap-

pendix A.2. The algorithms developed for stream-lining the analysis of these data

are presented in Chapter 3. Detailed methods and results derived from these images

are discussed by Tagge (2016) and are summarized in Fig. 5A-D of Tagge et al.

(2017).

2.3.2 Metallomic Imaging Mass Spectrometry for Biological Samples

Mass spectrometers (MS) are an essential tool in analytical chemistry used to mea-

sure the purity of a sample. They are utilized in a number of applications includ-

ing microelectronic materials research, environmental and geological assessment, and

carbon dating. These instruments can be extremely sensitive (detecting parts per

quadrillion), have a vast linear dynamic range (up to 1012 orders of magnitude, atomic

mass units [amu]) and are capable of simultaneously measuring isotope ratios across

the periodic table with mass resolution near 0.001 amu.

In inductively-coupled plasma mass spectrometry (ICP-MS) used in this work, a sam-

ple is sprayed into an argon plasma and ionized. While the specifics of the instrument

depend on the type of mass analyzer used by the MS instrument, generally an ionic

particle’s movement in electric and magnetic fields is fully characterized by a dif-

ferential equation and solvable given the initial conditions. By manipulating these

fields, ions with a specific m/z value may be counted. The MS instrument functions
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Figure 2·5: Representation of a spectrograph measured from a sample
containing copper and zinc. On the left, isotope information for copper
is given. The top number (29) indicates that it is the 29-th element
on the periodic table of elements. The number at the bottom of the
box indicates the the atomic mass of the element, which is the average
mass of each of the two isotopes: for copper 63Cu and 65Cu. The two
isotopes are found with the relative abundance indicated. The image on
the right provides an example of a spectrograph for a range of the mass
to charge ratio (m/z) values. For each measurement, the instrument
records the intensity for each m/z-value specified.

as a transducer by translating the number of ions with known m/z-value hitting the

detector into a voltage. For each time point of data, the MS output is a spectrograph

(Fig. 2·5). The operator may select a range of values, such as m/z = {62 – 70}, or

may select a number of specific isotopes to acquire data for. For each of these indi-

cated m/z-values, the instrument returns the amount of the given m/z-value in counts

per second (cps). These readings can be converted into absolute concentrations (for

example, parts per million [ppm]) using a linear, matrix-matched calibration curve

which can be used to calculate ppm from cps from the instrument. An important

operational consideration is that of atomic interferences. These are mentioned by the

MS instrument software, which allows for various modes of operation for minimizing

these interferences (Thermo Fisher Scientific, 2010).

The use of MS for investigating the metallomic distribution of biological tissue is a
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recent application introduced in the early 2000’s (Kindness et al., 2003). To gen-

erate an isotopic distribution map of an object, a laser ablation system (LA) and

hyphenation system are added to the front end of the MS (Fig. 2·6(a)). As shown in

Fig. 2·6(b), the biological sample is enclosed in the ablation cell, which has a window

at the top. The laser shines through the window and ablates material from the top

layer of the sample, generating a plume of particles which are carried into the MS

plasma by a carrier gas flowing over the sample. A metallomic image is created by

continuously raster scanning (row-by-row) the laser across the tissue while the MS

acquires a spectrograph at an indicated acquisition sampling rate, tacq. The spectro-

graph for each spatial location of the sample can be thought of as a vector-valued

pixel containing quantitative information about the distribution of isotopes at that

particular location. A recent publication provides a detailed protocol for LA-ICP-MS

(Hare et al., 2017). It should be noted that metallomic imaging mass spectrometry

(MIMS) is a destructive, ex-vivo imaging technique since the surface of the sample is

ablated and the sample must be enclosed in a small ablation cell. The ablation depth

has not been characterized, but is understood to be on the order of tens of microns,

depending on laser power and sample material properties.

The image quality and spatial resolution of the resulting MIMS are influenced by the

experimental parameters and instrumentation. The specificity and detection limit

of a given isotope are primarily influenced by the spectrometer used. The Cen-

ter for Biometals (CBM; Boston, MA) where the data were acquired, which is part

of Dr. Goldstein’s Molecular Aging and Development Laboratory, has three instru-

ments available: a Thermo Fisher iCAP 7200 (ICP-OES), a Thermo Fisher iCAP-Q

(quadrupole ICP-MS), and a Thermo Fisher Element 2 (magnetic sector field ICP-

MS). The images in this work were acquired under the direction of the analytic

director of the CBM at the time, Noel Casey, Ph.D. The data in Chapter 5 were
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(a) MIMS acquisition system

(b) LA-ICP-MS schematic

Figure 2·6: (a) Metallomic imaging mass spectrometry system com-
prised of a laser ablation (LA) system on the front end with an
inductively-coupled plasma mass spectrometer (ICP-MS) on the back
end. The two instruments are connected via a hyphenation interface.
The system as a whole is known as LA-ICP-MS. (b) Schematic diagram
of the LA-ICP-MS system.
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Table 2.1: The arrows indicate the direction that spatial parameter
needs to change (↑= increase, ↓= decrease) in order achieve the result
indicated in the column header. tacq: MS sampling rate; vscan: scan
speed; dspot: laser spot size.

MIMS parameter Max signal Min noise Max spatial res. Min total T

tacq [s] ↑ ↑ ↓ —

vscan [µm/s] ↓ ↓ ↓ ↑

dspot [µm] ↑ ↓ ↓ ↑

acquired using the Element XR by Dr. Casey. The data considered in Chapter 6 were

acquired by Bo Yan, Ph.D., with the iCAP-Q.

The spatial resolution of each pixel is dictated by the stage movement, gas flow rate

and composition, and ablation cell characteristics of the LA system. The LA instru-

ment used in this work was the Teledyne CETAC LSX–213 G2+. The instrument’s

specifications can be found on the company’s website (Teledyne CETAC Technologies,

2014). The spatial dimensions of a pixel may be calculated from the four user-defined

parameters dictating stage movement and data sampling: (1) the laser spot size, dspot

[µm]; (2) stage scan speed, vscan [µm/s]; (3) line-to-line spacing, dl2l [µm]; (4) MS

sampling rate, tacq [s]. A diagram showing how these variables influence the spatial

resolution can be found in Fig. 2·7. The laser spot size, scan speed and MS sampling

rate all influence the horizontal resolution of each pixel. The vertical resolution is

considered to be the line-to-line spacing indicated. There are several challenges as-

sociated with optimizing the parametrization of MIMS to acquire the highest quality

image in a reasonable amount of time. A summary of how the parameters need to

be changed to achieve maximum signal, minimum noise, maximum spatial resolution

and minimum total acquisition time, T , is given in Table 2.1.

Metallomic imaging mass spectrometry using the LA-ICP-MS system has been used
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Figure 2·7: Diagram of spatial parameters affecting final image reso-
lution.

for a variety of applications with a detailed summary of its use for biological samples

provided by Becker et al. (2014). LA-ICP-MS has been used for coarse localiza-

tion of biometals in a variety of animal models for neurological conditions including

Alzheimer’s disease (Hutchinson et al., 2005; Matusch and Becker, 2012; Hare et al.,

2016), stroke (Becker et al., 2010), and tumors (Becker and Salber, 2010). Other stud-

ies have sought to identify the amount of exogenous metals injected into the brain,

such as gadolinium-based MRI-contrast agents in the brains of rats and pigs using

LA-ICP-MS (Pugh et al., 2012). Development of LA-ICP-MS has recently undergone

significant advancements aimed toward improving spatial resolution (Becker et al.,

2014) and analysis of neuorpsychiatric disorders (Uerlings et al., 2016b). While very

recent work has been done to show elevated levels of iron using MIMS in the brains of

mice receiving a controlled cortical impact injury (Portbury et al., 2017), this injury

model is not representative of microvasculopathy and closed-head injuries we strive

to study. The use of MIMS for assessing diffuse BBB compromise in animal models

of TBI is still an unstudied application.
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A related technology called matrix-assisted laser desorption/ionization (MALDI)-

imaging mass spectroscopy (IMS) may be used for analysis of large proteins and

other biomolecules (Caprioli et al., 1997). The quality of the data produced through

this technique is similar to MIMS in that each spatial location produces a spectrum of

m/z-values; however, in the case of MALDI, the m/z-values are larger and typically

many more data points in the spectrum are acquired. MALDI-IMS has been used

as a more robust method to replace traditional pathological assessment techniques,

such as IHC or in-situ hybridization, for evaluating a variety of processes including

drug metabolism and pathological assessment (Cornett et al., 2007). Many of the

algorithms developed for MIMS may also be used for MALDI processing.

2.4 Current Biomedical Image Registration Methods

Investigation of disease mechanisms in translational medicine often involves acquisi-

tion and analysis of multiple image modalities to inform the underlying pathogenesis.

Indeed, multiple image modalities may be required in clinical medicine as well de-

pending on the suspected contributor of symptoms. Part of the role of imaging in

translational medicine is to determine the microscopic and mechanistic contributors

to a disease using high-resolution imaging and highly-specific markers. The ultimate

goal is to use these findings to identify specific biological processes to target for the de-

sign of clinically-relevant biomarkers and measurements. The ability to determine the

spatial relationships between independent modalities facilitates the characterization

of disease processes. These comparisons are enabled by casting disparate modali-

ties into a common coordinate system using image registration such that there is a

correspondence between anatomical features and pathologies.

A variety of modalities are used extensively in translational research including: IHC,
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IHF, and in-situ hybridization. Also frequently used are conventional clinical imaging

modalities such as magnetic resonance imaging (MRI), positron emission tomography

(PET), ultrasound (US), etc. The objective of this thesis is to develop methods for

recently emerging imaging modalities which result in vector-pixel/voxel images such

as MIMS, MALDI, and diffusion tensor imaging. While all techniques have been

developed specifically for MIMS, the multi-channel, multi-modal image registration

(MMMCIR) method, detailed in Section 4.5, could be directly applied to pairwise

registration of any 2-D vector-pixel images.

A large number of publications have been written on medical image registration, in-

cluding many on multi-modal methods. Most multi-modal image registration publi-

cations have addressed the problem of determining the correspondence between MRI,

PET, US, and other relevant clinical modalities. While these works have achieved

robust results for these image modalities, two distinct features of MIMS limit the

ability to directly apply most methods: (1) each spatial location is defined by a vec-

tor of values rather than a scalar value, and (2) the intensity characteristics of the

MIMS modality are unique in a variety of ways making extensions of many modality

reduction techniques and filtering methods difficult. The existing literature details

algorithms for pairwise image registration either between multi-channel images with

each channel representing the same modality, or for multi-modal scalar-valued images.

No methods directly dealing with multi-modal, multi-channel image registration are

available.

The problem of pairwise image registration (IR) is broadly defined by three aspects:

(1) the transformation model, (2) the cost function, and (3) the optimization method.

While each aspect may have several suitable methods which vary in their complexity

and appropriateness for a given problem, the most widely tuned aspect of the IR
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problem for correspondence between multiple modalities is the cost function. Mutual

information (MI) was proposed for use as a cost function for multi-modal medical

image registration by Maes et al. (1997) and Viola and Wells III (1997). As a prob-

abilistic measure requiring the computation of the joint density function (JDF), the

MI metric does not depend on a direct functional relationship between the intensities

of the two images, but rather relates the amount of shared information there is in

the intensity characteristics. Due to the computational burden typically associated

with computing a JDF, many approaches to multi-modal IR have sought to cast the

problem as a uni-modal one by determining a suitable alternative representation of

the input images, or by using approximations to the computation of the JDF such

that its construction and the subsequent optimization of MI are facilitated.

To address the challenges presented by multi-modal images, most approaches target

improving the computation of the cost function in some way. Heinrich et al. (2012)

developed a modality-independent neighborhood descriptor (MIND) based on the

principle of neighborhood self-similarity. The MIND value is calculated for each pixel

in the image and is shown to produce similar visual patch properties for anatomically

corresponding features represented in different modalities (uniform areas, corners and

lines in different modalities result in similar MIND patch appearance). Optimal trans-

formation parameters are determined by minimizing the sum of squared differences

between the MIND representation of both images via Guass-Newton optimization

method. Another approach computes an entropy image, essentially capturing rele-

vant structural features in the original images, to enable the optimization of an L1

or L2 cost function (Wachinger and Navab, 2012). By casting the multi-modal IR

problem as a uni-modal one, the computation of the cost function and the methods

available for optimization are greatly simplified. These methods only work, how-

ever, if certain assumptions, such as consistency of local intensity characteristics, are
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present in both modalities being used for registration. Since the structural informa-

tion and intensity properties within MIMS are often complementary across channels,

these assumptions cannot be directly applied to the intensity characteristics specific

to MIMS.

Many compelling simplifications for determining optimal transformations between two

images using maximization of mutual information have been developed. Kern and

Pattichis (2007) assumed Gaussian characteristics to relate the frequency-domain

properties of images to the surface of the MI cost function in the transformation

space. The authors showed robust registration of two hyperspectral images with

empirical convergence guarantees so long as the neighborhood around the MI surface

was sufficiently small (such that linearity assumptions hold). Other approaches use

standardized basis functions, such as B-splines (Thévenaz and Unser, 2000) or the

Gauss transform (Špiclin et al., 2011), to calculate the JDF. This allows for the use of

gradient type optimization functions by simplifying the expressions for the gradient of

the cost function with respect to the parameters being optimized. Several publications

have proposed surrogates to direct computation of the JDF via ensemble estimates

(Sricharan and Hero, 2012), Rényi entropy and minimum spanning entropic graphs

(Neemuchwala and Hero, 2005; Sabuncu and Ramadge, 2008). While these methods

may be extended for vector-pixel images, their description and validation are shown

only for scalar valued images.

Several free software platforms have been developed for use in a variety of medical

image processing tasks. One of the oldest platforms, FreeSurfer, first released circa

1999, has a variety of functions, including image registration and segmentation, but

was developed for human brain MRI images (Fischl, 2012). Another software package

used for image registration and segmentation is the Insight Segmentation and Regis-
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tration Toolkit (ITK) (Yoo et al., 2002) and its extensions, elastix (Klein et al., 2010)

and Advanced Normalization Tools (ANTs) (Avants et al., 2011). These packages

include a variety of options for registration, including various cost functions, trans-

formation models, and optimization methods. Still, due to the ubiquity of scalar,

volumetric images such as MRI, registration tools for handling multi-modal vector

pixel images have yet to be developed.

There have been some efforts to improve the processing and interpretation of IMS

data, both for MIMS and MALDI. Software tools for visualizing data and correcting

instrument artifacts have been developed for MATLAB (Robichaud et al., 2013) and

Excel (Uerlings et al., 2016a). Since the IMS modality is still in its early stages of

development, standardized methods beyond visualization and data conditioning are

not widely used. In a recent work, structural and intensity information supplied by

IHC photomicroscopy images was used to model the relationship between MALDI

channel characteristics and IHC properties (Van de Plas et al., 2015). This work on

image fusion did require registration of MALDI and optical images, but relied on

manually selected control points with an affine transformation model.
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Chapter 3

Assessment of TBI via Traditional
Imaging Modalities

The primary focus for this portion of the thesis is to provide tools for measuring

the correlation of injury severity parameters with subsequent behavioral and neu-

ropathological outcomes. These tools are based on established methods in computer

vision and machine learning to provide novel and quantitative insights into data with

the objective of gaining a better understanding of TBI. This chapter presents the

acquisition and processing of photographic and fluorescent images and high-speed

videos. The high-speed videos recorded during the neurotraumatic episodes are used

to better understand and compare the head kinematics occurring in both of the neu-

rotrauma models under investigation. Methods developed for analyzing photographs

and fluorescent images of brain tissue taken after administration of an albumin bind-

ing fluorescent dye known as Evans blue (EB) are also presented. Whole brain color

images were acquired to assess the extent of visible surface pathology. To this aim, a

pixel-wise classification algorithm is presented to enable grading the severity of sur-

face pathology (Tagge et al., 2017). Finally, methods for processing and analyzing

fluorescent images of the EB-injected brains to semi-quantitatively assess blood-brain

barrier (BBB) dysfunction are described.
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3.1 High-Speed Video for Tracking Head Movement

One important aspect of comparing impact neurotrauma (INT) and blast neuro-

trauma (BNT) is understanding the similarities between the head kinematics expe-

rienced during both injuries. Additionally, exploring the relationship between the

severity of the neuropathological and behavioral deficits following TBI and motion

of the head during the injury is a topic of great interest. The mouse models of INT

and BNT are compared using high-speed videos acquired during the injury period.

These videos are used to detect the position of the mouse’s nose so that subsequent

processing could be done to estimate higher order position derivatives. Under both

TBI models, a brief impulse of force is delivered to the left-lateral side of the head

resulting in a rapid head acceleration. The head motion typically lasts on the or-

der of a few hundred milliseconds with the most severe head accelerations occurring

during the first 30-50 msec. For this reason, high-speed video (HSV) footage with

a 100 KHz frame rate is used for tracking and analyzing the motion of the head

throughout the duration of the injury period. The specific technical contributions for

this effort include development of an object segmentation and localization algorithm

followed by application of Kalman filtering for estimation of velocity, acceleration and

jerk (third derivative of position).

Before injury exposure, the mouse’s nose is marked with white paint to provide a

prominent feature for tracking in each HSV frame, shown in Fig. 3·1. The initial

processing objective for the videos is detection of the position of the object of interest

in each frame of the HSV, which we specify as the bright-painted spot on the mouse’s

nose. This task is subject to the following technical challenges:

• Variation in size, shape and pixel intensity of the object (mouse’s nose)
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(a) Raw image

(b) Contrast-adjusted image

Figure 3·1: Initial frame of a high-speed video from a mouse under-
going blast neurotrauma. The mouse’s nose is the central-most bright
point in the frame. A mounted accelerometer can also be seen as a
bright spot in the bottom-left corner of the frame. (a) Raw grayscaled
image. (b) Contrast-adjusted image (to aid in visualization).

• Occlusion of the object for some parts of the video

While real-time object detection is not a requirement, the goal was to develop a

method for segmenting and localizing the object quickly, for as many frames as pos-

sible, and with minimal user interaction.

In order to accurately estimate the x- and y-image coordinates of the object, two

segmentation algorithms were used depending on the frame’s characteristics: either

the Chan-Vese (CV) active contours method (Chan and Vese, 2001) or k-means clus-
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tering (Bishop, 2006). The CV and k-means algorithms are well suited to address

the aforementioned technical challenges since both attempt to separate data into two

distinct groups without explicitly enforcing specific group characteristics. Compared

to CV, k-means is more sensitive to characteristics of the intensity distribution. How-

ever, since segmentation by k-means clustering is faster than by CV, segmentation

by k-means is first attempted to identify object and background regions. If the seg-

mentation result using k-means varies significantly from the previous frame’s result,

the CV algorithm is used for segmentation of the current frame instead.

All frames in the HSV are converted from RGB images into luminance images. Re-

gions of interest in the first frame are localized by identifying the pixels whose values

exceed a threshold γ0. The first frame of a representative HSV is shown in Fig. 3·2(a)

with the two regions in the image exceeding γ0 outlined in red. The component

closest to the center of the frame is selected as the object of interest. This initial

segmentation provides the seed position for the first frame. To segment the object of

interest after this initial frame, the object position from the previous frame is used to

designate a search area of p pixels in the image, shown as a cyan box in Fig. 3·2(a).

The pixels in this designated patch in the image are the only ones considered for

segmentation of the object from the background. As previously mentioned, k-means

clustering, with k = 2 to differentiate the foreground (object) from the background

in the patch, is attempted on the pixels within this search area (Fig. 3·2(b)). This

produces a two class mask whose boundary is shown as a red curve in Fig. 3·2(c).

Once the object boundary is defined, the weighted centroid of the object serves as

the x- and y-position of the nose in the given frame.

After segmentation of the frame by k-means, the result is compared to the previous

frame’s mask. If the area of the current frame’s mask is greater than twice the area
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(a) Candidate objects (intensity ≥ γ0) in the first frame. Search area indicated by cyan
box.

(b) Histogram of k-means (k = 2) result in
search area

(c) Contour indicating boundary between k-
means classes in patch

Figure 3·2: High-speed video segmentation procedure using k-means.
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of the previous frame’s mask, or if the minimum intensity of the current object is

less than half the minimum intensity of the previous object, then the search area

is reduced and the CV algorithm is used to segment the object instead of k-means.

Figure 3·3 goes through the intermediate outputs depicting a frame for which k-means

does not provide suitable segmentation so the CV algorithm is applied instead. As

shown in Fig. 3·3(c), the total area of the mask using k-means was 301 pixels while the

previous frame’s mask area was 17. Using CV on a smaller patch, Fig. 3·3(d) shows

that a 20 pixel foreground class is identified as the object resulting in a reasonable

segmentation for that frame.

The CV method defines a contour by minimizing the energy of a level-set. The energy

is defined as the sum of internal and external energies derived from image properties

(see Eqn. (3.2)). The contour is defined as the zero-level curve of a Lipschitz level-set

function, φ(t, x, y). Some examples of level-sets can be seen in Fig. 3·4 where the

z-axis gives the value of the level-set and the zero-level set, C, is shown in red. The

level-set evolves over time by minimizing the energy functional F subject to c1 (mean

intensity inside the contour), c2 (mean intensity outside the contour), and C:

inf
c1,c2,C

F (c1, c2, C) (3.1)

As previously mentioned, the energy function is defined over the space of the im-

age patch, x, y ∈ Ω, and quantifies both contour specific energies, as well as image

intensity (u0) energies to define F (c1, c2, φ). The user may also adjust the weight-

ing parameters µ, ν, λ1, λ2 to emphasize or lessen the importance of each of the
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(a) k-means failure frame with previous frame’s segmentation in red

(b) Histogram of k-means result in patch (c) k-means mask boundary

(d) CV mask boundary

Figure 3·3: High-speed video segmentation using Chan-Vese after
failure of k-means.
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integrals. The CV energy functional is defined as follows:

F (c1, c2, φ) =µ ·
∫
Ω

δ(φ(t, x, y)) |∇φ(t, x, y)| dxdy

︸ ︷︷ ︸
length C

+ν ·
∫
Ω

H(φ(t, x, y))dxdy

︸ ︷︷ ︸
area inside C

+ λ1

∫
Ω

|u0(x, y) − c1|2 H(φ(t, x, y))dxdy

︸ ︷︷ ︸
intensity variance inside curve

+ λ2

∫
Ω

|u0(x, y) − c2|2 (1 −H(φ(t, x, y)))dxdy

︸ ︷︷ ︸
intensity variance outside curve

(3.2)

where weighting parameters for each of the integrals may take the values:

µ ≥ 0 ν ≥ 0 λ1, λ2 > 0

Heaviside function: H(z) =


1 if z ≥ 0

0 if z < 0

Dirac function: δ(z) = d

dz
H(z)

The energy functional is minimized by explicit differentiation of F with respect to t by

holding c1 and c2 constant (Chan and Vese, 2001). This then gives an expression for

dφ/dt which can be approximated using finite differences. The level-set φ is iteratively

adjusted until dφ
dt

≈ 0 or some other criterion is met (for example maximum number

of iterations). A publicly-available implementation of the CV algorithm was used

(Wu, 2009). Parameter values are given in Table 3.1.

This object detection scheme is used to extract the x- and y-position of the mouse’s

nose in all HSV frames of interest. The resulting tracked position is shown in

Fig. 3·5(b). Because the raw position points are too variable to give informative
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Figure 3·4: Evolution of Chan-Vese segmentation. The left column
depicts the image of the search area around the object and the right
column shows the level-set function, φ(t, x, y). The top left image shows
the bounding box around the search area of the object. This region
of interest is used to define Ω in the CV algorithm and initialized
with a level-set (top and middle right images). The top right image
shows φ colored in terms of the function’s values and the middle right
image shows is colored by the image pixel values. After 1000 iterations
(t = 1001) the level-set is conformed to optimize F (Eqn (3.2)). The
regions of the level-set are indicated in the bottom right image.
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Table 3.1: Parameter values used for Chan-Vese algorithm

µ λ1 λ2 ν Max. Iter.

length weight inside intensity
weight

outside intensity
weight area weight

0.01 × 2552 1 1 0 1000

second- and third-derivatives (see Fig. 3·5(a) and top row of Fig. 3·6), additional

filtering is required to extract quantities of interest from the higher-order position

derivative curves. To be used as a comparison to the Kalman Filter tracking method,

forward-backward filtering of the raw position by a 2-nd order Butterworth filter

(BF) with a cutoff frequency of 2 KHz is used to calculate first- and higher-order

derivatives by taking corresponding-order finite differences of the position curve. Raw

x-position data and higher-order derivatives can be seen in the first row of Fig. 3·6.

The second row of Fig. 3·6 depicts results from the BF. Clearly, filtering reveals

interesting features, such as high intensity spikes, in the higher-order derivative plots.

Kalman filtering is the approach most commonly used for object tracking since the

mechanisms (whether physical or some known functional relationship) governing the

object’s motion may be incorporated through the state transition model. The Kalman

filter (KF) system is described by two equations: the process model (Eq. 3.3) and the

observation model (Eq. 3.4). Assuming a linear process model and Gaussian noise, the

posterior probability, p (Sk|z1:k), is also Gaussian and therefore is completely specified

by the mean, Sk|k, and the covariance, Pk|k. Variable definitions and values used for

the KF are given in Table 3.2.

Process Model: Sk = ASk−1 +Buk + wk (3.3)

Observation Model: zk = CSk + vk (3.4)
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Table 3.2: Kalman filter variable definitions. Definitions with a “*” indicate that in this application,
these values are constant and do not change, but in general may be defined as a function of k.

State vector Sk =
[
x ẋ y ẏ

]T

State transition matrix A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t

0 0 0 1


Control matrix B =

[
(∆t)2 /2 ∆t (∆t)2 /2 ∆t

]T
Control value* uk = constant
Process noise* wk = N (0, Qk)

Noise covariance* Qk =



(
(∆t)2 /2

)2
(∆t)3 /2 0 0

(∆t)3 /2 (∆t)2 0 0
0 0

(
(∆t)2 /2

)2
(∆t)3 /2

0 0 (∆t)3 /2 (∆t)2

× σ2
a

Process variance σ2
a = 10−5

Observation vector zk =
[
x y

]T
Measurement matrix C =

1 0 0 0
0 0 1 0


Measurement noise* vk = N (0, Rk)
Measurement covariance* Rk = I × σ2

m

Measurement variance σ2
m = 1

Sample time difference ∆t = 1
Frame number k
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Table 3.3: Kalman filter prediction and update steps

Prediction Step Update Step
U0. Compute Kalman gain

Kk = P̂kC
T
(
CP̂kC

T +R
)−1

P1. Predict state U1. Update state estimate
Ŝk = ASk−1 +Buk Sk = Ŝk +Kk

(
zk − CŜk

)
P2. Predict covariance U2. Update covariance estimate

P̂k = APk−1A
T +Q Pk = (I −KkC) P̂k

Through the KF, the current state, Sk, can be predicted as a function of the previous

state Sk−1. Using the observations zk, the state Sk can be updated to reflect the

information added by the observable states. Specifically, the goal is to maximize the

posterior probability p (Sk|z1:k). Since the posterior is Markovian, the most probable

state may be computed given only the current observation. The KF output is im-

plemented in a two step process: a prediction step followed by an update step. The

computations involved in each step are detailed in Table 3.3.

In order to implement a KF, the state transition matrix A, the control matrix B,

the measurement matrix C and the covariance matrices Q and R, are assumed to be

known. While A and B are given directly by knowledge of the process, in this case

the kinematic equations from physics, and C is derived directly from the observable

states, the noise characteristics of the system are typically determined empirically

or by some knowledge of the system. For simplicity in this application, ∆t was

normalized to equal 1 rather than the true temporal sampling rate. The process and

the measurement variance terms were then initially set based on data properties, then

adjusted until results from the KF resembled those from the BF. Results from the

KF using the parameters indicated in Table 3.2 are shown in Fig. 3·5(d) and the

bottom row of Fig. 3·6. The nose position results from the two filtering methods are

compared with the raw data in Fig. 3·5(a).
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(a) Zoomed in portion of position curve (b) Raw position curve

(c) Butterworth filtered position (d) Kalman filtered position

Figure 3·5: Mouse nose position results from segmentation, Butter-
worth filtering, and Kalman filtering.
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Figure 3·6: Comparison of Butterworth filtering and Kalman filtering
for estimating higher-order position derivatives.

There are several advantages of using the KF rather than traditional low-pass fil-

tering for estimation of higher-order position derivatives. First, the KF exploits the

true underlying relationship between position and its higher-order derivatives. The

KF also permits flexibility in the amount of smoothness enforced on each element of

the state vector independently through the covariance matrix Q. Another advantage

of KF over the BF is the lack of artifacts introduced by any finite impulse response

filter, such as ringing artifacts. One of the major difficulties of using the KF is suit-

able parameter selection, particularly of the noise variance terms and the covariance

matrices. Still, enabling direct, model driven estimations of unobserved states by

leveraging information from noisy measurements makes the KF an incredibly power-

ful tool for motion tracking applications. While not examined in detail as part of this

work, one of the KF’s greatest strengths is also the ability to predict states using the

process model even when measurements are missing.

The methods developed for processing the high-speed videos were utilized in part for
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a recently submitted publication (Tagge et al., 2017). For this publication, additional

scaling of the points was required to represent the values in terms of physically mean-

ingful units (meters and seconds). The object detection function based on both k-

means and CV segmentation adaptively detects a deforming object with non-uniform

illumination and produces position estimates which are accurate enough to yield infor-

mative position derivatives after filtering. The Kalman filter implementation provides

a flexible framework for model-based smoothing of the position derivatives of interest.

3.2 Semi-supervised Segmentation for Gross Pathological As-
sessment

In an attempt to compare not only the behavioral and physical mechanisms of mouse

models of blast neurotrauma (BNT) and impact neurotrauma (INT), the character-

istics and the extent of neuropathology in each injury model were also of interest.

To better understand the relationship between surface pathology and other injury

parameters, high-resolution (1995 × 1612) RGB images of brains from mice injected

with a blue, albumin-binding fluorescent dye called Evans blue (EB), were taken with

a Nikon D5200 digital camera under cross-polarized white light illumination.

For each brain, an image was taken of each of the following surfaces (Fig. 3·7): dorsal,

left, ventral, and right. The objective was to identify distinct surface pathologies in

the photographic images (PI) and quantify the extent and severity of the pathology.

Four tissue classifications were used to describe the range of pathologies observed in

the PIs: blood, Evans blue, complex contusions, and normal tissue. As shown in

Fig. 3·8, each of these categories was found to occupy distinct regions in RGB space.

Motivated by the separation of the classes in this color space, the goal was to create

a scheme whereby each pixel in the image of the brain could be labeled as either
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(a) Dorsal surface image (b) Left surface image

(c) Ventral surface image (d) Right surface image

Figure 3·7: Exemplary images from brain surface pathology of Evans
blue-injected mice.

(1) blood, (2) Evans blue, (3) contusion, or (4) normal tissue.

As a preliminary step, the foreground and background of the image need to be iden-

tified. In many images, this can be done via intensity thresholding followed by hole-

filling morphological operations. Other images, such as the the ventral view of the

brain in Fig. 3·7(c), require a more complex method to achieve a smooth segmenta-

tion which encompasses the tissue boundary, since dark areas at the edge of the tissue

blend into the background. To circumvent the ambiguity between dark pathologies
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(a) −→
P with surface pathology (b) Representative class patches

(c) −→
P patches from each class

(d) RGB scatter plot of class patches

Figure 3·8: Examples of characteristic pathologies in a left surface
RGB photographic image.
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and the background in an intensity-based RGB image −→
P , whose pixels −→ρ take on

a triplet value {R,G,B}, the gradient-magnitude image, G, was used to represent

the photo image. This image is used to guide an edge contour around the boundary

of the tissue using the geodesic active contours algorithm (GAC) (Caselles et al.,

1997). Similar to the CV active contours method, this method minimizes an energy

which depends on the image’s characteristics, such as intensity consistency inside and

outside of a level-set curve, as well as a term which considers edge properties of the

image. The MATLAB function activecontour.m from the image processing toolbox

was used to define a mask using GAC.

Figure 3·9 shows the outputs from the steps required to create a tissue/background

mask from an image −→
P . The steps can be summarized as follows:

1. Convert the RGB-image, −→
P (Fig. 3·7(c)), into a maximum-intensity scalar im-

age, L (Fig.3·9(a)), according to the following formula at each pixel location,

p:

L(p) = max−→ρ ∈{R,G,B}

−→
P (p)

2. Determine a scalar threshold, γ, from L using the graythresh.m MATLAB

function. Create a mask Mγ = L ≥ γ.

3. Calculate a gradient magnitude image, G, from L (Fig. 3·9(c)), which will be

used as the input image for the MATLAB function activecontour.m

4. Isolate the largest connected component from Mγ and create a new closed and

inflated mask, M0, using a structuring element sufficient to ensure that M0 fully

encompasses the tissue (yellow curve in Fig. 3·9(d))

5. Using a hierarchical approach, at each level s, for s = 1, . . . , S, down-sample G

by a factor of ϕs to give a down-sampled image, Gϕs , where each dimension of

Gϕs is equal to 1/ϕs of the dimension in G. For the data and initial contour
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inputs into MATLAB’s activecontour.m, use Gϕs and the appropriately resized

Mϕs
s−1, respectively. The output is the mask Ms. Figure 3·9(d) shows the results

for ϕ1 = 8 with Mϕ1
0 shown in yellow and Ms shown in white.

6. While s ≤ S, after a maskMs is generated, the mask is dilated by a small amount

to create a suitable initialization for the next level of GAC segmentation. The

new mask M ′
s must also be up-sampled to match the dimensions of Gϕs+1 .

Figure 3·9(e) shows the results for s = S = 2 where ϕS = 1. The mask MϕS
1 is

depicted in yellow in the figure with MS shown in red.

The final result of the segmentation procedure is a mask, M = MS, whose non-zero

values indicate pixels corresponding to tissue regions in the image −→
P .

Once a mask differentiating tissue and background pixels is created, the objective

is to assign a class ((1) blood, (2) Evans blue, (3) contusion, (4) normal tissue) to

each of these pixels. The method developed maximizes the probability of a class

label given the RGB-triplet value of the pixel being considered. Let the RGB value

of a pixel be given by −→ρ = {R,G,B} and the class labels be given as integers

c = {1, 2, 3, 4} to mean blood, Evans blue, contusion and normal tissue, respectively.

Given these definitions, the classification problem is simply the maximization of the

class probability given a value for −→ρ :

ĉ−→ρ = arg max
c

p(c|−→ρ ) = arg max
c

p(−→ρ |c)p(c)∑
c p(−→ρ |c)p(c) (3.5)

While the distribution for p (c|−→ρ ) is not directly available, the distribution p (−→ρ |c)

can be estimated with some labeled data, which by Bayes rule can be used to calculate

p(c|−→ρ ).

The distribution p (−→ρ |c) for any −→ρ can be approximated given sufficient examples of

colors which occur in a given class. Assuming that the color characteristics of each
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(a) L (see Fig. 3·7(c) for −→
P ) (b) Mγ (c) G

(d) Gϕ1 (M0: yellow, M1:
white)

(e) Curve after GA (Mϕ2
1 : yel-

low, M2: red)
(f) Intermediate (M1: white)
and final (M2: red) mask out-
lines

Figure 3·9: Steps to define the tissue segmentation mask for macro-
scopic photo images (a) Maximum intensity scalar image, L. (b) In-
tensity threshold mask, Mγ. (c) Gradient magnitude image, G. (d)
Geodesic active contours on a downsampled gradient magnitude image
Gϕ1 with the initial mask M0 outline shown in yellow and the final
mask outline, M1, shown in white. (e) GAC result on G with initial
mask Mϕ2

1 outline shown in yellow and M2 outline shown in red. (f)
Depiction of M = M2 outline in red along with M1 outline in white on
the RGB image −→

P .
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(a) (b) (c)

Figure 3·10: Example images showing areas used for building the
probability of observing each color given a class. The outline colors are
defined as follows: blue indicating Evans blue, red indicating blood,
orange indicating contusions and green indicating tissue.

class are similar in all images, the idea is to learn p (−→ρ |c) from representative pixels

belonging to each class in a set of images P =
{−→
P (n)

}N

n=1
. This is done by selecting

regions of images in P which clearly represent a given class label c. The pixels within

these segmented regions, shown outlined for three images in Fig. 3·10, are used to

build a histogram h(−→ρ |c) in RGB-space. For each class c, kernel density estimation

(KDE), described in detail in Section 4.5.3, is used to approximate the density p (−→ρ |c)

using the populated regions in the histogram h(−→ρ |c). This essentially spreads out

and normalizes the non-zero values in h(−→ρ |c) such that unobserved −→ρ values have

a non-zero probability. Once the distribution p (−→ρ |c) is constructed based on the

partially segmented “training” images in P , classification of each pixel in the tissue

region of a query image can be evaluated according to Eqn. 3.5 where p(c) is assumed

to be uniform. A summary of the procedure for classifying pixels in an image P (n) is

depicted in Fig. 3·11. The classification results for select left-view images are shown

in Fig. 3·12.
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Figure 3·11: Procedure used to determine per pixel label of gross
pathology surface images. For each pixel in the masked area, the RGB
value −→ρ of the pixel is used to determine the probability of the pixel
given each class c. The pixel is classified as the class which yields
the maximizes product p (−→ρ |c) × p(c). Since p(c) is uniform in this
application, this is equivalent to maximizing p (−→ρ |c).

(a) Brain #6 (b) Brain #4

(c) Brain #2 (d) Brain #8

Figure 3·12: Example results obtained using the proposed pathology
classification method
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The method developed in this section for per-pixel labeling of pathology using a

subset of supervised labeled pixels enables objective classification of tissue pathology

in a query image whose color space characteristics are consistent with the model data.

This method was used to support the grading of brain gross pathology in a recently

submitted paper (Tagge et al., 2017) and has the potential to be used in future work

by extracting pathology-based features beyond the RGB-pixel values.

3.3 Evans Blue Fluorescent Imaging for Evaluating Blood-
Brain Barrier Dysfunction

By injecting a blue fluorescent dye, Evans blue (EB), with excitation wavelength of

535 nm and emission wavelength of 680 nm, it was possible to analyze levels of the

molecule in the brain tissue using florescent imaging. The dye molecule binds to al-

bumin in the blood, and thus the presence of the dye in the brain tissue indicates a

compromise of the blood-brain barrier (BBB) at least severe enough to extravasate al-

bumin (approximately 15 nm). As such, fluorescent imaging via the IVIS Spectrum In

Vivo Imaging System (PerkinElmer, Waltham, MA) provides a proxy for determining

the degree of BBB dysfunction by directly observing the fluorescent signature of EB.

Compared to the macroscopic pathological imaging discussed in Section 3.2, fluores-

cent images provide a complementary method for assessing levels of EB in the brain.

While the instrument’s Living Image software affords a variety of post processing

options which were leveraged, large-scale, systematic processing is not straightfor-

ward using Living Image alone. A suite of large-scale post-processing functions were

developed in MATLAB to aid in the analyses of these images.

A sequence in the IVIS spectrum imaging system is defined as a set of sequential

fluorescent image acquisitions with different parameters, including changes in the
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excitation/emission filter pairs, exposure times, etc. For each parameter set, the

data are saved in a folder with six files: two ∗.txt files containing the acquisition

parameters and four 16-bit images: a grayscale luminance image, a fluorescent image,

a luminance calibration and a fluorescent calibration. Since all images in a sequence

are acquired sequentially without the object being moved, all images are co-registered

by default. For the IVIS imaging data acquired to understand BBB dysfunction in

TBI, each sequence involved fluorescent imaging with an excitation filter of 535 nm

and acquisition with 14 different emission filters ranging from 580 to 840 nm with a 20

nm spacing. This range of emission filters was used to enable spectral unmixing using

the Living Image software. The large volume of files generated as well as the nested

nature of the data make data exploration and comparison challenging. To address

these issues, a method for extracting all the data from a sequence into a structure

was developed. The information from the ∗.txt files is also extracted and organized

into a table.

For each brain, three fluorescent sequences were acquired: a ventral view, a dorsal

view (Fig. 3·13(a)), and a view of six slices of the brain (Fig. 3·13(b)). For each

sequence, the luminance image was used to segment the tissue from the background.

The left and right side of each component in the image were defined relative to the

major- and minor-axes determined using the regionprops.m function in MATLAB.

The ability to automatically define specific regions of interest in the images enabled

the analysis of left-versus-right sides of the brain and facilitated the aggregation

and processing of data. This functionality was used to support a finding that the

levels of the fluorescent signal associated with EB were elevated in the left side of

the brains of mice having suffered a left-lateral impact neurotrauma (Tagge et al.,

2017)(Fig. 3·13(c)).
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(a) Dorsal view photo and flu-
orescent image

(b) Slices view photo and fluo-
rescent image

(c) Figure 5C from (Tagge et al., 2017)

Figure 3·13: Both (a) and (b) show the luminance image on the left
used to identify tissue and background. The coloring indicates the left-
versus-right side which was determined by the major- and minor-axes
of each component in the image. The region boundaries are indicated
in the EB fluorescent image, derived from spectral unmixing using the
Living Image software. Results from the cohort imaged in this way are
shown in (c)
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3.4 Summary of Contributions

The methods described in this chapter were developed in an effort to enable objec-

tive, quantitative analysis of traditional biological imaging modalities. Application

of well-known methods to better understand the head kinematics and pathological

consequences of mouse models of TBI was accomplished. The techniques described

in this chapter were used to support several biological findings in a recently submit-

ted publication (Tagge et al., 2017). Contributions made towards this effort can be

summarized as follows:

• Development of a mouse-nose tracking algorithm which uses k-means and Chan-

Vese algorithms for segmentation and Kalman filtering for estimation of position

and higher-order motion derivatives

• Development of a semi-supervised classification method for labeling four brain

tissue classes of interest: blood, Evans blue, contusions, and normal tissue

• Development of functions to support automated and systematic analysis of flu-

orescent imaging data from the IVIS spectrum instrument
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Chapter 4

Algorithms for Metallomic Imaging Mass
Spectrometry (MIMS) Data Processing

Using a mass spectrometer as the primary sensor for creating spatial images was

first attempted in the late 1990’s (Caprioli et al., 1997; Pacholski and Winograd,

1999). Imaging mass spectrometry (IMS) is more widely used in a technique known

as matrix-assisted laser desorption/ionization (MALDI) whereby the specimen being

analyzed is sprayed with a matrix which absorbs the energy at the wavelength of

the inciting laser. This causes ionized molecules to be dislodged from the surface

of sample. These ionized molecules are then introduced into the mass spectrome-

ter and analyzed across several orders of magnitude of mass to charge ratio. Unlike

MALDI, metallomic imaging mass spectrometry (MIMS) is a technique which en-

ables the analysis of the most basic element of materials: their atomic composition.

Samples imaged via MIMS require limited processing and no application of a matrix.

In conjunction with a standard operating procedure and highly accurate standard

materials available from the National Institute of Standards and Technology (NIST),

MIMS enables precise quantification of the elemental composition of a material. Be-

cause of the novelty of this method for biological specimen analysis, few methods

exist for assisting in data extraction, conditioning and interpretation. One of the ma-

jor contributions of this thesis is development of methods specifically to address the
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challenges associated with MIMS data, including unique noise characteristics, large

dynamic range, and unique anatomical representations in images.

4.1 MIMS Data Acquisition, Pre-Processing and Rendering

4.1.1 MIMS Acquisition Protocol

As described in Section 2.3.2, the MIMS system has two primary components: the

laser ablation (LA) system on the front end and the spectrometer on the back end.

For the applications in this work, the back end spectrometer was either an optical

emission spectrometer (OES) or an inductively coupled plasma mass spectrometer

(ICP-MS). Without loss of generality, the back end spectrometer instrument will be

referred to as a mass spectrometer (MS) in this Chapter. To acquire a dataset, the

first step is to provide the instructions in the form of an ∗.lzs file to the LA system. To

produce these instructions, CETAC’s DigiLaz III software is used in conjunction with

a custom MATLAB graphical user interface (GUI), developed by Boston University

undergraduate students Daniel Brewster and Casey Kurosawa. The GUI facilitates

the construction of more complex data acquisition routines. Fundamentally, the Dig-

iLaz III software provides a GUI through which the user can interact with live video

footage to construct an imaging routine. Figure 4·1 shows a screen shot of the Digi-

Laz III software GUI. The information inputted using DigiLaz III populates an excel

table which DigiLaz III uses to generate an ∗.lzs file. The parameters defined using

the DigiLaz III software are indicated in Table 4.1.
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Table 4.1: Per line parameters used by DigiLaz III software to generate ∗.lzs files for the CETAC
LSX-213 laser ablation instrument.

Spatial Specifications (columns 1 - 11)

Scan Name X1 X2 Y1 Y2 Z1 Z2 Method Aperture Size Space Between
Spots

Space Between
Lines

string [µm] [µm] [µm] [µm] [µm] [µm] category [µm] [µm] [µm]
Nominal
parameter
values

– – – – – – Single Line
Scan 20 0 20

Laser Specifications (columns 12 - 17)
Energy Pulse Rep Rate Scan Rate Number of Shots Defocus Defocus Amount

[%] [Hz] [µm/s] integer Y/N [%]
5 20 60 N 0

Gas and Timing Specifications (columns 18 - 25)
He Flow

Rate
Pause Between

Samples
Shutter
Delay

Gas
Blank

Trigger
Delay

Sample Run
Time

Total Sample
Time

Number of
Runs

[L/min] [sec] [sec] [sec] [sec] [sec] integer
550 25 10 10 0 depends on line length 1
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The optical system that is part of the CETAC LA instrument has limited field of

view; therefore, to generate an LA routine, the DigiLaz III software first constructs

an image of the ablation cell by stitching a 12 × 8 grid of smaller field of view images

together (see Fig. 4·1, bottom right). This mosaic image is representative of the

entire 39.6 × 39.6 mm2 ablation area within the cell. The image can be saved and

used to identify arbitrary stage coordinates within the LA cell. Our group’s custom

MATLAB GUI takes this mosaic image as an input and allows the user to indicate

multiple regions of interest within the ablation cell (see Fig. 4·2). Using this map

between pixels in the mosaic image and stage positions, the MATLAB GUI allows

the user to draw regions of interest on the mosaic image to generate an ∗.xls file

with the appropriate parameters. The ∗.xls file can be uploaded into the DigiLaz III

software to generate a correctly formatted LA protocol. The MATLAB GUI facilitates

the synthesis of an LA routine in three respects: 1) it enables guided and automated

naming of the lines, 2) it allows the user to quickly indicate imaging regions that may

be spatially distant with respect to the field of view of the live video, thus eliminating

the need to reposition the stage in order to get an appropriate field of view, and 3)

it is easier to identify distinct samples within the cell since the full imaging region is

the focus rather than the live video field of view being the focus. The MATLAB GUI

also allows for specific imaging sequences, such as calibration or standard regions, to

be repeated automatically.

In addition to parameterization of the LA instrument, operation parameters for

the MS instrument must also be specified. Each instrument is accompanied by a

manufacturer-provided software which enables the specification of acquisition pa-

rameters including isotope selection, instrument sensitivity, isotope sampling time

parameters, among others. These parameters can be adjusted to fit experimental

requirements and constraints. An example of the an MS GUI is depicted in Fig. 4·3.
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Figure 4·1: DigiLaz III graphical user interface.
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Figure 4·2: MATLAB graphical user interface for constructing laser
ablation routines.

Figure 4·3: Example of manufacturer’s graphical user interface for
the specification of parameters of the Element ICP-MS instrument.
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Figure 4·4: Timing diagram showing relative timing of the laser (top),
the spectrometer (middle), and the amount of particles generated from
the laser ablation cell (bottom) for two lines of data. [Blue area] MS
begins sampling data once trigger signal is received from the LA instru-
ment (blank period). [Red area] Laser fires on the sample and generates
particles in the ablation cell. [Green area] Laser turns off, but the MS
continues to sample data (washout period). [Purple area] Time delay
between lines inserted to allow both the LA instrument and the MS to
prepare for the acquisition of a new line of data (no data).

The LA and MS communicate via an electrical trigger signal. The trigger signal

indicates the start of a line of data in the metallomic image and prompts the MS

to begin acquiring data for the indicated isotopes. Each line begins with a laser off

period where the shutter is maintained on the laser, but the MS begins sampling

the detector. A laser on period starts during which particles are generated from the

sample. Once the laser on period ends, the spectrometer continues sampling for the
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total user defined period. A time delay between lines, where neither the laser nor

the spectrometer are active, is incorporated to ensure proper synchronization of the

instruments. The timing of the trigger and data acquisition events are depicted in

Fig. 4·4. For the MS instruments, the data for all indicated isotopes are saved in

a text file with an instrument-specific formatting. Data acquisition was primarily

conducted by analytical chemists Noel Casey, Ph.D., and Bo Yan, Ph.D.

4.1.2 Raw Data Extraction

The raw data from the instrument are saved as formatted text files. While the

format varies slightly depending on the spectrometer used in the experiment, the

extraction procedure is generally the same for all file types. A custom MATLAB

function automatically recognizes the instrument used and parses the raw data within

the files accordingly. These data are stored as matrices within a data structure in

MATLAB. Spectrometer-specific processing algorithms will be discussed later in this

section.

The raw data from a given experiment will be referred to as a MIMS sequence and

denoted as −→
I . A MIMS sequence may contain an arbitrary number of unique im-

ages, where an “image” here is defined as a spatial MS representation of a unique

underlying entity (ie NIST glass, tissue, calibration standard, etc). Figure 4·5 shows

that through the procedure mentioned in Section 4.1.1, the user can select multiple

regions in the ablation cell and sequentially image each area in a single acquisition

experiment. Typically, for calibration purposes, a range of calibration standards with

similar ablation characteristics as the sample of interest are imaged throughout the

experiment between tissue samples. Additionally, standard reference materials may

also be periodically imaged to assess instrument stability. Each raw data file associ-
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Figure 4·5: Depiction of a MIMS sequence, defined as the raw data
from an LA-ICP-MS experiment.

ated with a given line is assigned a line label. These line labels are used to identify

distinct sample “types” within the sequence.

4.1.3 Image Rendering Tools

In order to accurately visualize captured data, several image processing and render-

ing tools are developed (see Fig. 4·6 for an example of outcomes). As mentioned in

Section 2.3.2, the data provided by the LA-ICP-MS and -OES systems are given in

units of counts per second (cps) (Row 1, Fig. 4·6). For each isotope, data from a

calibration experiment (Row 2, Fig. 4·6) is used to parametrize a calibration curve

(Row 3, Fig. 4·6) which provides a functional relationship between cps and parts per

million (ppm). This relationship can be used to represent MIMS in terms of ppm

(Row 4, Fig. 4·6). The method for preparing matrix-matched calibration standards
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to provide data for a calibration curve is sample-specific. Using the LA raster scan-

ning parameters and the MS sampling time, the horizontal and vertical axes can be

represented in terms of spatial distance (Row 4, Fig. 4·6) yielding a quantitative and

spatially-accurate representation of the underlying object.

Additionally, a line unwrapping method was required for visualizing OES data. The

raw data from the OES is shown in Fig. 4·7(a). The data are structured such that

the raw data from the instrument form a P × Q matrix which contains data from

an U × V image where U ≥ P and V ≤ Q. This essentially means that a row

of the raw data matrix contains multiple spatial lines. The example in Fig. 4·7(a)

has U = 5P and V = Q/5. The number of data points in each line varies by

approximately ± 1 sample due to very slight discrepancies between the scan speed

and acquisition time, preventing the ability to simply “stack” each row from the raw

data matrix into U/P rows with V data points each. Because each of the spatial

lines do not have the same number of data points, the rising (or falling) edges of

each line are instead automatically aligned. On a line-by-line basis, the unwrapping

algorithm first roughly aligns two spatially-neighboring lines (blue and red lines in

Fig. 4·7(b)) by maximizing the cross-correlation, then shifting the current line by the

cross-correlation accordingly (cyan line in Fig. 4·7(b)). Because each line is imaging

a slightly different spatial feature, the cross-correlation aligns overall signal features,

but not specifically the rising edges of the lines. Therefore, a secondary alignment step

was performed by identifying the rising (or falling) edge of the signal and using this

point to anchor the current line to the U × V image being constructed (Fig. 4·7(c)).

The final output is an aligned, physically-representative image of the ablated object

(Fig. 4·7(d)).

Tools for customized pseudo coloring, multi-channel visualization, image overlaying
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(a) 56Fe (b) 63Cu

Figure 4·6: Each column shows data for (a) 56Fe and (b) 63Cu. Row
1: pseudo-coloring of the raw data in cps. Row 2: data from a calibra-
tion experiment where multiple samples were collected for six standards
with a known concentration in ppm. Row 3: derived calibration curve.
Row 4: data from Row 1 calibrated to ppm and with axes scaled to
reflect physical dimensions
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(a) Raw data from OES (b) Rough alignment using cross correlation

(c) Identification of rising and falling edges of
a line

(d) Final image of unwrapped data

Figure 4·7: Steps required for unwrapping raw data from the optical
emission spectrometer (OES). (a) Raw data with multiple spatial lines
per line of acquired data. (b) Alignment of current line (red) with
previous line (blue) via shifting by the cross-correlation lag value (cyan).
(c) A line of data with the points of the detected rising and falling edges
shown with green makers. (d) Final unwrapped image.
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and a manual image registration GUI were also developed. Visual representations of

these tools are shown in Fig. 4·8 and throughout this work. These functions are listed

and described in Appendix B.2.

4.2 MIMS Region Segmentation

Identifying distinct regions in a MIMS image is an important preprocessing step both

for subsequent visualization and data analysis. As shown in Fig. 4·4, each MIMS

image includes three distinct periods: an initial laser off blank period (blue), a laser

on period (red), and a laser off washout period (green). Additionally, when imaging

a sample, the imaged area during the laser on period can be segmented into two

regions: data associated with the sample and a background region. Segmenting these

data is particularly challenging because the properties associated with each of these

distinct regions vary depending on the isotope under consideration and the material

being ablated. Generally, the signal during the blank and washout periods tends to

be the lowest while the signal within the laser on portion is higher. A variety of

factors including isotope sensitivity, sensor drift, polyatomic interferences, material

properties, etc., result in images where this general pattern may not hold.

Before defining the segmentation procedure in detail, notation that will be used

throughout this chapter is needed. Figure 4·9 provides a reference to the notation

used. Consider a MIMS sequence, −→
I , with T -types of samples and d-channels ac-

quired. Each data type, τ = 1, . . . , T , in the MIMS sequences can be thought of

as a d-channel, vector-pixel image, −→
I τ . The i-th channel of the image −→

I τ will be

indicated as I(i)
τ where i = 1, . . . , d, and the pixel values in each channel indicate the

intensity in counts per second (cps) detected by the MS for a distinct isotope. For

example, i = 1 may represent the metallomic intensity for 13C, i = 2 the intensity for
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(a) Custom pseudo-coloring (b) Multi-channel visu-
alization

(c) Graphical user interface for manual affine registration

Figure 4·8: Examples of select image processing and rendering tools.
(a) Depiction of a calibrated MIMS image with a fire colormap with
ppm values indicated by the colorbar. (b) Multi-channel psuedo-colored
image depicting four channels of data 56Fe [red], 63Cu [blue], 64Zn
[green], 56Gd [white] (c) Manual affine image registration GUI where IM

(moving image) is displayed as edges overlayed on the IF (fixed image).
The mutual information value is given as well as the six values in the
transformation matrix A, discussed in more detail in Section 4.5.2.
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140Ce, i = 3 the intensity for 65Cu, and so on.

The objective of MIMS segmentation is to assign one of four labels to each pixel in the

image −→
I τ : (1) blank, (2) washout, (3) background, and (4) sample. Notice that for the

MIMS sequence shown in Fig. 4·9, the 13C and 66Zn channels for the “brainHIPP”

image, −→
I 7, have vastly different intensity properties for each of the regions of interest.

Because the sequence of events on each line follows the sequence of events detailed

in Fig. 4·4, channels which have properties consistent with the labels of interest can

be identified. The function leverages the intensity characteristics of each channel to

ultimately create a mask Mτ ⊆ {1, 2, 3, 4} whose values correspond to the label of

each pixel in the image.

In this thesis, the MIMS sample types can be categorized into three distinct groups:

certified reference materials, calibration standards, and samples of interest. Samples

of interest are primarily biological samples including sections of mouse brains (Chap-

ter 5) and human lacrimal sacs (Chapter 6), but for optimization of the acquisition

procedure and instrument settings, 3.05 mm copper grids (Electron Microscopy Sci-

ences, 2016) were also imaged. The primary certified reference material used was the

NIST glass 612 (National Institute of Standards and Technology, 2016) and the cal-

ibration standards were prepared in our laboratory. Both the NIST and Calibration

images have masks Mτ ⊆ {1, 2, 3} since the laser on portion of the image does not

have two distinct regions as MIMS of samples do.

Ideally, the intensity properties of the different regions of the image would have sep-

arable modes, making image segmentation by k-means clustering or identification of

Gaussian components (by parameterization of a Gaussian mixture model (Bishop,

2006)) straightforward approaches. While it may be true that the intensity char-

acteristics of some channels in a MIMS image exhibit a high degree of separability,
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Figure 4·9: MIMS sequence overview with mathematical notation.
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this is not always the case and automated identification of such channels would be

required nonetheless.

The segmentation algorithm uses a rule-based approach to identify channels whose

intensity characteristics clearly represent either the laser on region, the sample region,

or neither. The algorithm is dependent upon the line characteristics detailed in

Fig. 4·4. The ground-truth mask is expected to have the following properties:

1. A minimum blank period of 5 sec

2. A sample which takes up at least 25% of the total imaging area and is not

represented in the blank region of the image

For each channel in the image, a bimodal segmentation algorithm identifies the two

most prominent histogram peaks then uses the minimal intensity between these peaks

as a threshold to produce an intensity mask K(i)
τ ⊆ {0, 1}. The properties of the mask

K(i)
τ are evaluated and the mask is categorized as either being representative of laser

on area (Mτ > 2), of sample area (Mτ = 4), or of neither. Figure 4·10 shows an

example of a channel image I(i)
τ along with the mask K(i)

τ for each of the possible

categories. Once all d channels are evaluated, the channel masks in each category

(g = {laser on, sample}) are used to create a segmentation image defined as:

Sg
τ (p) =

∑
i∈c

K(i)
τ (p) ⊆ {0, 1, . . . , |i ∈ g|}

Two cluster k-means is then applied to S laser on
τ (Fig. 4·11(a)) to generate a k-means

label image K laser on
τ ∈ {0, 1} (Fig. 4·11(b)). The k-means result is checked to ensure

the laser on part of the image is assigned a cluster label of one and is filled. The

output is then used to create a preliminary mask of the MIMS type M ′
τ (Fig. 4·11(c))
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defined as follows:

M ′
τ (p ∈ first half of columns) =


1 K laser on

τ (p) 6= 1

3 otherwise

M ′
τ (p ∈ second half of columns) =


2 K laser on

τ (p) 6= 1

3 otherwise

Note that M ′
τ = Mτ for the NIST and calibration standard MIMS types. For sample

types, the part of M ′
τ = 3 will be further divided into background and sample using

the channel masks categorized as sample masks. Again, using Ssample
τ (Fig. 4·12(a)),

a two cluster k-means mask is generated (Fig. 4·12(b)), ensuring the background part

of the image has a cluster label of zero. With Mτ = M ′
τ as a starting point, the

sample pixels are then defined as follows:

Mτ (p) =


4 M ′

τ (p) = 3, Ksample
τ (p) = 1

M ′
τ (p) otherwise

The final segmentation mask Mτ is shown in Fig. 4·12(c).
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(a) Example of laser on channel
image and mask

(b) Example of sample channel
image and mask

(c) Example of neither channel
image and mask

Figure 4·10: Examples of the channel categorization routine used by
the segmentation algorithm. The top row depicts the intensity adjusted
channel images I(i)

τ and the bottom row depicts the associated mask
K(i)

τ . Column (a) shows a representative laser on channel, column
(b) shows a representative sample channel, and column (c) shows an
example which does not get assigned a category.

(a) Slaser on
τ (b) K laser on

τ (c) M ′
τ

Figure 4·11: Intermediate images used to define a laser on mask
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(a) Ssample
τ (b) Ksample

τ (c) Mτ

Figure 4·12: Intermediate images used to define the final MIMS seg-
mentation mask

4.3 MIMS Calibration

Calibration of the MIMS images is the process of parameterizing a linear function

to map counts per second (cps) from the instrument to absolute concentrations of

isotopes in parts per million (ppm = µg/g). This is done by preparing laboratory

standards with similar ablation characteristics as the sample of interest (called matrix-

matched standards) at precisely known concentration values. These matrix-matched

standards are ablated along with samples of interest and the data from these regions

are used to calibrate the rest of the MIMS sequence. In this section, the focus will be

on the post-processing procedure used to calibrate data rather than on the protocol

for synthesizing matrix-matched standards. The assumption that raw data in cps

are linearly related to their absolute concentrations in ppm within some range of

concentrations is used widely throughout the literature (Becker et al., 2007; Niehaus

et al., 2015). The matrix-matched calibrations are prepared at varying levels of known

isotope concentrations to span the range of isotope concentrations thought to be in

the sample.

To minimize total acquisition time, a series of calibration standards (typically five to

eight) may be used to calibrate more than one sample of interest. The data acquired
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during the laser on period of the calibration standards are isolated and then used to

parametrize a line mapping cps to ppm. These parameters can then be applied to

each channel of the MIMS sample image to represent data in terms of ppm rather

than abundance as indicated by the MS.

To calibrate a MIMS dataset, the parameters α(i) and β(i) from Eqn. 4.1 must be

determined for all i = 1, . . . , d. This is done by fabricating a set of nstnd calibration

standards each with a known isotopes concentration in ppm. The known concentra-

tion represents the independent variable xj for j = 1, . . . , nstnd. Referring to Fig. 4·9,

assume that the associated type numbers are τ = j = 1, . . . , nstnd and the d-channel

MIMS image associated with each calibration value is −→
I τ , given as cps by the MS.

For each set of calibration images and for each channel, a linear regression model

(Eqn 4.1) is parametrized which in the least-squares sense optimally determines the

relationship between the observed statistical values of the calibration data, −→y (i), and

the ppm values, −→x . The values for y(i)
j are determined by segmenting the regions of

the calibration image −→
I j and using the data within the laser on portion of the image

to define a summarizing statistic. For the applications in this work, y(i)
j represents

the median of the data in the laser on portion of the calibration image I(i)
j . While

linear regression may also be performed using the mean, the median is chosen since

it is more robust to outliers in the data.

−→y (i)
cps

= α(i) −→x
ppm

+ β(i) for i = 1, . . . , d (4.1)

where −→x =
[
x1 x2 . . . xnstnd

]T
−→y (i) =

[
y

(i)
1 y

(i)
2 . . . y(i)

nstnd

]T

y
(i)
j = median

[
I

(i)
j ∈ laser on

]

Using these linear mapping parameters, each channel of the MIMS sequence I(i) can
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be converted into ppm values by applying the following pixel-wise operation:

C(i) = I(i)

α(i) − β(i)

α(i) (4.2)

While in theory the mapping between cps and ppm is fairly straightforward, several

considerations require more in-depth evaluation of the data before parameterization

of the regression model. Figure 4·13 has four subfigures depicting the challenges asso-

ciated with calibrating samples of interest. Figures 4·13(a) and 4·13(b) present plots

in a x-vs-y(i) form where the errorbars above and below each of the calibration points

correspond to the upper and lower quartile of the data within the laser on period

of I(i)
j . The dashed horizontal lines in these plots indicate the upper-intensity range

for the associated MIMS images. This upper-intensity value is defined as 1.5-times

the 0.995-th quantile of the data associated with the sample (Mτ = 4, defined using

the MIMS segmentation algorithm). Figures 4·13(c) and 4·13(d) show normalized

histograms of the intensities within each of the MIMS types indicated in the legend

at the right of the plot. The vertical dashed lines show the median values of the data

(equivalently y(i)
j ). The issues associated with parameterizing the linear relationships

between cps and ppm fall into two main categories:

1. Calibration data issues

(a) Instrument saturation within range of calibration values (Fig. 4·13(a))

The two samples acquired in the MIMS sequence are indicated by their

sample numbers 4324_2 and 1581_1 with the dashed-lines depicting the

upper-intensity ranges as explained previously. If the calibration curve sat-

urates within the range of intensities present in the sample, only intensities

up to the last valid standard value xv are used to parametrize the best-fit

linear model. All intensities greater than the maximum are mapped to the
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last valid standard value (i.e. I(i) ≥ y(i)
v ⇒ C(i) = xv). A procedure was

developed to detect regions of the calibration curve which are saturated.

The two lines shown in Fig. 4·13(a) show the lines of best fit using the

valid calibration values (labeled “valid” and shown with a purple line) and

using all the calibration points available (labeled “ppmi” and shown with

a green line).

(b) The noise floor of the data for some (or all) of the calibration standards is

above the levels in the sample (Fig. 4·13(b))

Again, the figure shows the upper-intensity ranges for the samples 3733_2

and 5257_1 along with the first three calibration standard values along

with errorbars. Clearly, the levels in the samples are well below even the

x1 = 0 ppm value in the calibration standard. This likely occurs either

either because of higher levels of certain elements in the matrix used to

make the standards or because of differences in the ablation properties of

the standards and the samples.

2. Mismatch between calibration curve range and sample of interest concentration

range

(c) Parts of the calibration curve are irrelevant given the range of concentra-

tions present in the samples of interest (Fig. 4·13(c))

As can be seen, the upper end of both the normalized sample distribu-

tions fall below the 5 ppm value. To preserve the maximum amount of

local linearity and to parametrize the best fit line based on values most

likely found in the sample, xj > 5 ppm are not used to parametrize the

calibration curve.

(d) The abundance of the isotope signal in the sample is well above the max-

imum calibration value (Fig. 4·13(d))
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These samples would require a different set of calibration standards to be

calibrated.

The steps of the calibration procedure can be summarized as follows:

1. Read MIMS sequence data into the workspace

2. For each image type in the sequence, create a mask Mτ

3. For calibration standard data, calculate the median of the data within the laser

on period of the image (Mτ = 3), these points will represent −→y j

4. Valid points in the calibration curve are identified by checking for regions of

saturation and relevant ppm levels in the samples to be calibrated

5. For each isotope, parametrize the linear function mapping ppm to cps

6. MIMS images, I(i), are converted to calibrated images represented in ppm using

Eqn. 4.2

4.4 MIMS Channel Equalization

One of the major challenges associated with comparison and analysis of MIMS images

is the variation in the intensity properties. To address this issue, the intensity distri-

bution of each channel in a MIMS image can be equalized such that all distributions

occupy a similar dynamic range. The technique provides a means to visualize MIMS

channels and MIMS sequences in a normalized intensity domain for easier subjective

comparison and subsequent analyses. Since the mapping is functionally determinis-

tic, image intensity values in the normalized intensity domain can always be mapped

back to the original raw intensity values.

Channel equalization is performed on each channel and each type independently.

Within a uniform region, the MIMS intensity values were experimentally observed to
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(a) Calibration curve saturation (b) Data values below noise floor

(c) Unnecessarily high concentrations (d) Sample levels exceed maximum calibration
level

Figure 4·13: Calibration curve data screening and selection. The
line plots shown in 4·13(a) and 4·13(b) show the median calibration
standard values with error bars indicating the first and third quartile
of data. The horizontal lines represent the upper-threshold values for
the samples to be calibrated in the MIMS sequence. 4·13(a) includes
two lines of the best fit for the “valid” region of the calibration curve
(the first five data points) and for all ppm values. The distribution
plots in 4·13(c) and 4·13(d) show a normalized histogram of the data
within each off the calibration regions and the samples in the MIMS
sequence. The vertical dotted lines indicate the median values for the
color corresponding to the calibration standard distribution.
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follow a log-normal distribution. Let the pixel intensity values from the i-th channel

of the τ -th type MIMS image be represented by −→x = vec
(
I(i)

τ

)
, whose distribution

and probability density function (pdf) are given in Eqn 4.3. Operating under the

assumption that −→x are log-normally distributed, by taking the natural log of the

data, −→y = ln −→x , the resulting data are normally distributed (Eqn 4.4) and classical

mean variance equalization (MVE) can be performed.

X = exp {µ+ σZ} where Z ∼ N (0, 1) (4.3)

fX (x;µ, σ) = 1
xσ

√
2π

exp
{

− (ln x− µ)2

2σ2

}

Y = lnX ∼ N (µ, σ) (4.4)

fY (y;µ, σ) = 1
σ

√
2π

exp
{

− (y − µ)2

2σ2

}

Due to high-intensity noise, the mean and variance calculated directly from the sam-

ples −→y tend to be skewed towards higher values. To circumvent this bias, a Gaussian

curve fitting strategy is used rather than direct statistics on the samples. A histogram

of the sample values can be constructed, which serves as a scaled surrogate of the

true pdf. The values of I(i)
τ are quantized into B bins where the m × n pixel values

are binned into the {qb}B
b=1 bins to give bin occupancy values h(q). Given the under-

lying data are normally distributed with mean µ and variance σ2, then the histogram

should take the form in Eqn 4.5. The Gaussian curve fitting problem can be converted

into a quadratic fitting problem by taking the natural log of the function (Eqn 4.6).

The problem becomes one of estimating the quadratic parameters {a, b, c} which are
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deterministically related to {C, µ, σ} by Eqn 4.7.

h(q) = C exp
{

− (q − µ)2

2σ2

}
(4.5)

ln [h(q)] = ln [C] − (q − µ)2

2σ2 (4.6)

= ln(C) − µ2

2σ2︸ ︷︷ ︸
a

+ µ

σ2︸︷︷︸
b

q + −1
2σ2︸︷︷︸

c

q2

µ = −b
2c σ =

√
−1
2c C = exp

{
a− b2

4c

}
(4.7)

The advantage of using this method over sample statistics is the ability to accommo-

date non-symmetric data and to algorithmically diminish the importance of outliers.

Using iterative weighted least-squares estimation to determine the quadratic parame-

ters, the effect of outlying points can be scaled down. The iterative method presented

by (Guo, 2011) for solving for the parameters {a, b, c} from Eqn 4.7 was implemented.

The method iteratively estimates {a, b, c} and uses these values to calculate h(k) by

Eqn 4.6. The system of equations is given by Eqn 4.8 where ĥ represents the noisy

histogram values and h(k) represents the estimated weighted histogram values at the

k-th iteration. Parameter estimation can be considered complete after a maximum

set of iterations, K, or after some convergence criterion is met.

∑
h2

(k−1)
∑

qh2
(k−1)

∑
q2h2

(k−1)∑
qh2

(k−1)
∑

q2h2
(k−1)

∑
q3h2

(k−1)∑
q2h2

(k−1)
∑

q3h2
(k−1)

∑
q4h2

(k−1)


×



a(k)

b(k)

c(k)


=



∑
h2

(k−1) ln(ĥ)
∑

qh2
(k−1) ln(ĥ)

∑
q2h2

(k−1) ln(ĥ)


(4.8)

where h(k) =


ĥ for k = 0

exp
{
a(k) + b(k)q + c(k)q

2
}

for k > 0
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Once reliable estimates are found for the quadratic parameters, Eqn 4.7 is used to

calculate the estimated {C, µ, σ} which best parametrize h(q). Of these, the values

of interest are {µ, σ}, which fully describe the Gaussian distribution from which −→y

are drawn. These points can then be transformed into a target Gaussian distribution

T ∼ N (µtarget, σtarget) using Eqn 4.9.

Z = Y − µ

σ
= T − µtarget

σtarget

⇒ T = σtarget

σ︸ ︷︷ ︸
α

Y + µtarget − σtarget

σ
µ︸ ︷︷ ︸

β

(4.9)

Samples from −→y can then be transformed into a new domain −→
t = α−→y +β in which the

samples have a Gaussian distribution with target mean and variance
{
µtarget, σ

2
target

}
.

This transformation allows for systematic data visualization within a specific range

(for instance between [−3σtarget, 3σtarget]) as well as mapping data with vastly different

dynamic ranges into a similar intensity space. It should be noted that this transfor-

mation alone does not preserve the log-normality of the data since −→
t is a Gaussian

distribution. Typical values used for Gaussian representation and visualization of the

data are µtarget = 0 and σtarget = 1.

The data can also be exponentiated to follow a log-normal distribution with defined

properties. These properties are enforced by indicating intensity targets for specific

points in the cumulative distribution function (CDF) of the log-normal distribution.

The CDF of a log-normal distribution is given by Eqn 4.10 and the relationship

between the underlying Gaussian distribution of the log-normal data and the log-

normal distribution mean u and standard deviation v is given by Eqn 4.11. Letting
−→
` be the exponentiated samples from −→

t , the values for µtarget and σtarget necessary to

achieve a specific log-normal behavior in the transformed domain can be calculated.

Using the relationship between {µ, σ} and {u, v}, a pair of target intensity values

with corresponding target CDF values are indicated: (`1, FL(`1)), (`2, FL(`2)). The
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{µtarget, σtarget} values necessary to achieve these (`1, FL(`1)), (`2, FL(`2)) values can

be solved for using Eqn 4.12. Transformed log-normal samples can be generated then

by −→
` = exp {α−→y + β}. In the function, target intensity and CDF pairs are (50, 0.5),

(254.5, 0.9995) such that the resulting log normal distribution is spread mainly over

the range of 8-bit intensity values (ie [0, 255]). The values needed to achieve these

properties in −→
` are µtarget = 3.912 and σtagret = 0.4945.

FX (x;µ, σ) = 1
2 + 1

2 erf
[

ln x− µ√
2σ

]
(4.10)

µ = ln
 u√

1 + v/u2

 σ =
√

ln (1 + v/u2) (4.11)

σtarget = ln(`1) − ln(`2)√
2
[
erf−1 (2FL (`1) − 1) − erf−1 (2FL (`2) − 1)

] (4.12)

µtarget = ln(`1) −
√

2σtarget erf−1 (2FL (`1) − 1)

The stepwise channel equalization procedure is explained below with results from

intermediate steps shown in Fig. 4·14.

1. Given the i-th channel of data for the τ -th type, define a vector:

−→x = vec
(
I(i)

τ ∩ {Mτ = sample}
)

Fig. 4·14(a)

(a) Limit the dynamic range of the data and exclude data where x = 0

A histogram of these data is shown in Fig. 4·14(b).

2. Take the natural log to yield data which are assumed to be normally distributed:

−→y = ln (−→x ) Fig. 4·14(c)

3. Create a B-binned histogram of −→y ⇒
−→
h (Fig. 4·14(d))

4. Estimate the parameters {a, b, c} from the data −→
h using the iterative weighted
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least squares estimation method (magenta curve in Fig. 4·14(d))

5. Use the estimated values to compute the parameters of the Gaussian curve

{C, µ, σ}

6. Define a target mean and standard deviation for the transformed distribution

and compute the transformed data vector:

−→
t = σtarget

σ
−→y + µtarget − σtarget

σ
µ

A histogram of these data is shown in Fig. 4·14(f).

7. To compute a transformed image which maintains a log-normal distribution,

then exponentiate −→
t

−→
` = exp

{−→
t
}

A histogram of these data is shown in Fig. 4·14(e).

The advantage of using MIMS channel equalization is that raw data whose intensity

ranges are dramatically different can be mapped into a normalized space where pixel

values can be considered more equally. As shown in Fig. 4·15, different channels of a

MIMS image may have very different intensity distributions and dynamic ranges. By

conducting channel equalization, the ranges of the data can be fixed and compared

more directly than in the raw data’s original domain. Similarly, channel data which

come from the same isotope but from different samples may have significant scale

factor differences, as shown in Fig. 4·16. Once channel equalization is performed, the

data ranges and intensity characteristics are transformed to have similar intensity

distributions.
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(a) Raw MIMS image, −→x (b) Histogram of −→x

(c) Natural-log of MIMS image, −→y (d) Histogram of −→y = ln (−→x )

(e) Hist. of transformed log-normal data,
−→
` (f) Histogram of transformed normal data, −→

t

Figure 4·14: Images and histograms of raw log-normal MIMS data
and their transformations
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(a) Raw MIMS image of 31P (b) Transformed MIMS image of 31P

(c) Raw MIMS image of 57Fe (d) Transformed MIMS image of 57Fe

(e) Raw MIMS image of 64Zn (f) Transformed MIMS image of 64Zn

Figure 4·15: Channel equalization for comparing different channels
within one MIMS image −→

I τ in a normalized intensity domain.



91

(a) Raw 31P image of sample 1 (b) Transformed log-normal 31P image of sam-
ple 1

(c) Raw 31P image of sample 2 (d) Transformed log-normal 31P image of sam-
ple 2

Figure 4·16: Channel equalization for comparing images between sub-
jects.
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4.5 Multi-modal Image Registration

Images of the brain provide essential information for the characterization of neu-

ropathology. Various staining methods are used to probe distinct tissue features and

provide unique insight for diagnosing brain abnormalities. In the context of this work,

an imaging modality refers to a technique which captures a specific set of qualities

associated with the object being imaged. In order to systematically analyze the same

regions of the brain across distinct imaging modalities and across distinct individuals,

image alignment is required. Image registration is a necessary first step to a deeper

analysis of a database of brain images. The goals of image registration for using

MIMS to inform TBI neuropathology are as follows:

1. Multi-modal image comparison: to enable objective, automated tissue segmen-

tation by registering an already segmented template image to an unsegmented

image. The segmentation of the template image can then be used to define

regions in the unlabeled image. One such example would be the registration of

an atlas image to a multi-channel MIMS as shown in Fig. 4·25(f).

2. Multi-subject image comparison: to directly enable between-sample comparisons

by registering two similar images from two distinct samples to each other

Image registration between two images of the same modality is typically conducted

by determining deformation parameters which minimize the difference between two

images. Typically, a metric based on mean-squared error or correlation is used. While

these measures work well for images whose feature properties are positively correlated,

images with potentially uncorrelated but probabilistically related characteristics re-

quire a measure which incorporates these types of relationships. The idea of applying

mutual information (MI) as the cost function for multi-modal image registration is
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credited to Maes et al. (1997) and Wells et al. (1996). Both papers deal with rigid

registration between magnetic resonance images and computed tomography scans.

While these modalities are spatially three-dimensional, they are scalar valued. Other

literature has examined deformable registration between two 2-D images using MI

(Avants et al., 2008), but again this application was developed for 2-D, scalar-pixeled

images. Utilization of MI for multi-modal, multi-channel 2-D images has not yet been

developed, to the best of my knowledge.

One of the unique challenges posed by MIMS is the ability to simultaneously acquire

data for multiple metallomic signals. Like an RGB photographic image (PI) with

three channels, MIMS are d-channel images with each channel containing distinct

information about the metallomic content of the brain. Most state-of-the-art regis-

tration algorithms consider single-channel images (similar to a luminance or grayscale

image). Therefore, cost functions which accommodate multiple channels are not well

documented.

4.5.1 Problem Formulation & Assumptions

Image registration is a method used to align two images by means of a spatial trans-

formation. Typically, a parametric model defines this transformation and this model’s

parameters are estimated by minimizing a defined cost function. An image registra-

tion procedure requires definition of the following elements:

• a transformation model g parametrized by −→µ which operates on the position

coordinates −→p ⇒ g−→µ (−→p )

• a cost function or similarity metric which outputs a scalar value indicating the

relationship between the two input arguments C and D ⇒ S(C,D)

• an optimization method for minimizing the cost function
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Figure 4·17: Overview of functions and parameters required to per-
form image registration

Using these definitions, the optimization problem for the registration of two images

F(−→p ) and M(−→q ) can be written as follows:

−̂→µ = arg min−→µ
S
[
F(−→p ),M

(
g−→µ (−→p )

)]
(4.13)

Figure 4·17 shows generally how the input images, transformation model, and cost

function relate. Precise parameter and function definitions will be provided in subse-

quent sections.

In this work, the data are two images with corresponding but not necessarily identical

features. These images may have scalar (grayscale, single-valued) or vector (such as

red-green-blue, multiple isotope channels) values at each pixel location. Exemplary

results for uni-modal (ground-truth PI) and multi-modal image pairs are presented

in Section 4.5.5. The end goal of the described image registration function is to reg-

ister label-free images to a segmented (or easily segmentatable) template image, as
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in Fig. 4·25(f). The image registration method uses a six-parameter affine transfor-

mation model with bicubic interpolation for transformations requiring off-grid image

values. Optimal registration is determined by minimization of negative mutual infor-

mation using simulated annealing as the optimization method.

4.5.2 Affine Transformation Model

Let the fixed (reference) image be denoted by F(−→p ) defined on coordinates −→p =

[i, j, 1]T ∈ Z3 and the moving (target) image be denoted by M(−→q ) defined on coordi-

nates −→q ∈ Z3. At each pixel location, the image value could be a scalar or a vector.

The moving image registered to the fixed image coordinate space will be denoted as

Mr(−→p ). Given that F(−→p ) and M(−→q ) are observed, we can define the relationship

between Mr(−→p ) and M(−→q ) as follows:

Mr(−→p ) = φ
{
M

(
g−→µ (−→p )

)}
⇔ M(−→q ) = φ

{
Mr(g−1−→µ (−→q ))

}
(4.14)

where g−→µ denotes the transformation function parametrized by −→µ . The transforma-

tion g−→µ (−→p ) = −→w = [u, v, 1]T ∈ R3 generally specifies non-integer grid locations in

M. The values of M (−→w ) are calculated using a bicubic interpolator φ{·}.

For the images being compared in this thesis, at least translation, rotation and scaling

are required to adequately describe the image transformations needed to register im-

age pairs. For completeness, the full six-parameter affine transformation model, rep-

resented as a 3×3 matrix A−→µ , is used. It linearly operates on the position coordinates
−→p according to Eqn 4.15. The goal of registration is to determine the affine parame-

ters −→µ which minimize the differences between the two input images according to the

defined cost function. The affine transformation matrix A−→µ is a combination of four

geometric transformations: translation (in x and y), rotation, skew and scaling (in x
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and y). The relationship between the geometric parameters −→µ = {tx, ty, θ, sx, sy, sk}

and the transformation parameters −→a = [a1, a2, a3, a4, a5, a6]T , as well as the indi-

vidual geometric transform matrices are given in Eqn 4.16. Note that A−→µ is the

result of a matrix product; therefore, the order of the geometric transformations is

not commutative.

−→w = A−→µ · −→p ⇒



u

v

1


=



a1 a2 a3

a4 a5 a6

0 0 1





i

j

1


(4.15)

A−→µ =





1 0 tx

0 1 ty

0 0 1


︸ ︷︷ ︸

translation

·





θc −θs 0

θs θc 0

0 0 1


︸ ︷︷ ︸

rotation

·





1 sk 0

0 1 0

0 0 1


︸ ︷︷ ︸

skew

·



sx 0 0

0 sy 0

0 0 1


︸ ︷︷ ︸

scaling







=



sx cos(θ) sy(sk cos(θ) − sin(θ)) tx

sx sin(θ) sy(sk sin(θ) + cos(θ)) ty

0 0 1


=



a1 a2 a3

a4 a5 a6

0 0 1


(4.16)

where

tx = positive value shifts image to the left

ty = positive value shifts image up

θ = rotation angle, measured counter-clockwise from the x-axis

(θc = cos(θ) and θs = sin(θ))
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sx = change of scale in x direction

sy = change of scale in y direction

sk = shear factor along the x-axis = tan(ω)

(ω = the skew angle, measured clockwise from the y-axis)

4.5.3 Mutual Information Similarity Metric

Mutual information (MI) is well suited for multi-modal image registration since it en-

forces no functional relationship between the spatially corresponding intensity values

in the two images. The definition for the MI between two discrete random variables

X, taking values xi for i = 1, . . . , n, and Y , taking values yj for j = 1, . . . ,m, is given

in Eqn 4.17.

J (X;Y ) =
n∑

i=1

m∑
j=1

pX,Y (xi, yj) ln
(
pX,Y (xi, yj)
pX(xi)pY (yj)

)
(4.17)

To compute the MI between F and Mr, a joint density function (JDF) of co-occurring

intensity values in the two images must be approximated. Kernel density estimation

(KDE) will be used the approximate the JDF.

Define the image F as an (M ×N × dF) matrix of values and the image Mr as an

(M ×N × dM) matrix of values. Let the vectorized image F be denoted as −→
X ={−→

X (1),
−→
X (2), . . . ,

−→
X (dF )

}
∈ RM ·N×dF , and the vectorized image Mr be denoted as

−→
Y =

{−→
Y (1),

−→
Y (2), . . . ,

−→
Y (dM)

}
∈ RM ·N×dM , where in both cases each (M ·N × 1)

column-vector corresponds to data from a single channel in the image and each row

corresponds to the vector associated with a given spatial location. In order to simplify

the notation for approximating the JDF p
(−→
X,

−→
Y
)
, the matrices from the two images

are concatenated a single matrix −→
Z =

[−→
X,

−→
Y
]

∈ RM ·N×(dF +dM). A schematic of the

formation of −→
Z is provided in Fig. 4·18, where i ∈ [1, dF + dM] indicates the column
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of −→
Z and c ∈ [1,M ·N ] indicates the row, which corresponds to a pixel location in the

original image space. Using this notation, KDE may be performed to approximate

p
(−→
Z
)

using each row of −→
Z as an (dF + dM)-dimensional data point.

For each column of −→
Z (i ∈ [1, dF + dM]), the following definitions are used (see

Fig. 4·19):

• R(i) = [b(i)
min, b

(i)
max]: the allowable range of pixel values in the i-th channel

• K(i): integer indicating the maximum number of bins used to quantize R(i)

• k(i) ∈ [1, K(i)]: integer which refers to the quantization bin number, called the

quantization index

• ∆b
(i)
R = b

(i)
max−b

(i)
min

K(i) : the distance between bin centers in the channel’s pixel value

space

• z
(i)
k(i) = b

(i)
min +

(
k(i) − 1

2

)
∆b

(i)
R : quantization index center in the channel’s pixel

value space. Typically called a bin center.

• K(i)(u): kernel function. Any kernel function may be used as long as∫∞
−∞ K(i)(u)du = 1. Some examples of typical kernels are given in Table 4.3

• h(i) = σ̂ · 2
(

π1/2(ν!)3R(K)
2ν(2ν)!κ2

ν(K)

)1/(2ν+1)
(M ·N)−1/(2ν+1): kernel bandwidth. Computed

using Silverman’s rule of thumb given in (Hansen, 2009). ν is the kernel order

and σ̂ is the sample standard deviation. All parameters needed to compute h

are given in Table 4.3.

For a d-channel image with K(i) = V ∀i, there are V d possible combinations of

quantization indices. Let these combinations be indexed by n and let the kernel

functions be separable such that K(u(1), u(2), . . . , u(d)) = ∏d
i=1 K(u(i)). The KDE of

p(−→z ) is then given by:

p (n) = p
(
z

(1)
k(1) , z

(2)
k(2) , . . . , z

(dF +dM)
k(dF +dM)

)
= α

M×N∑
c=1

dF +dM∏
i=1

K(i)

Z(i)
c − z

(i)
k(i)

h(i)

 (4.18)
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Figure 4·18: Construction of joint observations variable −→
Z for com-

puting the probability function p(−→Z )

where α is a normalizing factor which ensures that the ∑V d

n=1 p(n) = 1 and the value

of n references the appropriate values of k(i) which can easily be mapped back to the

pixel value space.
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Figure 4·19: Visualization of KDE notation with floating point, pixel
value space represented above the horizontal axis and quantized integer
space represented below. KDE can be thought of as “dropping” a kernel
(red curves) at each data point value (red points), then summing the
nromalized contribution of all the kernels dropped for all data points
to determine the probability at a given point (blue arrow and text).
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Table 4.3: Representative Kernels and their relevant parameters for KDE (Hansen, 2009). The last two
columns give the values needed to compute the kernal bandwidth using the Silverman’s rule of thumb
method.

K(u) κ2(K) =
∫
u2K(u)du R(K) =

∫
K2(u)du

Rectangular 1
2 {|u|≤1} 1/3 1/2

Triangular (1 − |u|){|u|≤1} 1/6 2/3

Epanechnikov 3
4(1 − u2){|u|≤1} 1/5 3/5

Quartic 15
16(1 − u2)2

{|u|≤1} 1/7 5/7

Triweight 35
32(1 − u2)3

{|u|≤1} 1/9 350/429

Tricube 70
81(1 − |u|3)3

{|u|≤1} 35/243 175/247

Gaussian (φ) 1√
2π

exp
{

−1
2 u

2
}

1 1/(2
√
π)

3rd order B-spline 1
6 (4 − 6u2 + 3|u|3) {|u|<1} +
1
6 (2 − |u|)3

{1<|u|≤2}

1/3 151/315
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Once the joint density estimate is computed, the marginals can be computed by

summing along the channels that depend on the other image:

p (−→x ) =
dF +dM∑
i=dF +1

∑
z(i)∈R(i)

p(−→z ) p (−→y ) =
dF∑
i=1

∑
z(i)∈R(i)

p(−→z ) (4.19)

Using these probability function estimations and the above definitions, Eqn 4.17 can

be used to compute the MI between F and Mr giving:

J
(−→
X ; −→

Y
)

=
∑

−→x ∈RX

∑
−→y ∈RY

p(−→x ,−→y ) ln
(

p(−→x ,−→y )
p(−→x ) · p(−→y )

)
(4.20)

4.5.4 Optimization

The optimal parameters of the transformation, −̂→µ , are determined according to the

maximization of mutual information as follows:

−̂→µ = arg min−→µ
S (−→µ ) = arg min−→a

− J
(
F(−→p ); M(A−→µ · −→p )

)
(4.21)

Simulated annealing (SA) is used to solve the optimization problem since this method

is easy to implement, requires relatively few tuning parameters, and requires no apriori

knowledge of the cost function (derivative is not required) (Ingber, 1993; Chen and

Luk, 1999). SA is also attractive since it theoretically guarantees convergence to

the global minimum (with infinite time). As the name suggests, SA algorithmically

mimics the physical process of metal annealing and is used in condensed matter

physics to analyze the properties of a large number of atoms (Kirkpatrick et al.,

1983).

Broadly, SA works by attempting to find the state (−→µ best) of lowest energy (minimum)

according to a metric ψ. During each iteration, SA generates a new state −→µ t and
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evaluates the state’s energy ψt = S(−→µ t) = −J
(
F(−→p ); M(A−→µ t

· −→p )
)
. The state is

then considered for acceptance based on how the new energy compares to the previous

energy (∆E = ψt − ψt−1). If the energy of the new state is less than the previous

state’s, then the new state is accepted. If the new state’s energy is greater, then it

is accepted with some probability. The algorithm is repeated until some user defined

limit is reached (usually maximum number of iterations is reached or changes in the

state or of the cost fall below some threshold). By occasionally accepting solutions

that are “worse” according to S(−→µ t), this optimization strategy is less sensitive to

local optima and is faster and more flexible than an exhaustive search method.

Figure 4·20 depicts a functional block representation of SA in the context of image

registration. To perform optimization by SA, a state generating function (Eqn 4.23),

a cost function (Eqn 4.20), an acceptance function (Eqns 4.24,4.25) and an annealing

schedule (Eqn 4.22) must be defined. The user specifies an initial temperature (T0),

an initial state (−→µ 0), and a definition of the state space (bounds on the state space).

The SA procedure works to minimize the energy associated with the d-dimensional

state vector −→µ by semi-randomly exploring the state space according to the defined

state generating function (Eqn 4.23). At the beginning of each iteration t, a new

parameter vector −→µ t is generated by taking a temperature-sized step away from the

previous state vector. The new state −→µ t is then applied to the moving image to create

Mr
(
A−→µ t

· −→p
)
. Next, the energy or cost function, ψt, is computed (Eqn 4.20) and

sent to the acceptance function for evaluation (Eqns 4.24 and 4.25). If the energy

decreases, the state will automatically be accepted (Eqn 4.24). If it increases, the new

state will be accepted with some probability based on the acceptance function hSA

compared to the value of a uniform random variable u. The acceptance function hSA

is proportional to Tt and inversely proportional to ∆E (Eqn 4.25). The probability
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of accepting the current state given that it increases the energy is proportional to

the value of hSA. Therefore, at higher temperatures, the algorithm is more likely to

accept states that increase the energy. Also, the greater the increase in energy, the less

likely that state is to be accepted. This promotes both exploration of the state space

(particularly at the beginning of the optimization process when the temperature is

higher) and eventual convergence to an acceptable solution. If the stopping criterion

has not been met, the next step is to increase the iteration counter and update the

temperature according to the annealing schedule (Eqn 4.22).

Annealing Schedule: Tt = T0 · τ t (4.22)

State Generating Fctn: −→y ∼ N (−→0 , I) ∈ Rd

ȳ =
−→y

‖−→y ‖
∼ N (0, ‖−→y ‖−2)

−→µ t = −→µ t−1 + Tt−1ȳ ∼ N (−→µ t−1, T
2
t−1 · ‖−→y ‖−2)

(4.23)

Acceptance Fctn: ∆E = ψt − ψt−1

IF ∆E < 0 ⇒ ACCEPT: −→µ t (4.24)

ELSE hSA =
{

1 + exp
(
∆E

Tt

)}−1
(4.25)

u ∼ U(0, 1)

IF hSA > u ⇒ ACCEPT: −→µ t

ELSE hSA < u ⇒ REJECT: −→µ t = −→µ t−1

In order to perform a thorough search of the state space, reannealing is used. Rean-

nealing will reinitialize the temperature and the state to T0 and −→µ 0 respectively and

essentially re-run the described simulated annealing algorithm. Various criteria my
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Figure 4·20: Functional block diagram of the image registration func-
tion. Each of the functional parts (transformation model, cost function,
optimization function) require additional parameterization, but the
function can be run with default parameters given two multi-channel
images as inputs (one the fixed image and one the moving image).
The final output is an optimal set of transformation parameters, −→µ best,
which can be used to generate Mr.
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be used to prompt reannealing. In this work, reannealing is triggered once a specified

number of states which increase the energy have been accepted. The final output

from the SA algorithm is the state vector, −→µ best, which resulted in the minimum ψ

over all iterations performed. Figure 4·21 shows a visualization of the various aspects

of SA. As a final note, since the transformation parameters are on vastly different

scales (translations tend to be much larger than the other parameters, the rotation in

radians tends to be much smaller), a scale factor of the state space is introduced so

that the state-generating function promotes approximately equal exploration of the

range for each state.

Figure 4·21: Visualization of image registration using simulated an-
nealing. [Top Left] Cost function, ψt = −MI. [Top Right] Temper-
ature, Tt. [Bottom Left] Plot of the scaled state vector with unscaled
values of −→µ best in the text above the plot. [Bottom Right] Fixed im-
age with M

(
A−→µ t

· −→p
)

edges superimposed with the unscaled −→µ used
to generate Mr shown above.
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4.5.5 Results

For testing the multi-modal, multi-channel image registration (MMMCIR) method,

the results from three different image sets whose properties are summarized in Ta-

ble 4.4 are presented. Due to prohibitive computation time for larger images, all

images were first resized such that max(M,N) < 100. For a given experiment,

both images were resized to the dimensions shown in the last column of Table 4.4.

The images used as inputs for the experiments described are shown in Table 4.6.

The results presented were generated using the parameters indicated in Table 4.5.

All experimental results were generated using a Dell XPS 8700 computer with a 4th

Generation Intel Core i7-4770 processor with 12GB Dual Channel RAM.

These three image pairs enable the testing of registration accuracy (Exp. 1 images),

multi-modal capability (Exp. 2 and 3 images), and performance on arbitrary multi-

subject registration (Exp. 3 images). The registration results between images of

the copper grid in Exp. 1 and 2 can easily be visually evaluated because of the

object’s rigid and clear structural components. Interpretation of the registration

results between images of the mouse hippocampal formation (HPF), while more in

line with the objective of the image registration function, requires a degree of domain

knowledge. Since the anatomical morphology and cellular structure of this area of the

mouse brain is fairly stereotyped, having a pronounced laminar structure, knowledge

of organization of these layers in the HPF was used to evaluate the registration results.
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Table 4.4: Summary of image pairs used for image registration

Exp. # Description F modality Original
MF ×NF

M modality Original
MM ×NM

Resized
M ×N

1 Copper grid Photo 480 × 718 Photo 480 × 718 60 × 90
2 Copper grid MIMS 73 × 1597 Photo 480 × 718 60 × 90
3 Hippocampus MIMS 71 × 216 Atlas 649 × 1066 41 × 67

Table 4.5: Experimental parameters used

Symbol Definition Function where used Value
φ interpolator Transformation model bicubic
K # of bins (equal in all dim.) Cost Function 30
T0 initial temperature SA Optimization 5
τ temperature decay rate SA Optimization 0.997
c parameter scale factors SA Optimization

[
1, 1, 180/π, 10, 10, 50

]
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Table 4.6: Depiction of images used in the image registration ex-
periments described in Table 4.4. Note that all images are in reality
matrices of scalar values which have been pseudo colored in order to
enable simultaneous visualization

Exp. # Image type Channel 1 Channel 2 Channel 3

1 F R-channel

Photo

1, 2 M R-channel G-channel

Photo

2 F Cuλ − 224.7 nm Siλ − 251.6 nm

MIMS (OES)

3 F 56Fe 63Cu 64Zn

MIMS (MS)

3 M Gray-scaled image

Graphic
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Table 4.7: Parameters and results for registration between a photograph of a copper grid with itself

−→µ best

dF -ch dM-ch # iter hours K ψbest tx ty θ (rad) sx sy sk RMSE
Ground Truth Parameters -4 2 -0.0698 1.05 0.95 0.03

1 (R) 1 (R) 1.8e4 1.53 norm -0.8941 -3.9999 2.0026 -0.0705 1.0498 0.9499 0.0305 3.0380
1 (R) 1 (R) 1.8e4 1.21 epan -0.9013 -3.9966 1.9974 -0.0695 1.0499 0.9498 0.0334 8.3663
1 (R) 2 (R,G) 8065 24.88 norm -0.9421 -4.0199 1.9939 -0.0673 1.0488 0.9487 0.0380 20.9988

Table 4.8: Parameters and results for registration between a photograph of a copper grid with a MIMS
of a copper grid

−→µ best

dF -ch dM-ch # iter hours K ψbest tx ty θ (rad) sx sy sk

1 (Cu) 1 (R) 1.8e4 1.55 norm -0.6943 -1.0766 1.3665 -0.2702 0.8287 1.0318 0.0597
2 (Cu, Si) 1 (R) 1e4 8.40 epan -0.8137 -1.0660 1.3692 -0.2680 0.8249 1.0296 0.0552

Table 4.9: Parameters and results for registration between MIMS of the mouse brain with an atlas image

−→µ best

dF -ch dM-ch # iter hours K ψbest tx ty θ (rad) sx sy sk

1 (56Fe) 1 (gray) 1.8e4 0.85 epan -0.2328 -2.7565 -0.4162 0.0566 1.0728 1.1904 -0.0340
1 (63Cu) 1 (gray) 1.8e4 1.08 epan -0.2142 -1.2191 0.1650 0.0499 0.9985 1.0394 -0.0109
1 (64Zn) 1 (gray) 1.8e4 — epan -0.2028 1.1966 -0.3550 0.0995 1.0815 1.0553 -0.0408∑3

i=1 I
(i) 1 (gray) 1.8e4 1.36 epan -0.1926 -1.4443 -0.0137 0.0473 1.0060 1.0498 -0.0432

2 1 (gray) 1e4 2.45 epan -0.4441 -1.5991 -1.1554 0.0552 0.9846 1.1689 -0.0439
3 1 (gray) 1562 16 epan -0.6451 -1.5121 -0.0832 0.0536 0.9991 1.0465 -0.0169
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(a) F with M edge overlay (b) F with Mr edge overlay

Figure 4·22: Exp. 1 registration result: Cu grid photo registered to
Cu grid photo

Ground Truth Copper Grid Experiments (Exp. 1)

This experiment was conducted as a ground truth, proof of concept procedure to eval-

uate the accuracy of the registration function. The baseline image used in this experi-

ment was the red channel from the RGB copper grid image, I(R). The fixed image was

generated by applying a known transformation, −→µ exp, to I(R)
(
F = I(R)

(
A−→µ exp

· −→p
))

.

The original image served as the moving image input for the image registration func-

tion
(
M = I(R)

)
. For this set of inputs, the expected output was the transformation

applied to I(R) to create F , −→µ exp =
[
−4, 2, −0.0698, 1.05, 0.95, 0.03

]
. Numer-

ical data and other relevant parameters are given in Table 4.7 and a visualization of

the final result is shown in Fig. 4·22.

For all parameters and image inputs explored, the best affine parameters discov-

ered through the image registration function were very close to the true value, −→µ exp.

Because of the differences in scale between the affine parameters, metrics such as

Euclidean distance are not particularly informative for comparing error between pa-

rameters. Values of root mean-squared error between F and Mr are likely affected by

differences in SA convergence and image interpolation for different affine parameters.



112

(a) F with M edge overlay (b) F with Mr edge overlay

Figure 4·23: Exp. 2 registration result: Cu grid photo registered to
multi-channel Cu grid MIMS

Overall, these experiments served to validate the functionality of image registration

function, showing that given two input images F and M that are related through

a known affine transformation, the function can recover the affine transformation

parameters for both a scalar-pixel M and a vector-pixel M.

Multi-Modal Copper Grid Experiments (Exp. 2)

This experiment was conducted to ensure satisfactory functionality of the registration

function on multi-modal data. Because the copper grid has well-defined features in

both images, these data are ideal for visual assessment of registration accuracy. In

this experiment, the MIMS image was input as F since the data tend to be less

uniform and thus are more susceptible to interpolation errors. The differences in

morphology between the PI and the MIMS are because of the non-isotropic spatial

dimensions of the MIMS image. Numerical data and other relevant parameters are

given in Table 4.8 and a visualization of the final result is shown in Fig. 4·23. Ground

truth is not available for this experiment since the two modalities are the result of

entirely distinct acquisition techniques.

When compared to the ground truth experiment (Exp. 1), the variability of the
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resulting −→µ best between different image input pairs in this experiment is similar. This

suggests that even though F and M are different modalities, the image registration

function successfully finds −→µ which optimally aligns the two. The results from this

experiment not only result in visually appropriate correspondence, but these results

are consistent for both scalar- and vector-pixel images.

Multi-Modal, Multi-Subject Hippocampal Image Experiments (Exp. 3)

The multi-modal, multi-channel image registration function was tested on a repre-

sentative biological dataset depicting a well-defined region of the mouse brain: the

hippocampal formation. Data for a total of seven unique isotopes were collected for

an approximately 2.5 mm × 4 mm window of cortex, hippocampus and hypotha-

lamus in the mouse brain. For this experiment, a schematic atlas of approximately

the same sagittal region in the mouse brain was downloaded from Allen Brain Atlas

(Atlas, 2013) (Fig. 4·24). This figure was cropped and recolored in Photoshop to cre-

ate the image seen in Table 4.6 used for this experiment. Numerical data and other

relevant parameters are given in Table 4.9 and a visualization of the final result is

shown in Fig. 4·25.

Because of the small dimensions required for registration, some of the features of the

original schematic atlas were diminished when downsampling by a factor of 16. This

resulted in a severe lack of clean edges when displaying the edges as previously done

for Exp. 1 and 2 (see Fig. 4·26(a)). For this reason, while the data presented are the

result of the images as described in Table 4.6, the images shown in this section are the

result of mapping −→µ best back onto the original, high resolution M schematic image

and then rescaling this image to match the original image dimensions of F . Therefore,

all results are shown on the 71 × 216 MIMS image (see Fig. 4·26(b) as an example).
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Figure 4·24: RGB colored schematic atlas of the approximate sagittal
section corresponding to the MIMS data (from Atlas (2013))

Additionally, while the input fixed image may have been scalar valued (single channel),

the results are displayed on a 3-channeled image so as to gain perspective of the image

registration result relative to the other isotopes.

Overall, it is somewhat difficult to qualitatively assess the performance of the regis-

tration for the different cases considered. However, there were a few observations that

are fairly evident. One is the incorrect feature registration when using only the 56Fe

channel (Fig. 4·25(b)). Here, the stratum oriens of CA1 (the darkest “C” shaped

feature on the image in Table 4.6) is clearly aligned to the prominent line feature

in the 56Fe image. In context, however, this feature in the 56Fe image is likely the

CA1 pyramidal layer. Additionally, the estimated affine parameters vary significantly

depending on which channel is used for registration. When registration is conducted

using information from more than one channel, such as in the case of maximizing

the sum of the 1-channeled MI values (Fig. 4·25(e)) and in the 3-channeled MIMS



115

(a) F with M edge overlay (b) F with Mr edge overlay using F =56

Fe

(c) F with Mr edge overlay using F =63

Cu
(d) F with Mr edge overlay using F =64

Zn

(e) F with Mr edge overlay by max. sum
of MI for three 1-channeled MIMS

(f) F with Mr edge overlay using F ={56Fe,65 Ce,64 Zn
}

Figure 4·25: Exp 3 registration results: hippocampus segmentation
image registered to MIMS
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(a) Exp. 3 results using original image
pair

(b) Exp. 3 results mapped onto original
MIMS

Figure 4·26: Display of mapping experimental results onto original
image dimensions.

(Fig. 4·25(f)), the very prominent pyramidal cell layer of the CA1 region seems to

correctly align. These results support the importance of taking multiple channels into

consideration when determining a correspondence with a MIMS image.

Estimation of the best affine parameters for this experiment are generally not as

clear as for the experiments conducted with the copper grid images. Figure 4·27

shows the projections of the MI onto the parameter axes for the MIMS 64Zn channel

(Fig. 4·27(a)), the summed MI on three 1-channel MIMS (Fig. 4·27(b)), and the

3-channel MIMS (Fig. 4·27(c)). These plots indicate that while some of the affine

parameters have a prominent maximum within the range explored, others do not

appear to have an optimal value (most notably θ and sk). These ambiguities are

likely a result of the limited state-space bounds and run-time. Despite these technical

challenges, image registration results using multiple channels produced results which

more closely agree with expected anatomical boundaries.



117

(a) Exp. 3 registration using 64Zn channel

(b) Exp. 3 registration using sum of MI for three 1-
channeled MIMS

(c) Exp. 3 registration using 3-channels

Figure 4·27: MI projection onto transformation parameter axis for
various Exp. 3 inputs.
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4.5.6 Discussion

Through these experiments, the functionality of the proposed multi-channel, multi-

modal image registration function was established. A number of factors influencing

registration accuracy and general properties of the image registration function were

observed. One such observation was the effect of cost function smoothness on regis-

tration performance. The plots in Fig. 4·28 show the projection of the MI at each

iteration of SA onto each of the transformation parameter axes. It is apparent that

compared to Fig. 4·28(c), the distribution of the data in Figs. 4·28(a) and 4·28(b)

have peaks that are more clearly defined for nearly all of the parameters. These sharp

peaks are typically a reliable indicator of a “good” image registration result.

A second interesting and motivating reason for estimating multi-dimensional MI

rather than other perhaps more simple schemes (such as maximization of the sum

of MIs) reveals itself in Fig. 4·29. Figures 4·29(a) and 4·29(b) show MI values re-

sulting from registration between two different fixed scalar images. Figure 4·29(c)

shows data from an optimization function which maximized the sum of MI between

two scalar images for each of the channels. In Fig. 4·29(c), the scaling peaks from

both the 56Fe image and the 63Cu image are present, resulting in an ambiguous

or non-specific value of sy which maximizes MI. However, when computing MI for

vector-valued images, it results in a singular peak in the parameter space, as seen in

Fig. 4·29(d). While the MI in Figs. 4·29(a) and 4·29(b) is peaked in the sy parameter

space, this figure shows that final values reached using different channels are vastly

different (exemplary final registration results can be seen in Figs. 4·25(b) and 4·25(c)).

Additional take-away points were the improvements in computational time without a

significant effect on registration accuracy when using the Epanechnikov kernel rather

than the Gaussian (Normal) kernel to compute the joint probability function. While
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(a) Exp. 1 data (b) Exp. 2 data

(c) Exp. 3 data

Figure 4·28: Examples of cost function projections onto transforma-
tion parameter axes for each of the MMMCIR experiments.

the results shown in this work are largely qualitative, the algorithmic infrastructure

needed to perform multi-modal, multi-channel image registration has been developed

and validated.

4.6 Summary of Contributions

The focus of this chapter has been on the algorithmic methods developed to address

the technical challenges associated with visualization, analysis, and interpretation of

MIMS data. Because the field of metallomic imaging mass spectrometry is still in it’s

early stages, standard methods have yet to be defined. Contributions made towards

addressing the challenges associated with MIMS data can be summarized as follows:



120

Figure 4·29: The data are from Exp. 3 image pairs. The images
show various results for MI projected onto the sy parameter axis for
estimates of −→µ t during the image registration procedure.
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• Development of functions for MIMS raw data extraction, segmentation, and

visualization (Sections 4.1 and 4.2)

• Development of methods for representations of MIMS in a standard domain

using calibration standards or image intensity properties (Sections 4.3 and 4.4)

• Development and validation of a novel method for multi-modal and multi-

channel image registration using mutual information (Section 4.5)

These efforts have been used to provide evidence to support hypothesis of the un-

derlying physiological events occurring in mouse models of traumatic brain injury

(Tagge et al., 2017). Additionally, MIMS data extraction and visualization have

been fundamental in the advancement of the data acquisition process, facilitating

the establishment of this imaging method for precise analytical analysis of biological

samples.
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Chapter 5

Analysis of Metallomic Brain Images of
Nanoparticle-Injected Mice

5.1 Experimental Objective

Metallomic imaging mass spectrometry (MIMS) is a method uniquely posed to pro-

vide quantitative information about the elemental-isotopic composition and spatial

localization of a biological sample. As described in Section 1.3, elements which do

not naturally occur in the brain may be intravenously injected to probe the degree

of blood-brain barrier (BBB) dysfunction. The cocktail may be injected at various

stages of the experiment depending on the goal of the assessment. In addition to in-

jection of exogenous compounds, evaluation of physiologically-relevant elements and

isotopes may also provide useful insight into the mechanisms of injury and the effects

on the various brain regions.

Results from a case study of mice injected with a gadolinium-based MRI contrast

agent suggest that mice exposed to an impact neurotrauma (INT) on the left-side of

the head sustain left-sided disruption of the blood-brain barrier (BBB). As described

in a recently submitted publication based on these results, and shown in Fig. 5·1

(Tagge et al., 2017):
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“Focal BBB disruption and colocalizing serum albumin extravasation detected

in the brains of living mice by dynamic contrast-enhanced MRI (DCE-MRI)

neuroimaging with gadofosveset trisodium, an FDA-approved gadolinium-based

contrast agent that binds serum albumin. High-field (11.7T) T1-weighted MRI

(T1W-MRI, A and B) and DCE-MRI (C, D) with systemically administered

gadofosveset trisodium. T1W-MRI and DCE-MRI were conducted 3 hours (A,

T1W-MRI; C, DCE-MRI) and 3 days (B, T1W-MRI; D, DCE-MRI) after im-

pact (IMP) or control (CON) exposure. T1W hyperintensity (A, B) colocalized

with BBB permeability defect detected by DCE-MRI (C, D) in the left perirhi-

nal cortex (arrows) 3 hours and 3 days after IMP but not CON exposure.

Nonspecific signal was observed in the ventricles and sagittal sinus.”

The 157Gd MIMS brain image for the impact exposed mouse (Fig. 5·1F) also exhibits

a clear hyperintensity of the gadolinium signal colocalized with the in-vivo detected

areas of BBB dysfunction.

Using the tools described in Chapter 4, MIMS brain images were registered with

images from the Allen Mouse Brain Atlas (AMBA) (Atlas, 2013; Lein et al., 2007)

to automate evaluation of signal levels in different subregions of the brain. Regions

on the left and right side of the brain are used to explore whether individual mice in

the INT cohort exhibited differences in elemental gadolinium distribution indicative

of BBB disruption.

The goals of this Chapter are two-fold:

1. To demonstrate the use of the multi-modal, multi-channel image registration

(MMMCIR) function to impart anatomical boundaries on MIMS brain image,

and
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Figure 5·1: 157Gd MIMS brain image for BBB compromise proof of
concept. Full explanation for A–D is provided in the text. (A) T1W-
MRI at 3 hours post injury. (B) T1W-MRI at 3 days post injury.
(C) DCE-MRI at 3 hours post injury. (D) DCE-MRI at 3 days post
injury. (E) 157Gd MIMS brain image from a control mouse. (F) 157Gd
MIMS brain image from an impact (IMP) exposed mouse. Anatomical
compass legend: D, V; dorsal, ventral. L, R; left, right. (copied from
(Tagge et al., 2017, Fig.5))
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2. To evaluate the signal levels in counts-per-second of left- versus right-sides of

the brain in a cohort of MIMS brain image from approximately the same coronal

location.

This chapter will first present the specifics of the tissue preparation and image selec-

tion in Section 5.2. Section 5.3 will detail the image preparation and the processing

procedure done to extract the results shown in Section 5.4. A comparison of various

experimental design choices will also be analyzed in Section 5.4.

5.2 Experimental Methods

Motivated by the naive and INT brains from the gadolinium-injected cohort (iGd),

a distinct MIMS cohort was selected from an experiment involving 33 nanoparticle-

injected animals (iNP) with corresponding MIMS brain image. While the experi-

mental procedures and objectives for the iGd and iNP experiments were distinct, the

tissue preparation were identical for both experiments.

5.2.1 Gadolinum-Injected Cohort (iGd)

The iGd experiment can be divided into two distinct procedures: (1) a TBI procedure

and (2) an MRI procedure. A timing diagram of the experimental sequence for the iGd

cohort is outlined in Fig. 5·2. The mice subjected to experimental left-sided closed-

head impact injury (INT) were treated as follows: (1) Baseline-BUCS measured, (2)

INT, (3) Post BUSC-1 measured, (4) INT, (5) Post BUCS-2 measured (3 hrs post-

injury). Sled speeds for the impact neurotrauma were 5.1 ± 0.2 m/s. After injury, the

mouse rested for approximately 15 min after measurement of the BUCS score before

beginning the next step in the procedure. The naive mouse did not undergo any
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Figure 5·2: Timing diagram for gadolinium-based MRI contrast agent
injected cohort (Figure courtesy of Andrew Fisher).

stage of the TBI procedure before being subjected to the MRI procedure. The MRI

procedure involved imaging the mice with a Bruker 11.7T MRI instrument (High field

MR Imaging Core, BU School of Medicine) using a sequence designed to enable to

subsequent calculation of T1-weighted (signal and dynamic contrast-enhanced signal

to assess BBB permeability defects. The mice underwent this imaging sequence five

times over the course of a two week period at the following time points: [0 dy, 1 dy,

3 dy, 1 wk, 2 wk]. Prior to each MRI session, the mice were injected with a dose of

a gadolinium-based MRI contrast agent I . Andrew Fisher, Chad Tagge, and Olga

Minaeva, Ph.D., were primarily responsible for conducting the TBI procedure. Ning

Hua, Ph.D., was responsible for the MRI procedure. An hour and a half after the

fifth MRI sequence acquisition, the brains were harvested using the method detailed

in Section 5.2.3.

5.2.2 Nanoparticle-Injected Cohort (iNP)

The mice in the iNP experiment were divided into two injury exposure groups: an

impact neurotrauma group and a sham neurotrauma group. One naive control sample

is analyzed as part of the experiment where there was no injury exposure and no

injection. One hour before injury, mice were injected via the tail vein with 2 µg of
IThe dose was defined as 0.1 mL of a 0.25 mmol/mL gadofosveset trisodium, Lantheus Medical

Imaging Inc., North Billerica, MA
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a nanoparticle cocktail solution. The cocktail consisted of a gadolinium-based MRI

contrast agent, 5 nm cerium oxide (CeO2), 40 nm nanocrystals (NaY , Er, Ho), and

100 nm strontium titanate (SrT iO3). The cocktail was made into a solution with

80 µg/kg concentration using phosphate-buffered saline (PBS) as the diluent. As

with the INT mouse from the iGd experiment, mice in the INT group were impacted

on the left-side of the head. Brains were harvested using the method detailed in

Section 5.2.3 24 hours after the injury exposure.

5.2.3 Tissue Fixation and Paraffin Embedding

Mice were euthanized by carbon dioxide asphyxiation and transcardially perfused

with PBS until expelled fluids ran clear. Whole brains were then extracted, prefixed

in 10% neutral-buffered formalin for two hours, then serial coronal section using a

1 mm brain-slicing matrix as indicated in Fig. 5·3(a). Brain sections were postfixed

in 4% paraformaldehyde and stored at 4◦C until paraffin embedding. The thick

sections were then placed in a cassette with the rostral side facing the bottom and

the left side facing the slanted side of the cassette. Paraffin-embedded sections are

shown in Fig. 5·3(b). Each thick section is given a reference label corresponding to

the predominate anatomical feature associated with that section. Listed rostral-to-

caudal, the section labels were as follows: (1) prefrontal cortex (PFC), (2) anterior

cingulate (AC), (3) hippocampal formation (HIPP), (4) cerebellum (CER). Mark

Wojnarowicz was primarily responsible for tissue preparation.

5.2.4 Input Image Information

Once paraffin blocks were available, MIMS brain images of the thick sections were

acquired using the software tools described in Section 4.1. The entire paraffin block
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(a) Thick-section positions (b) Paraffin embedded thick sections

Figure 5·3: Thick section positions cut using the brain-slicing matrix.

was placed into the laser ablation sample chamber and the surface of the section

being imaged was raster ablated. The acquisition parameters varied for each MIMS

sequence and can be found in Table 5.1 for the iGd experiment and Table 5.2 for the

iNP experiment.

Using the AMBA caudal-ventral-right (CVR) coordinate system (see Fig. 5·4), MIMS

brain images from approximately the same coronal (x) position were selected. For

the samples in the iGd experiment, the coronal plane was at x = 7.3 ± 0.2 mm and

those in the iNP experiment fell in the range of x = 8.4 ± 0.2 mm. MIMS acquisition

and TBI exposure details are listed in Tables 5.1 and 5.2. For both experiments,

the following five MIMS channels associated with physiologically- and pathologically-

relevant elemental isotopes were selected for evaluation: 31P , 57FeII, 63Cu, 64Zn,
157Gd.

An atlas image derived from the AMBA atlas image available for download for Atlas

(2013) (Fig. 5·6(c)) was used for registration to the MIMS brain image. Atlases from

the more caudal region of the brain (x = 8.4 ± 0.2 mm used for the iNP experiment)
IIfor some samples, 56Fe was acquired instead of 57Fe. These specific cases are indicated in the

results.
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Figure 5·4: Mouse brain coordinate system used for AMBA where
the x-axis goes in the rostral-to-caudal direction, the y-axis goes in
the dorsal-to-ventral direction, and the z-axis goes in the left-to-right
direction. The coordinate system is referred to as the CVR coordinate
system for caudal-ventral-right being the direction of the positive x-y-z
axes, respectively. Three planes are defined: the yz-plane is the coronal
plane, the xz-plane is the transverse plane, and the xy-plane is the
sagittal plane.

had a total of 13 labeled subregions defined by their 8-bit RGB values (Fig. 5·7(b)).

The rostral sections from x = 7.3 ± 0.2 mm used for the iGd experiment had 14

labeled subregions (Fig. 5·7(a)). The full names of the abbreviated regions are given

in Table 5.3.

A common problem encountered when imaging tissue sections is out-of-plane section-

ing. This issue can arise in any plane (coronal, transverse or sagittal) and is essentially

defined as a plane whose corresponding x, y or z value is not constant. This stems
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(a) Tilted plane on dorsal view (b) Tilted plane on right view

Figure 5·5: Out-of-plane coronal cuts on (a) dorsal and (b) right
views. The green lines show an exaggerated example of a tilted coronal
plane cut on each of the surfaces shown. The dashed cyan line shows
what a constant coronal plane would look like. The dashed black lines
show that the x-axis values on either extreme of the plane cut are not
constant, which is the defining characteristic of a tilted plane.

from a variety of sources, including the cutting of the thick sections, the paraffin

embedding, or angled mounting on the microtome (for thin sections). Characteristics

of a tilted coronal plane are shown in Fig. 5·5. When the value of x is not constant

across the cutting plane, the result may be that the left side is more caudal than the

right side, as in Fig. 5·5(a), or that the dorsal part of the section is more caudal than

the ventral part, as in Fig. 5·5(b). These out-of-plane cuts can be compounded and

result in anatomical variance which is not easily corrected when referencing MIMS

maps to specific brain atlas maps in a given anatomical plane.

Coronal atlas section images from the AMBA are used to impart anatomical bound-

aries onto the MIMS. At 100 µm intervals, the AMBA provides a Nissl stainedIII

IIIThe Nissl stain is used to label extranuclear RNA granules for visualization of the cell body.
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thin-tissue section (25 µm) with a corresponding image which labels anatomical struc-

tures from the medial line to the right side of the section. Since the AMBA sections

are assumed to be nearly coronally-in-plane, the anatomy is symmetric about the

midline so the anatomical structures on the left side of the section can be derived

from the labeled structures on the right side. For use in the registration experiments,

the selected Nissl-stained section (Fig. 5·6(a)) and the corresponding atlas image

(Fig. 5·6(b)) were both downloaded from the AMBA websiteIV. The atlas image is

used to aggregate anatomical structures of interest and a new atlas-only image is

derived from the original (Fig. 5·6(c)).

To address the issue of different left-side (L) versus right-side (R) anatomy caused by

out-of-plane coronal sectioning, two AMBA coronal sections were selected to describe

each coronal MIMS: one which best matched the anatomy on the right side of the

section and one which best matched the anatomy on the left side of the section.

Selection of the best corresponding section for a given MIMS brain image and side was

done manually via examination of the hippocampal formation and the morphology of

the hippocampal pyramidal cell layer. Out-of-plane sectioning which resulted in the

dorsal part of the section being more caudal than the ventral part of the section (or

visa-versa, as in Fig. 5·5(b)) was not accounted for.

IVMay be downloaded using the API http://api.brain-map.org/api/v2/atlas_image_
download/SectionDataSet?downsample=3&annotation=true for the appropriate SectionDataSet
value and annotation from Tables 5.2 and 5.1

http://api.brain-map.org/api/v2/atlas_image_download/SectionDataSet?downsample=3&annotation=true
http://api.brain-map.org/api/v2/atlas_image_download/SectionDataSet?downsample=3&annotation=true
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(a) Nissl image, N (b) Raw Atlas image (c) Derived Atlas image, A

Figure 5·6: Allen Mouse Brain Atlas images used for MIMS registration procedure for major anatomical
division of the brain.
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Table 5.1: Gadolinium-injected (iGd) experiment information. Laser spot size, Line-to-line spacing, Laser
scan speed, MS sampling time,

Sample ID 10 12
Exp. Group impact naive
Acquisition Date 20150714 20150713
dspot [µm] 20 20
dl2l [µm] 20 20
vscan [µm · s−1] 40 40
tacq [sec] 0.115 0.115
No. Isotopes 13 13
Bounding Box 285 × 1476 276 × 1478
Left-matched AMBA
SectionDataSet Value
(x in mm)

100960236
(7.2)

100960224
(7.5)

Right-matched AMBA
SectionDataSet Value
(x in mm)

100960236
(7.2)

100960228
(7.4)

http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960236&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960224&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960236&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960228&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
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Table 5.2: Nanoparticle injected (iNP) experiment cohort information

Sample ID 35 12 22 14 27 26 30
Exp. Group control sham sham impact impact impact impact
Acquisition Date 20150413 20150324 20150818 20150818 20150415 20150819 20150923
dspot [µm] 20 20 20 20 20 20 20
dl2l [µm] 20 20 30 30 20 20 20
vscan [µm · s−1] 40 40 60 60 40 60 60
tacq [sec] 0.506 0.510 0.163 0.163 0.488 0.213 0.203
No. Isotopes 17 18 10 10 17 12 11
Bounding Box 219 × 340 206 × 324 163 × 702 149 × 675 193 × 329 228 × 520 196 × 554
Left-matched AMBA
SectionDataSet
Value (x in mm)

100960053
(8.6)

100960061
(8.4)

100960061
(8.4)

100960061
(8.4)

100960061
(8.4)

100960061
(8.4)

100960061
(8.4)

Right-matched
AMBA
SectionDataSet
Value (x in mm)

100960061
(8.4)

100960065
(8.3)

100960065
(8.3)

100960069
(8.2)

100960061
(8.4)

100960061
(8.4)

100960065
(8.3)

http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960053&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960065&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960065&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960069&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960061&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960065&structure=73&x=5053.282645089286&y=3743.869280133929&zoom=-3&resolution=11.97&z=6
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(a) Atlas integer labels and colors for x = 7.2 mm (b) Atlas integer labels and colors for x = 8.4 mm

Figure 5·7: Labeled atlas images used in MIMS brain image registration experiments. (a) Depiction of
the rostral slices used for the iGd cohort which included 14 major brain structures. (b) Depiction of the
caudal slices used for the iNP cohort which included 13 major brain structures. The full names for the
anatomical regions abbreviations shown in the figures can be found in Table 5.3.
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Table 5.3: Regional structure abbreviations and full names for atlas images used for registration

Abbreviation Label # in
x = 7.2

Label # in
x = 8.4 Full Name

HIP 1 1 Hippocampus
PCL 2 2 Pyramidal cell layer in hippocampal region
SUB — 3 Subiculum
RETctx 3 4 Retrosplenial area of cerebral cortex
VISctx — 5 Visual areas of cerebral cortex

SSctx 4 — Somatosensory and Somatomotor areas of the cerebral
cortex

SENSctx 5 6
Sensory area of cerebral cortex (including posterior
parietal association areas, auditory areas, and temporal
association areas)

RHIctx 6 7 Perirhinal cotrex (including ectorhinal area, perirhinal
area, and entorhinal area)

PIRctx 7 — Piriform area of cerebral cortex

AMYctx 8 8 Amygdala (including postpiriform transition area and
cortical amagdalar area)

ctxSP 9 9 Cortical subplate
Stri 10 — Striatum
WMT 11 10 White matter tracts
VENT 12 — Ventricles
Thal 13 11 Thalamus
MidB — 12 Midbrain
HypoThal 14 13 Hypothalamus



137

5.3 Processing Pipeline

The registration procedure is divided into three sequential tasks: (1) image prepara-

tion, (2) registration initialization, and (3) image registration. For each MIMS brain

image, two coronal sections from AMBA are selected: one to match left (L) anatomy

and one to match right (R) anatomy. To determine the anatomical boundaries of

a single MIMS brain image using the AMBA, the registration procedure is carried

out twice, once for each side. The registration procedures are identical for both ex-

cept that for L registration, the AMBA images is reflected across the midline of the

dorsal-ventral axis of the brain.

5.3.1 Image Preparation

For a given MIMS brain image and a given side (either L or R), the Nissl image, N (x)

(Fig. 5·6(a)) and the derived atlas image, A(x) (Fig. 5·6(c)) for the selected section at

the location x (expressed in mm according to the CVR coordinate system) are loaded

into the workspace. If the goal is to define left-side anatomy, then both images must

then be reflected across the midline of the dorsal-ventral axis such that the AMBA

images left and right side are switched. Images used for segmentation of a particular

side of the brain are denoted as N (side) or A(side) where side = {L,R}. When the

side does not influence the step, this notation is omitted. An intensity-based fore-

ground/background masking is done on both N and A, yielding MN (Fig. 5·8(d)) and

MA (Fig. 5·8(e)) respectively. The mask MN provides a tissue boundary and defines a

rectangular area which is used to crop out surrounding background pixels. The mask

MA(side) identifies the side of the brain since all other pixels except those associated

with labeled anatomical structures on the given side are background regions.
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The corresponding MIMS brain image for a given sample is indicated as −→
I (s) where

s is the sample ID in Tables 5.1 and 5.2. Recall that −→
I is a d-channeled image

where each channel has intensity characteristics and dynamic range specific to the

elemetal isotope corresponding to a given channel. To normalize the channel char-

acteristics for image registration, a mean-variance equalized (MVE) image, −̄→
I , is

produced as described in Section 4.4. The MIMS segmentation function, described in

Section 4.2, is used to produce a foreground/background mask for the MIMS brain

image, M−→
I

(Fig. 5·8(f)). As with the AMBA images, this mask defines a rectangu-

lar area for cropping out the surrounding background (Bouding box values given in

Tables 5.1 and 5.2).

5.3.2 Registration Initialization

Given the three masks (MN , MA, M−→
I

), the goal of this procedure is twofold: (1) to

define the left and right side of the MIMS brain image, and (2) to provide suitable

initial affine parameters, µ0, so as to limit the state space for registration between the

selected AMBA image and the MIMS brain image. This is accomplished by register-

ing the masks MN and M−→
I

. The two masks, MN and M−→
I

, are provided as inputs

into the same image registration pipeline described in Section 4.5 and summarized

in Fig. 4·20. Because the masks are binary images, rather than using the cost func-

tion ψt = −J (F(−→p ); Mr(−→p )), the cost function is defined as the sum of absolute

differences, ψt = ∑
−→p |F(−→p ) − Mr(−→p )|, where F = M−→

I
and Mr = MN

(
A−→µ t

· −→p
)
.

Assuming that overall the MIMS brain image has similar tissue shape and internal

structures as the AMBA tissue, alignment of the Nissl mask MN to the MIMS mask

M−→
I

via the affine parameters µ0 results in a reasonable initial alignment of the two

brain images. Additionally, by leveraging the fact that the AMBA images N and A
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are spatially concordant, a suitable alignment between M−→
I

and MN allows for the

definition of the right-side of the MIMS brain image as follows:

M
(R)
−→
I

= M−→
I

∩MA(R)

(
A−→µ 0 · −→p

)

where MA(R)

(
A−→µ 0 · −→p

)
is the right-side AMBA mask with the applied mask align-

ment transformation, −→µ 0. Note that an identical procedure can be carried out for

the left side.

5.3.3 Image Registration Procedure

In order to objectively determine the correspondence between a MIMS brain image

and a stereotyped anatomical atlas, the input image characteristics need to address

specific assumptions and limitations associated with the MMMCIR function using

mutual information. While the intensity features in the two input images need not

be functionally related, the characteristics of their intensity distribution should be

similar (that is if one image has a uniform intensity feature, the corresponding feature

in the other image should also be uniform). MIMS channels used for MMMCIR are

selected based on observably consistent structures in the brain which appear in both

the MIMS brain image and the atlas image.

One of the most easily identifiable features in −→
I and N is the pyramidal cell layer

(PCL) in the hippocampal formation (HPF). Channels for which the PCL is clearly

visible are identified for use in MMMCIR. The best channel depicting this anatomical

feature is generally either an iron isotope (56Fe or 57Fe) or the 31P isotope channel.

An additional channel which broadly differentiates larger anatomical structures in the

brain, such as the cortex, the white matter tract and the midbrain, is selected. Gener-

ally, the 64Zn channel provided the clearest definition of additional large anatomical
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features. Specific details regarding the MIMS brain image input are presented in

Section 5.4.

Because of the challenges associated with the raw form of the MIMS, most notably

the long tail of the distribution with large-valued outliers, the MIMS channel data are

mean variance equalized (MVE) to represent the intensity distribution as a standard

normal as described in Section 4.4. The resulting MVE channel data are cutoff at ±3

(all values less than or greater than this range were set to −3 or +3, respectively). This

results in a normally-distributed probability density function (pdf) of the channel’s

intensity values. By limiting the intensity range to ±3, a more accurate quantized pdf

can be obtained since highly-probable areas in the pdf can be represented by more

bins rather than allocating bins to areas of very low probability. The atlas image,

A, was selected as the second input image for registration. Selection of A over N is

discussed in Section 5.4.4.

As shown in Fig. 5·10, the fixed image and moving image are set to be the side-masked,

MVE channel(s) for the MIMS brain image and the AMBA atlas image, respectively.

Unless stated otherwise in the results, all experiments are run with the default exper-

imental parameters indicated in Table 5.4. One additional important implementation

detail is the treatment of background pixels in both images. To prevent any influence

of the image backgrounds on the image registration procedure, background pixels,

as defined by MA and M−→
I

, are not used to calculate the mutual information. The

optimal affine transformation parameters determined by the function, −→µ opt, are the

ultimate output of the image registration procedure. These parameters are used for

conducting subsequent MIMS brain image analyses.
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Table 5.4: Specification of MIMS brain image registration parameters

Symbol Definition Function where used Value

F fixed image input
−→
I (side): MVE 2-channel MIMS brain

image with 31P and 64Zn

M moving image input A(side) at position indicated in Tables 5.2
and 5.1

φ interpolator Transformation model bicubic

— background
correspondences ignored Cost Function

Any corresponding positions which
overlap with background regions in either

image are not used for computing J
J (•) cost function Cost Function JΣ: summed-MI (see Section 5.4.4)
K # of bins (equal in all dim.) Cost Function 40
K kernel used Cost Function norm
T0 initial temperature SA Optimization 5
τ temperature decay rate SA Optimization 0.99
c parameter scale factors SA Optimization

[
1, 1, 180/π, 10, 10, 50

]
— reannealing interval SA Optimization 250
— max. # iterations SA Optimization 5000
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(a) Mask and Bounding Box for N (b) Mask and Bounding Box for A (c) Mask and Bounding Box for −→
I

(d) Nissl tissue mask, MN (e) Atlas tissue mask, MA (f) MIMS tissue mask, M−→
I

Figure 5·8: Foreground/background segmentation of original images with the tissue boundary shown in
cyan and the bounding box shown in red (top row). The bottom row shows the cropped foreground (white)
and background (black) masks. (d) Tissue mask MN derived from the Nissl image N . (e) Right-side tissue
mask MA derived from the atlas image, A. (e) Brain MIMS tissue mask M−→

I
derived from the MIMS brain

image −→
I .
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(a) MIMS tissue mask, M−→
I

(b) Resized Nissl tissue mask, MN (c) Resized atlas tissue mask, MA

(d) Pre-mask-registration overlay (e) Post-mask-registration overlay (f) M−→
I

shown with side-mask

Figure 5·9: The figure summarizes the registration initialization procedure where tissue masks are aligned.
The inputs to the image registration function are the masks (a) M−→

I
and (b) MN , as the fixed and the

moving image, respectively. The initial alignment of the two masks is shown in (d). The optimal affine
transformation parameters aligning MN to M−→

I
yield the results shown in (e). The mask MA can be

transformed by these parameters and used to define a right-side mask, M (R)
−→
I

for the MIMS brain image
(f).
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Figure 5·10: Multi-modal, multi-channel image registration procedure for automated anatomical seg-
mentation of MIMS brain image.
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5.4 Results and Discussion

As mentioned, analysis objectives were twofold: (1) to demonstrate the utility of

the MMMCIR method for automated, objective segmentation of the MIMS brain

images and (2) to use segments on the left and right sides of the MIMS brain images

to evaluate signal levels. While the atlas image used for MMMCIR had 13 – 14

anatomical subregions (see Fig. 5·7), these subregions were combined to produce an

anatomical subgroup image, G, with the same dimensions as A (see Fig. 5·11). Each

pixel in G takes on one of four distinct values, {0, 1, 2, 3}, which can be interpreted as

an indicator for membership to one of the following subgroups: {(1) uninformative,

(2) hippocampal formation (HPF), (3) cortical areas (CTX), (4) thalamus (TH)}.

In the images presented throughout this section, MIMS brain image are shown as

psuedo-colored images with various colored outlines drawn on top. This is simply a

visualization strategy since, as previously discussed, registration with A is done for

the left and right side of the MIMS brain image separately. The transformations −→µ (L)
opt

and −→µ (R)
opt can be applied to A(L) and A(R), respectively. Then the associated group

images, G(L) and G(R), can be depicted together, as in Fig. 5·12(a). The color assigned

to each anatomical subregion on each side in Fig. 5·12(a) is the same color that is

used to show the outlines on the MIMS brain image image, as in Fig. 5·12(b). The

white lines in the image correspond to the boundaries of the anatomical structures in

A(L) and A(R).

In order to present numerical assessments of the signal levels on the left and right side

of the brain for three anatomical subgroups and five intensity channels, a normalized
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side difference metric, ∂̄(L−R)(g), was developed:

∂̄(L−R)(g, i) =
mean

[
I(i)

(
M−→

I
∩ G(L) = g

)]
− mean

[
I(i)

(
M−→

I
∩ G(R) = g

)]
quantile75%

[
I(i)

(
M−→

I

)]
− quantile25%

[
I(i)

(
M−→

I

)] (5.1)

where I(i) is the signal for the i-th MIMS channel and g ∈ {1, 2, 3} is the subgroup

value. This metric provides a normalized value which is suitable for varying dynamic

ranges and data characteristics, so it can be used to compare the regional and focal

elemental-isotopic tissue concentrations between different subjects and isotopes. The

metric also combines statistics derived from the left and right sides of the MIMS brain

image so that their relative values can be interpreted by a single number. We see that:

∂̄(L−R)(g, i) > 0 . . . . . . . . . . . indicates L > R

∂̄(L−R)(g, i) < 0 . . . . . . . . . . . indicates L < R

The magnitude of ∂̄(L−R)(g, i) indicates the magnitude of the difference between the

signal on the L and R side as a fraction of the “typical” data range (denominator

of Eqn. 5.1). This metric is used to present results intended for cross-subject, cross-

isotope evaluation. Without loss of generality, this metric may be computed using

any intensity-adjusted version of the MIMS brain image (see Section 4.4 for details

regarding applicable intensity-transformation methods).

Since MIMS characteristically have high-intensity spurious noise, a 3 × 5 median

filter was applied to the raw MIMS channel −→
I then used to compute ∂̄(L−R)(g, i).

Due to the normalization factor which changes based on the magnitude of the image

intensities, the final value of ∂̄(L−R)(g, i) typically falls in the range of ±2 regardless

of what type of data is used to compute the metric.
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(a) Atlas image, A (b) Group image, G

Figure 5·11: Anatomical subgroup image, G(R), derived from the at-
las image, A(R). Each subgroup has an associated integer value: 0 =
uninformative, 1 = hippocampal formation (HPF), 2 = cortical areas
(CTX), and 3 = thalamus (TH).

(a) Left and right groups depicted together (b) MIMS with group outlines

Figure 5·12: (a) Composite image showing the transformed G(L) and
G(R) together. Each anatomical subregion on each side is assigned a
unique RGB-value for visualization. (b) Multi-channel psuedo-color
representation of the MIMS brain image with the R-channel corre-
sponding to 31P values and the G-channel to 64Zn values. The white
outlines show the anatomical structures from A and the colored outlines
show the groups on the left and right side.
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5.4.1 Assessment of Gadolinium-Injected Cohort

Images of the five isotopes selected for detailed analysis c, 157Gd) are provided in

Fig. 5·13. To quantitatively verify the apparent elevated 157Gd-signal on the inferior

left perirhinal cortex of the iGd-10 MIMS brain image, the two MIMS brain images

in this cohort were manually segmented into the three anatomical subgroups (HPF,

CTX, TH) on the left and right side (Figs. 5·14(a) and 5·14(b)). The signal contained

within each anatomical subgroup image, G(L) and G(R) (see Fig. 5·11(b)), was used

to compute ∂̄(L−R)(g, i) ∀ g, i. These results are plotted in Fig. 5·14(c).

Some data characteristics begin to present themselves in the plots of ∂̄(L−R) for differ-

ent isotopes. Most notably, the difference between the left and right side of the cortex

in the 157Gd-channel of iGd-10 is confirmed using the ∂̄(L−R) metric (see Fig. 5·14(c)).

The value of ∂̄(L−R)(CTX,157 Gd) ≈ 2 in the iGd-10 brain suggests that the difference

between the mean value of the left and right side of the cortex is nearly twice as large

as the interquartile range (IQR)V. Additionally, the relatively large negative value of

∂̄(L−R)(CTX,57 Fe) confirmed the visible high-intensity aberration on the right side

of the dorsal part of the cortex in the 57Fe-channel of iGd-12 (Fig. 5·14). While

the four endogenousVI isotopes (31P , 57Fe, 63Cu, 64Zn) would be expected to have

approximately equal distributions on the left and right sides of the brain, particularly

in the sham subject (iGd-12), there is not a strong confirmation of this hypothesis.

The potential cause for some of these inequities are discussed in Section 7.2.

Anatomical boundaries were also produced using MMMCIR between A and −→
I . Vi-

sualizations of the anatomical boundaries on the MIMS brain images are shown in

Fig. 5·15(a) and 5·15(b) for iGd-12 and iGd-10 respectively. Both the spatial ex-
VFor a standard normal distribution (zero mean, unit variance), 50% of the data lie within the

IQR
VIdefinition in biology: growing or originating from within an organism
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Figure 5·13: Gadolinium-injected MIMS brain images for relevant
isotopes. All images are MVE to have standard normal intensity dis-
tributions of foreground pixels, and are visually limited to the range of
the values between ±3. The (s) indicates the sham sample and the (i)
indicates the impact neurotrauma sample.
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(a) iGd-12 manual segmentation (b) iGd-10 manual segmentation

(c) Isotope levels in manually-segmented subgroups

Figure 5·14: All MIMS brain images are representations of the MVE
signal for 31P , represented as red, and 64Zn, represented as green. The
top row of images show the manual outlines for the three anatomical
subgroups for (a) iGd-12 and (b) iGd-10. (c) Plots of the metric ∂̄(L−R)

for the selected isotopes.
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(a) iGd-12 MMMCIR segmentation (b) iGd-10 MMMCIR segmentation

(c) Isotope levels in MMMCIR segmented subgroups

Figure 5·15: All MIMS brain images are representations of the MVE
signal for 31P , represented as red, and 64Zn, represented as green. The
top row of images show atlas registration derived outlines for the three
anatomical subgroups for (a) iGd-12 and (b) iGd-10. (c) Plots of the
metric ∂̄(L−R) for the selected isotopes.
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(a) Left HPF (b) Right HPF

(c) Left CTX (d) Right CTX

(e) Left TH (f) Right TH

Figure 5·16: Visualization of anatomical subgroup segments for
iGd-12. The colors in the image indicate the following: White – both
manual and MMMCIR subgroups agree; Green – only manual seg-
mentation (not MMMCIR) indicates the area as belonging to the cor-
responding subgroup; Red – only MMMCIR derived segmentation (not
manual) indicates the area as belonging to the corresponding subgroup.
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(a) Left HPF (b) Right HPF

(c) Left CTX (d) Right CTX

(e) Left TH (f) Right TH

Figure 5·17: Visualization of anatomical subgroup segments for
iGd-10. The colors in the image indicate the following: White – both
manual and MMMCIR subgroups agree; Green – only manual seg-
mentation (not MMMCIR) indicates the area as belonging to the cor-
responding subgroup; Red – only MMMCIR derived segmentation (not
manual) indicates the area as belonging to the corresponding subgroup.
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tent of the subgroups produced by manual segmentation and the MMMCIR with an

AMBA image as well as the resulting values of ∂̄(L−R)(g, i) were compared. A visu-

alization comparing manually segmented subgroups, Gmanual, and MMMCIR derived

subgroups, GMMMCIR, can be found in Figs. 5·16 and 5·17 for iGd-12 and iGd-10

respectively.

While the subgroups derived by manual segmentation and by MMMCIR do have a

large degree of correspondence, one of the most notable deviations is that of the cortex.

This is likely due to the fact that pixels from A which corresponded to background

pixels of −→
I in the registration procedure were not included in the computation of

mutual information. Since these areas were not penalized (indeed if included they

are actually favored, as discussed in Section 5.4.4), internal structures had a greater

contribution to the final transformation. The deviation of the MMMCIR derived and

the manually defined subgroup labels are likely a result of several contributing factors,

including:

• anisotropic shrinkage of tissue introduced during the fixation process resulting

in differing relationships between anatomical structures in the two input images

• suboptimal transformation parameters

• differences between A section selected and true CVR-coordinate position of −→
I

Recommended extensions to address some of these challenges are discussed in Sec-

tion 7.2.

Despite the difference between Gmanual and GMMMCIR, the values for ∂̄(L−R)(g, i) did

not vary significantly. The two most significant and explanatory values using the

manual segmentations (the high intensity 157Gd in the left cortex of iGd-10 and the

high intensity 57Fe in the right cortex of iGd-12) are very close in magnitude using
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GMMMCIR. Some more drastic differences between ∂̄(L−R)(g, i) values calculated using

both segmentation methods are in the 63Cu associated values. This is likely due to

differential inclusion of the ventricles and, more specifically, the choroid plexus, which

demonstrate expectedly high concentrations of copper. Since the 63Cu-channel is not

used for either manual or MMMCIR segmentation, its characteristics do not influence

the results of Gmanual and GMMMCIR.

5.4.2 Assessment of Nanoparticle-Injected Cohort

Images of the five isotopes selected for detailed analysis (31P, 57Fe, 63Cu, 64Zn, 157Gd)

for all samples in the iNP cohort are provided in Fig. 5·18. The 31P and 64Zn chan-

nels were used as the 2-channel MIMS brain image input for MMMCIR. The A image

specified in Table 5.2 was registered to each sample for each side of the brain. The re-

sulting outlines from registration with A(L) and A(R) can be seen in Fig. 5·19. While

registration accuracy could not be numerically evaluated, the method subjectively

succeeded at defining anatomical boundaries for the coronal MIMS brain image se-

lected for evaluation in this cohort. Likely due to fewer tissue processing artifacts in

the tissues from the iNP experiment, subgroup segments followed visual tissue bound-

aries more closely than the MMMCIR results from the iGd experiment. Anatomical

subgroups were derived from A and then used used to compute ∂̄(L−R)(g, i) ∀ g, i.

These results are plotted in Fig. 5·20.

While no large-scale population analyses measuring the normal spatial distribution

of endogenous isotopes in the mouse brain have been conducted, it is reasonable to

hypothesize that the levels of {31P , 57Fe, 63Cu, 64Zn} on the left and right sides

would be equal for a naive mouse. Considering the non-impacted samples in the iNP

experiment, {35, 12, 22}, the ∂̄(L−R)(g, i) values for these isotopes were in some cases
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larger than the differences in the impact samples {14, 26, 27, 30}. One individual

in particular, iNP-12, consistently had among the highest ∂̄(L−R)(g, i) values for the

endogenous isotopes, alerting a need for more in-depth analysis. Additionally, while

the pathogenic biomarker 157Gd is an isotope of particular interest, it can be seen

from Fig. 5·18 that for the iNP-cohort, the isotope images had little to no signal. As

such, the values for ∂̄(L−R)(g,157 Gd) can be considered to be dominated by noise, and

are therefore uninformative for drawing any conclusions.

Figure 5·21 plots the raw mean valuesVII on the left and right side within the anatomi-

cal subgroups for two channels in particular, 31P (Fig. 5·21(a)) and 64Zn (Fig. 5·21(b)).

Examination of these plots supports some of the underlying hypothesis for the un-

expected ∂̄(L−R)(g, i) values observed, particularly for iNP-12. While it is not unex-

pected that each elemental isotope may have its own characteristic signal variations

and unique interferences, a consistent bias – whereby one side of the brain consistently

has higher signal levels than the other side of the brain– appears to affect multiple

samples; most clearly iNP-12 and iNP-26. Determining whether these biases between

the mean signal values on the left and right side are of a biological origin would require

a larger sample size and additional validation of the MIMS brain images. However,

given the consistent magnitude of the difference, particularly in a non-INT sample,

these results suggest that signal drift throughout the course of the MIMS acquisition

must be corrected before drawing conclusions from these data.

VIIThe raw images were median filtered with a 3 × 5 filter to diminish the effect of high-intensity
outliers in the isotope image
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Figure 5·18: Nanoparticle-injected MIMS brain images for relevant isotopes. All images are MVE to
have standard normal intensity distributions of foreground pixels, and are visually limited in the range
of ±3. The (c) indicates a control sample, (s) indicates a sham sample and the (i) indicates a impact
neurotrauma sample. The * symbol in the upper left corner of iNP-26 and iNP-30 indicate that an 57Fe
isotope was not acquired for these samples. Shown instead is the 56Fe image.
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(a) iNP-35 (c) (b) iNP-12 (s) (c) iNP-22 (s)

(d) iNP-14 (i) (e) iNP-26 (i) (f) iNP-27 (i)

(g) iNP-30 (i)

Figure 5·19: All MIMS brain images are representations of the MVE signal for 31P , represented as
red, and 64Zn, represented as green. Images show outlines derived from atlas registrations for the three
anatomical subgroups with white outlines showing the anatomical regions in the original AMBA images.
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5.4.3 Mask Registration for MIMS Spatial Corrections

As mentioned in Section 5.3.2, the Nissl image tissue mask, MN , is registered to the

MIMS tissue mask, M−→
I

. This procedure produces a set of transformation parameters,
−→µ 0, which parametrize the affine transformation aligning MN to M−→

I
. While this

transformation was of interest for MMMCIR state-space specification, the inverse

operation is also of interest. Since one of the goals of the AMBA is to provide a

database of coronal section exemplars, the image aspect ratios and orientations can

be treated as a gold-standard for tissue representation. Therefore, for representation

purposes, aligning −→
I to N is also beneficial for standardized visualization of MIMS.

One of the benefits to using the affine transformation model is that it is invertible by

simply computing the inverse matrix A−1−→µ 0
(derived in Appendix C). Therefore, given

a transformation which aligns MN to M−→
I

reasonably well, the transformation which

aligns M−→
I

to MN is an automatic biproduct. In some cases, timing irregularities in

the acquisition process lead to inappropriately scaled MIMS, as in Fig. 5·22(a). Using

the mask registration parameters to determine A−1−→µ 0
and applying the inverse trans-

formation to the MIMS, these spatial irregularities can be corrected (Fig. 5·22(b)).

Other corrections shown in Fig. 5·22 mainly reorient the MIMS sections and slightly

adjust the horizontal-to-vertical scaling ratio.

5.4.4 Factors Affecting Image Registration Outcome

The MMMCIR method developed offers a variety of design choices as well as tuning

parameters. Before generating results for all subjects, a several experiments were

conducted to support the procedure and parameters ultimately used for all images in

the iGd and iNP cohorts (given in Table 5.4). To summarize, experiments were run
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Figure 5·20: Values of the normalized side difference metric for the
five isotopes considered for analysis. Each sample in the iNP cohort
has a unique line color and marker. The lines are connected only to aid
in the tracking of ∂̄(L−R)(g, i) for the different anatomical subgroups.
Samples not exposed to an INT have dashed lines and samples exposed
to INT have solid lines.
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(a) 31P

(b) 64Zn

Figure 5·21: Each data point represents the mean value of the median
filtered isotope image for (a) 31P and (b) 64Zn within the indicated
anatomical subgroup (shown on the horizontal axis). The “Global”
group indicates pixels in the tissue area (thus “Global-L” is the mean
of the pixels in the tissue area on the left-side).
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(a) iNP-22 acquisition representation (b) iNP-22 inverse transformed

(c) iNP-12 acquisition representation (d) iNP-12 inverse transformed

(e) iNP-35 acquisition representation (f) iNP-35 inverse transformed

Figure 5·22: All MIMS brain images are representations of the MVE
signal for 31P , represented as red, and 64Zn, represented as green. The
left-column of images are MIMS brain images shown in the acquired
orientation with spatial scaling determined from the acquisition pa-
rameters applied. The right-column shows the MIMS brain images
with the applied inverse transformation, φ

{−→
I
(
A−1−→µ 0

· −→q
)}

where φ{·}
is the bicubic interpolator.
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using a two-channel (31P and 64Zn) MIMS, −→
I , as the fixed image and the A(side) as

the moving image. The cost function was a summed-MI metric:

JΣ
(−→
I ,A(side)

)
= J

(
I(31P ),A(side)

)
+ J

(
I(64Zn),A(side)

)

The distributions needed to calculate J(•, •) were quantized using a 40-bins per di-

mension and a Gaussian kernel. Any correspondences with background areas in either

image were ignored in the calculation of JΣ
(−→
I ,A(side)

)
. Rather than using the Nissl

image for registration, that atlas image was used. For each design choice discussed

below, the other default design choices were used unless otherwise stated. The op-

timal parameters obtained using each discussed design variation are applied to A(L)

and the anatomical segmentations are shown on the iNP-30 image in Fig. 5·23.

Registration with Nissl Image versus with Atlas Image

The performance of the MMMCIR function depends on how closely the underlying

data follow the assumption that the two input images depict corresponding objects

with corresponding numerical properties. Because the Nissl image shows the location

of the cell nuclei, a clear division between different anatomical segments is not always

present. In addition, the Nissl image’s intensities more closely resemble a binary

image’s (cell nuclei or no cell nuclei) than an image with variable intensities. As seen

in Fig. 5·6(a), different cellular densities clearly delineate the hippocampal formation

from the cortex and thalamus anatomical subgroups, but visually it is unclear whether

the statistical properties of the cortex vary significantly from those of the thalamus,

for instance. The anatomical segmentation result achieved when registering −→
I with

N are shown in Fig. 5·23(b).

Since the most clear structure visible in N is the pyramidal cell layer (PCL), this is
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very likely the feature which drives the alignment between −→
I and N . To test this

hypothesis, N was registered to the 64Zn-channel only, which does not have a clear

intensity signal for the PCL. As expected, in a channel without the prominent PCL

feature, the registration result was clearly uninformative.

Including Background Pixels in MI Calculation

The anatomical segmentation achieved when including the background in the calcula-

tion for MI is shown in Fig. 5·23(c). These are particularly poor results likely due to

the fact that A has anatomical segments that are perfectly uniform. Therefore, since

the background is also nearly uniform, this promotes the maximal allowable align-

ment (meaning allowed by the state-space constraints) between peripheral anatomical

regions and the background. While this can be prevented by excluding any correspon-

dence between any pixel corresponding to a background area (Fig. 5·23(a)), this strat-

egy also has the adverse effect of not enforcing a strict adherence to tissue boundaries

and instead enforcing only meaningful (as measured by MI) correspondence between

internal tissue features. If desired, tissue boundary adherence may be incorporated

into the cost function by applying a penalty to background pixel correspondences

thereby increasing the cost of background-aligned pixels.

True MI Using Joint Density Function versus Sum of Marginal MI

The calculation of MI (Eqn. 4.20) between two images requires the a representation

of the joint distribution p(−→x ,−→y ) where −→x represent the values in the fixed image and
−→y represent the values in the moving image. Consider the images used to generate

the results where F is a two-channel image taking values x(1) and x(2) and M is a
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one-channel image taking values y. The joint mutual information can be written as:

J (F ,M) =
∑
x(1)

∑
x(2)

∑
y︸ ︷︷ ︸∑

x(1),x(2),y

p
(
x(1), x(2), y

)
ln
 p

(
x(1), x(2), y

)
p(x(1), x(2))p(y)



If x(1), x(2) are independent then p
(
x(1), x(2)

)
= p(x(1))p(x(2)) giving

J (F ,M) =
∑

x(1),x(2),y

p
(
x(1), x(2), y

)
ln
(

p(x(1), x(2), y)
p(x(1))p(x(2))p(y)

)

=
∑

x(1),x(2),y

p
(
x(1), x(2), y

) [
ln p(x(1), x(2), y) − ln p(x(1)) − ln p(x(2)) − ln p(y)

]

The summed mutual information, JΣ, is essentially the sum of the MI values between

the moving image and each channel of the fixed image:

JΣ (F ,M) =
∑

x(1),y

p
(
x(1), y

)
ln
 p

(
x(1), y

)
p (x(1)) p(y)

+
∑

x(2),y

p
(
x(2), y

)
ln
 p

(
x(2), y

)
p (x(2)) p(y)


=

∑
x(1),y

p
(
x(1), y

) [
ln
(
p
(
x(1), y

))
− ln p

(
x(1)

)
− ln p(y)

]

+
∑

x(2),y

p
(
x(2), y

) [
ln
(
p
(
x(2), y

))
− ln p

(
x(2)

)
− ln p(y)

]

To separate the joint distribution, the most liberal assumption one can venture is

that x(1) and x(2) are conditionally independent on y. Therefore, using Bayes rule,

the following expression can be used for the joint distribution:

p
(
x(1), x(2), y

)
= p

(
x(1), x(2)

∣∣∣y) p(y) = p
(
x(1)

∣∣∣y) p (x(2)
∣∣∣y) p(y)

Substituting this into the expression for J (F ,M), we have:

J (F ,M) =
∑

x(1),x(2),y

p
(
x(1)

∣∣∣y) p (x(2)
∣∣∣y) p(y)

×
[
ln p

(
x(1)

∣∣∣y)+ ln p
(
x(2)

∣∣∣y)+ ln p(y) − ln p
(
x(1)

)
− ln p

(
x(2)

)
− ln p(y)

]
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Separating terms and comparing J (F ,M) to JΣ (F ,M) and using Bayes rule on JΣ

we have:

J (F ,M) =
∑

x(1),x(2),y

p
(
x(1)

∣∣∣y) p (x(2)
∣∣∣y) p(y)

ln
p
(
x(1)

∣∣∣y)
p (x(1)) + ln

p
(
x(2)

∣∣∣y)
p (x(2))


JΣ (F ,M) =

∑
x(1),y

p
(
x(1)

∣∣∣y) p(y) ln
p
(
x(1)

∣∣∣y)
p (x(1)) +

∑
x(2),y

p
(
x(2)

∣∣∣y) p(y) ln
p
(
x(2)

∣∣∣y)
p (x(2))

Through these calculations, we see that under the assumption that x(1), x(2) are inde-

pendent and conditionally independent on y
(
p
(
x(1), x(2)

∣∣∣y) = p
(
x(1)

∣∣∣y) p (x(2)
∣∣∣y) ),

the expressions for J and JΣ are equivalent. In this sense and under these assump-

tions, it provides reasonable support for JΣ acting as a reasonable surrogate to J .

Figure 5·24 depicts the anatomical segmentation results obtained using J (Fig. 5·23(d))

and JΣ (Fig. 5·23(a)) for cost functions. In both experiments, the Epanechnikov ker-

nel was used with 30 bins per variable. Qualitatively, the outcomes using each result

are indifferentiable. The optimal physical transformation parameters and the run

times using each method are given in Table 5.5. Generally, as discussed in Sec-

tion 4.5.6, using more bins and using the Gaussian kernel for estimating the joint

distribution p (−→x , y) seems to give the most stable results for the cost function. To

determine whether using the Epanechnikov results in a different shape of the cost

function, the values for J and JΣ were calculated for small perturbations about the
−→µ opt parameters acquired using J . The plots in Fig. 5·24(f) show the results us-

ing J and JΣ with Gaussian and Epanechnikov kernels. From this analysis, we see

that the general shape provided by J-versus-JΣ using either kernel are very similar.

For a given kernel, values for JΣ are greater than J and for a given MI computa-

tion method, values using the Epanechnikov kernel are greater than those using the

Gaussian kernel.
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Table 5.5: Experimental outcomes for registration using true-MI ver-
sus summed-MI on iNP-30 with 30 bins per dimension and an Epanech-
nikov kernel.

Parameter Result via J Result via JΣ

−→µ opt



tx

ty

θ

sx

sy

sk





10.8
14.0

−0.0011
0.99
1.12

0.0317





8.5
12.7

−0.0036
0.99
1.11

0.0169


Run Time [min] 364 53

Motivated by the negligible differences between the cost function computation method

and the type of kernel used, the computation time dictated the final design choices

made to perform registration on the entire cohort. The implementation used to

compute the joint distribution requires polynomial time whereas summing the MI of

pairwise joint distributions requires only linear time making the method significantly

faster in practice. Given the very small observable difference in anatomical segmen-

tation performance and smoothness of the cost function, MMMCIR was run using

the Gaussian kernel with 40 bins per dimension and JΣ.
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(a) Default parameters (b) Nissl image (c) Background included (d) True MI, J

Figure 5·23: Comparison of registration results when including background pixel correspondences in the
summed-MI calculation. MIMS are representations of the MVE signal for 31P , represented as red, and
64Zn, represented as green.
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5.5 Summary of Contributions

This chapter has demonstrated the use of publicly available mouse brain atlases

(Atlas, 2013) for automated anatomical segmentation of MIMS brain images. The

method developed overcomes a variety of tissue processing artifacts by independently

registering the left and the right sides of the brain. Using the developed multi-modal,

multi-channel image registration, it was shown that given a MIMS brain image and a

labeled atlas image from approximately the same coronal position, the MIMS brain

images can be automatically segmented. These segments were subsequently used to

identify differences between the corresponding anatomical regions on either side of

the brain. These results numerically verified the observed increased 157Gd-intensity

in the left cortex of iGd-10 and provide convincing evidence for the need to correct

for signal drift over the course of the MIMS acquisition process based on the results

from the iNP cohort.
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(a) MI values for tx = tx,opt + dtx (b) MI values for ty = ty,opt + dty

(c) MI values for θ = θopt + dθ (d) MI values for sx = sx,opt + dsx

(e) MI values for sy = sy,opt + dsy (f) MI values for sk = sk,opt + dsk

Figure 5·24: Comparison of registration results using true MI com-
putation versus using summed-MI



Chapter 6

Analysis of Metallomic Images of Human
Lacrimal Sac Biopsy Samples

6.1 Background

As one of the most exposed organs in the human body, the eye has a variety of

accessory structures and physiological mechanisms to maintain normal function and

ocular homeostasis. Two such structures that are affected by disease are the lacrimal

sac and the nasolacrimal duct (Fig. 6·1). These structures are responsible for draining

tears on the surface of the cornea, and can be obstructed by the formation of a

concretion called a dacryolith. Dacryoliths have been found to be composed of a

variety of materials including epithelial cells, lipids, amorphous debris with or without

calcium and may contain bacteria or yeast (Hawes, 1988). The cause of pathogenesis

is not well understood, but are in some cases thought to be initiated by bacterial

load or a foreign body that serves as a nidus for further growth, such as an eyelash

(Andreou and Rose, 2002; Jay and Lee, 1976).

Several retrospective studies have aggregated information regarding dacryocystorhi-

nostomy (DCR) surgeries and the incidence of dacryoliths (Andreou and Rose, 2002;

Anderson et al., 2003; Repp et al., 2009). A DCR is a surgical procedure performed

in the event of a nasolacrimal duct (NLD) obstruction, often caused by the formation

171
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Figure 6·1: Anatomical diagram of lacrimal sac and nasolacrimal
duct. Image from (Head and Neck Cancer Guide, 2017)

of a lacrimal sac dacryolith. The largest study to date by Anderson et al. (2003)

aggregated ten years of clinical data from the Montgomery Ophthalmic Pathology

Laboratory at Emory University and reported that of the 21,018 ophthalmic pathol-

ogy specimens obtained between 1991 and 2001, 377 came from a DCR procedure.

Prediction of the percentages of DCR cases required because of dacryoliths ranges

from approximately 5.7% to 18% (Yazici et al., 2001; Repp et al., 2009).

A majority of dacryolith cases seem to occur in middle age and older women, though

the statistic is often disputed likely due to the small numbers of individuals in the

published studies (Repp et al., 2009). Nonetheless, given the unknown pathogenesis

of dacryoliths and the apparent increased incidence in females, one hypothesis is

that their formation is promoted by the introduction of toxic nanoparticles found

in cosmetic and skin care products, as well as pollutants in the air. Imaging by

metallomic imaging mass spectrometry (MIMS) is uniquely suited to investigate this

hypothesis.
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6.2 Experimental Objective

Through a collaboration with surgeon Dr. Jeffery J. Hurwitz and pathologist Dr.

David Howarth at Mount Sinai Hospital (MSH) in Toronto, Canada, we obtained eight

lacrimal sac biopsy samples (LSBS) from five female individuals and one additional

LSBS sample with no available clinical history. All tissue samples were procured under

approved institutional review board (IRB) protocols at the Boston University School

of Medicine (BUSM) and the equivalent approval was obtained from MSH. Tissue

sharing was covered under a material transfer agreement between BUSM and MSH.

All studies conformed with the principles of the Declaration of Helsinki. Relevant

demographic and clinical information are provided in Table 6.1 and an image of the

paraffin-embedded samples is provided in Fig. 6·2.

The ultimate goal of this project is to use these samples for a clinicopathological

case study to investigate the presence of exogenous metals and the location of their

occurrence within the samples with respect to clinically-relevant features such as

epithelial cells, gram positive regions (of fungal origin), and lacrimal sac calcifications.

As a preliminary assessment, the goal was to devise a MIMS acquisition method

suitable for identification, localization, and quantification of metals in the samples.

With the help of New England Eye Center’s ophthalmic pathologist Dr. Nora Laver,

hematoxylin and eosin (H&E) immunohistochemical (IHC) stained sections from the

samples were used to identify various pathological features.

As will be explained in Section 6.3, a total of six MIMS sequences were acquired.

Considering the LSBS for which more than one MIMS tissue image was available, a

comparison of the signal quality and characteristics was conducted. Consistency of

the resulting calibration curves acquired across different days and different instrument
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Figure 6·2: Paraffin-embedded lacrimal sac biopsy samples.
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Table 6.1: Demographic information for lacrimal sac biopsy samples
(LSBS). The “*” indicates that MIMS for these samples were acquired
in three different MIMS acquisition sequences and calibration data is
available for the last two MIMS (see Table 6.2).

LSBS # Age Gender Clinical Presentation
3733 39 F Right blocked tear duct

–1 Biopsy of right tear sac – Chronic inflammation
–2* Stone from tear duct – Dacryolith

5257 49 F Left blocked tear duct
–1* Stone from tear duct containing yeasts
–2 Stone from tear duct containing yeasts

4324 28 F Bilateral blocked tear duct
–1 Stone from right tear duct – Dacryolith
–2* Stone from left tear duct – Dacryolith

4554–1 42 F Blocked tear duct – Lacrimal duct stone
14391 62 F Stone from right tear duct
1581–1* N/A N/A N/A

modes is also presented. Finally, brief clinicopathological case studies for LSBS 14391

and 3733-2 are provided.

6.3 Experimental Methods

All nine samples (Table 6.1) underwent a series of MIMS acquisition analyses detailed

in Table 6.2. All MIMS data were acquired with the CETAC LSX-213 laser ablation

system parameters set to default values in Table 4.1 with spot size and line-to-line

spacing of 50 µm and a scan speed of 50 µm/s and a quadrupole ICP-MS (iCAP

Q, Thermo Scientific). The first set of LSBS MIMS data, collected by Dr. Noel

Casey (indicated by a 1.x in Table 6.2), could not be directly represented in terms of

absolute concentration (in parts per million, ppm). Four samples were selected for a

later series of experiments (indicated by a 2.x in Table 6.2) where a matrix-matched
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calibration material was included as part of the sequence. The procedure for creating

the matrix-matched gelatin calibration standard material is detailed in Appendix A.3.

These analyses were conducted by Dr. Bo Yan.

In the later set of experiments, each MIMS sequence was acquired twice with identi-

cal acquisition parameters except that the ICP-MS measurement modes were varied

between acquisitions. These measurement modes provide a means of reducing ana-

lyte interferences during data acquisition. Each sequence was first acquired using the

kinetic energy discrimination (KED) mode where the instrument is able to effectively

filter out polyatomic and low-mass interferences. Using the same parameters, the

sequence was acquired again while operating the instrument in its standard (STD)

mode. Raw images of the zinc-isotope MIMS sequences for each experiment are pro-

vided in Figs. 6·3, 6·4, and 6·5. Since some of the isotopes selected for acquisition

were different between the first and second set of experiments, the selected isotopes

indicated in the figure vary.

After MIMS images of the tissues specimens were acquired, H&E slides for each sam-

ple were prepared and imaged by Dr. Nora Laver. An example of the tissue images

from optical imaging, H&E, and MIMS are presented in Fig. 6·6 for LSBS 3733-2.

Since the MIMS data were acquired by ablating the surface of the paraffin-embedded

LSBS block, each LSBS MIMS image represents a deeper tissue plane than previous

images by tens of microns. This difference is not pathologically significant, but did

result in differences between the morphology of tissue features from one MIMS tissue

image to another. These differences in morphology prevented the use of multi-modal,

multi-channel image registration for determining correspondence between MIMS tis-

sue images from different acquisition dates and between MIMS tissue images and

H&E section images.
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Table 6.2: LSBS MIMS analysis summary.

Date Mode Cal? Exp. Tag 3733-1 3733-2 5257-1 5257-2 4324-1 4324-2 4554-1 143191 1581-1
20150918 STD % STD1.1 " " " " "

20150921 STD % STD1.2 " " " "

20160221 KED " KED2.1 " "

20160222 STD " STD2.1 " "

20160224 KED " KED2.2 " "

20160225 STD " STD2.2 " "
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(a) STD1.1 64Zn MIMS sequence (b) STD1.2 64Zn MIMS sequence

Figure 6·3: 64Zn raw sequences from STD1 experiments
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(a) STD2.1 66Zn MIMS sequence (b) STD2.2 66Zn MIMS sequence

Figure 6·4: 66Zn raw sequences from STD2 experiments
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(a) KED2.1 66Zn MIMS sequence (b) KED2.2 66Zn MIMS sequence

Figure 6·5: 66Zn raw sequences from KED2 experiments
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Figure 6·6: Various image modalities of LSBS 3733-2. The MVE-
MIMS image is a false-colored representation of data from three simul-
taneously acquired isotope channels.

6.4 Processing Pipeline

To compare MIMS data acquired for a given LSBS sample across different dates, the

mean-variance equalized elemental-isotope maps were generated as described in Sec-

tion 4.4. Calibrated MIMS tissue images, when possible, were generated using the

MIMS region labeling algorithm described in Section 4.2 and the method described

in Section 4.3 for parameterizing a line of best fit to map from raw intensity (in cps)

to absolute concentration (in ppm). Regions of interest for analysis in the clinico-

pathological case studies were defined by first using k-means clustering (k = 10) to

cluster regions in the H&E image. Distinct visible regions consistent with pathologi-

cal features of interest were then used to manually merged these clusters so that the

result roughly follows the visible distinct regions in the H&E image.
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6.5 Results and Discussion

6.5.1 Comparison of MIMS Using Different Instrument Modes

Select MIMS channels from all nine samples acquired as part of STD1.1 and STD

1.2 experiments are shown in a grid in Figs. 6·7 and 6·8. All tissue maps of the same

isotopes (columns in the grid) are displayed using the same color-scale, indicated on

the first row of images from LSBS 1581-1. Each row represents a different channel from

the same sample. The outlines around the tissue show the automatically-detected

tissue boundaries as determined by the MIMS region segmentation algorithm, and

the color of the boundary indicates whether the data was acquired in the STD1.1

sequence or the STD1.2 sequence. All images have a 1 mm cyan scale bar in the

lower right corner. LSBS specimens from the same subject are grouped together by

a yellow box around the rows on the image grid.

While not as clearly evident in the endogenous biometal MIMS tissue images in

Fig. 6·7, by visualizing the toxic metals of all LSBS MIMS together in Fig. 6·8,

subject-specific characteristics become more evident. For example, the 137Ba channel

in LSBS 3733-1 and 3733-2 samples reveal relatively high levels of 137Ba with a

pattern of distribution concentrated within the specimen. Quite differently, samples

from LSBS 4324 demonstrate low 137Ba levels. In addition to the general intensity

level being similar, the pattern of where certain metals are found in the tissue (i.e.

primarily in periphery, internal and uniform, striated following relevant H&E features)

also seem to bare more similarity between two samples from the same patient versus

between samples from different patients.
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Figure 6·7: Raw LSBS MIMS tissue images from select endogenous biometals. All tissue maps in a given
column follow the same color scale indicated in the LSBS 1581-1 image. The colored outlines delineate
tissue boundaries and specify the experiment. The yellow boxes indicate that the LSBS specimens come
from the same subject. The cyan bar indicates 1 mm.
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Figure 6·8: Raw MIMS from select toxic metal isotopes for all lacrimal sac biopsy samples. All MIMS
in a given column follow the same color scale indicated in the LSBS 1581-1 image. The colored outlines
delineate tissue boundaries and specify the experiment. The yellow boxes indicate that the LSBS specimens
come from the same subject. The cyan bar indicates 1 mm.
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To explore signal consistency within the tissue region across different experiment dates

and instrument operating modes, the normalized frequency of raw signal intensities for

all LSBS samples are plotted together for Zn-isotopes and 137Ba in Figs. 6·9 and 6·10.

While difficult to derive any conclusions directly from these plots, particularly since

the data are confounded by the fact that the tissue plane in question was not identical

across MIMS acquisition experiments, one can make the following observations:

1. tissue intensity characteristics give rise to a unique intensity distribution shape

which appears to be roughly consistent across different experiment days,

2. the absolute and quantitative signal levels are not identical and depend on the

instrument sensitivity that day as well as the instrument operating mode.

The last observation is unsurprising, as instrument “drift” and variation is a known

characteristic of MIMS, motivating the need for instrument calibration before con-

ducting an experiment. Additionally, since KED mode effectively is a method for

removing polyatomic interferences, the lower recorded signal levels in the KED2.1

and KED2.2 experiments are also expected.

The first observation is most apparent through examination of the LSBS 1581-1 dis-

tributions in Fig. 6·9. In the three lower panels containing data from LSBS 1581-1

(blue curve), the distinctive bimodal pattern in the Zn isotope becomes apparent,

appearing consistently in the three different MIMS acquisition experiments for this

sample even despite changing the isotope considered and instrument operating modes.

This provides evidence that MIMS truly captures underlying elemental characteris-

tics regardless of experimental condition, though certain acquisition parameters lead

to improved signal-to-noise ratio, signal stability and specificity. A discussion on the

implications of instrument operation mode on calibration curve quality will follow.
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Figure 6·9: Comparison of Zn isotope signal distributions in tissue
regions from all LSBS MIMS experiments. The vertical lines in each of
the panels indicate the median intensity value within the tissue. The
first two panels correspond to the 64Zn isotope (natural abundance
48.63%) and the last two panels depict data from the 66Zn isotope
(natural abundance 27.90%). The range of intensities (x-axis) is the
same for all panels.
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Figure 6·10: Comparison of 137Ba signal distributions in tissue regions
from all LSBS MIMS experiments. The vertical lines in each of the
panels indicate the median intensity value within the tissue. The range
of intensities (x-axis) is the same for all panels.
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The second observation regarding differences in the absolute and quantitative signal

levels between experiments is supported by inspection of the plots in Figs. 6·9 and

6·10. Through comparison of both the raw intensity range within the LSBS as well

as the median signal levels (indicated by the vertical lines in the plots), it is evident

that these values may vary significantly.

Through the three separate acquisitions for four of the LSBS, the qualitative differ-

ences between the resulting MIMS could be evaluated. Side-by-side comparisons of

MIMS from the experiments are presented for LSBS 3733-2 in Fig. 6·11 and Fig. 6·12

for endogenous biometals and toxic metals, respectively. Because the raw intensity

levels from each experiments tend to vary greatly as previously discussed, the images

in Figs. 6·11 and 6·12 are mean-variance equalized (MVE) per the method in Sec-

tion 4.4. Immediately apparent is the fact that the MIMS from the three experiments

represent different tissue planes. While the MIMS from STD2.1 and KED2.1 have

nearly identical tissue features, the tissue plane captured in STD1.1 is clearly distinct

from the plane depicted in the 2.1 experiments. Still, a variety of distinct features

such as the laminar banding in 31P and the high-intensity internal band of 48Ti are

clearly present in all MIMS acquisitions of LSBS 3733-2.

A pairwise comparison of the signal characteristics from different experiments is con-

ducted by computing the cross-correlation (CC) between the MVE-images. To define

the CC metric, let the MIMS from the i-th isotope from one experiment be repre-

sented as I(i) and from the other experiment as J (i) with tissue masks M−→
I

and M−→
J
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Figure 6·11: MVE-MIMS from select endogenous biometals for LSBS
3733-2. Tissue/background boundaries are depicted by the colored lines
in the images. The * symbol in the upper left corner of STD1.1 images
indicate that the {57Fe, 65Cu, 66Zn} isotopes were not acquired and
shown instead are the {56Fe, 63Cu, 64Zn} images.
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Figure 6·12: MVE-MIMS from select toxic metal isotopes for LSBS
3733-2. Tissue/background boundaries are depicted by the colored lines
in the images.
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(a) More correlated relationship (b) Less correlated relationship

Figure 6·13: Intensity co-occurrence characteristics for (a) correlated
and (b) uncorrelated MIMS of LSBS 3733-2.

respectively. The cross-correlation may be calculated as follows:

CC
(
Ĩ(i), J̃ (i)

)
=

〈
Ĩ(i), J̃ (i)

〉
|p|σĨ(i)σJ̃(i)

∈ [−1, 1] (6.1)

where p =
{
M−→

I
∩M−→

J
= 1

}
Ĩ(i) = I(i) (p) − E

[
I(i) (p)

]

The CC metric is able to capture the degree to which two images follow a linear

relationship. Absolute values of CC closer to 1 indicate a more linear (with slope being

positive if CC ≈ +1 and negative if CC ≈ −1) relationship between co-occurring

intensities in the images, as in Fig. 6·13(a), and absolute values of CC closer to 0

indicate a more noisy relationship, as in Fig. 6·13(b).

Since LSBS 3733-2 had the most prominent and distinguishable tissue features, it

was selected to assess the relationship between the three experiments. As shown in

Fig. 6·14, values for CC(KED2.1, STD2.1)are greater than CC(STD1.1, KED2.1)

and CC(STD1.1, STD2.1), likely owing to the greater degree of direct correspon-
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Figure 6·14: Cross-correlation between MIMS from different experi-
ments for LSBS 3733-2.

dence between tissue features in the KED2.1 and STD2.1 experiments. The values

of CC(KED2.1, STD2.1) for this sample are all ≥ 0.768 with an average of 0.855.

These high CC values indicate that the intensity characteristics of the sample in the

two experiments are highly correlated and therefore it would be expected that the

absolute concentrations derived from each experiment should also be similar.

6.5.2 Calibration Curve Characteristics

Calibration data from the four experiments for which suitable calibration material was

acquired is compared. A total of eight standard concentration values were prepared:

{0, 0.5, 1, 2, 5, 10, 20, 50} ppm. The characteristics of the data used to parametrize

the line of best fit mapping absolute concentration (C) to instrument intensity (I)

varied based on isotope and instrument mode. In general, data acquired using KED

mode yielded calibration curves with fewer artifacts (such as saturation and signal

variability) and whose raw intensity values fell within the range of LSBS intensities. A

summary of the curve characteristics for experiments with calibration data is provided

in Table 6.3.
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Table 6.3: Summary of calibration data characteristics from calibration experiments. Isotopes for which
“⇓” or “⇑” is indicated in the “Curve spans range of data” column, the meaning is that the range of
intensities in the tissue is greater than (⇓, meaning calibration values are too low) or less than (⇑, meaning
calibration values are too high) the intensities spanned by the linear part of the curve. The “(s)” spec-
ification indicates that the calibration curve saturates at larger concentrations. The “(n)” specification
indicates that the calibration curve appears to be dominated by noise. When “—” is indicated, the variance
in the LSBS characteristics are too varied to specify a single property.

Isotopes Linear in 0–5
ppm

Linear in 0–50
ppm

Curve spans
tissue intensities

LSBS ppm
apparent upper

limit
KED STD KED STD KED STD KED STD

27Al " % %(s) %(n) " ⇑ 5 —
137Ba " % %(s) %(n) " ⇑ 5 —
60Ni " " " " " " 5 5
208Pb " " % % " " 20 20
48Ti " % " " ⇓ — > 50 —
44Ca " % %(s) %(n) ⇓ ⇑ > 10 —
31P " % " " ⇓ ⇓ > 50 > 50

57Fe " % %(s) %(n) ⇓ — > 50 —
65Cu " " " " " " 50 50
66Zn " " " " " " 50 50



194

Three isotopes were selected to exhibit the variability in calibration curve character-

istics. Each of the following figures (Figs. 6·15–6·17) depicts two lines of best fit using

the calibration data: one for the full ppm range using all eight points (left and center

plots) and one partial ppm range using only the lower five concentration values (right

plot). The horizontal lines shown represent the values in the indicated LSBS which

is ≥ 99.5% of all intensity values in the LSBS MIMS.

The calibration curves for 66Zn (Fig. 6·15) demonstrate the ideal scenario where

intensity levels in the LSBS span the range of the intensity levels in the calibration

data. For both KED and STD modes, the curves yield high R2 values (R2
KED2.1 =

0.987, R2
KED2.2 = 0.967, R2

ST D2.1 = 0.998, R2
ST D2.2 = 0.979) which serve as a metric for

fit quality. For other isotopes (e.g., 60Ni, Fig. 6·16), the intensity levels in the tissue

occupy a narrow band in the lower range of the standard concentration values (i.e.,

approximately 0 to 5 ppm). For these cases, only the relevant range of the calibration

curve is utilized to parametrize the lines of best fit between ppm and cps. Finally,

other isotopes, (e.g., 44Ca) maintain high degrees of linearity for a small range of

the curve before saturating, as in the center plot of Fig. 6·17(a). This characteristic

saturation it observed most frequently in KED mode. In the STD mode, certain

isotopes (those indicated by (n) in Table 6.3) were saturated at all calibration data

values within the selected range prepared for calibration. The 44Ca calibration data in

STD mode (Fig. 6·17(b)), for instance, are saturated at all calibration concentration

levels prepared. The more robust ability of the instrument to capture the full range

of calibration standard concentrations prepared in KED mode is likely a result of the

reduction in polyatomic interferences introduced in this mode.

The calibration data acquired in each experiment are used to parametrize one lin-

ear equation for each isotope. This equation (Eqn. 4.2) may then be applied to all
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(a) KED 66Zn

(b) STD 66Zn

Figure 6·15: 66Zn calibration curve comparison
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(a) KED 60Ni

(b) STD 60Ni

Figure 6·16: 60Ni calibration curve comparison
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(a) KED 44Ca

(b) STD 44Ca

Figure 6·17: 44Ca calibration curve comparison
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LSBS acquired as part of the sequence so as to represent raw intensity values in

terms of absolute concentration. Since four LSBS were acquired twice, once with the

instrument in KED mode and once with the instrument in STD mode, the derived

calibrated images from each experiment may be compared as a way of assessing the

sample consistency in terms of absolute concentration. Having previously established

the similarity between tissue features captured across all experiments, application of

two different calibration curves enables assessment of the accuracy of the calibration

procedure itself and offers additional insight into the instrument operating modes.

The calibrated LSBS images from the KED2.x and STD2.x experiments are shown

for 66Zn and 60Ni in Fig. 6·18 and Fig. 6·19, respectively. Consistent with previous

normalized MIMS comparisons from the various experiments presented in Figs. 6·11

and 6·12, the calibrated images show that while certain intensity characteristics in

the LSBS are present in both KED and STD acquisition modes, the absolute concen-

tration images still appear to differ by at least a scale factor.
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Figure 6·18: Comparison of 66Zn LSBS represented in ppm.
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Figure 6·19: Comparison of 60Ni LSBS represented in ppm.
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6.5.3 Clinicopathological case studies

Two of the LSBS, samples 14391 and 3733-2, had clear pathological features in their

H&E tissue sections, such as striated staining and areas that were distinctly dark

red (indicating blood) and dark purple/blue (indicating cellular infiltrate, consistent

with inflammation). Limited field of view and depth of the imaging plane in the H&E

sections complicate determining the correspondence between the H&E and MIMS

tissue images. As seen when comparing the MIMS tissue images and H&E images

of LSBS 14391 in Fig. 6·21 and LSBS 3733-2 in Fig. 6·25, while there clearly are

corresponding structures in both images, their direct relationship, particularly given

non-affine deformations, is not directly obvious.

First, considering LSBS 14391, the MIMS data acquired as part of STD1.1 are pre-

sented in their mean-variance equalized (MVE) form in Fig. 6·20. Being that the most

prominent features in the H&E image of LSBS 14391 are the deep red region on the

right side of the image and the pink/purple striations on left and center part of the

tissue (see Fig. 6·21(c)), two MIMS channels were selected which also shared these

prominent features: 56Fe pseudo-colored in red and 44Ca psuedo-colored in green

(see Fig. 6·21(a)). Using the manualregGUI.m described in Section 4.1.3, the affine

parameters were adjusted until the approximate outlines and internal tissue features

aligned. Figure 6·21(d) shows the two images checkered before adjusting the transfor-

mation and Fig. 6·21(e) shows the checkered result after manual manipulation of the

x, y-translation, x, y-scale, rotation and skew. This approximate correspondence be-

tween the H&E image space and the MIMS image space was used to impart segments

determined from the H&E image onto the MIMS images.

Relevant pathological features in the H&E image were identified by modifying k-

means clustering results. Three clusters corresponding to the three most easily dis-
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Figure 6·20: MVE-MIMS from select isotopes for LSBS 14391.
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(a) Psuedo-colored raw MIMS image

(b) Cropped MIMS image

(c) Raw H&E image

(d) Cropped MIMS image and raw H&E image
checkered

(e) Cropped MIMS image and transformed H&E
image checkered

Figure 6·21: Images used for clinicopathological case study of LSBS
14391.
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(a) Raw H&E image

(b) Raw 3 cluster H&E image

(c) Transformed and modified 3 cluster H&E image

Figure 6·22: Segmentation of LSBS 14391 immunohistochemical im-
age. Cluster colors are represented by the mean value of the pixels
within each cluster.

tinguishable staining colors – deep red, light purple, and deep purple – in the H&E

image were selected (see Fig. 6·22(b)). These raw clusters were then denoised and

the clean cluster image was transformed into the MIMS image space using the trans-

formation parameters determined using the manualregGUI.m function (Fig. 6·22(c)).

The outlines of the H&E image segments are shown on the pseudo-colored MIMS

image in Fig. 6·23(a) and the MIMS image pixels associated with each segment are

shown in Figs. 6·23(b)–6·23(d). These segments derived from the H&E image were

used to determine the median MVE-signal level for each isotope. These values are

plotted in Fig. 6·23(e). Note that for these data, both the mean and median values

yield similar results.

The two most apparent observations confirmed by the plot are the elevated 56Fe

MIMS signal within the segment corresponding to the deep red area in the H&E

image and the co-occurring elevated levels of 31P , 44Ca, 48Ti and 137Ba within the
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(a) MIMS with cluster segment outlines

(b) Deep red segment
’

(c) Light purple segment (d) Deep purple segment

(e) Median signal per isotope per cluster segment

Figure 6·23: Visualization and analysis of immunohistochemical im-
age derived segments for LSBS 14391 shown on MIMS image.

deep purple segment relative to other parts of the image. This striking observa-

tion may suggest that the inflammatory response, which is identified by the heavily

hematoxylin-stained, deep purple area along the bottom edge of the LSBS in the

H&E image, and confirmed by the high levels of 31P and 44Ca in the MIMS data,

maybe related to the elevated 48Ti and 137Ba levels.

Analysis of LSBS 3733-2 from the KED2.1 experiment was attempted using the same

method used for LSBS 14391(manual registration of the H&E image with the MIMS

followed by clustering of the H&E image), however, results were not successful likely

owing to several characteristics of the H&E image including lower contrast, less clearly

defined boundaries and less dense tissue structures (see Fig. 6·24(b)). Nevertheless,
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examination of the various MIMS channels (see Figs. 6·11 and 6·12) reveals that cer-

tain tissue features appear clearly differentiated in the MIMS relative to the patholo-

gies visible in the H&E image. A similar approach of k-means guided segmentation,

where rather than performing k-means using the H&E image as before, the endoge-

nous MIMS isotopes were used instead. The segments produced by k-means were

grouped together such that five pathologies of interest were roughly defined by the

clusters: 1) dense core, 2) squames, 3) inflammation, 4) striated interior, and 5) stri-

ated periphery. These MIMS-derived clusters are depicted in Fig. 6·24(c) and their

approximate areas in the H&E image are indicated in Fig. 6·24(d).

The median MVE signal within each region of the MIMS tissue image for LSBS 3733-

2 from the KED2.1 experiment was used to generate the plot in Fig. 6·25(a). Since

these MIMS data were also acquired with a suitable set of calibration standards, a

comparison of median absolute concentration within each segment is also possible and

is shown in Fig. 6·25(b). While the interpretation of these results are still underway,

the potential for deployment of MIMS for quantitative analysis of specific mechanisms

was demonstrated through the analysis conducted on these two samples.

6.6 Summary of Contributions

In this chapter, the MIMS methods developed in Chapter 4 were demonstrated to

provide unprecedented in-situ elemental-isotopic maps for identification, localization,

and quantification of endogenous and exogenous metals in human lacrimal sac biopsy

samples. The work described in this chapter demonstrates the unique ability of using

MIMS to contextualize pathology with physiologically relevant information (i.e., such

as context provided by 56Fe for distribution of 208Pb in Fig. 6·20). The analysis

carried out in this chapter demonstrated that MIMS is a reproducible, analytical,
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(a) Psuedo-colored MVE-MIMS (b) Raw H&E image

(c) Five clusters derived from
MIMS tissue image

(d) Five clusters derived from
MIMS tissue image

Figure 6·24: Images used for clinicopathological case study of LSBS
3733-2. Each color in (c) represents a cluster associated with the fol-
lowing tissue features: 1) dense core, 2) squames, 3) inflammation,
4) striated interior, and 5) striated periphery
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(a) Median MVE signal per isotope per cluster segment

(b) Median absolute concentration per isotope per cluster segment

Figure 6·25: Median signal levels within MIMS-derived clusters for
LSBS 3733-2 in experiment KED2.1.
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quantitative method whose potential to enhance our understanding of a wide range

of diseases has only just been explored.

An additional contribution made was the evaluation of the consistency of the MIMS

acquisition procedure. Images produced using the kinetic energy discrimination

(KED) and standard (STD) operating modes of the inductively-coupled plasma mass

spectrometry (ICP-MS) instrument were evaluated both qualitatively in regards to

the resulting elemental-isotopic tissue maps of LSBS specimens, and quantitatively

in terms of the results derived from imaged calibration standards. Through these

analyses, acquisition in KED mode is recommended. Upper bounds on the absolute

concentration of the ten isotopes considered in the lacrimal sac biopsy samples are

provided in Table 6.3.
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Chapter 7

Conclusions

7.1 Summary of Contributions

The work described has aided in the development of a mouse model of traumatic

brain injury by offering quantitative insights to standardize experimental parameters

and subsequent neuropathological assessments. The algorithmic contributions could

generally be summarized as combinations of classical and state-of-the-art techniques

in image processing and computer vision. These techniques enable the robust and ob-

jective evaluation of the contributors to TBI severity and neuropathological sequelae.

Aside from the analytic contributions, much of the work targeted novel assessments

of animal models for TBI including large-scale grading of photomacroscopic images,

kinematic analysis of head motion, and utilization of metallomic imaging mass spec-

trometry. While the described work fits into a much larger program aimed at under-

standing, diagnosing and improving outcomes for TBI, contributions made as part

of this thesis addressed challenges encountered at various stages of the experimental

process.

The first method discussed in Section 3.1 was the development of a tracking algorithm

for the evaluation of a mouse’s head motion during the blast and impact neurotrauma

injury procedures using high-speed videography. In each frame, the algorithm deter-
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mines the position of a painted point on the mouse’s nose using a hybrid k-means

and Chen-Vese segmentation algorithm. Application of this level-set method for seg-

mentation was shown to work well despite frame-to-frame intensity variations and

gave better results than k-means clustering alone. Since the head motion metrics of

interest included peak acceleration (second derivative of position), a Kalman Filter

was used to estimate nose velocity and acceleration in addition to a smooth position

curve.

A variety of image processing methods were developed to aid in the objective evalua-

tion of blood-brain barrier dysfunction using Evans blue extravasation as an indicator.

These methods were developed to evaluate traditional biological imaging modalities

including optical and fluorescent imaging. One method used partially labeled im-

ages to construct color models for four tissues classifications of interest (Section 3.2).

These models were then used to perform per pixel classification in images of whole-

brain photomacroscopy. These classifications enabled the evaluation of severity of

surface pathology following impact neurotrauma. Methods for normalization and

segmentation of fluorescent images were also developed (Section 3.3). These methods

were subsequently used to develop a TBI severity grading system and to quantitate

pathological signatures in the images.

A significant part of this thesis was focused on developing image processing tools for

evaluating the metallomic imaging mass spectrometry (MIMS) method. A suite of

functions enabled the extraction, visualization and assessment of MIMS maps. Meth-

ods for MIMS-specific standardization, including mean-variance equalization (Sec-

tion 4.4) and calibration to absolute concentration (Section 4.3), were developed as

tools for inter-channel and inter-subject comparison of resulting elemental-isotope

tissue maps.
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Finally, the most novel and substantial contribution of this thesis was the develop-

ment of a multi-modal, multi-channel image registration (MMMCIR) methodology to

recover alignment parameters between two images having dramatically different char-

acteristics (Section 4.5). Optimal affine transformation parameters were determined

by maximizing the mutual information (MI) between the fixed image and the trans-

formed moving image via simulated annealing. The algorithm required estimation of

a probability density function, which was achieved using kernel density estimation.

The MMMCIR method was used to register MIMS tissue maps from two distinct

experimental cohorts with corresponding atlas images downloaded from the Allen

Mouse Brain Atlas (Atlas, 2013) (Chapter 5). After correspondence between the

MIMS tissue map and atlas image was determined, the anatomical structures defined

in the atlas image was used to impart anatomical boundaries onto the MIMS tissue

map. In essence, an automatic method for anatomical segmentation of MIMS tissue

maps has been developed. This segmentation was subsequently used to compare signal

levels on the left and the right sides of a coronal section of the MIMS tissue map. This

comparison has confirmed signal differences in a pilot cohort of gadolinium-injected

mice. However, the measurements made on an earlier cohort of nanoparticle cocktail

injected mice motivated a need for drift correction of MIMS channels.

The final chapter presented work carried out to investigate nine human lacrimal

sac biopsy samples obtained from collaborators at Mount Sinai Hospital, Toronto,

Canada. This work included evaluation of the quality of calibration curves using the

standard and kinetic energy discrimination modes on the mass spectrometer. Since

four of the samples were acquired multiple times, these data confirmed the consistency

of the obtained MIMS tissue maps, but also demonstrated the challenges associated

with deriving an absolute concentration image from raw instrument intensities and
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a set of imaged calibration standards. Preliminary clinicopathological analyses were

carried out on two lacrimal sac biopsy samples where context provided by correspond-

ing immunohistochemical images was used to evaluate pathological features of interest

in the MIMS. These contributions have the potential to offer valuable insights into

the progression and severity of dacryolith formation.

7.2 Future Work

Metallomic imaging mass spectrometry (MIMS) is a relatively new modality in the

field of biological imaging and, as such, few methods exist to support MIMS data

acquisition and analysis. Despite having demonstrated the unique capabilities of

MIMS analysis for applications in BBB assessment and localization of toxic metals

in tissue, more MIMS data are required to establish physiological baselines. The ul-

timate goal of the types of analyses described herein is the automatic identification

of disease-specific features presented in MIMS maps. These elemental-isotopic sig-

natures may subsequently be correlated to relevant physiological phenomenon (i.e.,

correlating localized elevated levels of iron with blood-containing areas in biological

tissue) to inform our understanding of disease pathogenesis. Notwithstanding, future

developments to improve aspects of the image registration procedure and the MIMS

acquisition procedure would help streamline and support the analysis of these data

for quantitative assessment of elemental-isotopic content in biological tissue.

The quality of image registration between MIMS brain maps and a traditional modal-

ity, such as a Nissl image, could be improved by designing a protocol where an adjacent

tissue section is collected, stained, and imaged for use in registration with the neigh-

boring MIMS brain map. This procedure would minimize the influence of out-of-plane

cutting artifacts discussed in Section 5.2.4 since any artifact would be consistent for a
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neighboring section. A method similar to that described in (Abdelmoula et al., 2014)

could be implemented for automatic selection of the appropriate Allen Mouse Brain

Atlas section best suited to impart anatomical boundaries on the tissue section.

Extensions made to the image registration (IR) speed and accuracy would also help to

improve the utility of the MMMCIR function. One widely used method for improving

IR accuracy is by using a multi-resolution approach where image correspondence is

determined at a coarse resolution first and then used to initialize a higher-resolution

IR experiment. Improvements to how image similarity is calculated and to the flexi-

bility of the transformation model would also be natural extensions. The method used

to calculate mutual information (MI) suffers from being computationally expensive

and is intractable as the dimensionality of the joint density function increases. A rec-

ommended extension would be to implement a more efficient scheme for determining

the similarity between multi-modal, multi-channel images, such as through entropic

graphs (Hero et al., 2002). Non-rigid transformation models may also improve results,

such as the symmetric normalization method for diffeomorphic mappings (Avants

et al., 2007).

Beyond improvements to the existing MMMCIR architecture, the possibility of clean

representation and detailed characterization of MIMS remains an open problem. The

Allen Mouse Brain resources (Lein et al., 2007) have served as a gold standard for

evaluating mouse anatomy and neurophysiology. Hare et al. (2012) constructed the

first 3D atlas of iron, zinc and copper in a C57BL/6 mouse brain; however, the atlas

represents data from a single mouse with fairly low spatial resolution (80 µm isotropic

in 2D and spaced every 150 µm). This type of detailed characterization of metallomic

brain composition in the mouse brain has yet to be achieved.

Further work towards reduction of instrument artifacts would also greatly improve
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the reliability of the information provided by the MIMS method. In both cohorts

considered in Chapter 5 there were a variety of cases where the levels of endogenous

isotopes were expected to be approximately equal on the left and right side of the

brain (indicated by a ∂̄(L−R) ≈ 0), but the calculated values of ∂̄(L−R) did not strongly

support this hypothesis. While not visually apparent, these discrepancies are likely

due to signal drift over time, a known issue in LA-ICP-MS. Newly-published works on

MIMS operating procedures (Hare et al., 2017) and drift correction (Uerlings et al.,

2016b) offer insights into data acquisition and post-processing best practices.
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Appendix A

Experimental Protocols

A.1 Tissue Preparation

The protocols are copied directly from Goldstein et al. (2012): “Mice were eutha-

nized by CO2-asphyxiation and transcardially perfused with phosphate-buffered saline

(PBS). Whole brains were prefixed in 10% neutral buffered formalin, block-sectioned

into 2-mm coronal slabs, postfixed in 4% paraformaldehyde, paraffin-embedded, and

serially sectioned at 10 µm.” Serial sectioning was not typically performed as part of

metallomic imaging mass spectrometry preparation, where the face of the paraffin-

embedded block was ablated.

A.2 Evans Blue Dye Injection and Imaging Method

The EBD image assessment algorithms developed for this work and presented in

Chapter 3 were used to derive the results in a recent publication (Tagge et al., 2017,

Fig. 5A-D). The EBD injection and imaging procedure are summarized as follows:

1. Mice received a 4 mL/kg intraperitoneal injection of 2% weight-by-volume EBD

in saline one hour before the indicated experimental TBI condition

2. TBI experimental method is followed (including BUCS)
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3. Mice were euthanized via CO2 asphyxiation and transcardially perfused with

phosphate-buffered saline (PBS) to allow blood and EBD to be washed from

the circulatory system

4. Brains were harvested with care to remove the dura

5. Gross pathology was documented by photomacroscopy with a Nikon D5200

digital camera under cross-polarized white light illumination

6. The brains were sectioned (2 mm) coronally and imaged with an IVIS Spectrum

In Vivo Imaging System (PerkinElmer, Waltham, MA)

7. Separate fluorescent images were acquired at 0.5 s exposure with 535 nm exci-

tation filter and the following emission filters: 580, 600, 620, 640, 660, 680, 700,

720, 740, 760, 780, 800, 820, 840 nm. Non-specific autofluorescence signal was

removed by spectral unmixing algorithm (Living Image software, Perkin-Elmer)

A.3 Matrix-Match Calibration Standards for MIMS

Matrix-match calibration standards presented in Chapter 6 for calibrating STD2.x

and KED2.x experiments were prepared as follows:

1. A stock solution was created such the concentration of each of the 14 elements

in the stock solution was X = 100 µg El
g stock

2. A 10% w/w gelatin solution was create with deionized water in a sterile beaker

(that is for every 10 g water, 1 g of gelatin was added) . The solution was

stirred for approximately an hour on a magnetic stirrer hot plate set to 50◦C.

3. For each target calibration level x
[

µg El
g Sol′n

]
, a test tube was filled with the ap-

propriate mass of gelatin solution (v, [g]) and stock solution (w, [g]) to achieve
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the target ppm level x using the following equation:

x

[
µg El

g Sol′n

]
=

w [g stock]X
[

µg El
g stock

]
v [g gelatin] + w [g stock]

were v is the weight of the gelatin solution, w is the weight of the stock elemental

solution, and X is the average final ppm value of the stock elemental solution.

4. The test tubes of each of the final gelatin calibration standard solutions were

thoroughly mixed by shaking the test tube and mixing the solution with a

pipette.

5. The solutions were pipetted into a 1 cm× 1 cm embedding block and stored at

4 – 8◦C until required for an experiment.

6. A 20 µm section of each block was placed on a glass slide for evaluation in a

MIMS sequence acquisition.

To make all eight calibration standard values x = [0, 0.5, 1, 2, 5, 10, 20, 50], a 10 mL

elemental stock solution was made and a 60 mL gelatin solution. All masses and cal-

culations may be recorded using a developed GelatinStandardSolution.xlx spread-

sheet.
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Appendix B

Overview of MATLAB Tools Developed
for MIMS

B.1 MIMS Raw Data Files and Resulting MATLAB Data
Structures

The MATLAB function, readfiles.m, was developed to extract raw data from the

spectrometer instruments in the Center for Biometals & Metallomics at the Boston

University School of Medical. Since data from the optical emission spectrometer

(OES), the magnetic sector field (MSF) mass spectrometer, and the quadropole

(Quad) mass spectrometer are saved as three different file formats (txt, fin2 and

csv, respectively), readfiles.m identifies the file format and parses the data accord-

ing to the instrument specific raw data structure. The OES instrument provides a

single txt file per MIMS sequence with data laid out as in Fig. B·1. The file format

for the MSF and the Quad instruments are both quite similar, each providing one file

per line of data in a MIMS sequence with raw data structures shown in Figs. B·2 and

B·3.

Regardless of the instrument used, calling readfiles.m outputs a data structure with

a field for each isotope (or element when using OES) acquired. Each of these fields

is an M × N matrix containing the raw intensity values recorded by the instrument
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Figure B·1: Raw data structure in txt files from the optical emissions
spectrometer.

Figure B·2: Raw data structure in fin2 files from the magnetic sector
field MS.
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Figure B·3: Raw data structure in csv files from the quadrupole MS.

for each of the M raster lines with N data points per line. A screenshot of the data

structure resulting from the command

[d, hdrtxt] = readfiles;

is shown in Fig. B·4.

Since development of most recent standard operating procedure for MIMS sequence

acquisition in 2015, the newest version of readfiles.m (version 10) also parses out

header information from the quadrupole ICP-MS raw data files and provides this

information as an M + 1 × 86 cell variable hdrtxt for each line of the M scanned

lines. This variable is used to differentiate the distinct MIMS maps in a sequence.

The function divMIMSstruct.m takes hdrtxt as an input and identifies unique line

labels in the first column of the cell (see Fig. B·5).
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Figure B·4: Data structure provided by readfiles.m in MATLAB
workspace.

Figure B·5: Quadrupole header file information provided by
readfiles.m in MATLAB workspace.
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B.2 List of MATLAB Functions

The list of MATLAB functions below is not comprehensive of all functions written to

support this thesis, but includes the most relevant originalI functions. If the function

is used for the results pertaining to a specific chapter, that chapter is indicated. If the

function is used widely for multiple chapters (as are most of the functions developed

for MIMS), no chapter will be specified.

B.2.1 Chapter 3 Functions

• HSVtrackingKF
Kalman filtering for tracking position, velocity and acceleration of mouse noise
in high speed videos.
Supportive functions: detectHSVobject, CVcentroidPerFrame, computeIm-
ageCentroid

• (1) EB_brainimg_processing, (2) EB_brainimg_buildpdfs, (3) EB_brain-
img_classifyimgs

These functions support the semi-supervised pathology classification of EB-
injected surface macroscopic images. (1) uses a file-specific naming structure
(file name includes the string “mask”) to identify images for which tissue class
examples are available. (2) and (3) are sequentially executed to ultimately
build the probability density function p(c|−→i ) and classify pixels in each image
respectively.
Supportive functions: build_rgbpdf

B.2.2 MIMS Functions

• readfiles
Extracts raw MIMS data into a structure in MATLAB. This structure is the
basic data variable required by most of the functions developed.

• reshape_OEScorr
Restructures raw data from the optical emission sprectrometer which contains
multiple horizontal lines in a single data line (described in Section 4.1.3).

IParts of these functions may require either MATLAB licensed or publicly available MATLAB
functions.
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• labelMIMSstruct
Uses outputs from readfiles.m to automatically segment the parts of a MIMS
map (described in Section 4.2).
Supportive functions: divMIMSstruct, bimodalHistMask

• MIMSmve
Transforms data into a normalized domain using mean-variance equalization
(described in Section 4.4).
Supportive functions: labelMIMSstruct

B.2.3 MMMCIR Functions

• manualregGUI
GUI which provides the user with real-time visualization of applying different
affine transformation parameters to a moving image.

• simannealGeneral
Simulated annealing optimization function which relies heavily on MAT-
LAB’s simulannealbnd.m. It’s important to know that this function uses
twoimgMIkde.m (personally implemented) to compute the multi-variate mu-
tual information.
Supportive functions: computeCost, twoimgMIkde

• Accessory Functions: transform_image, alpha2tmat, change_alpha_dim,
find_inv_alpha

Functions containing relevant affine transformation parameter adjustments.
• MIMSregSequence, regresultPlots

Performs all processing required for image registration procedure described in
Chapter 5
Supportive functions: simannealGeneral

B.2.4 Image Visualization Functions

• plot_heatmap
MIMS data structure-specific plotting function. A variety of property options
have been embedded which afford the user a high degree of custom visualiza-
tion options including channel overlaying, selection of pseudo coloring map,
spatial scaling of axes, title and colorbar properties, etc. A full list of the
available properties can be found in the header of the function.
Supportive functions: auto_thresh

• imoverlay
Various dual image visualization methods (transparent overlay, checkering,
edge display, etc.) for visualizing image registration results.



Appendix C

Derivation of Physical Parameters for
Inverse Affine Transformation

Recall the following definitions from Section 4.5.2 and Eqn. 4.16:

Physical Transformation Parameters

−→µ = {tx, ty, θ, sx, sy, sk}

Affine Transformation Parameters

−→a = [a1, a2, a3, a4, a5, a6]T

Affine Transformation Matrix

A−→µ =





1 0 tx

0 1 ty

0 0 1


︸ ︷︷ ︸

translation

·





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


︸ ︷︷ ︸

rotation

·





1 sk 0

0 1 0

0 0 1


︸ ︷︷ ︸

skew

·



sx 0 0

0 sy 0

0 0 1


︸ ︷︷ ︸

scaling







=



sx cos(θ) sy(sk cos(θ) − sin(θ)) tx

sx sin(θ) sy(sk sin(θ) + cos(θ)) ty

0 0 1


=



a1 a2 a3

a4 a5 a6

0 0 1


where
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tx = positive value shifts image to the left

ty = positive value shifts image up

θ = rotation angle, measured counter-clockwise from the x-axis

sx = change of scale in x direction

sy = change of scale in y direction

sk = shear factor along the x-axis = tan(ω)

(ω = the skew angle, measured clockwise from the y-axis)

Generally, the relationship between affine transformation parameters, −→a and physical

transformation parameters, −→µ , can be derived using the six equations:

(1) a1 = sx cos θ (2) a2 = sy (sk cos θ − sin θ) (3) a3 = tx

(4) a4 = sx sin θ (5) a5 = sy (sk sin θ + cos θ) (6) a6 = ty

Given an affine transformation matrix A, the goal is to determine the physical trans-

formation parameters as a function of −→a . This can be done solving the system of

equations:

Equations (1) and (4) can be used to solve for θ(−→a ):

sx = a1

cos θ ⇒ a4 = a1
sin θ
cos θ ⇒ θ = tan−1

(
a4

a1

)
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Equations (2) and (5) are equal and can be used to solve for sk(−→a )

a5

(sk sin θ + cos θ)
sy

= a2

(sk cos θ − sin θ)
sy

a5sk cos θ − a5 sin θ = a2sk sin θ + a2 cos θ

sk (a5 cos θ − a2 sin θ) = a2 cos θ + a5 sin θ

sk = a2 cos θ + a5 sin θ
a5 cos θ − a2 sin θ

Resulting −→µ (−→a ):

tx = a3 ty = a6 θ = tan−1
(
a4

a1

)

sx = a1

cos θ = a4

sin θ sy = a5

(sk sin θ + cos θ) sk = a2 cos θ + a5 sin θ
a5 cos θ − a2 sin θ

Note that sy is expressed as a function of sk. One could either substitute the expres-

sion for sk(−→a ) into the expression for sy(−→a ), or one could solve for sk(−→a ), then use

this value to solve for sy(−→a ).

Using these expressions and noting that A−1−→µ = B−→µ ′ is also a 3 × 3 matrix with six

non-zero affine transformation parameters −→
b , the physical transformation parameters

for the inverse affine transformation can be solved using the equations above and the

values if the inverse transformation matrix B−→µ ′ .

This procedure is implemented in the function find_inv_alpha.m.
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