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ABSTRACT

Person re-identification (PRID), the problem of matching identity of a person

between images, finds applications in video surveillance, sports analytics, and, more

recently, in spatial analytics (e.g., retail). PRID has been extensively studied for

the case of standard surveillance cameras equipped with rectilinear lens. However,

their narrow field of view (FOV) severely limits the indoor area each camera can

monitor. Recently, fisheye cameras that capture 360◦ FOV have penetrated the video

surveillance market, but little attention has been paid in the literature to PRID for

such cameras. This dissertation focuses on fisheye-camera PRID and demonstrates

its effectiveness in occupancy estimation in large indoor spaces.

Since no fisheye PRID datasets were publicly available, we created one using 3

ceiling-mounted fisheye cameras in a large classroom and published it on-line (63

downloads to date). Subsequently, we evaluated 6 state-of-the-art PRID methods on
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our dataset and concluded that such methods, developed for rectilinear cameras, do

not perform well on fisheye images due to potential dramatic body-viewpoint and

body-size differences between different camera views, and fisheye-lens distortions.

To address these challenges, we developed a novel approach to PRID that relies on

occupant location in the room instead of appearance. This approach is possible in

our scenario since overhead fisheye cameras have overlapping FOVs; knowing location

of a person in one camera view, we map this location to another camera view with

knowledge of the person’s approximate height. The distance between a mapped and

current location allows to match identities, and we develop 4 distance metrics for

this purpose using a range of typical human heights. Evaluated on our dataset, the

location-based approach outperforms the 6 state-of-the-art PRID methods that use

appearance by at least 10% points in accuracy, but struggles when people are very

close to one another. To address this challenge, we proposed combining location-

based methodology with appearance features (deep-learning embedding and color

histogram) by means of a Näıve Bayes method. The additional appearance features

improve the location-based re-identification accuracy by at least 2% points.

To demonstrate the practical importance of fisheye PRID, we evaluated its po-

tential for accurate people counting in a large space with high occupancy. Firstly, we

assessed the performance of occupancy sensing using single fisheye camera and con-

cluded that high counting accuracy is possible only in small-to-medium size spaces.

We then proposed a two-camera system, that employs fisheye PRID to avoid over-

counting, and demonstrated an up to 20%-point accuracy boost compared to single-

camera approaches. To support even larger spaces, we proposed and evaluated two

extensions of PRID to N cameras. Overall, our results show that the proposed fisheye

PRID methods enable high-accuracy people counting in large indoor environments,

and have a great potential for improving people tracking and activity analysis.
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Chapter 1

Introduction

This thesis is motivated by the problem of occupancy sensing in large indoor environ-

ments. We begin by describing the problem, its applications, and various approaches

proposed in the literature to tackle it. We then focus on the family of methods based

on overhead fisheye cameras which is the focus of this thesis. We discuss the need for

person re-identification (PRID) and summarize the key contributions of this thesis.

We conclude with an outline of the remainder of the thesis.

1.1 Occupancy Sensing

Occupancy sensing is a key technology for smart buildings of the future (Sruthi,

2019; Nguyen and Aiello, 2013). Knowledge of count and locations of people in a

building enables, among others, smart HVAC control to save energy, space manage-

ment to reduce rental costs and enhanced security, (e.g., fire, flooding, active shooter)

(Hashimoto et al., 1997).

Energy savings: In 2018, energy consumption in commercial buildings in the

United States amounted to 6,787 quad BTUs (quadrillion British thermal units),

with 52% expended on heating, cooling and ventilation (HVAC) (CBECS, 2018). A

significant fraction of the HVAC energy is wasted due to over-ventilation, in particular

when rooms are only partially occupied relative to their maximum capacity. Other

than saving energy, occupancy information also plays an increasingly important role

in space management and security/safety.
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Space management: The COVID-19 pandemic has dramatically impacted the

office-building market, leading to new office-usage patterns. Many companies return-

ing to offices opt for the so-called “flexible workspace” where desks are not assigned to

employees but can be reserved whenever employees return in-person for work, meet-

ings, etc. Real-time accurate detection of workspace occupancy is essential for an

effective implementation of this concept. A similar knowledge of where people are

is essential for the retail industry, e.g., how many people are waiting at a check-out

counter.

Security and safety: Occupancy information is also important for security and

safety in a building. For example, it can be used to ensure everyone is accounted for

in an emergency situation (e.g., fire). Moreover, knowing how people are located in

a space can be useful in the context of public health, such as managing a pandemic

(e.g., social distancing).

1.2 Methods for Occupancy Sensing

In the last decade, a wide range of approaches have been proposed for occupancy

sensing in commercial buildings. We broadly divide these approaches into active and

passive categories.

1.2.1 Active Approaches

In active approaches, all occupants are expected to carry a device that allows them to

be detected. The most common device is a magnetic-swipe or RFID-proximity card

that allows an authorized person to enter a restricted space. Counting people from

card swipes is straightforward but is prone to drift errors when two or more people

enter using a single swipe. Such errors are typical in any “tripwire”-type system (i.e.,

a system that detects when a boundary is crossed by a person) when a change in

people count rather than the count itself is being estimated; a missed detection can
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be corrected only by an opposite error (false detection). Another type of device that

can reveal presence is one producing radio frequencies, such as a cell phone, tablet or

laptop; its presence can be detected at the network level based on WiFi, Bluetooth,

or cell-band communication. Since the number of devices is being counted, rather

than a change in this number, this approach is not prone to drift errors. However, it

relies on each occupant carrying one device only, an unlikely scenario these days. On

the other hand, one benefit of active approaches is that they can handle large spaces

with high occupancy.

1.2.2 Passive Approaches

In terms of passive approaches, passive-indirect methods rely on harvesting informa-

tion from either system sensors (e.g., reheat valve or damper position) or environ-

mental sensors (e.g., temperature, CO2, humidity). Inferring occupancy level from

environmental data is cost-effective (sensors are often installed), but in case of CO2

sensors, the need for frequent re-calibration due to drift errors, measurement lag due

to gas mixing delays and sensitivity to installation location and room size make such

an approach cumbersome and imprecise. Additionally, while using an HVAC system’s

control data (e.g., damper position) is simple and reliable, this approach only allows

one to learn occupancy patterns with the goal of predicting future occupancy patterns

to aid a building-management system (BMS). This approach does not explicitly esti-

mate true occupancy in real time but rather “guesses” a likely occupancy level based

on past system data (Ardakanian et al., 2018).

The most promising methods for occupancy sensing in large commercial spaces

are passive-direct approaches that use occupant-related features such as appearance,

movement, weight, body heat, sound, etc. Sensors commonly deployed in such scenar-

ios are RGB cameras, LiDAR/ToF sensors (Lu et al., 2021), structured-light sensors

(Diraco et al., 2015), microphones (Huang et al., 2016), IR/thermal sensors (Piechocki
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et al., 2022), etc.

In our first attempt at occupancy estimation (Cokbas et al., 2020), we designed a

system using low-resolution thermal sensors to detect body heat (see Appendix B). We

opted for thermal sensors to preserve occupant privacy, and we chose low-resolution

sensors over high-resolution ones for cost-efficiency. Due to the low resolution and

narrow field of view of these sensors, we chose to design a tripwire-type system in

which we solely monitored the entry/exit points to an indoor space. Unfortunately,

given the nature of tripwire-type systems, our system suffered from drift errors. Thus,

we decided not to pursue this method of people counting any further.

1.3 Occupancy Sensing Using Overhead Fisheye Cameras

Compared to other visual sensors, RGB cameras offer higher resolution, lower cost

and ability for fine-grained estimations. To date, many methods have been proposed

for RGB cameras (Ryan et al., 2011; Liu et al., 2013; Erickson et al., 2013; Choi et al.,

2021; Wei et al., 2022). These methods primarily use cameras with rectilinear lens

(e.g., surveillance cameras) which project straight lines in a room onto approximately

straight lines on sensor surface. While such methods demonstrate promising results in

many scenarios, their most significant deficiency is the relatively narrow field-of-view

(FOV), typically around 90◦. As a room gets larger, more cameras are needed which

increases system cost. To cover more space, such cameras are typically mounted at an

angle (i.e., side-mounted rather than ceiling-mounted), which increases the likelihood

of occlusions and may lead to undercounting.

In this dissertation, to overcome such issues, we focus on occupancy estimation

with overhead fisheye-lens cameras. Fisheye-lens cameras have a 360◦ FOV allowing

overhead mounting (i.e., monitoring directly from above) which, in turn, minimizes

occlusions. Some people detection algorithms for overhead fisheye cameras have been
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already proposed (Tamura et al., 2019; Li et al., 2019; Duan et al., 2020). These algo-

rithms have been shown to perform well in small-to-medium sized rooms. However,

in large rooms (i.e., larger than 1,000 square feet), due to severe geometric distor-

tions, these algorithms struggle to detect people at FOV periphery. In such scenarios,

multiple cameras are needed to cover the whole room.

1.4 Person Re-Identification

Unfortunately, using multiple overhead fisheye cameras in a room for occupancy es-

timation is problematic. Due to the 360◦ FOV, multiple fisheye cameras in the same

room will have a large FOV overlap, which is likely to cause overcounting. To resolve

this, the same person must be identified in the FOVs of all cameras, a problem known

as person re-identification (PRID). From the broadest perspective, in PRID, the goal

is to re-identify a person captured by a camera in the view of another camera.

PRID with rectilinear lens cameras: PRID has been well explored for cam-

eras equipped with a rectilinear lens. There exist many traditional, model-based

PRID methods (Yang et al., 2014; Xiong et al., 2014). Some methods focus on lo-

calized features extracted from images of people (Yang et al., 2014). Other methods

focus on the development of distance metrics to maximize the distance between dif-

ferent identities and minimize the distance between the same identities (Xiong et al.,

2014). However, deep-learning methods are currently the state-of-the-art (a good

review can be found in this paper (Ye et al., 2022)). All these methods have been

developed for re-identifying people across side-view rectilinear-lens cameras that have

no FOV overlap. The popular benchmark PRID datasets (Market-1501 (Zheng et al.,

2015), Duke MTMC (Ristani et al., 2016), CUHK03 (Li et al., 2014)) have all been

collected and set up for this PRID setting.

PRID with fisheye lens cameras: There have been very few attempts to per-
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form PRID using fisheye cameras, which we will review in Chapter 2, and no datasets

have been made public. Furthermore, our PRID setup is different from the tradi-

tional PRID setup – our fisheye cameras are mounted on the ceiling and their FOVs

fully overlap. Since we need to match identities at the same time instant, each query

identity (from one camera) may have at most one match among the gallery identi-

ties (from another camera); there is no match in the case of occlusion. However, in

the traditional PRID setting with no FOV overlap, for a single query there may be

numerous correct matches in the gallery set since it is captured from several cameras

at many time instants. Table1.1 highlights some of the key differences between the

traditional PRID scenario and our scenario. A more detailed and structured catego-

rization of different PRID scenarios is presented in Chapter 2, where a visualization

of key differences outlined in Table 1.1 is provided (see Figure 2·1).

FOV Re-ID timing Gallery samples

per identity

Traditional PRID Non-Overlapping Asynchronous Multiple

Our PRID (this thesis) Overlapping Synchronous Single/None

Table 1.1: Key differences between traditional PRID and our PRID.

1.5 Thesis Overview and Contributions

The core research problem of this dissertation is to re-identify people captured with

time-synchronized, overhead, fisheye-lens cameras that have fully overlapping FOVs.

Prior to this work, there was no suitable dataset available in the literature to study

this problem. Thus, we collected a first-of-its-kind dataset (described in Chapter 3)

named “Fisheye Re-IDentification Dataset with Annotations” (FRIDA), that was

captured by three overhead fisheye cameras in a large space (2,000+ square feet)
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and includes over 240,000 bounding-box annotations of people. Also, by evaluating 6

state-of-the-art (SOTA) PRID methods on FRIDA, we demonstrated that methods

developed for images captured by rectilinear-lens cameras do not perform well on

images from overhead fisheye cameras.

The 6 algorithms we evaluated on FRIDA rely solely on the appearance of a

person. However, appearance gets distorted by a fisheye lens, especially if a person

is far away from the camera where geometric distorsions are more severe. Thus, we

aimed to develop a PRID algorithm that does not rely on the appearance of people

at all. It led us to a design that depends only on the location of people. The principal

inspiration for this algorithm comes from the observation that a person occupies a

single 3D-world coordinate at a given time instant. In other words, given a pair of

fisheye images, a person may appear at different pixel coordinates in different camera

views; however, his/her real-world (3D) coordinate is unique.

Our new location-based PRID algorithm is described in detail in Chapter 4 to-

gether with an automated method for calibrating it and certain PRID distance met-

rics needed to tackle occupant height-variability which affects location-based occu-

pant estimation. We evaluate these PRID approaches on FRIDA. Results show that

location-based methods outperform the 6 state-of-the-art appearance-based methods.

Although location-based approaches perform well, there is still room for improve-

ment. When people stand close to each other, location-based approaches struggle.

However, if such people have distinct physical appearances, then appearance-based

methods might perform better (see Figure 5·1). Inspired by this observation, in

Chapter 5, we introduce a framework that combines appearance-based and location-

based features to perform PRID. As appearance features, we use traditional color

histograms and features extracted by a state-of-the-art deep-learning model, while as

the location feature we use one of the PRID distance metrics proposed in Chapter 4.
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To perform identity matching, we introduce a probabilistic feature-fusion approach.

All the PRID methods that are proposed in this dissertation thus far have been

tailored for two cameras. However, two fisheye cameras are not enough to perform

reliable people detection and re-identification in very large indoor spaces (e.g., conven-

tion halls, supermarkets). Thus, in Chapter 6, we introduce two approaches extending

the proposed two-camera methods to N cameras.

Finally, we evaluate the occupancy estimation performance of the proposed PRID

methods on a 72-hour video recorded in a 2,000+ square-feet room where the occu-

pancy reaches 87 people at times. The results prove that with the proposed methods,

it is possible to estimate the number of people in the room accurately.

The main contributions of this thesis can be summarized as follows:

1. Dataset for fisheye PRID (Chapter 3): There exist public PRID datasets

captured by side-view rectilinear-lens cameras, but not by fisheye cameras. We

introduce a first-of-its-kind PRID dataset for indoor person re-identification

using time-synchronized overhead fisheye cameras. We benchmark six state-of-

the-art PRID algorithms on this new dataset.

2. Location-based PRID (Chapter 4): Existing PRID methods have relied

on appearance-based features. However, such methods do not perform well on

fisheye images. We propose a novel PRID method that relies solely on the

location of occupants instead of their appearance. We also describe a novel

calibration method to estimate the intrinsic and extrinsic parameters of pairs

of fisheye cameras.

3. Spatio-visual PRID (Chapter 5): We introduce a framework for multi-

feature PRID that combines location-based and appearance-based features. As

part of this framework, we propose a feature-fusion method for identity match-
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ing. Through an ablation study, we demonstrate that combining these features

yields a better PRID performance than using single-feature approaches.

4. Scaling from two cameras to N cameras (Chapter 6): The majority of

PRID methods in the literature focus on PRID between two cameras (two sets:

query and gallery). In this thesis, we introduce two approaches on how to scale

PRID from two cameras to N cameras. We analyze the performance of these

methods in terms of occupancy-estimation performance.

5. Application to occupancy analysis (Chapter 6): We demonstrate the po-

tential of the proposed fisheye PRID methods for occupancy estimation. We

provide a comparison of occupancy-estimation performance of the proposed fish-

eye PRID methods using two cameras against a state-of-the-art single fisheye-

camera method.

1.6 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we discuss related work

on occupancy estimation and person re-identification, and we formally state the main

problem that this thesis addresses. In Chapter 3, we introduce a first-of-its-kind

dataset that is captured by time-synchronized overhead fisheye cameras that have

fully overlapping FOVs. We demonstrate that state-of-the-art methods do not per-

form as well on this dataset as they do on other benchmark PRID datasets. In Chap-

ter 4, we introduce a location-based person re-identification method and demonstrate

its superior performance over state-of-the-art algorithms. In Chapter 5, we introduce

a framework to combine location-based and appearance-based features for PRID and

show results demonstrating the effectiveness of this framework. In Chapter 6, we dis-

cuss occupancy estimation using overhead fisheye cameras and demonstrate perfor-

mance improvements afforded by the proposed PRID methods vis-à-vis single-camera
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methods. Finally, in Chapter 7, we provide a discussion of the contributions of this

dissertation and discuss some potential ideas for future work.
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Chapter 2

Related Work

Traditional PRID methods developed to date have considered matching identities

captured at different time instants (asynchronously) by multiple cameras with no

FOV overlap. In this case, a query (i.e., a person-image that we are interested in

re-identifying) from one camera is allowed to have multiple matches in the gallery

set (i.e., set of person-images that the query elements are allowed to match) that is

extracted from other cameras (see Figure 2·1a). In principle, asynchronous PRID

from cameras with overlapping FOVs would fall into the traditional PRID category

but we are not aware of any such work.

An alternative is a different type of PRID, that we call cross-frame PRID and

study in this dissertation. In cross-frame PRID, matching is performed between

identities captured at the same time instant (synchronously) by two cameras with

overlapping FOVs. In this case, person-images from one camera’s video frame are

considered query elements while those from the other camera’s synchronous video

frame are considered to be the gallery set. Consequently, a query ID is allowed to

have only one correct match (or none, in case of occlusion) in the gallery set. Note,

that synchronous PRID from cameras with no FOV overlap is not possible since

a person would appear only in a single camera view (see Figure 2·1b). Table 1.1

summarizes key differences between traditional and cross-frame PRID.

In this chapter, we further subdivide traditional and cross-frame PRID based on

camera type used as follows:
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• traditional rectilinear PRID,

• traditional fisheye PRID,

• cross-frame rectilinear PRID,

• cross-frame fisheye PRID.

and perform literature review for each category separately.

2.1 Traditional Rectilinear PRID

Among the four types of PRID, traditional rectilinear PRID has been explored the

most. Its goal is to match the image of a person from the query set to an image from

the gallery set, where images are captured by side-mounted rectilinear-lens cameras.

The query and gallery sets consist of images captured by different cameras. Moreover,

different cameras have no field-of-view overlap so query and gallery images of the same

identity have been captured at different time instants. Thus, in most of the traditional

rectilinear PRID datasets there are, typically, multiple gallery images with the same

ID as the query image. This scenario is depicted in Figure 2·1a.

The majority of public PRID datasets are tailored towards traditional rectilinear

PRID due to its popularity in the research community. The most commonly-used

ones are VIPeR (Gray and Tao, 2008), iLIDS (Zheng et al., 2009), PRID 2011 (Hirzer

et al., 2011), GRID (Loy et al., 2013), CUHK03 (Li et al., 2014), Market-1501 (Zheng

et al., 2015), MSMT17 (Wei et al., 2018) and Airport (Karanam et al., 2019). Some

of these datasets were collected in public places in a real-world setting with intense

foot traffic, which makes PRID challenging. For example, GRID was collected in a

busy underground station, Market-1501 was collected in front of a supermarket and

Airport was collected in an airport.
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(a) Traditional rectilinear PRID (images are from Market-1501
dataset (Zheng et al., 2015))

(b) Cross-frame fisheye PRID (focus of this dissertation)

Figure 2·1: Illustration of differences between traditional rectilinear
PRID and cross-frame fisheye PRID, the focus of this dissertation. Key
differences are: 1) camera type, 2) FOV overlap (which determines the
Re-ID timing), 3) number of gallery samples per identity 4) viewpoint
(side-view versus overhead).
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Early approaches to traditional rectilinear PRID were mostly model-based and

relied on hand-crafted features (Gray and Tao, 2008; Farenzena et al., 2010; Zheng

et al., 2011; Köstinger et al., 2012; Hirzer et al., 2012; Xiong et al., 2014; Yang et al.,

2014; Liao et al., 2015). Some methods focused on localized features extracted from

images of people (Gray and Tao, 2008; Farenzena et al., 2010; Yang et al., 2014;

Liao et al., 2015). Many methods focused on the development of distance metrics

to maximize the distance between samples from different identities and minimize the

distance between samples from the same identities (Zheng et al., 2011; Köstinger

et al., 2012; Hirzer et al., 2012; Xiong et al., 2014).

However, the advances made by deep learning in many computer-vision tasks did

not bypass PRID. The best-performing PRID algorithms in the last decade have been

based on deep learning (Sun et al., 2018; Chen et al., 2019b; Chen et al., 2019a; Bryan

et al., 2019; Zheng et al., 2019a; Li et al., 2018b; Yu et al., 2019; Zheng et al., 2019b;

Zhou et al., 2019; Zhihui et al., 2020; Wieczorek et al., 2021). (Sun et al., 2018) pro-

posed PCB in which feature vectors are uniformly partitioned in an intermediate

layer to obtain part-informed features. This structure allows to separately focus on

different parts of an image and extract local information for each part. (Zheng et al.,

2019a) developed a “Pyramid” network which extends part-based image matching by

simultaneously incorporating local and global features through a coarse-to-fine model.

(Chen et al., 2019b) proposed an attention-based network called ABD-Net, which in-

stead of a small portion of an image focuses on its wider aspect by means of a diverse

attention map. This is accomplished by combining two separate modules: one module

focuses on context-wise relevance of pixels while the other module focuses on spatial

relevance of these pixels. (Zhihui et al., 2020) proposed a network called VA-reID that

allows matching of people regardless of the viewpoint from which they were captured.

Instead of creating a separate space for each viewpoint (i.e., front, side, back), they
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create a unified hyperspace which accommodates viewpoints in-between the main

viewpoints (e.g, side-front, side-back). Recently, (Wieczorek et al., 2021) proposed

a CTL model (Centroid Triplet Loss model) , which extends the triplet loss. When

working with triplet loss, it is typical to choose one positive sample and one nega-

tive sample for an anchor. However, in the CTL model, instead of choosing a single

sample, a centroid is computed over a set of samples which significantly improves

performance.

2.2 Traditional Fisheye PRID

Recently, traditional PRID methods have been extended to overhead fisheye cameras,

but we are aware of only two attempts. An early approach, proposed by (Barman

et al., 2018), matches images of people who appear at the same radial distance from

a camera. The authors recognize difficulties arising from fisheye-lens distortions and

potentially-dramatic viewpoint differences. However, limiting the search space to the

same radial distance from each camera is restrictive, and leads to sub-par performance

since people often appear at different distances from FOV centers in different cameras.

Another algorithm proposed by (Blott et al., 2019) applies tracking to extract front-,

back- and side-view images of a person. The proposed PRID algorithm uses a person’s

descriptor built by fusing features extracted from individual views. However, there is

no guarantee that a person will appear in all 3 viewpoints during a recording, thus

limiting performance. Moreover, both works report results on non-public fisheye data

only.

2.3 Cross-Frame Rectilinear PRID

Cross-frame PRID finds fewer applications than traditional PRID since it requires

multiple time-synchronized cameras to monitor the same space (increased cost and
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complexity). It has been primarily used in people detection and tracking.

(Fleuret et al., 2014) applied cross-frame PRID to improve tracking in sporting

events. Their approach is appearance-based and uses jersey color, jersey number and

facial features for re-identification between concurrent rectilinear camera views. (Hu

et al., 2022) also focused on improving tracking of people but in a smaller space of

a hospital operating room. They first perform 3-D tracking of each person’s skele-

ton from calibrated rectilinear cameras and then re-identify people between different

camera views by clustering 3D trajectories. Each 3D-trajectory cluster is processed

to produce a robust 3D trajectory for each person. This approach uses no appearance

features for re-identification. Finally, (Wang et al., 2021) proposed precise localiza-

tion of people indoors using up to 8 calibrated, time-synchronized, rectilinear cameras.

They estimated 2-D skeletons of people using OpenPose library and projected them

to 3-D space for distance-based clustering. This 3-D skeleton clustering is a form of

location-based cross-frame PRID.

In these studies, cameras have a side view of the scene which can cause occlusions

and no-match scenarios. To address this, one possible solution is to mount cameras

overhead and point them down. However, due to a relatively-narrow FOV of rectilin-

ear cameras, this solution would be impractical as it would require many cameras to

cover a large space.

2.4 Cross-Frame Fisheye PRID

There exists a rich body of literature describing algorithms focused on detecting and

tracking people in images captured by overhead fisheye cameras. To support this

research a number of people-focused datasets captured by such cameras have been

introduced, for example: BOMNI (Demiroz et al., 2012), MW (Ma et al., 2018),

HABBOF (Li et al., 2019), CEPDOF (Duan et al., 2020), PIROPO (del Blanco
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et al., 2021), WEPDTOF (Tezcan et al., 2022). These datasets were crucial for the

development and validation of people detection methods, such as (Tamura et al., 2019;

Li et al., 2019; Duan et al., 2020). One of the applications of these methods is in

people counting and this works well in small-to-medium sized rooms. However, as the

room gets larger, people appear smaller at the periphery of fisheye frames which makes

it difficult even for a human labeler to reliably detect people. Clearly, for effective

people counting in large spaces multiple cameras are needed. Unfortunately, this

may lead to overcounting if the same person is seen in FOVs of several cameras. This

is particularly serious for overhead fisheye cameras since their FOVs fully overlap.

To avoid overcounting, PRID is needed so that each person is counted only once.

However, to the best of our knowledge, this type of PRID has never been studied

prior to this dissertation.

This dissertation introduces and develops cross-frame fisheye PRID. An illustra-

tion of the cross-frame fisheye PRID scenario is shown in Figure 2·1b. Note that

appearance-matching is more challenging in this case on account of fisheye-lens geo-

metric distortions as can be seen in Figure 3·2. Unlike in traditional PRID, we are

interested in performing PRID for a pair of frames that are captured at the same

time instant. This means there can be at most one match for a person in another

camera view at this time instant. However, in traditional PRID a query element can

have multple matches in the gallery set, which makes it more likely to find a correct

match compared to cross-frame fisheye PRID that we study. Prior to the research

work that forms this dissertation, there were no datasets that would have allowed us

to study cross-frame fisheye PRID. None of the datasets listed earlier can be used as

they were all collected with a single fisheye camera.

We would like to point out that cross-frame rectilinear PRID methods discussed

in Section 2.3 are specialized to their respective use cases (e.g., recognizing jersey
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Figure 2·2: Illustration of cross-frame fisheye PRID with two cameras. The goal is
to establish a correspondence between people visible in two frames captured at the
same time instant. At a given time instant, we consider the people in one camera
view as “query” elements, and people in the other camera view as “gallery” elements.
Yellow and green bounding boxes illustrate the two sets of elements. Either set can
be treated as a query or gallery set.
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numbers) or cannot be easily generalized to the overhead fisheye camera setting due

to the unique lens distortion and viewpoint, e.g., skeletons and facial features cannot

be recognized right below the camera.

2.5 PRID Focus of this Dissertation

In this dissertation, we focus on cross-frame fisheye PRID. The goal is to perform per-

son re-identification between time-synchronized overhead fisheye cameras that have

fully-overlapping field of views. To be more specific, we perform re-identification be-

tween sets of person-images, where each set of person-images is captured at the same

time instant by different overhead fisheye cameras (where all cameras have fully-

overlapping FOVs). For the majority of this thesis, we focus on the scenario where

we have two sets of person-images at each time instant. We call these sets query and

gallery sets. An illustration of a typical scenario for two cameras (i.e., two sets of

person-images) is shown in Figure 2·2. In this dissertation we propose using cross-

frame fisheye PRID to accurately estimate the number of occupants in a room using

overhead fisheye cameras.
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Chapter 3

Fisheye PRID Dataset and its Evaluation

As discussed in Chapter 2, the most thoroughly researched type of PRID is tradi-

tional rectilinear PRID, so the majority of PRID datasets comprise images that were

captured by side-view, rectilinear-lens cameras with no FOV overlap (Gray and Tao,

2008; Hirzer et al., 2011; Karanam et al., 2019; Li et al., 2014; Loy et al., 2013;

Wei et al., 2018; Zheng et al., 2015; Zheng et al., 2009). However, in this thesis,

we explore PRID between images captured at the same time with fisheye cameras

that have fully overlapping FOVs, which we call cross-frame fisheye PRID. The main

goal in cross-frame fisheye PRID is to match identities between two fisheye images

captured at the same time instant by cameras that have fully overlapping FOV (see

Figure 2·2). Prior to the research of this dissertation, no public work and no datasets

existed on cross-frame fisheye PRID.

In this chapter1, we introduce the first-of-its-kind dataset for cross-frame fisheye

PRID called Fisheye Re-Identification Dataset with Annotations (FRIDA). We also

evaluate and compare the performance of 6 state-of-the-art traditional PRID methods

on FRIDA under two training conditions: 1) when trained on a part of FRIDA and

2) when trained on the non-fisheye Market-1501 dataset (Zheng et al., 2015).

1This work was published at the 2022 IEEE International Conference on Advanced Video and
Signal-Based Surveillance (AVSS) (Cokbas et al., 2022)
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3.1 FRIDA Dataset

FRIDA is the first PRID dataset captured indoors by multiple overhead fisheye cam-

eras and is publicly available2. In FRIDA, the cameras have fully-overlapping FOVs

(360◦ horizontally, i.e., parallel to the floor plane, and 185◦ vertically, i.e., orthogonal

to the floor), unlike in typical PRID datasets, and are time-synchronized (frames are

captured at the same time). FRIDA was collected in a 2,000 ft2 room using 3 ceiling-

mounted fisheye cameras (100 in above the floor). The bird’s eye view of the room is

shown in Figure 3·1, and an example of a time-synchronized frame triplet is shown in

Figure 3·2. along with annotations. The frames were captured by three Axis M3057-

PLVE cameras at 2,048×2,048-pixel resolution and 1.5 frames/sec. Annotations in

FRIDA consist of 243,439 bounding boxes manually drawn around people. Table 3.1

compares FRIDA against the most widely used PRID datasets, developed since 2007,

in terms of the number of bounding boxes and cameras, and frame resolution.

FRIDA can be used in a number of ways: as a still-image dataset for PRID, as

a video dataset for people tracking, or as an image dataset for people detection and

counting. In this thesis, to demonstrate its most unique features, we treat it as a

still-image PRID dataset.

In the following subsections, we discuss the unique characteristics and challenges

associated with FRIDA.

3.1.1 Annotations

At each time instant, three video frames are available with manually-drawn, human-

aligned bounding boxes for all people visible in each frame. Each bounding box is

represented by 6 parameters: x, y, w, h, α, ID, where (x, y) are the coordinates of

its center, (w, h) are its width and height, α is its counter-clockwise rotation angle

2vip.bu.edu/frida

http://vip.bu.edu/frida
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Figure 3·1: Bird’s eye view of the space where FRIDA was recorded.

Table 3.1: Comparison of FRIDA with the most popular image
datasets for person re-identification. (BBox = bounding box)

Dataset Year # # Frame

BBoxes Cameras Resol.

VIPer (Gray and Tao, 2008) 2007 1,264 2 Fixed

iLIDS (Zheng et al., 2009) 2009 476 2 Variable

GRID (Loy et al., 2013) 2009 1,275 8 Variable

PRID 2011 (Hirzer et al., 2011) 2011 24,541 2 Fixed

CUHK03 (Li et al., 2014) 2014 13,164 2 Variable

Market-1501 (Zheng et al., 2015) 2015 32,668 6 Fixed

Airport (Karanam et al., 2019) 2017 39,902 6 Fixed

MSMT17 (Wei et al., 2018) 2018 126,441 15 Variable

FRIDA 2022 243,439 3 Fixed
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Figure 3·2: Example of three synchronously-captured fisheye images
with annotations from FRIDA (top: camera 2, middle: camera 1, bot-
tom: camera 3).
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Figure 3·3: Illustration of bounding-box parameters available in
FRIDA.

with respect to the vertical axis of the image, and ID is the ID number of a person

(Figure 3·3). Each person in the dataset is assigned a unique ID which is consistent

across all frames of the dataset. There are 20 unique ID numbers in FRIDA.

3.1.2 Scenarios

FRIDA consists of four segments where each segment captures a different type of

challenge (Table 3.2). In segment #1, people enter the room, walk and sit down

(people are evenly distributed in the room). This segment resembles a lecture where

people remain seated for most of the time and their lower bodies are mostly occluded.

Segment #2 is the most crowded and dynamic segment. People are constantly moving

which occasionally causes severe occlusions, especially when people are close to each

other. This segment resembles a social meeting where people are wandering around

the room and talking to each other. Segment #3 is the longest one and has over

100,000 bounding boxes. Participants gather at either end or in the middle of the

room, and stand close to each other leading to severe occlusions. Segment #4 is the

shortest, with people leaving the room and causing occasional occlusions at the doors.
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Table 3.2: Detailed information about FRIDA (Fisheye Re-
Identification Dataset with Annotations).

Segment Number

of

frames

Number

of

BBoxes

Number

of BBoxes

per frame

Scenarios/Challenges

#1 7,017 66,810 3-15 People coming in and settling down;

evenly distributed around the room;

mostly sitting (lower bodies mostly oc-

cluded)

#2 3,471 53,460 13-18 People walking around the room; signifi-

cant occlusions

#3 6,207 103,141 13-17 Concentration of people in parts of the

room; people standing and staying close

to each other; people strongly occluding

each other

#4 1,623 20,028 5-16 People leaving the room; occasional occlu-

sions at entry/exit points

3.1.3 Gallery Set with Single Sample per ID

In typical PRID datasets, for a given query element there are multiple samples in

the gallery set with the query ID. In FRIDA, however, frames are captured at the

same time instant and the identities in one frame are treated as the query set while

identities in another frame are treated as the gallery set. Therefore, for a given query

element there can be at most one sample with the query identity in the gallery set. In

some cases, due to occlusions, a person may not be visible in a camera’s view. This

may lead to a no-match scenario at certain time instants for some query elements.

Note, that FRIDA can also be used for typical PRID by constructing the gallery from

multiple images of the same ID captured at different times, but this is not in the focus

of our work.
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3.1.4 Synchronous and Overhead Capture

Due to the overhead placement of cameras and simultaneous capture, the viewpoint of

a person directly under one camera may be dramatically different from the viewpoint

from another camera. This is unlike in most other PRID datasets where it is common

to capture a person from similar viewing angles (e.g., front, back, side, top) using

different cameras. Then, if one of the gallery elements has the same viewpoint as

the query, the chance of a match increases. However, in FRIDA, since the query and

gallery elements are synchronously recorded by different overhead cameras, people

never appear from the same viewpoint. This can be seen in Figure 3·2 where person

#14 is seen from the top in camera #1 view, from the front in camera #3 view and

from the back in camera #2 view. This makes the problem of PRID more challenging

compared to other datasets.

3.1.5 Fisheye Distortions

Since FRIDA was recorded by fisheye cameras, images are subject to radial geometric

distortions, especially close to FOV periphery. When a person is located at a different

distance to each camera, the person’s appearance is geometrically distorted to a

different degree in each camera view. This makes the problem of PRID even more

challenging compared to other datasets.

3.1.6 Resolution Mismatch Between Query and Gallery Sets

The synchronous, overhead capture and fisheye distortions often lead to very differently-

sized bounding boxes for the same person (resolution mismatch). Examples can be

seen in Figure 3·2, e.g., person #15 appears with very different resolutions in camera

#2 and camera #3 views. In Figure 3·4, we demonstrate this resolution mismatch

quantitatively. The resolution ratio R between two bounding boxes B1 and B2 is
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defined as follows:

R =
min(Area(B1), Area(B2))

max(Area(B1), Area(B2))
. (3.1)

Each data point in the plot shows the number of bounding-box pairs such that R ≤ ρ

with 0 ≤ ρ ≤ 1. Note that, the resolution mismatch is the largest (highest curve)

between cameras 2 and 3 since they are farthest apart (Figure 3·1).

Figure 3·4: Bounding-box resolution mismatch for all camera pairs.

3.2 Evaluating SOTA Algorithms on FRIDA

In order to gauge challenges offered by FRIDA, we evaluated the performance of

the following six SOTA traditional PRID algorithms on it: PCB (Sun et al., 2018),

Pyramid (Zheng et al., 2019a), ABD-Net (Chen et al., 2019b), VA-reID (Zhihui et al.,

2020), CTL (Wieczorek et al., 2021) and ResNet-50 (He et al., 2016). Detailed

descriptions of these algorithms can be found in Section 2.1. They are all CNN-based

and use person’s appearance for re-identification.

When evaluating each algorithm, we used the training strategy and hyper-parameters

suggested in the corresponding paper. To create query and gallery sets, we used the
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ground-truth bounding boxes from FRIDA. It should be noted that in a real-world

scenario (i.e., when no ground truth is available), bounding boxes are obtained by

a people detection algorithm. Mis-detections produced by such an algorithm will

degrade the PRID results.

3.2.1 Training-Testing Methodology

The same training and testing procedures (based on best practices commonly followed

in the PRID literature) were applied to all methods. We trained each CNN as a

classifier where we treated each identity as a different class. During testing, for a given

pair of video frames, we treated all people from one frame as the query set and those

from the other frame as the gallery set. Then, we fed the image of a person (within

the person’s bounding box) into the trained network and extracted a feature vector

from the final convolutional layer to serve as this image’s descriptor. We computed

the cosine similarity between all feature vectors of the query and gallery sets, resulting

in a score matrix S for each pair of frames3. We applied greedy matching to the score

matrix to match the query and gallery elements as follows:

1. pick the maximum value in S and assume the corresponding query and gallery

identities match,

2. remove the row and column of the matching identities from the matrix,

3. repeat the first 2 steps until no more matches are possible.

We used this algorithm since in FRIDA the fisheye cameras have a fully-overlapping

FOV and, therefore, a person can have at most one match in another camera’s FOV

(and can be removed from the score matrix). This procedure yields a matching

that associates query identities with gallery identities. A detailed pseudo-code for a

3Since cosine distance is symmetric, it is not important which frame is chosen as the query set
and which as the gallery set.
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possible implementation of the greedy algorithm is provided in Algorithm 1. In this

code instead of deleting rows and columns of matched pairs, we assign a value of −∞

to them. This is a convenient method to keep track of identities without changing

the size of S.

Algorithm 1 Greedy Algorithm

Ensure: S|Qn|×|Gn| ∈ R
2

▷ S is the score matrix S|Qn|×|Gn| = (sij)1≤i≤|Qn|,1≤j≤|Gn|

0 ≤ (sij)1≤i≤|Qn|,1≤j≤|Gn| ≤ 1

while max
1≤i≤|Qn|,1≤j≤|Gn|

(sij) ̸= −∞ do

k, l ← argmax
1≤i≤|Qn|,1≤j≤|Gn|

(sij)

k ∼ l ▷ Match the kth query and lth gallery identity

skj
1≤j≤|Gn|

← −∞

sil
1≤i≤|Qn|

← −∞

end while

An alternative to this greedy approach is a minimization of the total distance

between all query/gallery matches, e.g., by means of the Hungarian algorithm, but we

found this method did not outperfrom the greedy approach while being significantly

slower.

3.2.2 Dataset Splits

Despite more than 240,000 bounding boxes, FRIDA has only 20 different identities,

Since this is insufficient for creating separate training, validation and testing sets, we

evaluated the algorithms using 2-fold identity-wise cross-validation. We used half of

the identities in training (training fold) and the other half in testing (testing fold),
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and then we swapped the roles of identities and repeated the process. Specifically,

we created the training set by choosing 50 random time stamps4 for each identity

from the training fold and taking 3 images of this identity (one from each camera)

captured at this time (cameras are synchronized). This allowed a rich training set

with many different viewpoints of the same person. The training set is specified in

FRIDA. The testing set was composed of images of identities from the testing fold

extracted from all frames containing such identities.

We also trained the networks on Market-1501 (Zheng et al., 2015) and tested

them on FRIDA. Market-1501 is a commonly-used PRID dataset composed of images

captured by side-view, rectilinear-lens cameras (different cameras capture a person

at different times). For fairness, we used the same cross-validation sets as when both

training and testing on FRIDA.

3.2.3 Evaluation Metrics

To evaluate the algorithms, we modify the commonly-used Correct Matching Score.

We call our new performance metric the Query Matching Score (QMS), defined as

follows:

QMS =

∑M

n=1

∑
q∈Qn

✶(q = q̂)
∑M

n=1

∣∣Qn ∩Gn

∣∣

where M denotes the number of frames, Qn, Gn are the sets of query and gallery

identities in frame number n, respectively, and q̂ is the predicted identity of query

q or “null” if there is no match. The important difference between QMS and CMS

is that QMS accounts for situations when there is no match between a query and

gallery elements (|Qn ∩ Gn| in the denominator). Basically, QMS gives the ratio of

the number of correct matches to the number of true matches.

4Since in most of the traditional PRID datasets the number of samples per person in the training
set varies between 20 and 60, for a fair comparison we picked 50 time stamps from FRIDA for each
person during training.
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In addition to QMS, we also compute the commonly-used mean average precision

(mAP) (Zheng et al., 2015). It is important to note that in our scenario there exists

at most one matching gallery-frame identity for a given query element. Unlike in

traditional PRID, we can encounter a query whose identity is absent from the gallery

(due to complete occlusion). We exclude such cases from the mAP calculation.

3.2.4 Results

In Table 3.3, we report results when the algorithms are trained on Market-1501 and

tested on FRIDA. In Table 3.4, we report results for the same algorithms, but here

they are both trained and tested on FRIDA. These results are computed over all 4

segments of FRIDA for each camera pair. We also report the cumulative QMS value

which is computed as the total number of correct matches from all camera pairs and

all segments divided by the total number of possible correct matches from all camera

pairs and all segments. In addition to QMS, we report mAP (the cumulative mAP

is computed in a manner analogous to cumulative QMS). The common trend in both

tables is that all algorithms achieve the highest QMS/mAP for cameras 1 and 3, and

the lowest for cameras 2 and 3. This was to be expected since cameras 1 and 3 are the

closest to each other (Figure 3·1); people are captured at a more similar resolution,

viewpoint and geometric distortion compared to other camera pairs. Conversely, the

distance between cameras 2 and 3 is the largest which makes PRID more challenging.

As Table 3.3 shows, when trained on Market-1501, Pyramid (Zheng et al., 2019a)

performs the best among the six appearance-based methods and outperforms the

second-best algorithm, CTL (Wieczorek et al., 2021), by 6.87% points in terms of

cumulative QMS, and by 5.0% points in terms of cumulative mAP.

When these algorithms are trained on FRIDA (Table 3.4), CTL (Wieczorek et al.,

2021) outperforms other networks by 3.87-14.11% points in cumulative QMS and by

1.75-7.57% points in cumulative mAP. For cameras 1 and 3, CTL performs above 90%
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Table 3.3: Performance comparison of state-of-the-art algorithms trained on
Market-1501 and tested on FRIDA for different camera pairs. The highest values
of QMS and mAP for each camera pair and cumulatively are shown in boldface.

QMS [%] mAP [%]

1 ↔ 2 1 ↔ 3 2 ↔ 3 Cum. 1 ↔ 2 1 ↔ 3 2 ↔ 3 Cum.

ResNet-50

(He et al., 2016)
57.63 73.99 45.33 59.04 70.03 79.41 59.33 69.63

PCB

(Sun et al., 2018)
56.63 74.64 45.62 59.02 70.91 79.28 59.79 70.04

ABD

(Chen et al., 2019b)
61.26 73.68 44.22 59.78 70.80 77.93 58.71 69.19

Pyramid

(Zheng et al., 2019a)
74.58 84.66 54.88 71.46 78.72 86.38 64.89 76.72

VA-ReID

(Zhihui et al., 2020)
60.79 74.18 44.99 60.06 71.21 78.68 59.31 69.78

CTL

(Wieczorek et al., 2021)
66.92 83.68 42.88 64.59 72.57 84.99 57.44 71.72

Table 3.4: Performance comparison of state-of-the-art algorithms trained on
FRIDA and tested on FRIDA for different camera pairs. The highest values for
QMS and mAP for each camera pair and cumulatively are shown in boldface.

QMS [%] mAP [%]

1 ↔ 2 1 ↔ 3 2 ↔ 3 Cum. 1 ↔ 2 1 ↔ 3 2 ↔ 3 Cum.

ResNet-50

(He et al., 2016)
64.93 75.79 50.11 63.67 76.20 81.60 68.00 75.30

PCB

(Sun et al., 2018)
63.30 74.79 51.77 63.33 75.79 81.23 67.91 75.01

ABD

(Chen et al., 2019b)
75.31 83.18 62.05 73.57 82.43 85.16 74.81 80.83

Pyramid

(Zheng et al., 2019a)
67.79 80.78 53.48 67.42 75.38 81.59 68.61 75.23

VA-ReID

(Zhihui et al., 2020)
67.52 79.46 54.59 67.24 76.58 82.74 68.00 75.81

CTL

(Wieczorek et al., 2021)
77.30 90.11 64.76 77.44 82.7 89.79 75.17 82.58
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in terms of QMS. When trained on FRIDA, all networks achieve cumulative QMS

above 63% and cumulative mAP above 75%.

Comparing the performance of algorithms trained on Market-1501 versus those

trained on FRIDA, all the networks performed better when trained on FRIDA except

for Pyramid. In terms of cumulative QMS, the improvement achieved by training

ResNet-50, PCB, ABD, VA-ReID and CTL on FRIDA ranges from 4.31% to 13.79%

points. In terms of cumulative mAP, these networks improve by 4.97% to 11.64%

points by training on FRIDA. Considering the large number of bounding boxes in

FRIDA, these margins correspond to thousands of correct matches between identities.

It is impressive that training on Market-1501 using 750 identities and 9,928 bounding

boxes is outperformed by training on FRIDA with only 10 identities and less than

1,500 bounding boxes. This suggests that for an effective PRID on overhead fisheye

images, having a higher variability of the viewpoint (including overhead) for each

identity is more important than having more identities with less viewpoint variability.

We note, however, that Pyramid is an exception to this observation. This seems to

suggest that Pyramid is able to leverage a plurality of identities more effectively than

viewpoint variability.

In addition to Table 3.3 and Table 3.4, we report results for each segment sep-

arately in Table 3.5 and Table 3.6. In Table 3.5, the algorithms are trained on

Market-1501 and in Table 3.6 they are trained on FRIDA.

In Table 3.5, all algorithms perform the best on Segment 4. Segment 4 is the

shortest segment out of all segments. Moreover, in the second half of Segment 4,

people remaining in the room have a good variability in the color of their outfits

(purple sweatshirt, white sweatshirt, green tshirt etc.). In the experiments for Ta-

ble 3.5, there was a large domain gap between training (rectilinear, side-view) and

testing (fisheye, overhead) data which we believe caused algorithms to mostly rely
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Table 3.5: Performance comparison of state-of-the-art algorithms trained on
Market-1501 and tested on FRIDA for different segments. The highest values
for QMS and mAP for each segment and cumulatively are shown in boldface.

QMS [%] mAP [%]

Seg.1 Seg.2 Seg.3 Seg.4 Cum. Seg.1 Seg.2 Seg.3 Seg.4 Cum.

ResNet-50 52.77 57.41 62.63 66.18 59.04 66.44 70.87 70.43 73.50 69.63

PCB 54.86 59.16 60.39 67.18 59.02 67.31 71.75 70.25 74.78 70.04

ABD 52.20 58.04 64.39 66.73 59.78 65.32 69.95 70.46 74.71 69.19

Pyramid 70.12 70.50 72.75 76.56 71.46 78.05 77.32 75.40 80.20 76.72

VA-ReID 53.20 58.32 64.05 68.77 60.06 65.87 71.34 70.81 74.88 69.78

CTL 57.23 67.81 67.02 68.35 64.59 67.43 74.82 72.23 75.28 71.72

Table 3.6: Performance comparison of state-of-the-art algorithms trained on
FRIDA and tested on FRIDA for different segments. The highest values for QMS
and mAP for each segment and cumulatively are shown in boldface.

QMS [%] mAP [%]

Seg.1 Seg.2 Seg.3 Seg.4 Cum. Seg.1 Seg.2 Seg.3 Seg.4 Cum.

ResNet-50 62.87 62.67 63.74 68.49 63.67 75.19 75.42 74.75 79.17 75.30

PCB 63.69 63.61 63.79 62.19 63.33 76.23 76.13 74.03 75.24 75.01

ABD 76.27 77.80 70.40 73.84 73.57 84.14 83.09 77.94 81.66 80.83

Pyramid 64.36 68.33 68.18 74.39 67.42 74.21 76.99 74.55 79.99 75.23

VA-ReID 65.72 68.75 67.86 67.88 67.24 76.26 77.97 74.63 77.08 75.81

CTL 74.60 81.66 77.42 79.66 77.44 81.68 86.00 81.33 84.82 82.58
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on color information since “color” does not change much between the two domains.

Similarly to Table 3.3, the best performing algorithm on all segments, when trained

on Market-1501, is Pyramid (Zheng et al., 2019a), its performance exceeding 80%

points in terms of mAP in Segment 4.

In Table 3.6, almost all algorithms perform better compared to Table 3.5. This

is due to the fact that both training and testing sets consist of fisheye frames. In

Table 3.6, there is no single segment on which all algorithms perform the best, unlike

in Table 3.5. Pyramid (Zheng et al., 2019a) performs the best on Segment 1, VA-

ReID (Zhihui et al., 2020) and CTL (Wieczorek et al., 2021) perform the best on

Segment 2, and the remaining algorithms perform the best on Segment 4. We believe

this is due to the fact that the domain-gap between training and testing sets is small

(fisheye frames in training and testing sets), which leads each network to focus on

different parts of the appearance due to different architectures. In Table 3.6, the best

performing algorithm is CTL and its performance is improved by 10%-17% points for

different segments compared to Table 3.5.

3.3 Chapter Summary and Discussion

We introduced FRIDA, the first image dataset for person re-identification from over-

head fisheye cameras. The dataset is unique not only for the camera type used but

also for their overlapping fields of views that is often encountered when counting peo-

ple in large spaces. This leads to a new type of PRID - matching of people “seen” by

different cameras at the same time.

We evaluated the performance of 6 state-of-the-art PRID algorithms on FRIDA.

These algorithms were all CNN-based and used appearance of people for re-identifying

them. We demonstrated that training these algorithms on fisheye images improves

performance when testing on fisheye images, which is not surprising. However, even
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when trained on FRIDA, the best one achieved below 83% in cumulative mAP. This

suggests there is much space for improvement.
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Chapter 4

Location-Based Person Re-Identification

In the previous chapter, we demonstrated the performance of 6 state-of-the-art tradi-

tional rectilinear PRID algorithms on FRIDA. All these algorithms used appearance

of people to extract meaningful features for PRID. However, these algorithms did not

perform as well on FRIDA as they do on rectilinear PRID datasets (even when they

were trained on fisheye images). This performance drop is largely due to differences in

people’s appearance between images from different cameras that are caused by fisheye

distortions and significant viewpoint change. However, in cross-frame PRID, when

groups of images are captured at the same time, an unoccluded person in the scene ap-

pears at specific pixel locations in fisheye images from all cameras. The pixel location

is unique in each image since only one person can occupy a 3-D location in the scene.

We leverage this observation and propose a location-based approach to cross-frame

fisheye PRID, which uses location instead of appearance to match identities.

In this chapter 1, we are introducing a cross-frame fisheye PRID algorithm that

solely depends on the location of people. Compared to appearance-based methods,

this location-based approach is less sensitive to body-viewpoint variability, body-size

distortions and occlusions. However, it relies on image correspondence between two

fisheye cameras. We develop a mathematical relationship for this correspondence

using the unified spherical model (Geyer and Danilidis, 2001; Courbon et al., 2012)

for our cameras and propose a new calibration procedure to jointly estimate their

1This work was published in the 2021 IEEE International Conference on Advanced Video and
Signal-Based Surveillance (AVSS) (Bone et al., 2021)
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intrinsic and extrinsic model parameters including a novel calibration-data collection

method. The image-to-image correspondence depends on the height of a person which

is unknown. The challenge is in developing a methodology to handle these unknown

and varying heights of people. We propose 4 PRID algorithms that use different

metrics to quantify location-based match of identities for a range of typical human

heights. We evaluate the 4 algorithms on FRIDA using 2-fold cross-validation with

the same procedure for dataset splitting as proposed in Chapter 3. We demonstrate

that all 4 algorithms perform significantly better than the state-of-the-art appearance-

based methods that were evaluated in the previous chapter.

4.1 Fisheye Image Pixel-Correspondence Model

In this section, we develop a mathematical relationship that maps a point in an image

captured by one fisheye camera to the corresponding point in an image captured by

another fisheye camera. Our development uses the unified spherical model (USM)

proposed by Geyer and Danilidis (Geyer and Danilidis, 2001) and validated for fisheye

cameras by Courbon et al. (Courbon et al., 2012). The USM can be described as a

function F : R3 7→ Z
2, where the domain consists of 3D-world coordinates and the

range – 2D pixel locations in an image.

4.1.1 Notation

Consider a system composed of two overhead fisheye cameras (mounted on the ceiling

of a room) with overlapping fields of view. We assume the cameras have parallel

optical axes, orthgonal to the ceiling and floor, and are installed at the same height.

This is a common configuration in most indoor surveillance scenarios. Figure 4·1

depicts this configuration, where both cameras (A and B) are represented by USM.

Let the projection centers of cameras A and B be located at OA = [0, 0, 0]T and

OB = [dx, dy, 0]
T , respectively. Clearly, the 3D-world coordinate system (X, Y, Z)
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Figure 4·1: Projection model for two parallel fisheye cameras with
ξA = ξB = ξ.

is centered at OA, i.e., associated with camera A. Let the optical centers of both

cameras be located at CA = [0, 0,−ξA]
T and CB = [dx, dy,−ξB]

T , respectively where

ξA, ξB > 0. Finally, let each camera’s normalized image plane be orthogonal to the Z

axis and at the distance of 1 from the respective optical centers.

4.1.2 Forward Mapping

In this section, we describe the function which maps a 3D-world point at location

P = [Px, Py, Pz]
T (Figure 4·1) to the pixel coordinates in each camera view. Given

the displacement d = [dx, dy, 0]
T between cameras A and B, the orthogonal projection

of P onto the unit spheres centered at OA and OB is, respectively, given by:

SA =
P

∥P ∥
, SB =

P − d

∥P − d∥
+ d.
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A perspective projection of points at SA and SB onto the normalized (homogeneous)

image planes of each camera (with CA and CB used as the respective projection

centers), results in the following homogeneous coordinates pA and pB (relative to the

origin at CA):

pA := [pA,x, pA,y]
T =

[
Px

Pz + ξA∥P ∥
,

Py

Pz + ξA∥P ∥
, 1

]T

(4.1)

pB := [pB,x, pB,y]
T =

[
Px − dx

Pz + ξB∥P − d∥
+ dx,

Py − dy
Pz + ξB∥P − d∥

+ dy, 1

]T

(4.2)

In order to obtain pixel coordinates xA,xB, we transform the normalized image-plane

coordinates pA,pB using intrinsic-parameter matrices KA and KB of cameras A and

B, respectively. Since in practice it is difficult to keep the x and y axes of the two

cameras perfectly aligned, we allow a rotation of camera B by angle θ about the Z

axis. These two operations are expressed as matrix multiplications:

xA = KApA (4.3)

xB = RθKBpB (4.4)

The intrinsic parameters of camera i∈{A,B} are given by:

Ki =



ki,x 0 γi,x
0 ki,y γi,y
0 0 1




where ki,x and ki,y are scaling factors in the horizontal and vertical directions, respec-

tively, and (γi,x, γi,y) is the projection of a camera’s optical center onto the normalized

image plane (Courbon et al., 2012). The rotation by angle θ about the Z axis is
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expressed through the matrix:

Rθ =



cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1




The composition of mappings described in equations (4.1) and (4.3), along with the

final rounding of xA to integer pixel locations, describes function FA that maps P to

xA:

xA = FA(P ;ωA), (4.5)

where ωA := {ξA,KA} are parameters of the function. Similarly, the composition

of mappings described in equations (4.2) and (4.4), along with the rounding of xB,

describes function FB that maps (P ,d) to xB:

xB = FB(P ,d;ωB), (4.6)

where ωB := {ξB,KB,Rθ} are parameters of the function.

4.1.3 Pixel-Correspondence Mapping

In order to establish a mapping from pixel coordinates xA in camera A to pixel

coordinates xB in camera B, we need to invert FA (4.5). Since all 3D-world points

located on a line through camera’s projection center are mapped to the same pixel

coordinates, FA is not a 1-to-1 mapping and, therefore, not invertible. However, if the

z-coordinate Pz of a 3D-world point P projected to a pixel at location xA is available,

we can recover the x and y coordinates of P as follows. First, we compute

pA = K−1
A xA. (4.7)

Given pA and Pz, the x and y coordinates of P are:

[Px, Py]
T = Pz · [u · pA,x, u · pA,y]

T (4.8)
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where:

u =
1 + ξA

√
1 + (1− ξ2A)(p

2
A,x + p2A,y)

1− ξ2A(p
2
A,x + p2A,y)

(4.9)

Equation (4.9) is derived in the supplementary material (Appendix A) where we also

show that:

0 ≤ ξA ≤
1√

p2A,x + p2A,y

. (4.10)

The composition of mappings described in equations (4.7) and (4.8) defines a mapping

from the tuple (xA, Pz) to the 3D-world point P , which we denote as GA:

P = GA(xA, Pz;ωA). (4.11)

Composing the mappings described in equations (4.11) and (4.6) we get:

xB = FB(GA(xA, Pz;ωA),d;ωB).

=: GAB(xA, Pz,d;ω) (4.12)

where ω := {ωA,ωB}. Equation (4.12) defines the pixel-correspondence map from

xA to xB with knowledge of the two additional inputs Pz and d, and parameters ω

which will be learned from training data during camera calibration as described in

the next section.

4.2 Camera Calibration

The geometric model described in Section 4.1 is characterized by

ω = {ξA, ξB,KA,KB,Rθ},

containing a total of 11 scalar parameters which must be estimated for each camera

type and relative placement of the cameras. Clearly, if both cameras are identical,



43

then ξA = ξB = ξ andKA = KB = K and then only 6 instead of 11 scalar parameters

need to be estimated. We estimate ω by minimizing the sum of squared Euclidean

distances between N given matched pairs of pixel locations from two identical cameras

(xj
A,x

j
B), j = 1, . . . , N , with each pair corresponding to the same 3D-world point:

ω̂ = argmin
ω

M∑

j=1

∥xj
B −GAB(x

j
A, Pz,d;ω)∥2. (4.13)

The displacement d is assumed to be known and all 3D-world points used for camera

calibration have, by design (as described below), the same (known) z-coordinate Pz.

In order to solve the minimization in equation (4.13), a calibration dataset of

matched pixel pairs (xj
A,x

j
B) is needed. We collected and annotated a calibration

dataset, with 3 overhead fisheye cameras arranged in the linear configuration depicted

in Figure 3·1.

In the interest of minimizing the human effort required for calibration, we applied

a semi-automated process to collect matched (xj
A,x

j
B) pairs. We rolled a cart around

the room equipped with a colored spherical LED light mounted at a known height

(known Pz) and synchronously captured images by all three cameras (Figure 4·2).

We applied color thresholding to each image to automatically find the LED location

in pixel coordinates. In total, we collected M=1,173 matched point triplets (pixel

coordinates from all three cameras corresponding to the same 3D-world point) for

calibration.

We used stochastic gradient descent to minimize the objective in equation (4.13).

During each update step, we applied constraint (4.10) if ξ was to violate this constraint

after updating. Because each camera can be treated as either camera A or camera

B, there are six ordered pairs of cameras in our experimental setup (Figure 3·1). We

train on data from all 6 camera pairs in a fixed order, and repeat this cycle 5,000

times with a learning rate of 10−5. Figure 4·3 shows an example of the accuracy of
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Figure 4·2: Three synchronously-captured images showing a mobile cart with col-
ored spherical LED light. From left to right are shown images from cameras 2, 1, 3,
respectively (Figure 3·1). The LED light location is found by color thresholding and
shown as a red cross.
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image-to-image mapping obtained with the estimated parameters ω̂.

4.3 Application of the Pixel-Correspondence Model to Per-

son Re-Identification

In this section, we develop a re-identification method based on geometric, rather

than appearance, constraints. Let {xi
A}

K
i=1 be the set of known pixel locations of K

people (query subjects) in a fisheye image captured by camera A, and {xj
B}

L
j=1 the

pixel locations of L people (gallery subjects) in an image simultaneously captured

by camera B. Due to occlusions and detection errors, it is sometimes the case that

K ̸= L. Our goal is to find which query subjects in camera A correspond to gallery

subjects in camera B based on their respective locations.

Using equation (4.12), for the i-th query person’s location in camera A, namely

xi
A, we can estimate this person’s location in camera B as follows:

x̂i
B(Z) = GAB(x

i
A, Z,d; ω̂), (4.14)

if we know Z, which is related to the height of the person. We assume that the person’s

pixel location in an image is the center of a close-fitting rectangular box bounding

the person’s body in the image. Taking the average person’s height as 168 cm and

knowing the camera installation height of 254 cm, we set the expected value of the

center of a person’s body Zavg to 170 cm (254 cm minus one half of person’s average

height). In order to accommodate a range of people’s heights and also different body

poses (e.g., sitting, bending over a laptop, leaning on a table) we also consider a range

of Z values from 150 cm to 190 cm in steps of 2 cm: Z ∈ ZR := {150, 152, 154, . . . ,

190} cm, which corresponds to heights from 128 cm to 208 cm.

Figure 4·4(a) shows query locations xi
A (crosses) of 4 people in camera A = 2,

each associated with one color. Figure 4·4(b) shows their true locations xi
B (gallery)



46

Figure 4·3: Illustration of the mapping given by Equation (4.12) from camera A =
1 (left) to camera B = 3 (right) produced by the calibrated geometric model. The
green points are ground-truth locations and the red points are predicted locations.
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(a) Camera 2

(b) Camera 3, Z = 170cm

(c) Camera 3, Z ∈ ZR

Figure 4·4: Illustration of location predictions for 4 people (cyan, yellow, magenta,
orange). (a) Query-subject locations in camera 1 (crosses). (b) Gallery-subject loca-
tions in camera 3 (crosses) and predicted query locations for single Z = Zavg = 170cm
(4 bullets). (c) Gallery-subject locations in camera 3 (crosses) and predicted query
locations for Z ∈ ZR (4 sequences of bullets).
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in camera B = 3, also denoted by crosses, as well as their predicted locations x̂i
B(Z)

for Z = Zavg, denoted by bullets. Note that the predicted locations are quite accurate

except for the person who is far away from camera 1 but almost directly under camera

3 (orange). This is the worst-case scenario since the same distance in 3-D space is

severely contracted at FOV periphery and expanded in FOV center. A mapping in

the opposite direction would result in a much smaller error. The distances between

predicted and known locations in camera B can be used to match identities between

the two cameras. Similarly, Figure 4·4(c) shows true locations xi
B in camera B and

sequences of predicted locations x̂i
B(Z) for Z ∈ ZR. Each predicted location in a

sequence is associated with a different assumed height of this person and can be used

to match identities between the two cameras.

4.3.1 Distance Measures

We consider four methods, described below, to measure the distance Dij between the

pixel location of the jth gallery subject in camera B and the predicted pixel location

(or a set of locations) in camera B of the ith query subject:

• Point-to-Point Distance (PPD): Taking Zavg = 170 cm, we measure the

distance between the ith query subject’s predicted location in camera B and

the jth gallery subject’s location as:

Di,j = ∥x̂
i
B(Zavg)− x

j
B∥.

This method invokes the geometric mapping only once for each query location

and is therefore the fastest among all methods that we propose.

• Point-to-Set Minimum Distance (PSMD):We accommodate different peo-

ple’s heights and body poses by producing a set of query subject’s predicted

locations {x̂i
B(Z)}Z∈ZR

in camera B. Then, we measure the minimum distance
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between the set of query subject’s predicted locations and each gallery subject’s

location:

Di,j = min
Z∈ZR

∥x̂i
B(Z)− x

j
B∥.

• Point-to-Set Total Distance (PSTD): Again, we use the same range of Z

values as in PSMD, but we measure the sum of distances between the query

subject’s predicted locations and each gallery subject’s location:

Di,j =
∑

Z∈ZR

∥x̂i
B(Z)− x

j
B∥.

• Count-Based Distance (CBD): We use the same range of Z values as in

PSMD and PSTD, but instead of computing a distance we conduct a “vote”.

The vote of the jth gallery subject’s location is the number of Z values for which

the jth gallery location is closest to the predicted query location among all other

members in the gallery. We define:

Di,j = |ZR|−
∑

Z∈ZR

✶
[(

argmin
k
∥x̂i

B(Z)− xk
B∥

)
= j

]

where ✶ is the indicator function and ties in argmin are broken randomly. We

note that unlike other distance measures, Dij in CBD depends on not just xj
B,

but on all the gallery subject’s locations x1
B, . . . ,x

L
B.

4.3.2 Identity Matching

Given two sets of identities in camera A and camera B, the goal is to find a match

between the sets: {xi
A}

K
i=1 and {xj

B}
L
j=1. In the previous section, we showed how

to come up with the distance matrix Di,j which consists of distances between the

predicted location of the i-th query subject and the location of the j-th gallery subject

both in camera B. However, this can be reversed, and we can map the query locations
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from camera B to camera A. In other words, we can assign x
j
B to be a query subject’s

location in camera B and similarly assign the set {xi
A}

K
i=1 to be the gallery subject

locations in camera A.

Similarly to mapping (4.14), for the j-th person’s location in camera B, namely

x
j
B, we can estimate this person’s location in camera A as follows:

x̂
j
A(Z) = GBA(x

j
B, Z,d; ω̂), (4.15)

and compute distances Dj,i by replacing ∥x̂i
B(Z)−x

j
B∥ with ∥x̂

j
A(Z)−x

i
A∥. Since it is

unclear which matching direction would produce more accurate results, we propose to

use a combination of two distance matrices: D = DAB +DT
BA, where DAB denotes

the distance matrix when a query is in camera A and the gallery is in camera B.

Then, we apply greedy algorithm to D to find matches. We perform the greedy

algorithm in a similar way to that described in Section 3.2.1, however this time we

perform minimization instead of maximization.

Note, that bidirectional matching was not needed in Section 3.2.1 since the similar-

ity between two identities was computed through cosine similarity which is symmetric.

Thus, regardless of which camera identities were chosen as query or gallery, the result

would have been the same.

4.4 Experimental Results

Our experimental setup includes three cameras, so we need to learn two θ values:

angle θ1 between cameras 1 and 2, and angle θ2 between cameras 1 and 3. Since we

use 3 identical cameras (Axis M3057-PLVE), there are a total of 7 scalar parameters to

be learned, that is ξ, four entries of the K matrix, and angles θ1 and θ2. Estimates of

these parameters produced by the camera calibration method described in Section 4.2

are shown in Table 4.1.
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ξ θ1 θ2 kx ky γx γy

2.0129341 0.003265 -0.0086144 2.0210802 1.9735336 0.0059010 0.0111225

Table 4.1: Estimated parameter values ω̂ for our experimental setup.

We evaluated the PRID performance of our algorithms on FRIDA (Chapter 3).

For a fair comparison, we used the same data splits as proposed in Section 3.2.2.

Note, that this time instead of using RGB values from each bounding box, we used

the pixel location of the center of each bounding box. In each pair, one camera serves

as a source of query locations and the other serves as the source of gallery locations.

We used the same bounding boxes as in Section 3.2, however, this time instead of

using the content of the bounding boxes, we only used coordinates of their centers.

People detection was not in the scope of this study.

Similarly to Section 3, we use QMS and mAP as evaluation metrics. Table 4.2

shows both metrics for location-based PRID for different camera pairs. Over all

camera pairs CBD is a consistent winner. The main reason CBD outperforms PSMD

and PSTD is that it does not depend on the distance but instead depends on counts.

During a height sweep, some predicted query locations may be far away from the

correct gallery location thus biasing PSMD and PSTD by such distance outliers. On

the other hand, in CBD all query locations contribute the same value (count of 1) to

D thus improving robustness to outliers.

We expected that PPD should have the lowest computational complexity among

all 4 algorithms since it uses a single Z whereas other algorithms sweep a range of Z’s.

Running the algorithms for all camera pairs over all frames on Intel(R) Core(TM) i7-

4790K CPU@4.00GHz resulted in average time per frame-pair of 4.63 ms for PPD and

between 70.49 ms and 71.28 ms for the other algorithms. This about 15-fold slowdown

is consistent with the 21-fold increase in the number of Z values tested. However, the
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Table 4.2: Performance comparison of the location-based PRID for different cam-
era pairs. The highest values for QMS and mAP for each camera pair and for the
cumulative are shown in boldface.

QMS [%] mAP [%]

1↔2 1↔3 2↔3 Cum. 1↔2 1↔3 2↔3 Cum.

PPD 85.39 90.73 87.92 88.01 93.35 95.67 92.74 93.93

PSMD 92.52 90.44 89.25 90.75 95.37 95.92 93.87 95.06

PSTD 86.81 90.81 88.66 88.75 93.71 95.67 92.77 94.06

CBD 94.63 92.62 92.07 93.11 97.13 97.22 96.55 96.97

Table 4.3: Performance comparison of the location-based PRID for different seg-
ments of FRIDA. The highest values for QMS and mAP for each algorithm are shown
in boldface.

QMS [%] mAP [%]

Seg.1 Seg.2 Seg.3 Seg.4 Cum. Seg.1 Seg.2 Seg.3 Seg.4 Cum.

PPD 99.51 87.39 80.60 90.77 88.02 99.49 94.47 90.13 93.95 93.93

PSMD 99.58 91.21 85.69 87.99 90.75 99.83 95.62 91.98 94.16 95.06

PSTD 99.69 88.08 81.79 91.03 88.76 99.60 94.69 90.22 94.19 94.06

CBD 99.17 92.18 89.81 93.69 93.11 99.69 96.82 95.41 96.51 96.97

PPD approach is sensitive to the selection of Z value (in these experiments, we set

the person’s height to 168 cm, the US average).

Table 4.3 shows the performance of geometry-based PRID algorithms for each

segment of FRIDA. Clearly, all 4 algorithms did extremely well on segment 1 in

which people are spread out fairly uniformly in the room and are never very close to

each other. On the other hand, in segment 3 people stand very close to each other

posing difficulties for location-based matching, resulting in the lowest performance

among all segments. As expected, the algorithm based on the PPD distance metric

(single query location mapping using an average person’s height) achieves the lowest
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performance among the four algorithms. Algorithms that use a range of heights of

people perform better with the CBD-based algorithm achieving the best performance

in terms of the cumulative QMS (93.11%) and cumulative mAP (96.97%).

It is interesting to compare the performance of appearance-based algorithms from

Table 3.4 and the performance of location-based methods from Table 4.2. It is clear

that the location-based algorithms perform significantly better than the appearance-

based methods. In fact, the worst performing location-based algorithm PPD achieves

cumulative QMS of 88.01% and cumulative mAP of 93.93%, which is significantly bet-

ter than the best-performing appearance-based algorithm which achieves cumulative

QMS of 77.44% and cumulative mAP of 82.58%.

Another interesting point is that, both types of algorithms struggle on different

segments of FRIDA. When we compare Table 3.6 and Table 4.3, we can see that

location-based methods did extremely well (all of them achieve QMS above 99%)

on segment 1 in which people are spread out fairly uniformly in the room and are

never very close to each other. On the other hand, appearance-based methods achieve

at most 76.27% QMS because people are coming into the room and spending some

time in their coats which look similar to each other. However, on segment 3 all

location-based algorithms perform worse than on the other segments, because in this

segment people stand very close to each other. On the other hand, some appearance-

based methods perform better on segment 3 than they performed on segment 1.

The maximum performance difference of appearance-based methods between different

segments is 7.4%-points in QMS and 6.2 %-points in mAP. A similar difference for

location-based methods is larger: 18.91%-points in QMS and 9.36%-points in mAP.
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4.5 Chapter Summary and Discussion

We have proposed a supervised training methodology that leverages the unified spher-

ical model to jointly estimate the extrinsic and intrinsic parameters of a network of

overhead fisheye cameras. We have shown that this model can be used to accurately

predict pixel locations across camera views, and that this can be used for person re-

identification between time-synchronized overhead fisheye cameras with fully overlap-

ping FOVs (i.e., in cross-frame fisheye PRID). In this setting, we have shown that our

location-based approaches can vastly outperform state-of-the-art appearance-based

methods. The best-performing location-based method reaches almost 97% in cumu-

lative mAP computed across all FRIDA segments and camera pairs. This is close

to a perfect re-identification. Only in high-density scenarios (people close to each

other causing severe occlusions), does its performance drop to about 95%. However,

location-based algorithms require calibration of each camera type used and additional

measurements for each camera layout.
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Chapter 5

Spatio-Visual Fusion-Based Person

Re-Identification

In Chapter 3, we evaluated six state-of-the-art appearance-based PRID algorithms.

As discussed in Section 3.2.4, these algorithms did not perform as well as they do

in traditional rectilinear PRID. Among the key reasons for the performance drop are

fisheye-lens distortions, different viewpoints of the same person and different resolu-

tions of the corresponding person-images, especially pronounced when the person is

located at very different distances from both cameras. In Chapter 4, we by-passed

these issues by introducing a cross-frame fisheye PRID approach that solely relies on

the location of people. Thanks to its resistance to fisheye distortions and resolution

mismatch, location-based approach outperformed the appearance-based PRID meth-

ods with a significant margin. However, as discussed in Section 4.4, the performance

of location-based PRID degrades when people are standing close to each other.

In this chapter we propose a framework for cross-frame fisheye PRID that com-

bines appearance and location information to improve performance. The methods

and results of this chapter were published in (Cokbas et al., 2023) When people are

very close to each other, matching identities using location information is often per-

ilous due to location-estimation errors, as discussed in Section 4.4. In this case, visual

characteristics of a person may help disambiguate any confusion as, for example, in

the left column of Figure 5·1. On the other hand, when people look very similar (e.g.,

due to color of clothing or body shape), appearance-based methods frequently fail to
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differentiate between them. However, a 3-D location in a room can be occupied by

at most one person, so location information should help with correct matching as in

the example shown in the right column of Figure 5·1. Only when two similar-looking

people are next to each other would this approach would fail, but then a human eye

would likely fail as well.

For appearance information, we propose to combine hand-crafted and deep learning-

based features. As the former, we use a color histogram computed from a bounding

box around each person. As the latter, we use an embedding from a state-of-the-art

PRID deep-learning method (Wieczorek et al., 2021) developed for rectilinear cam-

eras and fine-tuned on fisheye data (domain transfer). More detailed description of

this method can be found in Chapter 3. In order to obtain person-location infor-

mation, we use the method developed in Chapter 4. We use Näıve Bayes fusion to

combine the color, embedding and location data by converting each to a similarity

score (between two identities) and multiplying the scores after suitable normalization.

We perform identity matching by a greedy algorithm.

We evaluate the proposed framework on FRIDA (Chapter 3) and include an ab-

lation study where we demonstrate that a combination of all three feature types

performs up to 33% points better in QMS and up to 27% points better in mAP than

when using a feature individually.

5.1 Methodology

In order to perform cross-frame PRID between two fisheye frames, as we have been

doing in Chapter 3 and 4, we designate one of the frames as a query frame and the

other frame as a gallery frame. We denote the sets of identities of people in the query

and gallery frames at time tn as Qn and Gn, respectively. We compute a |Qn| × |Gn|

score matrix where, | · | is the cardinality operator. The score in the ith row and jth
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Location ambiguity Appearance ambiguity

Figure 5·1: Illustration of location and appearance ambiguity. When
people are very close to each other, distinct color of clothing and/or
body shape/features may help resolve location ambiguity (left column).
When people have very similar appearance (e.g., light-gray T-shirts
and dark pants), knowing their location may help resolve appearance
ambiguity (right column).
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column of this matrix represents the similarity between the ith query element and

the jth gallery element. Each score is a combination of 3 scores, each derived from a

different type of feature: (1) neural-network embedding; (2) color histogram; and (3)

location, as shown in Figure 5·2. Below, we discuss how each feature is computed,

how it is converted to a pairwise-similarity or -dissimilarity score, how these scores

from different features are converted into match-probabilities and fused together and,

finally, how the matching between query and gallery elements is performed based on

the fused match-probabilities.

Figure 5·2: Block diagram of the proposed method. In the first
step, features are extracted from the contents of bounding boxes (for
appearance-based methods) or their positions within the frames (for
location-based method) for the query and gallery identity sets (which
are denoted by Qn and Gn, respectively, for frame number n). In
the next step, features of query-gallery pairs are converted into either
pairwise-similarity or pairwise-dissimilarity scores. They are then nor-
malized via the softmax operation to obtain match-probability matrices
for each feature group which are then fused together via the Hadamard
product into a fused match-probability matrix. Finally, a greedy se-
quential matching algorithm based on the fused match-probability ma-
trix is used to produce the query-gallery matches.

5.1.1 Deep-Learning Features and Pairwise-Similarity Scores

Deep-learning methods perform exceedingly well in many visual inference tasks, in-

cluding rectilinear-camera PRID. It is only natural to consider features extracted by
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such methods for fisheye PRID as well.

Features: To extract deep-learning features, we pass the content of each bounding

box (assumed given) through the CTL deep neural network (Wieczorek et al., 2021).

We opt for CTL since, as we demonstrated in Section 3.2.4, it is the top-performing

model among 6 state-of-the-art PRID models evaluated on fisheye data. We use the

output of the last convolutional layer in the CTL model as the feature vector.

Pairwise-Similarity Scores: We compute cosine similarity between the features

of the query and gallery elements to obtain a |Qn| × |Gn| pairwise-similarity matrix

at time tn. Since cosine similarity is symmetric, its values are unaffected by whether

a given camera view is designated as query or gallery.

5.1.2 Color Histograms and Pairwise-Dissimilarity Scores

In Chapter 3, we showed that CTL’s performance improved when trained on fisheye

images instead of rectilinear images. However, even when trained on fisheye images,

its features are still affected by the challenges mentioned in Section 3.1 (e.g., fisheye

distortions, resolution mismatch, viewpoint mismatch). One feature that is not im-

pacted by these challenges is color ; an example can be seen in Figure 5·3. We leverage

this observation, by using color histogram as a hand-crafted identifier of each person.

Features: Rather than using a 3-D RGB histogram, we convert RGB values to

HSV space and then compute a 1-D histogram of hue H and normalize it to obtain a

probability distribution over discretized hue values. In this way, we reduce the impact

of illumination variations (change in value V) and color variations under different

lighting (change in saturation S).

Pairwise-Dissimilarity Scores: If q and g are query and gallery hue probability

distributions, respectively, we measure their dissimilarity by calculating the Jensen-
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Figure 5·3: Illustration of the importance of color information in
fisheye PRID. The person in the red bounding box in the top frame
is severely shrunk, however the distinctive color of the sweatshirt still
allows to distinguish this person from others.
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Shannon (JS) divergence DJS between them as follows:

DJS(q||g) =
1

2
DKL(q||p) +

1

2
DKL(g||p)

where p = (q+g)/2 andDKL(·||·) is the Kullback-Leibler (KL) (Kullback and Leibler,

1951) divergence between two probability distributions.

Although both KL divergence and JS divergence are commonly used as measures of

distance between two density/distribution functions, we opt for JS divergence because

it is symmetric (unlike KL divergence) and it is always finite (the KL divergence

DKL(a||b) is infinity if there is a component i where bi = 0 but ai > 0). Note

that the final result is a |Qn| × |Gn| divergence matrix (larger values denote larger

dissimilarity) unlike in the case of pairwise-similarity matrix in Section 5.1.1.

5.1.3 Location-Based Features and Pairwise-Dissimilarity Scores

The deep-learning features and color histograms capture visual appearance of people.

However, as mentioned earlier, due to the overhead viewpoint and fisheye-lens dis-

tortions the appearance of people may change dramatically between cameras. This

difficulty was observed and addressed in Chapter 4 where we proposed to use the

location of people rather than their appearance for re-identification.

In this method, as described in Section 4.1.3, we first inverse-map the 2D-pixel

coordinates (i.e., centers of bounding boxes) from a camera’s FOV to their 3D-world

coordinates. Then, we map these 3D-world coordinates to another camera’s FOV

through forward-map described in Section 4.1.2. Finally, we match identities using

a distance measure (Section 4.3.1) between locations of the mapped query elements

and the gallery elements. One caveat to this approach is that the mapping model

requires knowledge of a person’s height. In Section 4.3.1, we addressed this issue by

either assuming that every person has the same height (PPD) or by sweeping a range
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of typical heights for each person (PSMD, PSTD, CBD).

Features: We use two distances proposed in Section 4.3.1, specifically the Point-

to-Point Distance (PPD), which is computationally efficient, and the Count-Based

Distance (CBD), which is best-performing but significantly more complex.

Pairwise-Similarity Scores: Since neither PPD nor CBD metric is symmetric,

we compute a symmetric version of pairwise-dissimilarity matrix as detailed in Sec-

tion 4.3.2. More specifically, we swap the query and gallery designations of cameras,

and compute another distance matrix. Then, we transpose this matrix and add it to

the unswapped distance matrix to arrive at the final pairwise-dissimilarity matrix.

5.1.4 Fusion of Features

While each feature type can be used individually to perform PRID, our motivation is

to leverage appearance features (deep-learning and color histogram) to disambiguate

location uncertainty while relying on location to differentiate individuals with similar

appearance. Ideally, one would select suitable features for each potential match, but

this is a more difficult problem that should be considered in future research.

In this work, we combine features for all potential matches in the same way by

means of a probabilistic information fusion mechanism. Recall that for each feature

type and query/gallery sets we obtain a |Qn| × |Gn| pairwise-similarity or pairwise-

dissimilarity matrix. We normalize each row of either matrix by applying the softmax

operator with positive sign in the exponent to pairwise-similarity matrices and with

negative sign to pairwise-dissimilarity matrices as follows:

(SN−DL)ij = σ[(SDL)ij] =
e

(SDL)ij
T

∑K

k=1 e
(SDL)ik

T

(5.1)

(SN−CH)ij = σ[(DCH)ij] =
e−

(DCH )ij
T

∑K

k=1 e
−

(DCH )ik
T

(5.2)



63

(SN−LOC)ij = σ[(DLOC)ij] =
e−

(DLOC )ij
T

∑K

k=1 e
−

(DLOC )ik
T

(5.3)

where σ denotes the softmax operator, T is a temperature parameter, and K is the

gallery size for a given video frame pair. The similarity matrices for deep-learning

features before and after normalization are denoted by SDL and SN−DL, respectively.

Similarly, DCH and DLOC denote the dissimilarity matrices for color-histogram fea-

tures and location-based features before normalization and SN−CH and SN−LOC de-

note their normalized versions. Note that in Equations (5.2) and (5.3), the exponents

of softmax are negative to convert the dissimilarity matrices into similarity matrices.

This converts both types of matrices into row-stochastic matrices where each row rep-

resents the conditional probabilities of gallery elements (columns) matching a given

query (row).

Finally, we use the Näıve Bayes methodology to fuse the conditional probabilities

of different features by taking the Hadamard product (element-wise multiplication)

of the conditional probability matrices of different features to obtain the final match-

probability matrix (Figure 5·2):

(SDL+CH+LOC) = SN−DL ⊙ SN−CH ⊙ SN−LOC (5.4)

where ⊙ is the Hadamard-product operator.

5.1.5 Matching Algorithm

Regardless of whether each feature type is used separately or is combined with one

or two other feature types, the final match-probability matrix contains elements that

describe the normalized degree of similarity between a query identity and a gallery

identity. In order to match query and gallery identities, one could maximize the sum of

logarithms of match-probabilities (or equivalently the product of match-probabilities)
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for all possible matches via the Hungarian algorithm, but this is computationally

expensive. Instead, as discussed in Section 3.2.1, we apply greedy matching to matrix

S of match-probabilities between query and gallery elements. The probability of the

matching is taken to be the product of the match-probabilities for all the query-gallery

matches in the matching.

Due to the row-wise normalization described in Section 5.1.4, swapping query and

gallery sets would likely produce different results. Therefore, we consider both cases

by applying row-wise normalization to the original matrix (either pairwise-similarity

or pairwise-dissimilarity) and to its transposed version. Then, we apply the greedy

algorithm outlined above to both normalized matrices and compute the probability of

the matching (for the best greedy sequential matching) for each matrix. As the final

identity match, we use the pairings provided by the matrix with the higher probability

of matching. We apply this approach to individual features and to all combinations

thereof.

5.2 Experimental Results

Just as in Sections 3.2 and 4.4, in this section we focus on the re-identification problem,

independent of the people detection problem. Therefore, we assume that people

detections (i.e., bounding boxes) are provided by an annotated dataset. In practice,

application of PRID will also be affected by people mis-detections, which will be

further discussed in Chapter 6.

5.2.1 Dataset Splits

In order to validate the proposed algorithms, we used FRIDA (Cokbas et al., 2022),

as we have been doing in Chapters 3 and 4.

Among the three feature types we proposed, only deep-learning features need

training (CTL). To train and evaluate CTL, we adopt the 2-fold cross-validation
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methodology that was described in Section 3.2.2 – half of the identities are in one

fold and the remaining half are in the other fold. Although color-histogram and

location features do not require training, in order to ensure fair comparison, we adopt

the same testing approach that was used for CTL to evaluate the performance of all

our methods. We note that in this testing methodology, for a given pair of time-

synchronized video frames, all people from one frame (whose identities belong to a

fold) are treated as the query set and those from the other frame (again with identities

belonging to the same fold) are treated as the gallery set.1

5.2.2 Implementation Details

We extracted deep-learning features from each bounding box using CTL with a

ResNet backbone (Wieczorek et al., 2021). We trained CTL on NVIDIA Tesla V100

GPUs using Adam optimizer with a learning rate of 3.5e-4, weight decay of 5e-4 and

momentum of 0.937 over 300 iterations.

In order to match the bounding box size to the one that CTL accepts, we applied

zero padding to maintain the aspect ratio and then resized the image. When com-

puting color histograms, we used 256 bins and normalized each histogram to sum up

to 1. When computing location-based features, we used an average person’s height of

168 cm in the PPD metric and 21 heights ranging from 128 cm to 208 cm in the CBD

metric. In the softmax normalization of features, we set the temperature parameter

to T = 10 2.

1Note that in real-life scenarios, there might be cases where an identity in the query frame may
not appear in the gallery frame due to occlusion or mis-detection by a person-detection algorithm.
These scenarios will be discussed in Chapter 6.

2The value of T was determined heuristically via a loose grid search using values that are an
order of magnitude apart.
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5.2.3 Results

In this section, we report the PRID performance for deep-learning features (DL),

color histograms (CH) and location-based features (LOC) separately, and also for

three combinations of two feature types (DL+CH, CH+LOC, DL+LOC) and for all

three feature types together (DL+CH+LOC) for two distance metrics: PPD and

CBD. All the results are summarized in Table 5.1. To evaluate the performance of

the proposed algorithms, we use the same evaluation metrics (i.e., QMS and mAP)

that have been used in Chapters 3 and 4.

We note that since we are using an annotated dataset, each bounding box corre-

sponds to a person truly visible in a camera’s FOV. This allows us to demonstrate the

re-identification performance of each algorithm without the confounding influence of

errors in people detection.

In addition to reporting camera-pairwise QMS and mAP values (e.g., “1↔2”),

we also report cumulative values (“Cum.”) computed by using the total number of

correct matches and the total number of possible correct matches over all camera pairs

rather than for a single pair.

It can be observed, that among individual features the location-based one sig-

nificantly outperforms DL and CH. Furthermore, the color histogram performs at

least 12% points below DL in cumulative QMS and mAP. Clearly, color is hardly

enough to distinguish people, but DL features which capture richer properties of ob-

jects, including color, perform much better. However, a person’s location captured

by time-synchronized cameras is a much better indicator of who is who.

Combining the appearance-based features (DL+CH), improves DL’s performance

by about 4% points in cumulative QMS and about 2% points in cumulative mAP.

However, the DL+CH combination still performs well below location-based PRID.

Interestingly, for Camera 1-Camera 3 pair the QMS performance of DL+CH combina-
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Table 5.1: Performance comparison of PRID on FRIDA dataset for various combina-
tions of deep-learning (DL), color-histogram (CH) and location-based (LOC) features,
for both PPD and CBD distance measures. The highest values of QMS and mAP for
each camera pair (e.g., “1↔2”) and for the cumulative (“Cum.”) metric are shown
in boldface.

QMS [%] mAP [%]

DL CH
LOC

(PPD)

LOC

(CBD)
1↔2 1↔3 2↔3 Cum. 1↔2 1↔3 2↔3 Cum.

✓ 80.34 91.12 66.89 79.50 83.31 90.78 76.00 83.40

✓ 60.41 85.84 44.91 63.80 67.68 85.60 58.46 70.63

✓ ✓ 83.58 94.79 70.65 83.06 84.82 93.58 76.55 85.02

✓ 94.76 95.83 92.51 94.37 94.84 96.78 93.97 95.20

✓ ✓ 95.41 96.33 93.66 95.14 95.13 97.12 94.24 95.50

✓ ✓ 97.09 98.25 95.15 96.84 95.78 97.73 94.83 96.12

✓ ✓ ✓ 97.31 98.42 95.45 97.07 95.92 97.88 94.93 96.25

✓ 96.63 95.01 93.28 94.98 98.18 97.92 96.92 97.68

✓ ✓ 97.23 96.37 94.67 96.10 98.48 98.27 97.22 98.00

✓ ✓ 98.07 97.66 96.05 97.27 98.83 99.24 97.63 98.57

✓ ✓ ✓ 98.03 97.75 96.22 97.34 98.66 99.26 97.18 98.37
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tion is close to the one for the location-based algorithms (LOC/PPD and LOC/CBD).

This is so because these two cameras are closer to each other in the physical world

compared to the other two camera pairs (see Figure 3·1 for camera layout). Thus, the

resolution difference for a person positioned between these two cameras is the small-

est. This makes appearance-based PRID more accurate compared to the other camera

pairs. Indeed, the DL+CH combination performs worst for Camera 2-Camera 3 pair

which are farthest apart. The location-based approach (single feature) also performs

better when the cameras are closer to each other, but the performance difference be-

tween the best and the worst cases is no more than 4% points in terms of QMS or

mAP (compared to over 24% points QMS and over 17% points mAP for DL+CH).

The most significant performance boost, when using two feature types, comes

from the combination DL+LOC as these are the two best performing approaches in-

dividually. Combining LOC/PPD with DL boosts its performance by 2.47% points in

terms of cumulative QMS. Similarly, combining LOC/CBD with DL delivers perfor-

mance boost of 2.29% points in cumulative QMS. The performance improves further,

although very slightly, when color histogram (CH) is combined with DL+LOC fea-

tures. When we use PPD distance metric, performance reaches 97.07% in cumulative

QMS and 96.25% in cumulative mAP, whereas when we use CBD distance metric

it achieves 97.34% and 98.37%, respectively. However, one should note that the in-

clusion of CH in the DL+LOC/CBD combination can have a slightly detrimental

effect.

Our results also support conclusions reached in Chapter 4, namely that algorithms

that involve the CBD location metric perform better than the ones that involve the

PPD metric. Indeed, LOC/CBD outperforms LOC/PPD by 0.61% points of cumula-

tive QMS. However, when we compare DL+CH+LOC/PPD and DL+CH+LOC/CBD

in Table 5.1 the performance gap between the two decreases to 0.27% points of
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cumulative QMS. Considering that PPD is around 17 times faster than CBD (see

Section 4.4 for a computational complexity analysis), it seems a better option for

real-time system implementation.

5.3 Chapter Summary and Discussion

We proposed a multi-feature PRID framework for time-synchronized fisheye cameras

with overlapping fields of view. To the best of our knowledge, this is the first work

that explores combining appearance- and location-based features for PRID. A key

technical contribution of our work is a novel probabilistic feature-fusion methodology

for identity matching.

Our experiments show that methods which utilize location information have a

high identity-matching accuracy. However, this requires knowledge of camera param-

eters (both intrinsic and extrinsic). In some scenarios, this information may not be

available. Appearance-based methods, on the other hand, do not make use of such

information and can be applied to any camera type and any camera-layout topology.

However, such methods lag performance-wise behind those that use location-based

features. Still, appearance-based features are valuable and do provide a boost to the

identity-matching performance when combined with location-based features. Clearly,

there is still much room for improvement in appearance-based PRID using overhead

fisheye cameras.
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Chapter 6

Application of PRID to Occupancy

Analysis

In Chapters 3, 4 and 5, we reported PRID performance on FRIDA, where human-

annotated ground-truth bounding boxes were available for each person in all frames.

However, in real-world scenarios ground-truth bounding boxes are not available. In

this chapter, we focus on the application of PRID to people counting in a real-life,

large-space scenario where multiple fisheye cameras are needed to cover the whole

area.

We start by introducing evaluation metrics for assessing the people-counting per-

formance of algorithms. Then, using 3 key metrics, we evaluate performance of a

state-of-the-art people-detection algorithm using a single fisheye camera. These re-

sults show that while a single camera is sufficient for accurately counting people in

small-to-medium sized rooms, it is insufficient in large spaces.

Therefore, we propose to use two fisheye cameras for counting people in large-

space scenarios. However, with two cameras in a room, a person may be visible

in views from both cameras, potentially leading to over-counting. Applying PRID is

essential for avoiding such errors. We demonstrate the people counting performance of

several PRID approaches proposed in the previous chapters. In this real-life scenario,

people-detection algorithms will occasionally miss a detection or produce a false one.

Therefore, people-counting results presented in this chapter are impacted by both

people detection and people re-identification errors.



71

The largest space we conducted our people-counting experiments in has a 2,000 ft2

area, and two fisheye cameras are sufficient to obtain high accuracy. However, there

exist larger spaces, such as large lecture halls, convention centers, supermarkets, air-

ports, bus/train stations, etc. In such scenarios, more than two fisheye cameras may

be needed for reliable occupancy estimation. To address this problem, we present

solutions to scale the two-camera PRID algorithms proposed in Chapter 4 to N cam-

eras (N > 2). Finally, we evaluate the occupancy estimation performance of these

N -camera cross-frame fisheye PRID algorithms for N = 3.

6.1 Evaluation Metrics

Our goal is to perform fine-grained occupancy estimation (people counting, a

regression problem) rather than occupancy detection (binary classification into

empty/occupied classes). Although some prior works (Elkhoukhi et al., 2022;

Szczurek et al., 2017) treat people counting as a classification problem, in practice it

is very difficult to train a classifier for 100 classes (occupancy up to 100) since many

diverse examples for each class in various scenarios are needed.

Let ηi be the true people count in fisheye frame number i, and let η̂i be the corre-

sponding people-count estimate. Let M be the total number of fisheye frames from

which occupancy is being estimated. The two most often used performance metrics

in regression are the Mean-Absolute Error (MAE) and the Root Mean-Squared Error

(RMSE):

MAE :=
1

M

M∑

i=1

|η̂i − ηi|, RMSE :=

√√√√ 1

M

M∑

i=1

(η̂i − ηi)2. (6.1)

Both are frequently used in the people-counting literature, but we opt for MAE in

this thesis since it is more robust to outliers than RMSE.

However, MAE is not useful when comparing results for different occupancy sce-
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narios (e.g., 10 versus 100 people). To account for this, relative MAE (and similarly

relative RMSE) has been used, for example in (Kim et al., 2019)):

MAErel :=
1

M

M∑

i=1

|η̂i − ηi|

ηi
.

However, it is undefined for frames with true occupancy equal to zero (empty room)

which is a major deficiency. Therefore, normalization by the dynamic range of occu-

pancy has been proposed (Choi et al., 2021), which for MAE is defined as follows:

NMAE :=
1
M

∑M

i=1 |η̂i − ηi|

ηmax − ηmin

,

where ηmin and ηmax are the minimum and maximum of the true people count for

frames i = 1, ...,M , respectively. Still, NMAE is undefined when the occupancy is

constant for all M frames, which is not an unlikely scenario.

To address this, in (Cokbas et al., 2020) (also in Appendix B), we proposed a

new metric. Rather than scaling MAE (or RMSE) by the dynamic range of true

occupancy, we proposed to scale it by the average of true occupancy as follows:

MAEpp :=
1
M

∑M

i=1 |η̂i − ηi|
1
M

∑M

i=1 ηi
. (6.2)

The only scenario when MAEpp is undefined happens when a space remains com-

pletely empty throughout the whole experiment, which is a very special case that

can be handled separately. MAEpp expresses MAE value as a fraction of average

occupancy so different occupancy scenarios (e.g., 10 versus 100 people) can be fairly

compared. Moreover, MAEpp can be thought of as a percentage value which may be

easier to interpret (e.g., MAEpp of 0.1 can be thought of as a 10% error).

Works that consider people counting as a classification problem also report accu-

racy defined as the number of frames when η̂i = ηi expressed as a fraction of M in

percent. Since this requires an exact match between the true and estimated accuracy,
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in practice this fraction is not very high. We propose a modified version of accuracy,

that we call X-Accuracy and define as follows1:

AccX =
1

M

M∑

i=1

1X(η̂i − ηi), 1X(z) :=





1 if |z| ≤ X

0 if |z| > X

(6.3)

For X = 0 this definition reverts to the original definition of accuracy, but for larger

values of X it tolerates the departure of η̂i from ηi by up to X.

6.2 People-Counting Dataset

In order to evaluate the people-counting performance of PRID methods proposed

in this thesis, we collected video frames over 3 days using the same camera setup

in the same 2,000 ft2 room where FRIDA was captured (Figure 3·1). We captured

time-synchronized frame triplets about every 5 seconds. Over the three days, the

occupancy ranged from 0 (empty room, mostly at night) to a crowded lecture with

almost maximum allowed occupancy of the classroom. In particular, on the first

day there were 11 high-occupancy periods (lectures) with up to 87 students (Fig-

ure 6·1(a)). On the second day there were 4 high-occupancy periods with up to 65

students (Figure 6·1(b)), while on the third day the classroom was mostly empty

with only one period when up to 9 students were present (Figure 6·1(c)). At each

time instant, we counted the number of people present in the classroom by visually

inspecting the captured frames. This provides ground-truth people count, shown in

Figure 6·2, for performance evaluation.

1A similar measure was introduced in (Tezcan et al., 2018) for the special case of X = 1.
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(a) Day 1 (b) Day 2

(c) Day 3

Figure 6·1: Sample frames from each day of the 3-day dataset.

6.3 Occupancy Estimation Using Single Fisheye Camera

In Chapter 1, we mentioned that there exist people-detection algorithms developed

for fisheye images. Out of these algorithms, the best-performing one to-date is the

‘Rotation-Aware People Detection” (RAPiD) algorithm (Duan et al., 2020). In this

chapter, we demonstrate RAPiD’s performance for occupancy estimation while mon-
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Figure 6·2: The true people count for the 3-day dataset.

itoring a room with a single fisheye camera. Firstly, we quantify changes in RAPiD’s

performance with increasing distance of occupants to the camera. Then, we demon-

strate the impact of various occupancy scenarios on the performance of RAPiD. These

results indicate that while RAPiD performs well in small-to-medium sized rooms, in

large rooms it struggles to detect people at the FOV periphery, thus motivating the

need for additional cameras.

Since RAPiD is a CNN, it requires training. In all experiments reported in this

chapter, we used RAPiD with parameters obtained by initial training on the Microsoft

COCO 2017 dataset (Lin et al., 2014) and fine-tuning on the MW-R and HABBOF

datasets (for training details see (Duan et al., 2020)). RAPiD produces bounding

boxes and confidence values that tell how likely a bounding box is to contain a person

(from 0 for “impossible” to 1 for “certain”). By selecting a confidence threshold γ,

the algorithm can be tuned to specific scenarios. Unless otherwise stated, we used

γ = 0.05 in all experiments 2.

6.3.1 Performance of RAPiD at Different Distances from the Camera

In order to understand limitations of RAPiD, we first quantify its people-counting

performance as a function of the monitored area. Figure 6·3 shows a video frame from

2The value of γ was determined heuristically via a loose grid search using values that are between
0.01 and 0.2.
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camera 1 (Figure 3·1) with concentric green circles superimposed, each circle corre-

sponding to a true physical distance of 10-35 ft from the camera in 5 ft increments.

It is clear that the circles are not equally spaced out in the image, confirming radial

non-linearity of the lens.

Figure 6·3: Overhead fisheye view of the classroom where FRIDA was
recorded. The superimposed green concentric circles correspond to the
true physical distance of 10-35 ft from the camera in 5 ft increments.

We evaluated the people-counting performance of RAPiD over a video segment

from the dataset described in Section 6.2 that contains only modest movement of

occupants (the number of people inside of each green circle remains constant) to ease

annotation. The segment consists of 50 frames with 62 occupants each, that is 3,100

person-instances. For each circle radius, Table 6.1 gives the area inside this circle

(FOV area) and the area of a square-shaped room that could be fully covered by

this FOV, that is the area of a square inscribed in the circle (square room coverage).
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As the FOV radius increases from 10 ft (with 23 people visible) to 35 ft (62 people

visible), MAE increases from 0.64 to 16.66 while MAEpp increases from 0.028 to

0.269 (or from 2.8% to 26.9%).

This increase in the error was to be expected and is due to the reduction of

projected body size and increasing likelihood of occlusions with distance. Up to about

20 ft, the algorithm can count people with less than 0.07 of MAEpp (7% error); it

accurately counts the vast majority of the 44 people located inside this circle, despite

severe occlusions by other people, tables, chairs, etc. The 20 ft radius corresponds

to effective coverage of a square room with 800 ft2 area. For larger FOVs, the error

rapidly increases, so to achieve more accurate counting additional fisheye cameras are

needed.

Table 6.1: People-counting performance of RAPiD for increasing cam-
era field of view.

FOV FOV Number of MAE MAEpp Square room

radius area people coverage

10 ft 314 ft2 23 0.64 0.028 200 ft2

15 ft 707 ft2 34 2.36 0.069 450 ft2

20 ft 1,257 ft2 44 2.88 0.065 800 ft2

25 ft 1,963 ft2 52 6.92 0.133 1,250 ft2

30 ft 2,827 ft2 60 14.78 0.246 1,800 ft2

35 ft 3,848 ft2 62 16.66 0.269 2,450 ft2

6.3.2 Performance of RAPiD in a Medium-Sized Room

To assess RAPiD’s performance in a medium-sized space (400–800 ft2) but in more

challenging conditions, we used CEPDOF (Duan et al., 2020), an annotated dataset

with overhead fisheye images captured in 8 scenarios differing in human poses, move-

ment, occlusions, illumination, etc. with up to 13 occupants. Sample images and

RAPiD’s detections in 3 scenarios are shown in Figure 6·4. We selected “Edge cases”
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(a) Edge cases (b) Lunch meeting 2 (c) IRfilter

Figure 6·4: Examples of detections by RAPiD in a 500 ft2 classroom
in 3 scenarios selected from CEPDOF dataset (Duan et al., 2020).

since it includes significant movement of people and unusual poses (e.g., crouching,

stretching) to challenge the detector. “Lunch meeting 2” has the highest occupancy

among all scenarios, but people mostly sit or stand, like in a typical meeting. In “IR-

filter”, lights are turned off challenging the detector by low contrast and little image

detail. While in the well-lit images all people are correctly detected, in “IRfilter”

(Figure 6·4(c)) there are two misses and one false positive which is not surprising

since RAPiD was not trained on low-light images.

Table 6.2 summarizes RAPiD’s performance on CEPDOF. While MAE is rel-

atively low for well-lit scenarios, unsurprisingly it is quadrupled for the low-light

scene. However, the cumulative MAE over all 8 scenarios (25,504 frames) is 0.827,

i.e., count error of less than 1 under occupancy of up to 13 people. MAE per person

(MAEpp) is quite small for “Edge cases” (0.076 or 7.6%) and for “Lunch meeting 2”

(0.04 or 4%) suggesting that RAPiD can handle unusual poses, movement, occlusions

well. However, for “IRfilter” it is much higher at 0.236 (or 23.6%) suggesting that

improvements are needed in low light. Cumulatively over all scenarios, the error of

0.122 (or 12.2%) is quite high since 35% of CEPDOF images have been captured in

low light, for which RAPiD was not trained. As for X-Accuracy, we show only values
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for X = 0, 1, 2 since occupancy is quite low (maximum of 13). While perfect counting

(X = 0) is accomplished in about 60% of well-lit frames, in low light it is only 19%.

A slack of 1 or 2 increases X-Accuracy to well over 90% in well-lit scenes suggesting

that RAPiD is accurate but not so much in low light (53% and 79%). Cumulatively,

X-Accuracy is high for X = 1, 2 but only 44% for X = 0 due to large fraction of

low-light images in CEPDOF.

Table 6.2: People-counting performance (MAE, MAEpp and X-
Accuracy) of RAPiD in 3 selected scenarios and cumulatively over all
8 scenarios in CEPDOF dataset (Duan et al., 2020).

Metric Edge cases Lunch meeting 2 IRfilter Cumulative

MAE 0.420 0.436 1.582 0.827

MAEpp 0.076 0.040 0.236 0.122

AccX [%]

X=0/1/2
64/95/99 59/98/100 19/53/79 44/81/94

6.3.3 Performance of RAPiD in a Large Space with High Occupancy

In the previous two sections, RAPiD was shown to perform well in small-to-mid-sized

spaces in various scenarios (except for low light), but only in short-term tests (75 min

in total). In order to assess RAPiD’s performance over longer time span in high and

dynamic occupancy, we used the full dataset described in Section 6.2 that consists of

a 3-day video recording.

It is important to note that the classroom was empty during more than half of

the test time (Figure 6·2) with lights turned off at night (resulting in low-contrast

images), a difficult scenario for RAPiD. To adapt to these adverse conditions, we

changed RAPiD’s threshold γ to 0.6 in low light, while keeping the original value

of 0.05 in normal light. The switching between two thresholds is automatic, based

on average luminance in each frame. The higher threshold in low-light conditions

helps reduce false positives. An alternative would be to train two different versions of
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RAPiD for the two cases, but this would require a lot of annotated data in low-light

conditions (although CEPDOF includes such frames, many more would be needed

for reliable training).

Figure 6·5: Sample frame with people detections by RAPiD from day
1 of the 3-day test.

Figure 6·5 shows a sample frame from the first day with 87 people in the classroom.

Clearly, not all of them are detected by RAPiD, especially at the top and bottom

of the frame, since they are too small and/or occluded. Figure 6·6 shows people-

count estimates produced by RAPiD for each of the cameras. All three plots look

very similar, but upon closer inspection one can see that the estimate for camera

#1 is a bit closer to the ground truth compared the other two cameras. While all

three occupancy estimates are highly correlated with the ground truth, they are not

accurate. The true count is underestimated on days 1 and 2 by as much as 20-

40 occupants. This is due to the size of the room and people present at the FOV

periphery where RAPiD is unreliable. On day 3 the occupancy estimate tracks the

ground truth more accurately (slight underestimation and overestimation making the
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ground-truth red line not very visible).
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(c) Camera #3

Figure 6·6: The true number of people (red line) and an estimate by
RAPiD in a 3-day test in the same classroom as FRIDA for each of the
three cameras.

Table 6.3 shows quantitative performance of RAPiD for the 3-day test. For all 3

cameras, MAE is largest (at about 12) on day 1 when the occupancy is very high

during daytime. It drops to about 7-8 on day 2 when the classroom is occupied in

daytime but with fewer people. It is the smallest (at about 0.4-0.6) on day 3 when
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the room is mostly empty and the highest occupancy is only 9 during a short period.

Clearly, MAE values approximately scale with average occupancy on each day. This

is confirmed by MAEpp values that are relatively constant around 0.4 except for

camera #3 on day 3. The X-Accuracy at X = 0 is low on days 1 and 2 (29-47%) but

quite a bit higher on day 3 (55-67%). At X = 5 (the count estimate may be up to

5 off), the X-Accuracy increases to 53-64% on days 1 and 2, and to 100% on day 3.

Again, this is consistent with day 3 having mostly zero occupancy. At X = 10, the

X-Accuracy is in 59-70% range for days 1 and 2, and 100% for day 3. The consistently

better performance on day 3 is not surprising since it is easier to count few people

spaced out than in a crowded scenario (more opportunities for mis-detection, e.g.,

due to occlusions).

Table 6.3: People-counting performance (MAE, MAEpp and X-
Accuracy) of RAPiD for the 3-day test in 2,000 ft2 room for all three
cameras. The last column shows cumulative metrics computed across
the 3 days.

Metric Camera Day 1 Day 2 Day 3 Cumulative

MAE

#1 11.82 6.92 0.38 6.11

#2 11.60 8.55 0.48 6.61

#3 12.32 7.36 0.62 6.49

MAEpp

#1 0.400 0.336 0.384 0.373

#2 0.393 0.415 0.480 0.404

#3 0.417 0.358 0.623 0.397

AccX [%]

X=0/5/10

#1 45/53/59 43/64/70 74/100/100 55/73/77

#2 47/54/60 29/60/65 67/100/100 48/72/76

#3 38/59/64 42/64/70 55/100/100 46/75/79

Cumulatively across the 3 days, MAE is around 6 andMAEpp is around 0.4 for all

three cameras. Also, the X-Accuracy is fairly consistent between the cameras. Note,
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that MAEpp of 0.4 is higher than 0.269 reported in Table 6.1 for 35 ft FOV. This

is due to higher occupancy (87 instead of 62) and significant movement of people,

which might cause occlusions, especially at the start and end of each class. MAEpp

for camera #1 (0.373) is slightly lower than that for the other two cameras, which is

not surprising since it is mounted close to classroom’s center where students tend to

congregate.

These results indicate that while monitoring a space with a single fisheye camera

is suitable for small-to-medium size spaces (up to about 800 ft2), where MAEpp does

not exceed 0.07 (or 7%), as reported in Table 6.1, and is in 0.04-0.076 range (4-7.6%)

for well-lit scenes, as reported in Table 6.2, such setup underperforms in large spaces

with MAEpp reaching 0.4 (or 40%) in Table 6.3 and must be redesigned.

6.4 Occupancy Estimation Using Two Fisheye Cameras

In order to improve the single-camera occupancy estimation performance, we need to

understand its failure modes. Figure 6·7(c-d) shows people detections produced by

RAPiD for the frame pair from Figure 6·7(a-b). One can see that some people are not

detected at FOV periphery (e.g., top of the view in Figure 6·7(d)). Occasionally, the

algorithm produces false detections (e.g., red bounding box in Figure 6·7(c) contains

two people who already have their own green bounding boxes).

To count people, one could compute the average of counts from the two cameras,

but this could result in undercounting if there are people visible in FOV of one camera

but not of the other one (e.g., due to occlusions). On the other hand, adding the

two counts could result in overcounting due to the double-counting of people who

are visible in both cameras. These effects could be further compounded by people-

detection errors. A principled approach is to re-identify people between different

camera views and count each person only once.
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(a) Camera #2 (c) Camera #2

(b) Camera #3 (d) Camera #3

Figure 6·7: (a-b) Sample frames from two overhead fisheye cameras
overlooking a large classroom; (c-d) The same frames with people de-
tections by RAPiD (Duan et al., 2020).
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Motivated by the above considerations, we apply a slightly modified version of

our PRID algorithms (as described below) to bounding boxes detected by RAPiD in

cameras #2 and #3, and estimate the people count as follows:

η̂i = η̂2i + η̂3i − η̂23i . (6.4)

where η̂2i and η̂3i are the estimated people counts by RAPiD in frame number i from

cameras #2 and #3, respectively, and η̂23i is the number of people successfully re-

identified between these two frames. Thus, the estimated people count at time i

equals the sum of counts obtained from two frames reduced by the number of matched

identity pairs in them. We selected cameras #2 and #3 since the FOV of each covers

about one-half of the room. On the other hand, camera #1 mostly covers the room’s

center and is more suitable for single-camera occupancy estimation.

In order to account for people-detection errors, which can result in quite different

numbers of the detected bounding boxes in each camera’s view, we slightly modify

the matching part of our PRID algorithm. In the matching algorithm discussed

in Section 3.2.1, the greedy algorithm was exhaustive, i.e., it was applied until no

matches were possible in the score matrix (step (3) in Section 3.2.1). Instead, now

we stop the greedy algorithm when the remaining score-matrix elements (conditional

probabilities) are below some threshold τ and treat them as corresponding to unlikely

identity matches.

The threshold τ controls the trade-off between the number of matched and un-

matched bounding boxes between the two views. In an ideal scenario, when all

occupants in a space are detected in both query- and gallery-camera views, τ = 0 will

force a match of every person in the query set to a person in the gallery set. However,

as we have discussed, in practice some occupants may not be detected in one of the

views or there may be false detections. In this case, some query or gallery elements
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may not have a match and τ > 0 is needed to stop the matching process. Thus, τ

serves as a match-probability threshold below which a match is unlikely.

In our people-counting experiments, we treat τ as a tuning parameter and find its

best value for each method (in terms of MAE (6.1)) by searching among a finite set

of uniformly-spaced choices over the interval [0, 1]. We found that the best values for

different methods range from 1.25× 10−4 to 0.3 (Table 6.4).

Table 6.4: Threshold τ values that minimize MAE for each feature
combination. The minimization is performed through grid search.

DL CH LOC/PPD LOC/CBD Best τ

✓ 0.04

✓ 0.04

✓ ✓ 1.6× 10−3

✓ 0.3

✓ ✓ 6.4× 10−3

✓ ✓ 6.4× 10−3

✓ ✓ ✓ 1.25× 10−4

✓ 0.2

✓ ✓ 4.9× 10−3

✓ ✓ 4.9× 10−3

✓ ✓ ✓ 1.25× 10−4

Figure 6·8 shows the time plot of the ground-truth people count and 4 people-

count estimates3 obtained from our 3-day test set (Section 6.1). Three estimates were

3The people-count estimates in Figure 6·8 are noisy since they are computed independently for
each time instant and no temporal smoothing is applied. While smoothing (e.g., temporal median
filtering) could be applied to the estimates, in any real-time application it would have to be causal
thus creating a time delay. This smoothness/delay tradeoff has to be carefully adjusted for each
practical application.
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Figure 6·8: Ground-truth people count and four people-count esti-
mates (two single-camera estimates, sum of single-camera estimates,
and an estimate obtained using PRID (DL+CH+CBD) to eliminate
double counts) for the 3-day test.

obtained by counting bounding boxes produced by RAPiD, either from camera #2

frames, or from camera #3 frames or by adding the two counts. It should be noted

that while camera #1 (mounted in the middle of the room) slightly outperforms the

other two cameras (Table 6.3), when using two cameras a better strategy is to use

cameras that can more effectively capture both ends of the room.

Clearly, the counts from both camera #2 and camera #3 (blue and orange lines,

respectively) severely underestimate the true count (red line) due to missed-detections

at FOV periphery (the room is too large for a single camera). Averaging the two

counts or taking the maximum would still result in severe undercounting. The sum of

the counts from both cameras (green line) significantly overestimates the true count

since many people are counted twice. The fourth estimate (black line) was obtained

by first applying RAPiD to detect people in same-time frames from cameras #2

and #3, and then performing PRID on these detections using our best-performing

algorithm from Table 5.1 (DL+CH+CBD). Obviously, the PRID-based people-count

estimate quite accurately tracks the true people count.

While the PRID algorithm combining all three features works very well in people

counting, it would be interesting to understand the impact of other feature combi-

nations on people-counting performance. Rather than showing plots like the one in
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Figure 6·8 for different feature combinations (because plots for different algorithms

have significant overlap hurting discernibility), we perform this ablation study by

reporting MAE (6.1), MAEpp (6.2) and AccX (6.3) values in Table 6.5. This table

shows the results for thresholds τ that minimize the cumulativeMAE for each feature

combination.

Similarly to re-identification experiments, algorithms involving a location-based

feature (either PPD or CBD) significantly outperform algorithms based on appearance

(color-histogram or deep-learning features or combination thereof), with MAE almost

halved. Overall, the lowest cumulative MAE and MAEpp values are obtained by

CBD with cumulative MAE = 1.59 and MAEpp = 0.097. However, the performance

of other PRID algorithms that involve location-based features are not significantly

worse, with the difference between the best- and worst-performing ones of 0.15 in

cumulative MAE and 0.01 in cumulative MAEpp.

In terms of cumulative AccX=0, all algorithms perform between 41 to 43%. How-

ever, when we check the cumulative AccX=5, the appearance-based algorithms all

achieve 78% which is 12 to 14%-points lower than the performance of feature combi-

nations that involve location-based features. The cumulative AccX=10 tells us that,

the feature combinations that involve location-based features estimate the people

count 98% of the time with an absolute error less than 10. For the appearance-based

feature combinations, the cumulative AccX=10 is 86%.

Day 1 and day 2 results have similar trends to the cumulative results. An interest-

ing observation is that, in terms of MAE the results for the first two days are worse

than the cumulative MAE. However, in terms of MAEpp, the results for the first two

days are better than the corresponding cumulative results. The reason for this is that

the average ground-truth occupancies for day 1 and day 2 are higher compared to the

cumulative average occupancy. As can be seen in Figure 6·8, day 3 has low occupancy
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Table 6.5: People-counting performance (MAE, MAEpp and X-
Accuracy) of PRID algorithms in a 3-day test in large classroom using
cameras 2 and 3.

Metric Algorithm Day 1 Day 2 Day 3 Cumulative

MAE

DL 5.99 4.28 0.66 3.52

CH 6.07 4.40 0.66 3.59

DL+CH 6.06 4.38 0.66 3.58

PPD 2.42 1.74 0.84 1.63

CH+PPD 2.44 1.79 0.79 1.63

DL+PPD 2.44 1.79 0.79 1.63

DL+CH+PPD 2.50 1.87 0.75 1.67

CBD 2.43 1.71 0.75 1.59

CH+CBD 2.47 1.92 0.72 1.66

DL+CBD 2.46 1.92 0.72 1.66

DL+CH+CBD 2.61 2.03 0.72 1.74

Metric Algorithm Day 1 Day 2 Day 3 Cumulative

MAEpp

DL 0.203 0.208 0.670 0.215

CH 0.205 0.214 0.670 0.219

DL+CH 0.205 0.213 0.670 0.218

PPD 0.082 0.084 0.849 0.100

CH+PPD 0.083 0.087 0.793 0.100

DL+PPD 0.083 0.087 0.792 0.100

DL+CH+PPD 0.085 0.091 0.756 0.102

CBD 0.082 0.083 0.752 0.097

CH+CBD 0.084 0.093 0.731 0.102

DL+CBD 0.083 0.093 0.731 0.101

DL+CH+CBD 0.088 0.099 0.731 0.107

Metric Algorithm Day 1 Day 2 Day 3 Cumulative

AccX [%]

X=0/5/10

DL 38/62/74 33/71/83 52/100/100 41/78/86

CH 38/61/74 33/70/82 52/100/100 41/78/86

DL+CH 38/61/74 33/70/82 52/100/100 41/78/86

PPD 41/84/96 36/92/99 50/98/100 42/92/98

CH+PPD 41/84/96 37/91/99 50/99/100 43/92/98

DL+PPD 41/84/96 36/91/99 50/99/100 43/92/98

DL+CH+PPD 41/83/95 36/90/99 51/99/100 43/91/98

CBD 41/84/96 37/93/99 51/99/100 43/92/98

CH+CBD 41/84/96 36/89/99 51/99/100 43/91/98

DL+CBD 41/84/96 36/90/99 51/99/100 43/91/98

DL+CH+CBD 41/82/95 36/88/99 51/99/100 43/90/98



90

throughout the day which lowers the cumulative average ground-truth occupancy. In

fact, the average ground-truth occupancy for day 3 is 0.99 which makes MAEpp larger

than MAE (see equation (6.2)), unlike for the other two days. Day 3 has the lowest

MAE values because at most it has been occupied by 9 people, thus the absolute

error does not get very high. On the other hand, on day 1 and day 2 the maximum

occupancy is up to 87 and 69, respectively. Moreover, the average ground-truth oc-

cupancy for day 1 and day 2 is 29.53 and 20.58, respectively, which scales down the

MAE significantly to get the MAEpp. These results illustrate the limitations of using

MAEpp in scenarios with long zero occupancy periods as we discussed in Section 6.1.

While Table 5.1 reports performance of re-identification only, Table 6.5 reports

a combined performance of people detection by RAPiD and of re-identification by

various PRID algorithms. If RAPiD introduces people-detection errors (misses or false

detections), people counts can be incorrect even with perfect PRID. However, even if

PRID is imperfect, it may still lead to a correct people count, for example if the total

number of matches between cameras #2 and #3 is correct but some of the matches

are permuted (e.g., person A in camera #2 is matched to person B in camera #3 and

person B in camera #2 is matched to person A in camera #3). PRID affects people

counting only if it produces an incorrect number of matches between two cameras.

In conclusion, whereas PRID errors have a full impact on QMS and mAP values in

Table 5.1, they have only a partial impact on the MAE values in Table 6.5. This

also explains the difference in the ordering of various feature combinations between

person re-identification and people counting.

One final observation is in order. Examining Tables 5.1 and 6.5, it is clear that

algorithms using appearance features (CH or DL or CH+DL) are significantly outper-

formed by algorithms that combine them with a location-based feature. However, the

performance spread between the latter algorithms in both re-identification and people
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counting is quite small. Since the computational complexity of calculating location-

based features is far lower than obtaining a color histogram (CH) or extracting neural

features (DL), in applications sensitive to complexity (e.g., real time) a single-feature

algorithm using only location may be a good choice (over 94% in cumulative QMS and

over 95% in cumulative mAP). Furthermore, it was mentioned in Section 4.4 that the

calculation of CBD location features is significantly more complex computationally

than that of PPD features. This suggests that in complexity-critical applications for

occupancy estimation single-feature PPD algorithm would be most appropriate

(Table 6.5). However, if best performance is required for a PRID-sensitive appli-

cation, then, location features combined with color histograms and/or deep-learning

features are a better option (Table 5.1).

6.5 Occupancy Estimation using N Cameras

In the previous section, we proposed an occupancy estimation method that can accu-

rately monitor a 2,000 ft2 space using two fisheye cameras. However, more cameras

would be needed in a larger space, such as as a large lecture hall, convention center,

supermarket, airport building, bus/train station, etc. Due to the wide FOV of fisheye

cameras, it is inevitable that some people will be detected by multiple cameras. To

address this problem, we propose two methods to scale up the two-camera PRID

approaches developed thus far to N > 2 cameras. First, we introduce these methods

and then we report occupancy-estimation results using them.

6.5.1 General Method based on N-Dimensional Score Matrix

In Chapters 3, 4 and 5, we introduced PRID methods for the case of two fisheye cam-

eras. Each of those methods produces a 2-D score matrix S with elements quantifying

the similarity between a query identity and a gallery identity.

Let us first consider the 3-camera setup (N = 3) with which we collected our data
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(Section 6.2). We illustrate this case graphically in Figure 6·9 using a Venn diagram,

where C1, C2, C3 denote the sets of people detections (e.g., by RAPiD) in FOV of

camera #1, camera #2 and camera #3, respectively.

Figure 6·9: Illustration of PRID scenario for N = 3 cameras.

The Venn diagram allows us to compute the actual people count η as follows:

η = |C1|+ |C2|+ |C3|

−|C1 ∩ C2| − |C1 ∩ C3| − |C2 ∩ C3| (6.5)

+|C1 ∩ C2 ∩ C3|.

While |C1|, |C2| and |C3| are provided by a people detection algorithm and |C1 ∩

C2|, |C1∩C3|, |C2∩C3| are identified by a two-camera PRID using 2-D score matrices,

we still need to identify |C1∩C2∩C3|. This necessitates a three-camera PRID with a

3-D score matrix, which can be thought of as a rectangular cuboid. While there are
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many possible ways to compute a joint similarity of three bounding boxes (one from

each camera), a convenient way that we adopt is to average all pairwise similarities

as follows:

Si1,i2,i3 =
1

3
×

(
f(i1, i2) + f(i1, i3) + f(i2, i3)

)
(6.6)

where i1, i2 and i3 are identities from camera #1, camera #2 and camera #3, re-

spectively, S(·) represents the similarity value between these identities and f(·, ·) is a

similarity function used for two cameras, e.g., any of the two-camera PRID similarity

scores from Chapters 3, 4 or 5. In Section 7.1.2, as part of future work, we will discuss

alternative similarity measures that are not based on pairwise similarities.

An extension to N > 3 is relatively straightforward but we must carefully con-

sider various combinations of k out of N cameras, across which identities need to be

matched. For example, for N = 4 cameras, re-identification between 2, 3 or 4 camera

views is needed in order to obtain a correct overall count. For N cameras, the total

number of camera combinations to be considered is given by:

N∑

k=2

(
N

k

)
= 2N − 1−N (6.7)

where the summation starts at k = 2 since in PRID at least two camera views are

needed. For N = 3, this amounts to 4 camera combinations which is consistent with

4 intersections in the Venn diagram in Figure 6·9. For N = 4, there are 11 camera

combinations (6 two-camera, 4 three-camera and 1 four-camera combinations) and for

N = 5 there are 26 camera combinations, rapidly increasing with a growing number

of cameras.

Clearly, score matrices S of up toN dimensions are needed for PRID. One possibil-

ity is to generalize equation (6.6) to N dimensions through the use of the well-known
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inclusion-exclusion principle (van Lint and Wilson, 1992) as follows:

Si1,i2,.....,iN−1,iN =
1(
N

2

)
N∑

k=1

N∑

l=k+1

f(ik, il). (6.8)

For f(·, ·), we can use any of the two-camera PRID similarity scores from Chapters 3,

4 or 5.

In experiments reported in Section 6.5.3, we opt for location-based PRID discussed

in Chapter 4 due to its low computational complexity compared to other methods.

The computational complexity is a serious concern for larger N since the number

of camera combinations that need to be considered in PRID grows exponentially

with N (6.7). To compute the similarity scores f(·, ·), we chose PPD which has the

lowest computational complexity of all distance metrics we proposed in Section 4.3.1.

If computational complexity is not paramount, one can use any other two-camera

PRID similarity for f(·, ·).

Since the score-matrix elements are computed using PPD, they are all expressed in

pixels (i.e., the lower the score, the more similar the identities). To match identities,

we introduce a new tuning parameter λ expressed in pixels, unlike the unit-less τ that

we introduced in Section 6.44. Thus, in greedy matching, instead of maximization,

we will be performing minimization (score-matrix elements above λ will correspond

to unmatched identities).

6.5.2 Clustering of Real-World Locations of People

The N -camera PRID method proposed in the previous section is general and can

be applied to both appearance- and location-based features. The method we are

proposing below applies only to location-based features.

4In Section 6.4, elements of the score matrix were normalized using softmax to facilitate feature
fusion. They expressed a degree of similarity between bounding boxes; those below threshold τ ∈
[0, 1] corresponded to unmatched identities.
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In Chapter 4, we proposed location-based PRID for two cameras. The main idea

was to map pixel location of a person from query-camera image to gallery-camera

image, and match identities based on distance between the mapped query locations

and gallery locations. The mapping of pixel coordinates between cameras was a two-

step process. First, pixel coordinates of a person were mapped from query-camera

image to 3-D world coordinates. Then, these 3-D world coordinates were mapped to

pixel coordinates in the gallery-camera image. In the N -camera PRID extension we

proposed in the previous section, we applied the PPD distance measure to pairs of

cameras and summed these distances for all pairs in each group of k cameras among

the N cameras in total.

In this section, we propose an alternative idea but in 3-D world coordinates rather

than in pixel coordinates. We propose to map each person’s location from each of

N camera images to 3-D world coordinates and cluster the mapped 3-D coordinates

to match identities. Note that in this approach the number of clusters should corre-

spond to the number of people in the room. Therefore, we cannot use a clustering

algorithm such as K-means (Lloyd, 1982) since we do not know the value of K. We

need a clustering method that does not require advance knowledge of the number of

clusters. One such method is “Density-Based Spatial Clustering of Applications with

Noise” (DBSCAN) (Ester et al., 1996). Our algorithm for clustering the mapped

3-D coordinates is inspired by DBSCAN, so it is important that we briefly review

DBSCAN.

DBSCAN is a density-based clustering method that has two parameters, ϵ and

minPoints. In DBSCAN, first one picks a random point as the point of interest and

finds all points that are within an ϵ radius from this point of interest. All such points,

including the point of interest, get assigned to the same cluster. Then, the process

is repeated where one treats each point in the cluster as the new point of interest.
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This process enlarges the cluster. One continues to spread out the cluster until there

is no point within ϵ distance from any of the points in the cluster. Then, one picks

another point from the dataset that has not been visited yet and repeats the process.

For a group of points to be considered a cluster, there should be at least minPoints

elements in the cluster. Also, if a certain data point has no other data points within

ϵ radius, it is labelled as noise and gets discarded.

We propose a density-based 3-D coordinate clustering method that is inspired

by DBSCAN. Our approach has two parameters, ϵ and maxPoints. The purpose

and usage of ϵ are the same as in DBSCAN. The key difference is the maxPoints

parameter. In DBSCAN, the size of a cluster has a lower bound of minPoints with

no upper bound. In our case, we need to allow clusters with size 1 and also to limit

the maximum size of a cluster (maxPoints). These changes are motivated by the

nature of PRID and people counting that we are tackling. We want each person to

have their own cluster, where each point in the cluster corresponds to a detection of

the same person in a different camera view. In cross-frame PRID, some people in a

room can get detected in a single camera view due to occlusions or failed detections,

potentially resulting in a single point in their cluster. On the other hand, a person

can be detected in at most N camera views, so a cluster may have at most N points

(maxPoints = N). In fact, one can argue that our clustering algorithm has only one

parameter, ϵ, because maxPoints equals N .

In experiments, we used 3-D Euclidean distance as the distance measure between

data points. Note that although we are mapping pixel coordinates to 3-D world coor-

dinates, the clustering is effectively taking place in 2-D space since the Z coordinate

of a person’s location is identical for all individuals (average height in the US) as

described in Section 4.3.
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6.5.3 Experimental Results for N-Camera Algorithms

In this section, we assess the occupancy-estimation performance of two N -camera

PRID algorithms proposed in Sections 6.5.1 and 6.5.2. We evaluate these algorithms

on the same 3-day dataset (Section 6.2), that we have been using throughout this

chapter. While in Section 6.3 we reported occupancy-estimation results using 1 cam-

era, in Section 6.4 we reported corresponding results using 2 cameras. Below, we

report results using 3 cameras.

Recall, that the N -D Score Matrix approach has a tuning parameter λ quantify-

ing a distance threshold expressed in pixels (identity matching is performed in image

coordinates). On the other hand, the Real-World Location Clustering approach has

a tuning parameter ϵ quantifying a threshold on distance in real-world (3-D) coor-

dinates and expressed in centimeters. This is unlike parameter τ from Section 6.4,

which is dimensionless, because of softmax normalization applied to location- and

appearance-based scores before performing identity matching. However, in both N -

camera approaches we do not apply any softmax operator so the distances are in terms

of pixels or centimeters (cm). In Figures 6·10 and 6·11, we show the occupancy-

estimation performance of each algorithm in terms of MAE with respect to their

respective tuning parameters. The best λ value for N -D Score Matrix approach that

yields the lowest cumulative MAE is λ = 400 pixels, while the best ϵ value for Real-

World Location Clustering approach is ϵ = 250 cm. We note that these values are

large considering the fact that we are working with 2,048×2,048-pixel images in a

room that has a width of 8.5 m. It is likely that some PRID matches are incorrect

(as are some RAPiD detections) and yet the people count is quite accurate. However,

since our dataset is labeled for people counting only (no bounding boxes or identity

labels), we cannot report PRID results to support this hypothesis.

A 250 cm (2.5 m) real-world distance threshold for establishing location clusters
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Figure 6·10: MAE values for different values of λ for the N -D Score
Matrix approach from Section 6.5.1 with N = 3.
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Figure 6·11: MAE values for different values of ϵ for the Real-World
Location Clustering approach from Section 6.5.2 with N = 3.

seems large for our 72 × 28 ft (22 × 8.5 m) test space. To probe deeper into this

issue, in Figure 6·12 we plot the true occupancy and one estimated by Real-World

Location Clustering approach across time for three values of ϵ: 50 cm, 250 cm and 800

cm. Notably, for ϵ = 50 cm the algorithm significantly overcounts (Figure 6·12(a)),
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(a) ϵ = 50 cm
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(b) ϵ = 250 cm
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(c) ϵ = 800 cm

Figure 6·12: The true number of people (red line) and an estimate by
3-camera Real-World Location Clustering approach for the 3-day test
in 2,000 ft2 classroom and three different values of ϵ.

while for ϵ = 800 cm it largely undercounts (Figure 6·12(c)) thus confirming large

errors for extreme values of ϵ reported in Figure 6·11. This can be explained as

follows. Too small values of threshold ϵ allow little room for image-to-3-D mapping

errors; imprecisely mapped locations get absorbed into incorrect clusters. The more

accurate the mapping algorithm, the smaller the the value of ϵ that can be used.
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(a) λ = 100 pixels
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(b) λ = 400 pixels
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(c) λ = 1500 pixels

Figure 6·13: The true number of people (red line) and an estimate
by 3-camera N -D Score Matrix approach for the 3-day test in 2,000 ft2

classroom and three different values of λ.

In the extreme case of ϵ = 0 cm, no room for mapping errors is allowed. Unless

same-identity locations from all cameras are mapped to the same 3-D location, they

cannot form one cluster. Since error-free mappings are very unlikely, for ϵ = 0 cm

very few identities would be matched resulting in significant overcounting. As ϵ

increases, the degree of overcounting gets reduced. At the other extreme, if ϵ is too
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large the mapped locations of different identities might fall into the same cluster thus

potentially causing undercounting. Similar conclusions can be drawn for the effect of

λ on N -D Score Matrix occupancy estimates (see Figure 6·13).

In Table 6.6, we list occupancy-estimation performance metrics (MAE, MAEpp,

AccX) for the tuning parameters that yielded the smallest cumulative MAE values

for N -D Score Matrix (λ = 400) and Real-World Location Clustering (ϵ = 250

cm). In addition to the two N -camera approaches with N = 3, for comparison we

also provide results for the best-performing 2-camera occupancy-estimation algorithm

from Section 6.4, namely location-based CBD with τ = 0.2. Note, that the CBD

results are identical to those reported in Table 6.5.

We observe that the 2-camera CBD and 3-camera N -D Score Matrix approaches

achieve identical cumulative MAE and MAEpp, but Real-World Location Clustering

performs slightly worse with a cumulativeMAE increase by 0.07 and MAEpp by 0.04.

With respect to different occupancy scenarios, the 3-cameraN -D Score Matrix slightly

outperforms the 2-camera CBD on days 1 and 2 in terms of both MAE and MAEpp

values, but fares worse on day 3. Recall, that the classroom is much more crowded

on day 1 (up to 87 students, with 10 high-occupancy periods) and on day 2 (up to

65 students, with 4 high-occupancy periods) compared to day 3 (up to 9 students for

a short period, and otherwise empty or almost empty). This suggests that in a large

space with very many people the 3-camera N -D Score Matrix performs better than

the 2-camera CBD approach. In terms of AccX=0, 2-camera CBD outperforms both

3-camera approaches for all 3 days. However, in terms of AccX=5 and AccX=10, N -D

Score Matrix achieves the best performance compared to the other algorithms on all

days except day 3.

The results in Table 6.6 may seem somewhat disappointing since a 3-camera ap-

proach only slightly outperforms a 2-camera approach and only in crowded scenarios.



102

Table 6.6: People-counting performance (MAE, MAEpp and X-
Accuracy) of the CBD approach (N = 2 cameras) and N -camera PRID
algorithms for N = 3 in a 3-day test in a large classroom.

Metric Algorithm N Day 1 Day 2 Day 3 Cum.

MAE

CBD 2 2.43 1.71 0.75 1.59

N -D Score Matrix 3 2.31 1.62 0.93 1.59

Real-World

Location Clustering
3 2.45 1.68 0.94 1.66

MAEpp

CBD 2 0.082 0.083 0.752 0.097

N -D Score Matrix 3 0.078 0.079 0.941 0.097

Real-World

Location Clustering
3 0.083 0.082 0.952 0.101

AccX [%]

X=0/5/10

CBD 2 41/84/96 37/93/99 51/99/100 43/92/98

N -D Score Matrix 3 39/86/96 35/95/100 48/98/100 41/93/99

Real-World

Location Clustering
3 39/85/95 35/94/99 49/98/100 41/92/98

However, we should note that the 2-camera CBD approach already performs very

well in this 2,000 ft2 test space with MAEpp of 0.097 (9.7% error per person) vastly

outperforming the 1-camera RAPiD performance (no PRID needed) that produced

a 0.373 MAEpp (or 37.3% error per person) as reported in Table 6.3). Furthermore,

as shown in Table 6.1, RAPiD applied to a single-camera video stream can deliver

MAEpp of 0.065 (6.5% error per person) up to 800 ft2 square-room area and 0.133

(or 13.3%) up to 1,250 ft2. Considering that the test space has 72× 28 ft dimensions

and that each of the cameras used by the 2-camera CBD approach (cameras #2 and

#3, Figure 3·1) roughly covers one half of the classroom (about 36× 28 ft space with

1,000 ft2 area), it is clear that little improvement can be expected from additional

cameras in this case. However, the N -camera approaches presented in this section

are expected to be highly beneficial in larger spaces in which 2 cameras would be in-

sufficient. Unfortunately, we were not able to access and collect data in larger spaces
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due to logistical reasons (installation, networking and maintenance of the cameras).

Yet, we believe that the proposed N -camera methodology would be very valuable

in scaling up people-counting to much larger spaces such as convention halls, food

courts, airports, train/bus stations, etc.

6.6 Chapter Summary and Discussion

In this chapter, we evaluated the occupancy-estimation performance of combined

people detection and re-identification using 2 overhead fisheye cameras. We also in-

troduced two N -camera occupancy-estimation approaches that can be scaled beyond

N = 2.

Our experiments show that occupancy estimation using a single overhead fisheye

cameras performs well in small-to-mid sized rooms (up to 800 ft2). However, in

larger rooms, single-camera methods struggle due to fisheye distortions, especially

due to foreshortening of people’s appearance at FOV periphery. To overcome this,

we proposed a two-camera approach, where people are first detected in each camera

FOV independently but to avoid double-counting of the same person PRID is applied.

We showed that two-camera methods perform well in a 2,000 ft2 classroom in widely-

ranging occupancy. However, we acknowledge that two cameras may be insufficient for

accurate people counting in larger or topologically-complex spaces. To address this,

we proposed two N -camera occupancy estimation methods. Tested on a 3-camera

dataset we collected (N = 3), these algorithms performed similarly to the two-camera

approach with one having a slight edge during high occupancy periods. We believe

that the proposed N -camera methods will outperform two-camera systems in rooms

much larger than our 2,000 ft2 test space. Unfortunately, we could not perform such

experiments due to logistical reasons.
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Chapter 7

Conclusions and Future Directions

In this dissertation, we proposed several novel person re-identification methods for

overhead cameras equipped with a fisheye lens. We also introduced approaches that

leverage these PRID methods for occupancy estimation in large indoor spaces.

In terms of PRID, we specifically focused on developing methods for overhead

fisheye cameras that are time-synchronized and have overlapping FOVs. We named

this type of PRID a cross-frame fisheye PRID. Unlike other types of PRID discussed

in Chapter 2, cross-frame fisheye PRID has not been studied prior to this dissertation.

Thus, no public datasets existed that were captured with multiple time-synchronized

overhead fisheye cameras.

To study cross-frame fisheye PRID, we collected the first-of-its-kind dataset, Fish-

eye Re-Identification Dataset with Annotations (FRIDA). In Chapter 3, we described

the recording setup of FRIDA and extensively discussed the unique challenges that

it presents compared to other PRID datasets available in the literature. In addition

to introducing FRIDA, we evaluated the performance of 6 state-of-the-art traditional

rectilinear PRID methods on FRIDA. For evaluation, in addition to well-known mAP,

we used a new metric, that we introduced – Query Matching Score (QMS). The unique

feature of QMS compared to other common PRID performance-evaluation metrics is

that it accounts for query elements which may have no match in the gallery set.

We provided two sets of results. In the first set of experiments, we trained the net-

works on a well-known side-view rectilinear PRID dataset Market-1501 (Zheng et al.,
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2015) but tested them on FRIDA. In the second set of experiments, we applied an

identity-wise 2-fold cross-validation on FRIDA, where both testing and training were

performed on FRIDA but on different folds. Our experimental results showed that

training on FRIDA improves PRID performance on fisheye data compared to train-

ing on Market-1501. However, the matching accuracies of networks even trained on

FRIDA were still well below those reported for traditional rectilinear PRID datasets,

thus prompting further investigation.

All methods we evaluated in Chapter 3 were appearance-based. However, in fish-

eye PRID the appearance of people gets distorted due to fisheye-lens geometry which

hurts the performance of appearance-based methods. Therefore, in Chapter 4, we

introduced a cross-frame fisheye PRID method that does not depend on appearance.

This method is motivated by the fact that a person can only appear at a single 3-D

world location at a given time instant. We used this observation to develop a model

that allows mapping of a person’s location from one fisheye image to another fish-

eye image. However, this mapping requires the knowledge of a person’s height. We

proposed either to use the average height of a person in the US or to sweep a range

of reasonable human heights, and developed 4 novel distance measures to quantify

the likelihood of a query/gallery identity match. Our experimental results showed

that all proposed location-based methods outperform the appearance-based meth-

ods with a significant margin. However, would a combination of location-based and

appearance-based approaches perform even better?

Since close proximity of people degrades performance of a location-based approach,

in Chapter 5 we introduced a cross-frame fisheye PRID approach that combines

appearance- and location-based features. We proposed three features to help match

query and gallery elements, namely: appearance feature obtained by deep learning,

color histogram, and location-based feature. We fused these features by applying nor-
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malization and Näıve Bayes approach. To perform identity matching, we introduced

a probabilistic approach to decide which camera serves better as a query source and

which serves better as a gallery source. Through an ablation study with all possible

combinations of features, we showed that a combination of appearance- and location-

based features outperforms single-feature algorithms, with the best-performing com-

bination achieving QMS of over 97% and mAP of over 98%.

While PRID has various applications, in Chapter 6 we focused on its applica-

tion to occupancy estimation (i.e., people counting). The key difference compared

to earlier chapters is that in Chapter 6 we used a people-detection algorithm to find

occupants rather than ground-truth bounding boxes from manual annotations. In

order to motivate the need for PRID in occupancy estimation, we first analyzed the

occupancy-estimation performance of a state-of-the-art people-detection algorithm

developed for overhead fisheye cameras - RAPiD (Duan et al., 2020). We demon-

strated its good performance in a small-to-medium size spaces (up to 800 ft2) but

progressive deterioration for larger and larger spaces. This is due to fisheye-lens ge-

ometry causing people to appear very small and distorted at FOV periphery, which

RAPiD often misses. To address this, we deployed 3 cameras to monitor a 2,000 ft2

room. Although multiple cameras helped resolve the problem of missing detections,

it introduced a new problem of overcounting when the same person is captured in

FOVs of different cameras. To resolve this, we applied PRID between 2 cameras

and showed a much improved performance on a 3-day video recording. Compared

to single-camera counting which achieves people-counting error of no more than 5 in

72% of video frames, the 2-camera PRID-based methods achieves such error in 92%

of video frames.

However, in larger spaces, well beyond 2,000 ft2, two overhead fisheye cameras will

not suffice. Therefore, we explored scaling the proposed two-camera PRID methods
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to N cameras. We proposed one method based on the idea of scaling 2-D score

matrix for two cameras to N -D score matrix for N cameras. Our second method

maps pixel locations of people detected in images from N cameras to 3-D locations

in room coordinates and then clusters these 3-D locations to estimate the people

count. We evaluated both approaches on the 3-day video recording and showed that

both N -camera people-counting methods (N = 3) perform comparably to the best

performing two-camera PRID method. However, the N -D score-matrix approach

outperformed the two-camera approach on days when the space was very crowded.

While we could not demonstrate an improved performance of the 3-camera method

over a 2-camera method due to limited size of the test space, we are convinced that

both of the proposed N -camera approaches will perform very well in very large spaces

(e.g., very large lecture halls, exhibition halls, food courts, supermarkets).

7.1 Future Directions

7.1.1 Leveraging Temporal Information

The methods we have proposed and evaluated in this dissertation fall under the um-

brella of image-based PRID (Ye et al., 2022) since they do not use any temporal

information. However, using temporal information is likely to improve PRID perfor-

mance since people count does not change dramatically between consecutive video

frames (no more than about 1 second). These types of methods would fall into cat-

egory of video-based PRID, where identity matching is performed based on a group

of video frames rather than on a single one. There exist video-based PRID methods

developed specifically for rectilinear images (Wu et al., 2018; Li et al., 2018a; Zhou

et al., 2017; McLaughlin et al., 2016). However, no such methods have been proposed

to-date for overhead fisheye cameras with overlapping fields of view. We believe this

would be a fruitful direction for future research, and we see two potential pathways.
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In both cases, we assume that a motion track of each person is available in each cam-

era view. These tracks can be obtained either from the ground truth or by applying

a people-tracking algorithm for fisheye videos (Tezcan et al., 2022).

The first pathway we imagine can be thought of as an extension of methods we

proposed in Chapter 5. The main idea is to generalize a distance measure between one

query bounding box and one gallery bounding box to a measure between a sequence of

query bounding boxes and a sequence of gallery bounding boxes using ideas introduced

in Section 4.3.1. First, features would need to be extracted from each bounding box

in the sequence, as explained in Chapter 5. Let the feature vectors of a sequence of

bounding boxes from one query be {Ai, i = 1, . . . ,m}, and those from one gallery

element be {Bj, j = 1, . . . , n}, where m and n are the coresponding sequence lengths.

One way to compute the distance between these two sets would be to follow the ideas

proposed in Section 4.3.1, for example: the minimum distance mini,j d(Ai, Bj) or the

total distance
∑

i,j d(Ai, Bj), where d(·, ·) can be the cosine distance or L2-norm.

Another pathway would be to adapt a video-based traditional rectilinear PRID

method to perfrom video-based cross-frame fisheye PRID. One of the most effective

architectures for handling sequential data (such as video, audio, text) are Recurrent

Neural Networks (RNN). For example, in (McLaughlin et al., 2016) an RNN-based

PRID method was developed for rectilinear images. A CNN was used to extract

features of each bounding box separately, which were subsequently fed into to an

RNN. By using temporal pooling, the features produced by the RNN were combined

together and fed into a Siamese network with a contrastive loss function instead of a

triplet loss. A similar architecture can be used for cross-frame fisheye PRID. However,

rather than using only features extracted by a CNN, it would make more sense to

combine all features that were demonstrated in Chapter 5 to be beneficial.
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7.1.2 General Matching-Score Metrics for N-camera PRID

In Section 6.5.1, we introduced N -camera PRID, which requires construction of an

N -dimensional score matrix for identity matching. We proposed one way to com-

pute elements of this matrix (6.6), namely by summing camera-pairwise similar-

ity/dissimilarity scores. However, other methods are possible. One approach would

be to map query locations from k − 1 (where 2 ≤ k ≤ N) cameras to a reference

camera in the group of k cameras, and develop a measure for k-tuplet of locations

(each location coming from different camera) with the goal of finding k-tuplets that

form “tightest” groups. Such a measure would need to capture the size of k-vertex

polygons, for example:

1. the area of a k-vertex polygon,

2. the perimeter of a k-vertex polygon,

3. the average distance of vertices from the centroid of a k-vertex polygon.

Other distance measures can be considered. The principled search for the best mea-

sure would be an interesting direction to explore in future work.

7.1.3 Domain Adaptation

In Chapter 3, we demonstrated a performance gap between rectilinear PRID and

fisheye PRID by training on Market-1501 (Zheng et al., 2015) (rectilinear, side-view

images) and testing on FRIDA (fisheye, overhead images). Due to a significant mis-

match in camera optics and viewing perspective, such an approach did not perform

well. An alternative semi-supervised approach, is to use domain-adaptation methods

developed for traditional rectilinear PRID (Fu et al., 2019; Deng et al., 2018; Bak

et al., 2018), where only unlabeled examples from the target domain are used. How-

ever, in susch methods both source and target domains are still captured by rectilinear
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cameras from a side viewpoint. Thus, our problem remains more challenging due to

differences in lens geometry and acquisition viewpoint between the source domain

(e.g., Market-1501 (Zheng et al., 2015), Duke MTMC (Ristani et al., 2016), CUHK03

(Li et al., 2014)) and the target domain (FRIDA). We believe that a good starting

point in this case would be the approach proposed in (Fu et al., 2019), where the

source dataset would be Market-1501 and the target dataset would be FRIDA.

7.1.4 Distance Estimation

In this dissertation, we focused on person re-identification and people counting using

overhead fisheye cameras. As such cameras become more ubiquitous due to their wide

field of view and largely-unobstructed perspective, we believe there will be increasing

interest in human behavior analysis from such data, e.g., activity recognition to detect

suspicious events, generation of occupancy heat-maps to determine which parts of a

space are used more frequently, distance estimation between people to adhere to social

distancing guidelines. These are largely unexplored topics in the context of overhead

fisheye cameras.

Very recently we took a step in this direction by developing two methods for dis-

tance estimation between people using a single overhead fisheye camera (Lu. et al.,

2023). We proposed and evaluated two methods: a model-based method that maps

pixel location of a person to real-world (3-D) coordinates, as detailed in Chapter 4,

and a data-driven one using Multi-Layer Perceptron (MLP), that requires annotated

inter-person distance data. In addition to distance-estimation performance, we also

reported performance of social-distancing violation detection (i.e., binary classifica-

tion of distance between people, whether above or below 6 ft). To facilitate training

and testing of these algorithms, we published a first-of-its-kind dataset Distance Esti-

mation between People from Overhead Fisheye cameras (DEPOF) (Lu. et al., 2023).

Both algorithms performed far from perfect in terms of distance estimation, with
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errors ranging from 18 to 45 in. However, even with such errors the accuracy of de-

tecting social-distance violations (below/above 6 ft) was high at 94%. We hope our

work will inspire more research in this direction.

One of the difficulties we faced in this project was the use of average rather then

true person’s height, that contributed to errors. Thus, it would be very valuable to

develop a person-height estimation algorithm (e.g., by taking bounding-box meta-

data and content as input) which could potentially reduce distance errors in the 3-D

mapping approach. However, to improve our MLP model, that was trained on data

captured for a single, known height, one would need annotated data captured for dif-

ferent heights. In that case, the DEPOF datset would need to be extended to several

heights.
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Appendix A

Derivations for Pixel-Correspondence

Mapping

Below, we derive equations (4.8), (4.9) and (4.10) from Section 4.1.3. Since these

derivations apply to both cameras, we omit the A, B subscripts. Figure A·1 depicts

the geometric relationship between various points used in these derivations.

Let P = [Px, Py, Pz]
T represent a 3D-world point with Pz ≥ 0. Then, ||P || =

√
P 2
x + P 2

y + P 2
z . The orthogonal projection of P onto the unit sphere centered at O

(Figure A·1) is given by:

S =
P

||P ||
. (A.1)

A perspective projection of S onto the homogeneous imaging plane of the fisheye

camera, with camera center C = [0, 0,−ξ]T , ξ ≥ 0, is given by:

p = C +
S −C

Sz − Cz

, (A.2)

since on the homogeneous imaging plane we must have (pz−Cz) = 1.After substituting

the expression for S from Eqn. (A.1) into Eqn. (A.2) and simplifying, we obtain the

following mapping from P to p:

p =

[
Px

Pz + ξ||P ||
,

Py

Pz + ξ||P ||
, 1− ξ

]T
(A.3)

Now suppose that p = [px, py, 1−ξ]
T denotes a point on the homogeneous imaging
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Figure A·1: Geometry of a model for single fisheye camera.

plane of the fisheye camera with coordinates expressed relative to the origin O.1 For

convenience we define

cos(α) =
1

||p−C||
=

1

β
. (A.4)

From Figure (A·1) we have:

||I −C|| = ξ cos(α) =
ξ

β
(A.5)

||I|| = ξ sin(α) = ξ

√
1−

1

β2
(A.6)

||S − I|| =
√
1− ||I||2

=

√
β2(1− ξ2) + ξ2

β
(A.7)

||S −C|| = ||S − I||+ ||I −C||

=
ξ +

√
β2(1− ξ2) + ξ2

β
(A.8)

1Coordinates of p relative to the camera center C are homogeneous and are given by (p−C) =
[px, py, 1]

T .
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Since, S, p, and C are collinear,

S = C + (p−C)
||S −C||

||p−C||

= C + τ(p−C), (A.9)

where from Eqns. (A.4) and (A.8),

τ :=
ξ +

√
β2(1− ξ2) + ξ2

β2

=
ξ +

√
1 + (1− ξ2)(p2x + p2y)

p2x + p2y + 1
. (A.10)

Since P , S, and the origin O are collinear, we should scale S by a factor to match

the z-coordinate of P . Thus,

P = Pz ·
S

Sz

(A.11)

After substituting the expression for S from Eqn. (A.9) into Eqn. (A.11) and simpli-

fying we get the following mapping from p to 3D-world point P whose z-coordinate

equals Pz:

P = Pz [u · px, u · py, 1]
T (A.12)

u =
τ

τ − ξ

=
ξ +

√
1 + (p2x + p2y) · (1− ξ2)

−ξ(p2x + p2y) +
√

1 + (p2x + p2y) · (1− ξ2)
(A.13)

where τ is given by Eqn. (A.10). The expression for u can be simplified to

u =
1 + ξ

√
1 + (p2x + p2y) · (1− ξ2)

1− ξ2 · (p2x + p2y)
.
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Constraint on ξ: We have:

ξ
√
p2x + p2y = ξ · ||[px, py]

T || =
ξ · ||[Px, Py]

T ||

Pz + ξ · ||P ||

≤
ξ · ||P ||

Pz + ξ · ||P ||

≤ 1

where we used equation (A.3) to obtain the second equality. Therefore,

0 ≤ ξ ≤
1√

p2x + p2y
.

We note that the lower bound on ξ is an assumption whereas the upper bound on ξ

is a consequence of the assumed geometric constraints.
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Appendix B

Low-Resolution Overhead Thermal

Tripwire for Occupancy Estimation

The main focus of this dissertation is on PRID and people counting using overhead

fisheye cameras. However, as pointed out in Chapter 1, there are other means of

estimating occupancy. In this appendix1, we introduce a method that uses low-

resolution thermal sensors for occupancy estimation. The main motivation behind

choosing low-resolution sensors is to preserve privacy of occupants, i.e., the identities

of people should not be recognizable. This is important especially for spaces like

bathrooms, locker rooms, etc.

To date, people-counting methods using low-resolution thermal sensors have fo-

cused on assessing the state of a room’s interior (Beltran et al., 2013; Tyndall et al.,

2016; Amin et al., 2008). Such methods can be effective for small rooms, but in case

of a large room the field of view (FOV) of a low-resolution thermal sensor might not

be sufficient to capture all people in the room. In this scenario, multiple sensors are

needed but this increases the cost and complexity of installation, and also requires

complex processing to avoid overcounts due to FOV overlap.

In contrast, we propose to count people using a single low-resolution thermal

sensor mounted above every entry/exit point of a room (Figure B·1) and develop a

computational methodology to accomplish this. Regardless of room size, such ther-

1This work was published in the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (Cokbas et al., 2020)
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mal tripwires can independently detect people entering/exiting a room and jointly

estimate the occupancy (state) of the room. In contrast to past methods, our ap-

proach is not frame-based but event-based, that is a people count is updated only

upon the completion of a door event.

The approach we propose consists of three steps: background subtraction, event

detection and event classification. In the first step, we detect “warm” pixels via

a probabilistic background-temperature model based on Running Gaussian Aver-

age (Wren et al., 1997). Since this model does not leverage spatial coherence of

temperature, we combine it with a Markov Random Field (MRF) model (McHugh

et al., 2009) to produce high-temperature blobs. In the second step, based on back-

ground/foreground separation, we detect door events. In a baseline version, we as-

sume that one person passes through the door at a time and we treat all foreground

pixels as associated with this person. In order to handle wider doors and multiple

people, we develop an enhanced algorithm that identifies high-temperature blobs and

tracks them. In the third step, we classify each event as an entry or exit based on

the direction of blob movement. To validate the performance of our algorithms, we

have collected and manually labeled a dataset of thermal sequences covering vari-

ous scenarios, including challenging edge cases. This dataset, the first of its kind, is

public and available for download. We evaluate our algorithms on this dataset and

show that while both proposed algorithms work equally well in normal scenarios the

enhanced algorithm outperforms the baseline algorithm on edge cases.

B.1 Methodology

In our approach, we analyze consecutive thermal frames captured by a sensor mounted

above a door (Figure B·1) in three steps: (1) background subtraction to first detect

the presence of one or more people in the FOV of the sensor; (2) event detection
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Figure B·1: Configuration of our virtual-tripwire door setup: low-
resolution thermal sensor mounted above a door and facing down (left);
and 32×24-pixel thermal frame captured by the sensor when a person
is leaving the room (right).

to identify the beginning and end of entry or exit events spanning multiple frames;

and (3) event classification as an entry or exit (Figure B·2). These three steps are

discussed in detail below.

Figure B·2: Block diagram of the proposed approach.

B.1.1 Background Subtraction

In this step, our goal is to separate the pixels that correspond to a human body from

those that belong to the background (floor, walls, other surroundings). Since the

system is designed for indoor people counting, it is reasonable to assume that a person

is warmer than the background. Despite the difference between body temperature
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and room temperature, a single global threshold cannot reliably distinguish between

them due to natural variations in people and indoor environments. In our approach,

instead of thresholding temperature values, we model the background temperature of

each pixel by a Gaussian pdf and apply a threshold to the temperature probabilities.

Let T n[x] denote the temperature value of a pixel at location x in frame n. We use the

Running Gaussian Average (RGA) model (Piccardi, 2004), (Stauffer and Grimson,

1999) to update the mean µn[x] at every background location x as follows:

µn[x] = 1(Tn[x]ϵB)
[
αTn[x] + (1 − α)µn−1[x])

]
+ 1(Tn[x]ϵF )µn[x] (B.1)

where the sets of background and foreground pixels are denoted by B and F, respec-

tively, 1(·) is an indicator function, and 0 < α < 1 is a weight controlling recursive

update of the mean. We model the probability that a pixel at x belongs to the

background as follows:

PB(Tn[x]) = N (Tn[x]− µn[x], σ) (B.2)

where N (·, ·) denotes the Gaussian distribution with standard deviation σ. We use

the same fixed σ for all pixels and perform background subtraction by means of the

following binary hypothesis test applied to PB(·):

PB(Tn[x])
B

≷
F

η (B.3)

where η is a fixed threshold, identical for all pixels. We refer to this overall back-

ground subtraction model as Running Gaussian Average based Background Subtrac-

tion (RGA BS) and show a sample result in Figure B·3b.

The background subtraction model discussed so far uses temporal information to

separate the foreground from the background. However, all decisions are made inde-

pendently at neighboring pixels, thus leading to fragmented body-temperature areas.
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(a) 32×24-pixel frame from Melexis
MLX90640 sensor with person pass-
ing through a door. Rows of the
frame are aligned with the door
frame while columns are orthogonal
to the door opening.

(b) Result of background subtrac-
tion using RGA BS algorithm.

(c) Result of background subtrac-
tion using RGA+MRF BS algo-
rithm.

Figure B·3: Thermal frame and results of background subtraction for
a single person passing through a door.
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In order to address this, one needs to leverage the spatial contiguity of the human

body by applying spatial constraints to foreground estimates. For this purpose, we

use an approach proposed by McHugh et al. (McHugh et al., 2009). They used a

Markov Random Field (MRF) model to ensure spatial estimate coherence within a

binary hypothesis test as follows:

PB(Tn[x])

PF (Tn[x])

B

≷
F

θexp
(QF [x]−QB[x]

γ

)
, (B.4)

where PF (Tn[x]) is the probability that Tn[x] belongs to the foreground, QF [x] and

QB[x] denote the number of neighboring foreground and background pixels around

location x, respectively, while θ and γ are parameters. Unlike PB(·), we assume PF (·)

is a constant (uniform distribution) because we observed that the foreground (body)

temperature footprint characteristics can vary significantly depending on clothing,

hairstyle and height of a person. Effectively, the right-hand side of the binary hy-

pothesis test (B.4) is a spatially-adaptive threshold. Depending on the labels of

neighboring pixels, the threshold will change. If there are more foreground pixels

than background pixels in the neighborhood of x, the threshold will increase, and,

therefore, it will be more likely that the pixel is deemed as belonging to the fore-

ground (and vice versa). Due to the variable threshold, the MRF model increases

spatial coherence of foreground estimates, which can be seen in Figure B·3c. The

parameter γ can be used to adjust the degree to which the MRF model impacts the

threshold.

B.1.2 Event Detection

We propose two different event detection algorithms. Our baseline algorithm assumes

that no more than one person will pass under a door at a given time. Our multi-person

algorithm, however, is designed to handle multiple people simultaneously passing
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through the door.

(a) Baseline Algorithm

We define an event as a sequence of consecutive frames that satisfy the following

conditions: (1) the frames immediately preceding and following the event are empty,

i.e., have no foreground pixels, (2) each frame in the event has at least one foreground

pixel, and (3) there is at least one frame in the event with at leastK foreground pixels,

were K is a parameter which can be adjusted to account for the height at which the

sensor is mounted above the door (smaller K for greater heights).

(b) Multi-Person Algorithm

In the baseline algorithm, we assumed that only one person passes under the sensor at

a time. If multiple people pass through the door within the same event, the algorithm

is incapable of distinguishing them (it calculates only one centroid), thus resulting in

an error (Figure. B·4).

To address this, we detect blobs among foreground pixels in each frame and track

their movement. A blob is defined as a connected component of foreground pixels of

size L or more. We also define a blob track as a time sequence of blobs, one in each

frame, that are linked between consecutive frames via association described below.

We consider each blob track to be an event. Blob tracks start, grow and end as

described below.

Blob track birth: If there are more blobs in the current frame than in the

previous frame, a new blob track is created. The decision as to which blob will be

associated with the new blob track is determined after data association in the growth

phase.

Blob track growth: If the number of blobs in the current and previous frames

is the same, then a one-to-one mapping is established between blobs in those frames
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(a) 32×24-pixel frame with two peo-
ple passing through a door.

(b) Result of background subtrac-
tion using RGA+MRF BS algorithm
with centroid (green star) computed
using the baseline algorithm.

(c) Result of background subtrac-
tion using RGA+MRF BS algorithm
with two centroids (red and blue
stars) computed using the multi-
person algorithm.

Figure B·4: Thermal frame and results of background subtraction
and centroid calculation for 2 people passing through a door.
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thus leading to track growth. The track to which a previous-frame blob belongs is

grown by a current-frame blob with which the previous-frame blob is associated. This

association is established based on the Euclidean distance between blobs’ centroids.

First, for each blob in the current frame the closest blob is found in the previous

frame. Then, the blob pair with the smallest centroid-to-centroid distance is said to

be associated with each other and removed from further consideration. The procedure

is repeated for the remaining current-frame blobs. Other blob association methods

could be applied as well, e.g., minimization of the sum of distances for all blob pairs.

However, sophisticated methods may not work as well in our application context due

to low thermal sensor resolution, short duration of events and the similarity of thermal

footprints of different people.

Blob track termination: If there are fewer blobs in the current frame than in

the previous frame, a blob track is terminated. The decision as to which blob is to

be terminated is determined after data association in the growth phase.

B.1.3 Event Classification

Both algorithms classify each event at its completion into one of the following classes:

(1) a person left the room or (2) a person entered the room. This is accomplished by

analyzing the direction of movement of foreground pixels throughout the event. Let

Fn be defined as follows:

• baseline algorithm: a set of all foreground pixels at time n,

• multi-person algorithm: a set of all pixels belonging to a single blob at time n

(part of a blob track).

We compute the centroid Cn at time n as follows:

Cn =
1

|Fn|

∑

x∈Fn

x.
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Since columns of a thermal frame are orthogonal to the door opening (Figure B·3a),

we use the vertical component Cv
n of centroid Cn = [Ch

n , C
v
n] to determine whether

a person enters or leaves the room. In particular, we examine whether or not the

centroid crosses the mid-line of the frame between two consecutive time instants

n− 1 and n. If Cv
n belongs to the upper part of the frame (top 32× 12 pixels of the

Melexis 32 × 24 pixel sensor) whereas Cv
n−1 belongs to the lower part of the frame

(bottom 32× 12 pixels) we predict that the person is entering the room. Conversely,

if Cv
n belongs to the lower part of the frame whereas Cv

n−1 belongs to its upper part,

we predict that the person is leaving the room. Based on this decision, the people

count is updated.

During a hesitant entry/exit or in case of lingering, an event might involve multiple

mid-line crossings. We examine the first and last crossings within an event. If the

directions of these two crossings are the same, we decide as described above. If the

directions differ, we consider this to be a case of lingering and do not update the

people count.

B.2 Experimental Results

B.2.1 Dataset

We collected a dataset of thermal image sequences using two Melexis MLX90640

32×24-pixel sensors running at 16 Hz mounted above two doors (Figure B·1) of a

small classroom. Compared to previous research (Beltran et al., 2013), (Tyndall

et al., 2016) our sensor has a slightly higher spatial resolution, but still a person

cannot be visually recognized from the captured data (Figs. B·3a, B·4a).

Our dataset, called TIDOS (Thermal Images for Door-based Occupancy Sensing),

is publicly available2 and includes several types of door activity: single person enter-

2vip.bu.edu/tidos

http://vip.bu.edu/tidos
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ing/leaving the classroom, multiple people entering/leaving through the same door,

people lingering in the door, people with backpacks, in thick clothing, carrying various

items, etc. Details of the dataset are provided in Table B.1. We manually annotated

each frame in the dataset with a number which equals the change in the people count

(if any). Such a change can only occur at the end of an event. During annotation,

an event is considered to have ended when a person completely leaves the frame. We

computed the ground-truth people count in the room using our annotations and the

initial people count in the room (Table B.1).

B.2.2 Performance Analysis

We evaluated the performance of our algorithms on TIDOS using the following algo-

rithm parameters: α = 0.05 σ = 0.4 and η = 0.015 in the RGA model, θPF (Tn[x]) =

0.015 (a constant for all x) and γ = 0.2 in the MRF-based hypothesis test, and blob-

size threshold of K = L = 100 for both baseline and multi-person algorithms. The

values of α, σ, η, γ, θPF were selected heuristically. However, the values of K and L

are motivated by the typical size of a human body’s projected image onto the sensor.

Based on physical constraints of our setup (55◦ × 35◦ sensor FOV, 2.4m installation

height, 1.7m average human height), we concluded that a body’s projection typically

occupies 200–250 pixels and this agrees with our observation of recorded data. We

used 100 as our threshold to avoid misses in case of shorter people, especially children.

Since both algorithms estimate transitions in the state of a room (people-count

changes), in order to estimate the state of the room (people count) an initial state of

the room is needed. In our experiments, we used the true initial people count in each

room reported in Table B.1.

We use three metrics to evaluate the performance of our algorithms. The first

two metrics assess the raw people-count estimation performance and are based on

Mean Absolute Error (MAE). Our third metric addresses the drift problem, that
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Table B.1: Details of TIDOS (Thermal Images for Door-based Oc-
cupancy Sensing) dataset. Each 32×24-pixel frame was acquired by
Melexis MLX90640 sensor at 16 fps. Data was collected by 2 sensors,
one over each door of a small classroom.

Thermal

Recording

Number

of

frames

Number

of

entries

and

exits

Initial

people

count

Challenges (scenario)

Lecture 7,520 2 9 Lingering in doorway (only single-person

events)

Lunch

Meeting 1

37,536 25 0 Wearing a coat; carrying various items;

multiple people passing through at the

same time

Lunch

Meeting 2

9,344 8 12 Carrying a backpack (only single-person

events)

Lunch

Meeting 3

28,128 69 7 Lingering in doorway; wearing a hoodie

or carrying a backpack; two people

standing in a door and handshaking;

multiple people passing through at the

same time

Edge Cases 13,120 24 6 Long lingering in doorway; one or two

people standing in a door while another

person is passing through;

multiple people passing through at the

same time

High

Activity

22,560 133 4 Wearing a hoodie or thick coat; carry-

ing a backpack; pushing a chair through

doorway; leaning against a closed door;

one person standing in a door while an-

other one is passing through; multiple

people passing through at the same time
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leads to error accumulation, and temporal misalignments between ground-truth and

estimated people-count changes.

(a) Basic Metrics for Count Estimation

Our basic performance metric is the MAE between the true and estimated people

counts averaged across all N frames of a thermal sequence. The value of MAE is

unaffected by the initial count. However, it scales with the number of people enter-

ing/leaving a room which confounds the comparison of MAE values across different

occupancy-density scenarios. Thus, we propose another evaluation metric which ac-

counts for the number of people in a room, namely the Per-Person Mean Absolute

Error MAEPP , defined as follows:

MAEPP =

N∑
n=1

|ŷn − yn|

N∑
n=1

yn

, (B.5)

where yn and ŷn are the ground truth and estimate of the number of people in a

room at time n, respectively, and N is the total number of frames in the recording.

While, in principle, the denominator in (B.5) could be zero, recordings with no people

entering/leaving a room are not interesting for algorithm assessment and are absent

from our dataset. We show the performance of our algorithms in terms of MAE

and MAEPP in Table B.2 and in terms of frame-wise people count in Figures B·5

and B·6. Unlike MAE, the value of MAEPP is influenced by the initial state of the

room since that affects the denominator of Eq. (B.5). Moreover, for all recordings in

TIDOS, the denominator of Eq. (B.5) is larger than N , the number of frames in a

recording. This causes the MAEPP value to be consistently smaller than the MAE

value for the same algorithm applied to the same video.

Baseline algorithm: The baseline algorithm has high MAE and MAEPP values for
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Table B.2: Performance comparison of the proposed algorithms on
TIDOS dataset using three metrics. The lowest values for MAE and
MAEPP and the highest value for CCRWCC for each recording are
shown in boldface.

Baseline algorithm Multi-person algorithm

MAE MAEPP CCRWCC MAE MAEPP CCRWCC

Lecture 0.392 0.043 0.500 0.003 0.001 1

Lunch Meeting 1 0.812 0.167 0.880 0.319 0.065 0.888

Lunch Meeting 2 0.009 0.001 0.777 0.016 0.001 0.777

Lunch Meeting 3 0.973 0.137 0.826 0.052 0.007 0.905

Edge Cases 0.868 0.166 0.666 0.548 0.105 0.807

High Activity 1.431 0.239 0.651 0.945 0.158 0.753

“Lunch Meeting 1”, “Lunch Meeting 3”, “Edge Cases” and “High Activity” record-

ings. This is due to multiple-person events that the algorithm cannot handle. As

expected, the algorithm works well for single-person events as confirmed by low error

values for “Lecture” and “Lunch Meeting 2” recordings.

Multi-person algorithm: The multi-person algorithm performs very well on “Lec-

ture” and “Lunch Meeting 2” confirming its ability to handle single-person events.

It also performs well on “Lunch Meeting 1”, “Lunch Meeting 3” and “Edge Cases”

recordings that contain multiple-person events. Admittedly, it mishandled one of the

multi-person events in “Lunch Meeting 1” (Figure B·6, around frame 18,000). The

multi-person algorithm does not perform as well on “High Activity”, as it is the most

challenging recording in the dataset (see Table B.1). Not only does “High Activity”

contain the largest number of events, its range of challenges is also widest. Overall,

however, the multi-person algorithm significantly outperforms the baseline algorithm

in both MAE and MAEPP on all thermal recordings except for “Lunch Meeting 2”

for which the error is extremely small anyway.



130

This performance improvement can be also seen in frame-wise people-count plots

(Figures B·5 and B·6). While the baseline algorithm suffers from count drift

due to mishandling multiple-person entries/exits (latter parts of “Lunch Meeting

1” and “Lunch Meeting 3”), the multi-person algorithm handles these cases correctly.

Clearly, both algorithms have some difficulty with the challenging “High Activity”

recording but the multi-person algorithm tracks the ground truth more accurately

than the baseline algorithm, which is relfected in MAE and MAEPP values.

Figure B·5: People counts estimated by the baseline algorithm. True (blue) and
estimated (red) people-count plots for the proposed algorithms across all recordings
in the TIDOS dataset. To distinguish between the red and blue curves in frames
where their values exactly coincide, we added a positive vertical offset of 0.1 person
to the blue curves. Note that since at each time instant two frames are collected (one
by each door sensor), the number of frames in this plot is one-half of the total number
of frames in Table B.1.

(b) Metric Robust to Temporal Misalignments and Error Accumulation

Despite a very accurate estimate of counts by both algorithms in “Lunch Meeting

2” (Figures B·5 and B·6), their MAE and MAEPP values are not zero. This is

due to the fact that although all events have been correctly classified, the timings
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Figure B·6: People counts estimated by the multi-person algorithm. True (blue)
and estimated (red) people-count plots for the proposed algorithms across all record-
ings in the TIDOS dataset. To distinguish between the red and blue curves in frames
where their values exactly coincide, we added a positive vertical offset of 0.1 person
to the blue curves. Note that since at each time instant two frames are collected (one
by each door sensor), the number of frames in this plot is one-half of the total number
of frames in Table B.1.

of a ground-truth event (marked at its completion) and of its estimate may slightly

differ. For instance, in the event definition of the multi-person algorithm, a person is

considered as “leaving” a frame if the associated blob has less than L pixels. However,

during our manual annotation a person was considered as out of the frame if s/he

left the frame completely. These slight temporal misalignments contribute non-zero

values to MAE and MAEPP for a few frames. We can ignore the effects of small

temporal misalignments during performance assessment by examining whether the

estimated count change occurs within a small temporal window w around the time

that the true count change takes place.

Furthermore, MAE and MAEPP apply to people counts and are sensitive to error

accumulation because a single miscount could potentially contribute an MAE of 1.0
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irrespective of the recording duration N . Clearly, a new evaluation metric, resistant

to cumulative errors, is needed. Such a metric should focus on changes in people

counts rather than the counts themselves.

Motivated by these dual considerations, we introduce a new metric, Windowed

Count-Change (WCC) Correct Classification Rate (CCRWCC), that accounts for both

temporal misalignments and error accumulation, and is defined as follows:

en = min
−w≤δ≤w

|(yn+1 − yn)− (ŷn+1+δ − ŷn+δ)|

δn = argmin
−w≤δ≤w

|(yn+1 − yn)− (ŷn+1+δ − ŷn+δ)|

N̂ =
N−1⋃

m=1

{m+ δm},

CCRWCC =
|{n : (yn+1 ̸= yn)

∧
(en = 0)}|

|{n : (yn+1 ̸= yn)
∨
(en ̸= 0)}|+M

(B.6)

M = |{n /∈ N̂ : ŷn+1 ̸= ŷn}|

This metric measures the fraction of frames having count changes in which the es-

timated count-change equals the true count-change within ±w frames. However, it

ignores the frames for which both the estimated and true changes are zero (no door

event) which occur very frequently and would skew the traditional definition of CCR.

CCRWCC is not only resistant to cumulative errors, but also to jitter: even if a pre-

diction is delayed by ±w frames compared to ground truth, it can still be considered

as correct. This metric is essential for applications where misses and false positives

need to be minimized, for example monitoring of entryways to a high-security area.

A more detailed explanation of CCRWCC can be found on our website.3

However, w needs to be judiciously selected; a large w would unjustly boost

CCRWCC . We have considered two constraints on w, a physically-motivated one

3vip.bu.edu/projects/vsns/cossy/thermal

http://vip.bu.edu/projects/vsns/cossy/thermal/
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and a statistically-motivated one. Given our door setup (sensor’s 55◦ × 35◦ FOV

and 2.4m installation height) and a typical speed of 1.2 m/sec for a person enter-

ing/exiting a room, we concluded that this person will be at least partially captured

in thermal frames for about 1.3 sec. Therefore, w should be less than 1.3 sec in

order to ensure that the person immediately following would not be considered as a

potential match within ±w. We have also computed a histogram of time differences

between estimated and ground-truth entry/exit times for all events in TIDOS. Over

90% of these time differences were within 1 sec. Consequently, in all experiments we

used w = 16 frames (1 sec).

The results of Table B.2 show that both algorithms fare equally well in terms

of CCRWCC on “Lunch Meeting 1” and “Lunch Meeting 2”, but the multi-person

algorithm clearly outperforms the baseline algorithm by a significant margin on all

other recordings. It is also interesting to note that small MAE and MAEPP values

need not imply a higher CCRWCC value. Both baseline and multi-person algorithms

have lower MAE and MAEPP values for “Lunch Meeting 2” than for “Lunch Meet-

ing 1”, yet their CCRWCC values for “Lunch Meeting 1” are much higher than for

“Lunch Meeting 2”. This phenomenon may be partially attributed to the fact that

in evaluation metrics such as MAE and MAEPP , two errors that occur in opposite

directions could cancel out each other. For example, if an algorithm misclassifies

one entry event and later misclassifies one exit event, the people count errors due to

these two misclassifications will “cancel” each other out resulting in zero count errors

beyond the second event.

It is clear from Table B.2, that on “High Activity” the multi-person algorithm

outperforms the baseline algorithm by a margin of 0.102 in terms of CCRWCC value.

This is a significant improvement because the “High Activity” recording has the

highest number of entry and exit events and, therefore, a 0.102 fraction of events
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corresponds to around 13 entries/exits. Moreover, CCRWCC of 0.753 suggests that

three out of four entries and exists were correctly detected and classified within 1 sec

of their true occurrence. This is a very solid classification rate for a recording that is

mostly composed of very challenging entry/exit scenarios (see Table B.1).

B.3 Discussion

In this study, we developed and systematically studied an overhead virtual tripwire

configuration for people counting using a low-resolution thermal sensor. We believe

this is the first comprehensive study of its kind encompassing sensor system design

and deployment, dataset collection and annotation, algorithm development, design of

new performance metrics, and performance evaluation of developed algorithms. The

achieved results indicate that typically 80-90% entry and exit events are correctly

classified for scenarios with a wide range of extreme challenges, while in simpler,

less-active scenarios even 100% correct classification can be reached. However, since

our system monitors the changes in occupancy (entry/exit), rather than its state,

occasional errors in event detection cause lasting occupancy-level errors known as

drift errors. This is not the case for occupancy estimation using fisheye cameras

(Chapter 6), since the occupancy rather than its change is being estimated.
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