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The philosopher Tsang said, ”I daily examine myself on three points:–
whether, in transacting business for others, I may have been not faithful;–
whether, in intercourse with friends, I may have been not sincere;– whether
I may have not mastered and practiced the instructions of my teacher.”

The Confucian Analects, translated by James Legge (1893)
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ABSTRACT

The proliferation of sensors in living spaces in the last few years has led to the

concept of a smart room of the future - an environment that allows intelligent inter-

action with its occupants, be it a living or conference room. Among the promised

benefits of future smart rooms are improved energy efficiency, health benefits and

increased productivity. To realize such benefits, accurate and reliable localization of

occupants and recognition of their poses, activities, and facial expressions are crucial.

Extensive research has been performed to date in these areas, primarily using video

cameras. However, with increasing concerns about privacy, the use of standard video

cameras seems ill-suited for smart spaces; alternative sensing modalities and visual

analytics techniques, that preserve privacy, are urgently needed. Motivated by such

demand, this thesis aims to develop image and video analysis methodologies that

protect occupant’s (visual) privacy while preserving utility for an inference task. We

propose two distinct methodologies to accomplish this.

In the first one, we address privacy concerns by degrading the spatial resolution of

vi



images/videos to the point where it no longer provides visual utility to eavesdroppers.

We have conducted proof-of-concept studies for the problems of head pose estima-

tion, indoor occupant localization, and human action recognition at extremely low

resolutions (eLR) (lower than 16×16 pixels). For the problem of pose estimation,

specifically head pose, from a single image at resolutions as low as 10×10 pixels or

even 3×3 pixels, we developed an estimation algorithm using a classical data-driven

approach. For occupant localization based on data from overhead-mounted single-

pixel visible-light sensors, we developed both coarse- and fine-grained estimation al-

gorithms using classical machine learning techniques. For action recognition from

eLR visual data, motivated by the success of deep learning in computer vision, we

developed multiple two-stream Convolutional Neural Networks (ConvNets) that fuse

spatial and temporal information. In particular, we proposed a novel semi-coupled,

filter-sharing network that leverages high-resolution videos to train an eLR ConvNet.

We demonstrated that practically useful inference performance can be achieved at

eLR.

While the use of eLR data can mitigate visual privacy concerns, it can also signif-

icantly limit utility compared to full-resolution data. Thus, in addition to developing

inference methods for eLR data, we took advantage of recent advancements in repre-

sentation learning to design an identity-invariant data representation that also permits

synthesis of utility-equivalent realistic full-resolution data with a different identity. To

this end, we proposed two novel models tailored for 2D images. We tested our models

on a number of visual analytics tasks such as recognizing facial expressions, estimat-

ing head poses, or illumination condition. A thorough evaluation of the proposed

approaches under various threat scenarios demonstrates that our approaches strike a

balance between preservation of privacy and data utility. As additional benefits, our

approach enables performing expression-and head-pose-preserving face morphing.
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Chapter 1

Introduction

1.1 Motivation

Smart Room Visual Analytics: The proliferation of sensors in living spaces in the

last few years has led to the concept of a smart room of the future - an environment

that allows intelligent interaction with its occupants, be it a living or conference

room (see Fig. 1·1). Among the promised benefits of future smart rooms are im-

proved energy efficiency, health benefits and increased productivity. For example,

energy savings can result from lowering illumination in regions void of people, while

health benefits can be realized by task-optimized lighting, e.g., reducing screen glare,

and thus eye strain, when reading off a screen. As for productivity, localization of

occupants may help maximize throughput rates in visible light communication (VLC)

between fixed transceivers (ceiling, walls) and mobile devices (smartphones, tablets,

laptops), also known as LiFi. Finally, hand gestures can be used to control various

room conditions (e.g., temperature, light). To realize such benefits, it is crucial to

accurately and reliably estimate useful information from the room such as the lo-

cations, pose, activities and facial expressions of the occupants. Recent advances in

computer vision technologies have made possible the development of intelligent video-

based monitoring systems that can automatically interpret visual data and capture

the aforementioned information about occupants. But these new technologies also

impose a threat to occupant’s privacy as they are able to collect and index a huge

amount of private information about each individual. With increasing concerns about

1
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privacy, the use of standard computer vision techniques with no respect for user’s

privacy seems ill-suited for smart spaces; alternative visual analytics techniques and

sensing modalities, that preserve privacy, are urgently needed.

Figure 1·1: Vision of the smart room of the future

Preserving Visual Privacy: To date, efforts have been made to develop privacy-

preserving visual recognition solutions. Classical cryptographic solutions were devel-

oped to locally encrypt data and protect it against unauthorized access (Erkin et al.,

2009; Yonetani et al., 2017). However, the sensitive information could be uncovered

if an adversary has the right key for decryption. In addition, encryption algorithms

usually have large computational complexity. Alternatively, some works proposed

to modify private content based on either image processing operations such as blur-

ring (Butler et al., 2015), pixelation (Butler et al., 2015) and cartooning (Winkler

et al., 2014), or privacy-preserving optics that can filter out sensitive information (Pit-

taluga and Koppal, 2015; Pittaluga and Koppal, 2016). However, simple filtering

methods may fail to protect privacy information (e.g., identity) if a rival recognition

algorithm is trained using images that have the same distortions as the test im-

age (Newton et al., 2005; Padilla-López et al., 2015). Recently, a few learning-based
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approaches (Hamm, 2017; Raval et al., 2017; Sokolic et al., 2017; Wu et al., 2018)

were developed to learn privacy-preserving image transformations by optimizing the

trade-off between preservation of visual privacy and data utility. By the term utility

we refer to data intelligibility which represents the amount of useful information that

can be extracted from the visual data. The definition of visual privacy requires a

concrete application context. In the context of smart room, occupant’s identity is

the sensitive information that cannot be disclosed. Therefore, protecting visual pri-

vacy is equivalent to anonymization of visual data, e.g., modifying a person’s visual

appearance to make him/her look like a different person. One major drawback of

learning-based approaches is that they have to be fine-tuned for each inference task.

Another interesting recent work (Dai et al., 2015) showed that even at extremely low

resolutions (eLR), e.g., 16×12 pixels, acceptable indoor human action recognition

performance is attainable. This is inspiring because at such low resolutions, any pri-

vacy concern can be largely ignored. Further, low resolution cameras are inexpensive

and have additional benefits such as low transmission cost that could contribute to

the scalability of smart rooms. However, the previous work (Dai et al., 2015) han-

dles only the action recognition task using a simple data-driven method (K-nearest

neighbors). It is unclear if useful performance can be obtained for other inference

tasks at eLR. It is also not clear if better task performance can be achieved using

more sophisticated methods such as deep learning algorithms.

In this thesis, we first explore and attempt to address visual privacy concerns

by conducting studies for various visual analysis tasks including head pose estima-

tion (Chen et al., 2016), indoor occupant localization (Roeper et al., 2016) and human

action recognition (Chen et al., 2017) at eLR using both classical machine learning

algorithms and modern deep learning techniques.

While the use of eLR data can mitigate visual privacy concerns, it can also degrade
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utility compared to full-resolution data. In order to strike a balance between privacy

preservation and data utility, we propose a new approach: seamless replacement of

the private information in an image without significantly degrading its visual quality

or data utility. Specifically, we develop two distinct models (Chen et al., 2018; Chen

et al., 2019) that leverage variational generative adversarial networks (VGANs) to

learn an identity-invariant representation of an image while enabling the synthesis of

a utility-equivalent, realistic version of this image with a different identity. Both the

resulting representation and the synthesized image are largely disentangled from the

original identity information, and therefore can be made public without compromising

user’s privacy. The main contributions of this thesis are summarized in Fig. 1·2.

Privacy-Preserving
VisualAnalytics

DisassociationDegradation

Localization Head Pose
Estimation Action Recognition Expression

Recognition
Head Pose
Estimation

Classical Machine Learning CNNs/GANs

Objective

Methods

Applications

Figure 1·2: Summarization of contributions

1.2 Related Work

With pervasive cameras for surveillance and smart indoor spaces, privacy-preserving

visual analytics has drawn increasing attention. There is a growing body of research

on methods to perform various visual analysis tasks from data in a manner that

does not disclose private information. According to how privacy is protected, the

literature can be broadly classified into reversible and irreversible approaches (Badii

et al., 2013).
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Reversible methods are those which permit exact data recovery. However, they are

also prone to exposing the original data to possible hacks. Scrambling and encryp-

tion (Dufaux and Ebrahimi, 2006; Dufaux and Ebrahimi, 2008; Sadeghi et al., 2009;

Dufaux, 2011; Ziad et al., 2016; Wang et al., 2017; Kuroiwa et al., 2007; Mart́ınez-

Ponte et al., 2005; Gilad-Bachrach et al., 2016; Senior et al., 2005; Ye, 2010; Zeng and

Lei, 2003) are two commonly used reversible methods to protect the privacy of data.

Most scrambling methods use only permutation operations and can operate only in

a specific domain, e.g., spatial domain (Senior et al., 2005; Ye, 2010), frequency do-

main (Dufaux and Ebrahimi, 2006; Dufaux and Ebrahimi, 2008; Zeng and Lei, 2003)

or codestream domain (Kuroiwa et al., 2007; Mart́ınez-Ponte et al., 2005). They are

also vulnerable to chosen-plaintext attacks (Wirt, 2004; Tews et al., 2011). Image and

video encryption algorithms are typically more secure than scrambling-based meth-

ods. (Erkin et al., 2009; Yonetani et al., 2017) developed cryptographic solutions to

locally encrypt visual information using homomorphic encryption algorithms. How-

ever, encryption-based solutions have large computational complexity (Rivest et al.,

1978). Furthermore, extracting information for an inference task from encrypted

data is a challenging problem. Some recent works (Gilad-Bachrach et al., 2016; Wang

et al., 2017) have proposed neural networks for encrypted-domain recognition and

they perform reasonably well on simple image datasets, e.g., character recognition in

MNIST (LeCun et al., 1998). However, it is unclear how they will perform in nuanced

inference tasks such as pose and action recognition on real-world data.

Irreversible methods are those that do not allow exact data recovery. The most

commonly encountered techniques in this category are based on image processing

and filtering (Krinidis et al., 2014; Erturk, 2007; Park and Kautz, 2008; Chaaraoui

et al., 2012; Zhang et al., 2012; Frome et al., 2009; Jalal et al., 2012). Some methods,

such as (Zhang et al., 2012; Jalal et al., 2012), use only depth data from RGBD
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cameras as a way to preserve privacy. However, depth data has been proved to

be insecure for preserving a person’s identity (Plagemann et al., 2010; Haque et al.,

2016). In (Park and Kautz, 2008; Chaaraoui et al., 2012), privacy is protected by using

only silhouettes of the detected foreground objects for an inference task. However,

the performance of these approaches depends heavily on the accuracy of foreground

detection. In (Newton et al., 2005; Gross et al., 2005; Gross et al., 2006; Bitouk

et al., 2008), the focus is on developing face de-identification methods by altering

faces in an image or a video to hide a person’s identity. Alternatively, (Frome

et al., 2009; Kitahara et al., 2004; Zhang et al., 2006; Neustaedter et al., 2006;

Neustaedter and Greenberg, 2003; Boyle et al., 2000) use image filters to obscure

sensitive regions like human faces, bodies or even background. (Winkler et al.,

2014) proposed a customized camera that applies a cartoon-like effect based on mean

shift filtering. (Pittaluga and Koppal, 2015; Pittaluga and Koppal, 2016) developed

privacy-preserving optics to filter sensitive information from the incident light-field

before sensor measurement are made, by averaging together a target face image with

k−1 of its neighbors (according to some similarity metric). Nevertheless, it has been

shown that simple filtering methods do not fool identity recognition algorithms if they

are trained using images that have the same distortions as the test images (Newton

et al., 2005; Padilla-López et al., 2015). In addition to designing hand-crafted filters,

learning-based approaches were proposed to learn a data sanitization function that

optimizes the utility-privacy trade-off (Hamm, 2017; Raval et al., 2017; Sokolic et al.,

2017; Wu et al., 2018). In spite of achieving good empirical results, their methods

have to be tuned for each inference task of interest (e.g., action recognition).

A recent line of research (Dai et al., 2015) explored visual recognition at extremely

low-resolutions (eLR). At such extreme scenarios, the data gathered no longer pro-

vides any “visual utility” to eavesdroppers. One additional benefit of using eLR data
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is that it has low data transmission and processing requirements. The reported re-

sults show it is possible to achieve reasonable recognition performance with eLR data.

However, their work studies only a limited set of tasks using classical data-driven

methods. Our work improves upon the previous work on eLR by developing more ro-

bust methodologies based on classical machine learning algorithms and modern deep

learning techniques, and expanding the scope to cover various vision tasks including

head pose estimation (Chen et al., 2016), indoor occupant localization (Roeper et al.,

2016) and human action recognition (Chen et al., 2017).

Adversarial training has also been leveraged recently for privacy-preserving visual

analytics tasks. In (Brkic et al., 2017), the focus is on full-body de-identification

without an additional utility criterion such as accuracy of facial expression. Their

methodology relies upon a segmentation algorithm to accurately extract the silhou-

ette of a person to be de-identified. While (Raval et al., 2017; Wu et al., 2018) use

adversarial networks to jointly optimize privacy and utility objectives, as mentioned

previously, their methods have to be tuned for each usage scenario. Different from

previous research that uses adversarial networks, this thesis develops two novel repre-

sentation learning frameworks that explicitly learn an invariant image representation

with the explicit goal of utility-preserving identity replacement in the synthesized

output image which is required to look realistic. Both the generated image repre-

sentation and the synthesized image retain the utility information of the original

image, but eliminate the identity information. As a result, they can be safely re-

leased for processing without compromising user’s privacy. We demonstrate that our

approaches can be applied to various visual recognition tasks such as facial expression

recognition (Chen et al., 2018), head pose estimation (Chen et al., 2019) and style

classification (Chen et al., 2019).
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1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce our ap-

proaches for the problems of head pose estimation, indoor occupant localization and

action recognition at extremely low resolutions. In Chapter 3, we discuss two novel in-

variant representation learning models for privacy-preserving visual recognition. We

demonstrate the effectiveness of our models on various visual analytics tasks. In

Chapter 4, we summarize the conclusions and outline possible directions for future

work.



Chapter 2

Methodologies Based on

Extremely-Low-Resolution (eLR)

As mentioned in Chapter 1, using eLR data is a plausible approach to alleviate pri-

vacy concerns while achieving reasonable target-task performance. It has additional

benefits such as low transmission cost and processing complexity. However, careful

studies are demanded to find the limit to which we can reduce spatial resolution

without significantly impacting performance of target tasks. More importantly, cus-

tomized computer vision approaches are needed to maximize the utility of eLR data.

In this chapter, we first present a framework for estimating head pose orientation

with a monocular RGB camera at 3 extremely low spatial resolutions. Next, we

detail a system for occupant localization in an indoor setting that uses 6 single-

pixel visible-light sensors and thus does not violate an individual’s privacy, even

with eavesdropping. Finally, we introduce multiple Convolutional Neural Networks

(ConvNets) for privacy-preserving action recognition at eLR. Further, we propose a

semi-coupled, filter-sharing network that leverages high-resolution (HR) videos during

training in order to assist an eLR ConvNet

2.1 Head Pose Estimation from eLR Images

Automatic and robust algorithms for head pose estimation are important for effective

intelligent interaction in smart spaces. In this section, we propose a classical nonlinear

regression method based on widely used visual features for estimating human head

9
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pose with a monocular RGB camera at 3 extremely low spatial resolutions: 10×10,

5×5 and 3×3 pixels. Specifically, appearance-based features are extracted across a

variety of head pose images, and passed to a Support Vector Regressor (SVR) for

training and, subsequently, testing.

2.1.1 Related Work

Over the last two decades, numerous publications have appeared in the computer

vision literature on human head pose estimation. For example, Wang et al. (Wang

et al., 2013), estimate pose by learning a random regression forest with 2D SIFT and

3D HoG features from RGB and depth images captured by a Kinect sensor. Saeed

et al. (Anwar Saeed, 2015) first localize the face using the Viola-Jones face detector,

then extract 2D HOG features from RGB and depth images, and finally infer the

head pose by applying SVR to concatenated RGB and depth feature vectors. Fanelli

et al. (Fanelli et al., 2013) jointly estimate the nose tip location and head orientation

using a discriminative random regression forest with only depth appearance patches.

In this thesis, we are interested in fine-grained estimation of yaw, pitch and roll

angles of the human head using single extremely low resolution RGB frame. Some

related work in this domain can be found in (Ahn et al., 2015; Drouard et al., 2015;

Gourier et al., 2007) and (Murphy-Chutorian and Trivedi, 2009). Gourier et al.

(Gourier et al., 2007) apply a linear auto-associative neural network on normalized

23× 30 facial regions to estimate yaw and pitch angles. However, both training and

testing angles for the neural network range from−90◦ to 90◦ with coarse steps of

15◦. Robertson and Reid (Robertson and Reid, 2006) use nearest-neighbor matching

based on skin to non-skin distribution to estimate head pose in surveillance videos

with heads as small as 20 pixels in height. Since ground truth is unavailable, the

validation is based on subjective classification of observed samples into one of 8 dis-

crete directions (45◦ apart). Perhaps, the work most related to ours is that of Ahn
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et al. (Ahn et al., 2015), who leverage a deep neural network to learn the mapping

function between visual appearance and the yaw, pitch, and roll head pose angles.

They report a 3-degree mean squared error for 32× 32-pixel images. However, unlike

the subject-independent cross validation used in this work, their evaluation protocol

does not guarantee the same independence between training and testing data.

Compared to the above works, we study algorithms at much lower resolutions, in

fact as low as 3× 3 pixels.

2.1.2 Head Pose Estimation Algorithm

We propose to use a nonlinear regression method for estimating human head pose

with a monocular RGB camera across 3 extremely low spatial resolutions: 10 × 10,

5× 5 and 3× 3 pixels (Fig. 2·1). Appearance-based features (HOG or gradients) are

extracted across a variety of head pose images, and passed to SVR for training as

well as testing.

Preprocessing

We first convert each RGB image to grayscale and then apply spatial mean-variance

normalization. If xi,j denotes the grayscale value of a pixel at spatial location (i, j),

we normalize each pixel in the image as follows:

x̂i,j =
xi,j − µ

σ
, (2.1)

where µ and σ denote, respectively, the pixel mean value and empirical standard

deviation computed from the whole image.

Feature Extraction

We evaluate two features in this work: HOG and a new gradient-based feature. HOG

is commonly used in many applications and has been widely applied in head pose
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Original 10× 10 5× 5 3× 3

Figure 2·1: Visualization of a head pose at extremely low spatial
resolutions. Pose becomes harder to distinguish at lower resolutions
but privacy is preserved.

estimation as well (Anwar Saeed, 2015; Murphy-Chutorian and Trivedi, 2009; Wang

et al., 2013). For HOG at 10× 10 spatial resolution, we use a cell size of 2× 2 pixels,

and a block size of 2 × 2 cells. Each cell contains a histogram of 9 evenly spaced

orientation bins from -180 to +180 degrees, and each block is spaced by a stride of

one cell. For a 10×10 image, this results in a length 576 HOG feature vector. At lower

resolutions (5× 5 and 3× 3), only HOG with a 1× 1 pixel cell performs reasonably

well. The block size and spacing are unchanged. The length of these HOG feature

vectors are 576 and 144, respectively. Larger cells do not work well since not enough

gradient information is available to meaningfully populate all the HOG bins.

Therefore, at 5× 5 and 3× 3 resolutions we introduce a new 4-dimensional pixel-

wise feature descriptor defined as follows:

fi,j =

(
∂x̂i,j
∂x

,
∂x̂i,j
∂y

, ‖∇x̂i,j‖ , θi,j
)

(2.2)

where ∂x̂i,j/∂x and ∂x̂i,j/∂y are the first-order partial derivatives computed at pixel

(i, j), and ‖∇x̂i,j‖ and θi,j are, respectively, the gradient magnitude and orientation.

In this way, each pixel is described by a 4-dimensional vector and the final feature

descriptor of the entire image is an R × R × 4 - dimensional vector (R = 10, 5, 3).
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Nonlinear Regression: SVR

Pose estimation can be formulated as a regression problem. In total, we estimate

3 regressors, one for each pose angle (yaw, pitch, roll). We use SVR, a supervised

learning algorithm for nonlinear regression that is well-known for its generalization

capability and resilience to over-fitting (Abe, 2005). Given a labeled training set

{(f j, θj), j = 1, . . . , N} of N (feature-vector, pose-angle) pairs, the SVR algorithm

learns a parametric functional mapping from feature vectors to angle estimates of the

form:

θ̂(f) =
N∑
j=1

wjK(f j,f) + b,

where f denotes the extracted feature vector of a test image, K(·, ·) is a chosen

positive definite symmetric kernel (e.g., polynomial, radial-basis, etc.), and b,w :=

(w1, . . . , wN)T , are the parameters of the mapping which are learned from training

data. Algorithms for SVR learn the parameters b,w, as the solution to the following

optimization problem:

min
b,w

1

2
‖w‖2 + C

N∑
j=1

max(0,
∣∣θj − θ̂(f j)

∣∣− ε),
where C is a regularization parameter that controls the tradeoff between bias and

variance (fidelity to data versus prior). Unlike least squares regression, SVR uses an

ε-insensitive loss function of the approximation error: max(0, |error|−ε), which ignores

errors that are smaller than ε, is more robust to outliers, and produces solutions that

are sparse in terms of the number of nonzero weights w1, . . . , wN , that define the

solution. The parameter ε controls the tradeoff between sparsity and accuracy with a

larger ε favoring sparser solutions. To implement SVR, we used lib-SVM (Chang and

Lin, 2011). In our experiments, we used a cubic polynomial kernel, and found the

optimal SVR parameters, C and ε, through 4-fold cross-validation. For more details
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about SVR, we refer the interested reader to (Gunn et al., 1998).

2.1.3 Experimental Results

Dataset

To assess the performance of our algorithm, we used the popular Biwi Kinect Head

Pose Dataset (Fanelli et al., 2013). This dataset was produced using a Kinect sensor

and contains over 15K images of 20 people (6 females and 14 males) continuously

rotating their head within all three degrees of freedom: pitch, yaw and roll, across

multiple environments and varying lighting conditions. The head orientation spans

about ±75◦ for yaw, ±60◦ for pitch, and ±50◦ for roll. For each frame, a depth image

and the corresponding RGB image (640×480 pixels) are provided. The ground truth

pose angles are provided as well; they were obtained using a user-specific 3D head

template and the ICP algorithm (Zhang, 1994). Figure 2·2 shows the histograms of

the ground truth values for yaw, pitch and roll. The median value and the average

absolute deviation from the median value are, respectively, 6.1◦ and 23.9◦ for yaw,

-13.8◦ and 18.8◦ for pitch, and -1.2◦ and 7.4◦ for roll.
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Figure 2·2: Histograms of ground-truth pitch, yaw and roll angles in
the Biwi Kinect Head Pose Dataset.

In order to use this dataset in the context of low resolutions, we made a few modi-

fications. First, we performed a crude localization of each person’s head by manually

extracting a fixed region of interest (ROI) for each person’s set of full resolution im-

ages. In practice, this is equivalent to having a camera with optical settings such
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that the subject’s face occupies most of the camera’s field of view (Fig. 2·1). These

extracted ROIs were then decimated to extremely low resolution images (10 × 10,

5× 5, and 3× 3) using bi-cubic interpolation.

We performed 4-fold (leave-5-people-out) cross-validation in order to evaluate per-

formance. First, the set of all head pose images from 20 people were split into 4

non-overlapping folds with each fold containing all the images of 5 out of the 20

people. Doing this ensures that not only is there no overlap of images across folds,

but also no overlap of people across folds. Then, 3 out of the 4 folds of images are

used for training the SVR algorithm and the remaining fold is used for testing. We

cycled through all 4 choices of testing folds to get 4 sets of test errors. We repeated

this entire process 3 times for different (random) initial splits of 20 people into 4

non-overlapping groups. This gave us 12 sets of test errors which we use to calculate

all the mean absolute errors and their standard deviations. This is consistent with

the cross-validation scheme performed in the original paper by Fanelli et al. (Fanelli

et al., 2013).

Impact of spatial resolution

The impact of spatial resolution on the mean absolute error (MAE) of pose estimation

was evaluated across 3 extremely low spatial resolutions. The results of our method, in

comparison to state-of-the-art full-resolution methods, are summarized in Table 2.1.

The algorithm proposed in (Wang et al., 2013) leverages full-resolution RGB images

as well as depth maps. In (Anwar Saeed, 2015), the authors report two state-of-the-art

MAEs, one when employing HOG features obtained from full resolution RGB images

alone and another one when concatenated HOG features from both full resolution

RGB and depth images are used. For each pose angle, the ‘Median’ estimate is

the median value of ground truth across the entire dataset. The median is the best

constant estimate (estimate with no test image) that minimizes the MAE.
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Table 2.1: Mean and standard deviation of the absolute error for yaw,
pitch, and roll for various methods.

Method/Resolution Pitch Error◦ Yaw Error◦ Roll Error◦

SVR:HOGrgb
12.9±17.2 9.9±12.4 6.9±9.8

10 × 10

SVR:Gradrgb
14.1±18.6 12.4±15.6 7.2±10.3

10 × 10

SVR:HOGrgb
16.1±20.1 15.2±19.3 7.6±10.9

5 × 5

SVR:Gradrgb
13.7±17.6 11.2±14.4 7.7±10.9

5 × 5

SVR:HOGrgb
18.7±23.1 22.8±28.9 7.6±11.6

3 ×3

SVR:Gradrgb
15.9±20.2 16.3±20.8 8.0±11.5

3 ×3

Median
18.8±15.9 23.9±18.9 7.4±8.9

-

(Wang et al., 2013) HOGd + SIFTrgb
8.5±11.1 8.8±14.3 7.4±10.8

Full resolution

(Anwar Saeed, 2015) HOGrgb
5.7±6.1 4.9±5.1 4.8±5.9

Full resolution

(Anwar Saeed, 2015) HOGrgb + HOGd
5.0±5.8 3.9±4.2 4.3±4.6

Full Resolution

The MAE consistently increases, with a decreasing spatial resolution. The per-

formance of our algorithms at 10 × 10 resolution is significantly better than that of

the median estimate. For yaw and roll angles, the performance of our SVR:HOGrgb

algorithm is close to that of the algorithm reported in (Wang et al., 2013) which

is based on full-resolution RGB and depth images. Compared to the state-of-the-

art algorithm (HOGrgb + HOGd) which uses RGB and depth images simultaneously

(Anwar Saeed, 2015), our best results for HOG features at 10×10-pixel resolution are

worse by about 5.5◦ averaged across pitch, yaw and roll angles. This is encouraging

because it indicates that a reasonable quality head pose estimate can be obtained

even with a 10 × 10 pixel monocular camera. When one considers the better of the

two SVR methods at each spatial resolution, the performance drop from 10×10 pix-
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els to 5×5 pixels is not significant: 12.9◦ to 13.7◦, 9.9◦ to 11.2◦, and 6.9◦ to 7.6◦,

for pitch, yaw, roll, respectively. At 3×3 resolution, however, the estimation perfor-

mance breaks down: results are close to or slightly worse than those for the median

estimate. This suggests there is very little pose information that can be learned from

appearance at such a low resolution.

In terms of individual rotation angles, the MAE of the roll angle is the small-

est. This is consistent with the reduced roll variation in this dataset – pitch and

yaw vary much more (see histograms in Fig. 2·2). This is also consistent with the

observation that the median estimate of the roll angle has a drastically lower MAE

than the median estimates for the yaw and pitch angles. Additionally, the estimation

performance of the yaw angle is better than that of the pitch angle at 10×10 and 5×5

resolutions. This is intuitive, as the appearance change in the vertical direction is less

distinguishable than in the horizontal direction at low spatial resolutions except the

very lowest resolution of 3× 3 when very little data is available

Regarding privacy preservation performance, we used correct classification rate

(CCR) in person identification to measure how much privacy is preserved (the lower,

the better). In the BIWI dataset only 4 out of the 20 subjects have two videos recored

in different room settings. Thus, we leveraged those 4 subjects’ data and performed

2-fold cross-validation (each of the two videos of a subject becomes testing data once)

for evaluation. We used HOG features to train support vector machines (SVM) for

identification. Table. 2.2 summarizes the identification performance under the three

eLR resolutions, the full resolution and a random guess performance. We observe that

the identification CCRs are 33.7% at 5× 5 resolution and 30.32% at 3× 3 resolution,

which are close to a random guess. The identification CCR at 10 × 10 resolution

increases to 57.30%, but is still much lower than that from using the full resolution

data (100%). These results verify that using eLR data can effectively preserve user’s
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Table 2.2: Person identification performance at different spatial reso-
lutions.

Method/Resolution Identification

SVM:HOGrgb
100.00%

Full resolution

SVM:HOGrgb
57.30%

10 × 10

SVM:HOGrgb
33.70%

5 × 5

SVM:HOGrgb
30.32%

3 × 3

Random Guess 25.00%

privacy.

Fig. 2·3 shows how the ground truth and estimated yaw, pitch and roll angles

change over time in a sample image sequence. Shown are the best estimates at all three

extremely low resolutions that we studied: 10×10 resolution with HOG features as

well as 5×5 and 3×3 resolutions with gradient-based features. Clearly, smoother and

more accurate angular estimates are achieved at higher spatial resolutions, as should

be expected due to the continuity of head movements in the sequence. Additionally,

the error is more significant at large pose angles as compared to small angles (0◦

corresponds to facing forward straight towards the camera). For example, at the

spatial resolution of 10×10 with HOG features, the MAE for pitch, yaw and roll

angles within ±40◦ are, respectively, 10.7◦, 8.5◦ and 6.5◦ across the whole dataset.

These numbers increase to 32.4◦, 13.7◦ and 34.4◦ for the angles outside ±40◦. We

believe this is likely due to large angular rotations becoming far less discriminative

at extremely low resolutions.
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Figure 2·3: Estimates of pitch, yaw, and roll angles at spatial reso-
lutions of 10×10 with HOG feature, and 5×5 and 3×3 with gradient-
based feature against ground truth for image sequence #9.
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2.1.4 Discussions

We studied the impact of resolution on the accuracy of human head pose estimation

and found that a monocular camera with 10 × 10 resolution can provide estimates

that have about twice the error of state-of-the-art methods at full resolution. Even

at 5 × 5 resolution, reasonable results are still attainable (11.2◦ yaw error). To our

knowledge, this is the first attempt to investigate human head pose estimation at such

low resolutions. We believe a better face localization would enhance performance.

Although we only used RGB information, using depth data could potentially solve

many of the inherent problems present in RGB domain. Finally, using multiple frames

jointly to exploit the continuity of pose changes, would likely help further. In future

work, we are planning to pursue these directions.

2.2 Indoor Occupant Localization Using An Array of Single-

Pixel Sensors

Indoor localization has long been of interest in surveillance, for example monitoring

of seniors or children in home environments. However, our main motivation for this

work is the recent proliferation of sensors in living spaces that has lead to the concept

of a smart room.

Early localization systems have mainly focused on location accuracy and involved

the use of custom hardware that is expensive to deploy in practice. Newer systems

use video cameras and computer vision techniques. While acceptable in scenarios

where no expectation of privacy exists (e.g., airports, shopping malls, classrooms),

such methods are unlikely to be deployed in a smart home.

We seek to design a system that can strike a balance between localization accuracy

and privacy preservation. While methods have been developed that degrade the

output of a camera to preserve privacy, they are not immune to eavesdropping and still
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require costly cameras and processors. As an alternative, we propose to use overhead-

mounted single-pixel visible-light sensors to estimate an occupant’s location. To fully

explore the potential of the proposed system, we consider two scenarios: classification,

for coarse-grained localization of an occupant within a rectangular cell of suitable

size, and regression, for fine-grained localization to find continuous coordinates of an

occupant.

2.2.1 Related Work

Our focus is on localization of people indoors using infrastructure-mounted sensors

(e.g., overhead). We do not consider localization methods that leverage radio signals

or cameras in mobile devices carried by individuals that are often used in location-

based services, e.g., indoor navigation, advertising.

One can classify indoor localization systems into two categories: active systems

and passive systems (Deak et al., 2012). Active systems require users to wear a phys-

ical electronic device, while passive systems do not. Some active systems, such as Ac-

tiveBadge (Want et al., 1992), Cricket (Priyantha et al., 2000), and Ubisense (Steggles

and Gschwind, 2005), can provide accurate position estimates. However, the main

drawback of these systems is the need to carry a sensor. Furthermore, improper

placement of sensors can impact performance (Kunze and Lukowicz, 2014).

On the other hand, passive localization techniques have become more popular as

they are low-cost and user-friendly. One type of passive systems uses standard WiFi

infrastructure to infer location (Krumm and Horvitz, 2004; Moussa and Youssef,

2009; Youssef et al., 2007; Kosba et al., 2009). Localization performance, e.g., with

a median error of 1.5 meters (Krumm and Horvitz, 2004), is attainable. The main

shortcoming of this approach is that in real scenarios signal measurements are affected

by multi-path, reflections, obstacles (individual not in line-of-sight), etc. (Krumm,

2009).
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Another recently-proposed solution is a “smart floor”, a floor with an embedded

fiber sensor array (Feng et al., 2015). The sensor array generates a pressure distribu-

tion map that can be used for indoor target localization. However, this is difficult to

install within existing buildings and is costly.

Vision-based localization approaches have been proposed focusing on transforming

a simple environment into an intelligent one (Krumm et al., 2000). The Microsoft

EasyLiving project (Brumitt et al., 2000) uses cameras installed in a room to localize

occupants and trigger events based on their location. In a later work (Yu et al.,

2006), the authors proposed a solution that fuses data from RGB and floor sensors

to enhance localization accuracy.

A recent camera-based occupant localization framework has been developed to

address residents’ higher-level needs, like evocation of memory. In the usage scenario

of a board game, the system can automatically document the events by taking photos

of players at predefined time intervals without drawing the residents’ attention away

from the situation (Engelbrecht et al., 2015).

While most of the camera-based localization systems violate an individual’s pri-

vacy, recently there has been work to address this issue in the context of other vision

tasks. Dai et al. (Dai et al., 2015) have studied trade-offs between action recognition

performance and the number of cameras and their resolution (spatial and temporal)

in a smart room environment. They reported that 5 single-pixel cameras can achieve

reasonable action recognition performance. Jia and Radke (Jia and Radke, 2014)

explored privacy-preserving tracking and coarse pose estimation using a network of

ceiling-mounted time-of-flight (TOF) sensors. However, their framework requires a

dense deployment of TOF sensors (with spacing of less than 0.25m) to achieve accept-

able localization performance. Compared to their work, our method requires fewer

and simpler sensors for similar localization performance.
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2.2.2 System Setup

We use six TCS3472 color sensors from AMS AG in a configuration depicted in

Fig. 2·4. All sensors are mounted overhead on an aluminum scaffolding (Fig. 2·5) and

pointed downward. The floor area being monitored has dimensions 2.37m×2.72m.

The TCS3472 color sensor outputs 16-bit intensity measurements for red, green, blue

(filtered), and white (unfiltered) light. The sensors also have a configurable gain and

integration time, which were set to 60× and 100.8 ms, respectively. Each sensor’s

lens limits its field of view to about 36◦. All sensors are networked via a Raspberry-Pi

multiplexer connected to a host computer.

Figure 2·4: Schematic representation of the physical testbed.

In order to train our localization algorithms and evaluate our system’s perfor-

mance, we captured ground-truth data using OptiTrack (Point, 2011), a commercial

motion capture system. The system uses 12 infrared cameras with infrared light

sources to track reflective markers with very high precision (about 1mm). In our
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experiments, the markers were attached to a helmet worn by each subject during

data capture. The color sensors and OptiTrack system were configured to enable

synchronization of the recorded data in time. Synchronization was achieved using a

light impulse that produced an easily-identifiable feature in the signals. To see this

pulse in the OptiTrack system, one of its cameras was configured to capture visible

light.

Figure 2·5: One of six TCS3472 single-pixel visible-light sensors.

2.2.3 Localization Algorithms

We develop two purely data-driven (learning-based) localization algorithms. The first

is a coarse localization algorithm that classifies a subject’s location as belonging to

one of the 9 cells arranged in a 3×3 grid (Fig. 2·4) using a support vector machine

(SVM) classifier. The algorithm provides, at each time instant, an estimate of the cell

in which the subject is supposedly located. The second localization algorithm uses

support vector regression (SVR) (Smola and Vapnik, 1997) to provide, at each time

instant, fine-grained real-valued estimates x̂, ŷ of the true x and y positions of the

subject. The x and y positions are estimated separately (one regressor per estimate)

and in a memoryless manner, i.e., without the use of tracking algorithms. At each
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time instant, the algorithm provides two real values indicating the location on the

floor.

Preprocessing and Feature Extraction

Each sensor measures R, G, B (filtered) and W (unfiltered) light components in its

field of view. In order to eliminate bias due to the color of clothing that subjects

may wear, we calculate luminance from R, G, B readings at each time instant. Let

Ij,t denote the computed luminance for sensor number j at time t. We normalize the

luminance to the range [-1,1] as follows:

Îj,t = 2× Ij,t − Ij,min

Ij,max − Ij,min

− 1

where Ij,max and Ij,min are the maximum and minimum values of luminance for sensor

j over time that are both estimated from the dataset.

After normalization, the luminance values from all 6 sensors at time t are con-

catenated to form a six-dimensional feature vector ft = (Î0,t, ..., Î5,t)
> that is used in

our SVM and SVR algorithms below.

Coarse-grained Localization via Classification

In order to obtain coarse-grained position estimates, we treat localization as a clas-

sification problem with 9 classes corresponding to each of the 9 rectangular cells in

Fig. 2·4. We use cell positions obtained from the OptiTrack measurements as the

ground-truth labels to train a “one-versus-one” 9-class kernel SVM classifier (Hsu

and Lin, 2002) based on the 6-dimensional feature vectors f t. We use the radial

basis function as the kernel. A “one-versus-one” multi-class SVM classifier is based

on training
(

9
2

)
binary classifiers, one for every pair of distinct classes. The label of a

test sample is determined as the class which “wins” most against all other classes in

one-versus-one comparisons. The SVM classifier is well-known for its generalization
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capability and resilience to over-fitting (Abe, 2005).

Fine-grained Localization via Regression

We formulate fine-grained localization as a regression problem and train 2 regressors

separately, one for each dimension, x and y. The machine-learning algorithm we

use is kernel SVR, a variation of kernel SVM for regression. In regression, the label

becomes a real coordinate value l instead of a class index. Similarly to kernel SVM,

the kernel SVR algorithm learns a parametric function mapping from feature vectors

f to coordinate estimates l̂ (either x̂ or ŷ) of the form:

l̂(f) =
N∑
i=1

wiK(f i,f) + b,

where N is the number of labeled training samples and K(·, ·) is a chosen positive

definite symmetric kernel (we use the radial basis function). The details of how SVR

learns the parameters b and w = [w1, ..., wN ]T can be found in section 2.1.2

To implement SVM and SVR, we used LIBSVM (Chang and Lin, 2011). In our

experiments, we used radial basis function with parameter σ as a kernel in both

algorithms and performed grid search to find the optimal parameters.

2.2.4 Experimental Results

Dataset

In order to test the robustness of our methodology on real data, we collected a dataset

of locations of 4 people. Each person took four separate walks of about 90 seconds

within a 2.37m × 2.72m floor area in the field of view of the sensors. The data

collected from each walk consists of measurements from each of the six color sensors

and the location of the person’s head as provided by the OptiTrack system (Fig. 2·6

and 2·7). Subjects were instructed to perform a random walk and were encouraged
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Figure 2·6: Example of a walk for one subject: luminance evolving
over time for each of the 6 sensors.

to vary the walking speed.

We made sure that all walks have the same number of samples by randomly

trimming excess samples from the start and end of each walk. We performed the
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Figure 2·7: Example of a walk for one subject: corresponding loca-
tions recorded by the OptiTrack system and normalized to the range
[-1,1].

trimming on both the sensor data and OptiTrack data. After trimming, each walk

had 971 samples. In both algorithms, we used identical sizes for the training and

testing sets as explained in the next subsection.

Scenarios

In our experiments, we made sure that samples from the same walk are not included

in both the training and testing sets at the same time because consecutive feature

vectors in a given walk are likely to be almost identical (e.g., subject slows down or

pauses). Had we not done so, very similar feature vectors f t could have appeared in

both the training and testing sets and biased the results.

We evaluated performance with two primary usage scenarios in mind. The first

usage scenario considers a public setting, such as a conference room, where the system

cannot be trained on all subjects (new subjects, never seen by the system, may enter).

The second usage scenario considers a private setting, such as a home, where the

system is being used primarily by the same set of people and thus may be trained on
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all users.

In the public scenario, we evaluated performance using leave-one-person-out cross-

validation where samples from all 12 walks of three out of four people form the

training set and samples from all 4 walks of the fourth person are used as the testing

set. Creating data splits in this way ensures that there is no overlap of walks or

people between the training and testing sets. Thus, in each of the four data splits,

the number of samples used for training is equal to N = 971× 12 = 11, 652 and the

number of samples used for testing is equal to Ntest = 971×4 = 3, 884. We repeat this

procedure four times to cover all possible combinations of people left out and report

classification and regression performance metrics averaged across all 4Ntest = 15, 536

test samples from all four splits. It is important to note that this scenario could be

considered the most challenging as the person in the testing set does not appear in

the training set.

In the private scenario, we evaluated performance using leave-one-walk-out cross-

validation. For each person, we take three of his/her walks and put them into the

training set. Then, we take the remaining walks and use them for testing. This

process is repeated four times with different combinations of walks from each person.

The sizes of training and testing sets used in the private scenario therefore exactly

match those in the public scenario.

Finally, in order to test how sensitive the performance is to the number of sensors,

we repeated all the above experiments using only the 4 corner sensors (sensors 0, 2,

3, and 5 in Fig. 2·4) and compared them to the results obtained using all 6 sensors.

Classification Results

First, ground-truth classes are computed from the ground-truth locations provided by

the OptiTrack system by quantizing the x and y ground-truth locations to one of the

9 cells depicted in Fig. 2·4. Then, for each test sample we compared the class estimate
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produced by the SVM classifier with the ground-truth class label and calculated the

overall correct classification rate (CCR) which is the percentage of the test samples

that are correctly classified. Results for both public and and private scenarios, and

for all 6 and 4 corner sensors are shown in Table 2.3.

Figure 2·8: Confusion views for classification using SVM (left) and
for quantized SVR (right) of 3×3 class estimates. The color intensity
(shade) of each cell is inversely proportional to the recognition (green)
or confusion (red) rate (the darker the color, the higher the rate).

Table 2.3: CCR for classification using either all 6 sensors or 4 corner
sensors in public and private scenarios.

6 Sensors 4 Sensors

Private Public Private Public

SVM CCR 71.86% 66.68% 63.64% 56.06%

QSVR CCR 51.76% 48.46% 46.39% 44.14%

For comparison, Table 2.3 also includes quantized regression results (“QSVR

CCR”). Basically, we quantized the (x, y) positions estimated using the SVR al-

gorithm (Section 2.2.4) to the 3×3 grid and then calculated the CCR.
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A detailed performance comparison of SVM and QSVR on a per-cell basis is

shown in Fig. 2·8 where 9 confusion matrices for both SVM and QSVR are shown

in a spatially-consistent fashion with the physical testbed layout (Fig. 2·4). Each

3×3 grid shows the correct and incorrect classifications for its respective class. The

green cell in each grid is the correct classification and red cells are the incorrect

classifications. For example, in the class 4 grid for SVM, 53% of the samples labeled

as class 4 were predicted correctly, 9% of the class 4 samples were incorrectly classified

as class 1, 1% as class 2, 8% as class 3, etc.

We note that both algorithms incorrectly predict class 0: CCR of 17% for SVM

and 12% for QSVR. This significantly reduces the overall CCR and is likely due to

having fewer samples recorded in this area. Samples from class 0 make up about 3%

of the overall data set while the next smallest class 2 makes up about 6% of the data

set.

Regression Results

In the regression case, we measure the performance for each coordinate separately

using mean absolute error (MAE) and mean squared error (MSE) between the es-

timates (x̂, ŷ) and the ground-truth measurements (x, y) over 4Ntest samples. We

also compute the mean and the standard deviation of the Euclidean distance be-

tween the estimated and ground-truth locations, and the associated ±1σ confidence:

±Std. Dev./
√

4Ntest around the mean estimate. All these performance measures are

shown in Table 2.4.

Fig. 2·9 shows location estimates x̂ and ŷ in normalized coordinates against

ground-truth locations x and y for one sample walk. While there is a sizable dis-

crepancy in positions at many time instants, the overall trends are quite similar.

Furthermore, the estimates are more accurate when the subject significantly changes

position which is to be expected as the recorded data are closely related to occlusions
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Table 2.4: MAE and MSE for location estimates via regression,
and mean/standard deviation of the distance between estimated and
ground-truth locations, all in [m].

6 Sensors 4 Sensors

SVR Private Public Private Public

MAE x 0.1826 0.1972 0.2045 0.2138

MSE x 0.0609 0.0672 0.0791 0.0837

MAE y 0.2195 0.2459 0.2503 0.2843

MSE y 0.0860 0.1165 0.1087 0.1441

Mean distance 0.3144 0.3500 0.3555 0.3939

±1σ ± ± ± ±
confidence 0.0018 0.0020 0.0020 0.0022

Std. Dev. 0.2192 0.2473 0.2478 0.2697

of the background by the subject’s body (with larger movements, potentially more

varied backgrounds are covered).

2.2.5 Discussions

Both algorithms perform better in the private scenario than in the public one, which

is as expected. For the classification algorithm, we see from Table 2.3 that the CCR

for 6 sensors in the public case is lower by 5.18% than the one for the private case.

Similarly, for 4 sensors the difference is 7.58%. A similar observation can be made for

the quantized regression algorithm (QSVR) although the differences are smaller. In

the regression case (Table 2.4), both mean absolute and mean squared errors increase

in the public scenario compared to the private one. Examining the differences in

the mean distance between the private and public scenarios, we see that there is a

consistent decrease in performance for both 6- and 4-sensor cases (Table 2.4). Between

the private and public cases with 6 sensors, there is an increase of 0.0356m (11%) in

mean distance between locations. This observation can also be made in the 4 sensor

case, where there is a similar increase of 0.0384m (11%). These performance drops are

not unexpected, since in the public case the classifier/regressor has not been trained
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Figure 2·9: Estimates of locations shown against ground-truth loca-
tions for the sample walk from Fig. 2·7.

on one of the subjects while in the private case it has been trained on all subjects.

We also note a significant drop in performance when the number of sensors is re-

duced form 6 to 4. Again, this is not unexpected since with 6 sensors, data from addi-

tional viewpoints is available. For both the public and private scenarios, the mean dis-
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tance between the estimated and ground-truth locations increases by 0.0411m (13%)

and 0.0439m (12%), respectively.

We have demonstrated that on average the system is capable of localizing a single

individual to within 35cm (14in) of the true position on a floor area of 2.37m×2.72m

(see Table. 2.4). This is a useful result for visible light communication. With this

precision and also knowing the subjects orientation (Chen et al., 2016) it would be

possible to identify ceiling LED transmitters that are within line-of-sight from a VLC-

compatible hand-held device, such as a smart-phone. This is a significant step towards

making VLC a reality for mobile devices in a home environment.

2.3 Human Action Recognition from eLR Videos

Human action and gesture recognition have received significant attention in com-

puter vision and signal processing communities (Simonyan and Zisserman, 2014b;

Wang and Schmid, 2013; Xia et al., 2012). Recently, various ConvNet-based models

have been applied in this context and achieved substantial performance gains over

traditional methods that are based on hand-crafted features (Krizhevsky et al., 2012;

Sharif Razavian et al., 2014). Further improvements in the performance have been re-

alized by using a two-stream ConvNet architecture (Simonyan and Zisserman, 2014a)

in which a spatial network concentrates on learning appearance features from RGB

images while a temporal network takes optical flow snippets as input to learn dy-

namics. The final decision is made by averaging outputs of the two networks. More

recent work (Feichtenhofer et al., 2016; Lin et al., 2015; Park et al., 2016) suggests

fusion of spatial and temporal cues at an earlier stage so the appearance features are

registered with motion features before the final decision. Results indicate that this

approach improves action recognition performance.

As promising as these recent ConvNet-based models are, they typically rely upon
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data at about 200×200-pixel resolution that is likely to reveal an individual’s iden-

tity. In this section, we present multiple ConvNets to perform reliable action recog-

nition at extremely low resolutions (thus protecting privacy). In particular, we adapt

an existing end-to-end two-stream fusion ConvNet to eLR action recognition. Fur-

thermore, we propose a semi-coupled two-stream fusion ConvNet that leverages HR

(32×32-pixel resolution in our study) videos during training in order to help the eLR

(12×16-pixel resolution in our study) ConvNet obtain enhanced discriminative power

by sharing filters between eLR and HR ConvNets.

2.3.1 Related Work

ConvNets have been recently applied to action recognition and quickly yielded state-

of-the-art performance. In the quest for further gains, a key question is how to

properly incorporate appearance and motion information in a ConvNet architecture.

In (Ji et al., 2013; Karpathy et al., 2014; Tran et al., 2015), various 3D ConvNets

were proposed to learn spatio-temporal features by stacking consecutive RGB frames

in the input. In (Simonyan and Zisserman, 2014a), a novel two-stream ConvNet

architecture was proposed which learns two separate networks: one dedicated to

spatial RGB information, and another dedicated to temporal optical flow information.

The softmax outputs of these two networks are later combined together to provide

a final “joint” decision. Following this pivotal work, many works have extended the

two-stream architecture such that only a single, combined network is trained. In

(Lin et al., 2015), bilinear fusion was proposed in which the last convolutional layers

of both networks are combined using an outer-product and pooling. Similarly, in

(Park et al., 2016) multiplicative fusion was proposed, and in (Feichtenhofer et al.,

2016) 3D convolutional fusion was introduced (incorporating an additional temporal

dimension). However, all these methods were applied to standard-resolution video,

and have not, to the best of our knowledge, been applied in the eLR context.
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There have been few works that have addressed eLR in the context of visual recog-

nition. In (Wang et al., 2016), very low resolution networks were investigated in the

context of eLR image recognition. The authors proposed to incorporate HR images

in training to augment the learning process of the network through filter sharing

(PCSRN). In (Dai et al., 2015), eLR action recognition was first explored using l1

nearest-neighbor classifiers to discriminate between action sequences. More recently,

egocentric eLR activity recognition was explored in (Ryoo et al., 2016). The authors

introduced inverse super resolution (ISR) to learn an optimal set of image transfor-

mations during training that generate multiple eLR videos from a single HR video.

Then, they trained a classifier based on features extracted from all generated eLR

videos. The per-frame features include histogram of pixel intensities, histogram of

oriented gradients (HOG) (Dalal and Triggs, 2005), histogram of optical flow (HOF)

(Chaudhry et al., 2009) and ConvNet features. To capture temporal changes, they

used the Pooled Time Series (POT) feature representation (Ryoo et al., 2015) which

is based on time-series analysis. This classifier was finally used in testing. However, in

keeping with recent research trends our aim is to develop an end-to-end, ConvNet-only

solution that avoids hand-crafted features and, therefore, minimizes human interven-

tion. We benchmark our proposed methodologies against last two works, and show

consistent recognition improvement.

2.3.2 Action Recognition Algorithms

We propose two improvements to the two-stream architecture in the context of eLR.

First, we explore methods to fuse the spatial and temporal networks, which allows

subsequent layers to amplify and leverage joint spatial and temporal features. Second,

we propose using semi-coupled networks which leverage HR information in training

to learn transferable features between HR and eLR frames, resembling domain adap-

tation, in both the spatial and temporal streams.
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Fusion of two-stream networks

Multiple works have extended two-stream ConvNets by combining the spatial and

temporal cues such that only a single, combined network is trained (Feichtenhofer

et al., 2016; Lin et al., 2015; Park et al., 2016). In this section, we discuss three

fusion methods that we explore and implement in the context of eLR.

In general, fusion is applied between a spatial ConvNet and a temporal ConvNet.

A fusion function f : f(xn
s ,x

n
t ) → yn fuses spatial features at the output of the

n-th layer xn
s ∈ RHn

s ×Wn
s ×Dn

s and temporal features at the output of the n-th layer

xn
t ∈ RHn

t ×Wn
t ×Dn

t to produce the output features yn ∈ RHn
o ×Wn

o ×Dn
o , where H, W ,

and D represent the height, width and the number of channels respectively. For

simplicity, we assume Ho = Hs = Ht,Wo = Ws = Wt, and Ds = Dt (Do is defined

below). We discuss the fusion function for three possible operators:

Sum Fusion: Perhaps the simplest fusion strategy is to compute the summation of

two feature maps at the same pixel location (i, j) and the same channel d:

yn,sum(i, j, d) = xn
s (i, j, d) + xn

t (i, j, d) (2.3)

where 1 ≤ i ≤ Ho , 1 ≤ j ≤ Wo, 1 ≤ d ≤ Do (Do = Ds = Dt) and xn
s , xn

t ,

yn ∈ RHo×Wo×Do . The underlying assumption of summation fusion is that the spatial

and temporal feature maps from the same channel will share similar contexts.

Concat Fusion: The second fusion method we consider is a concatenation of two

feature maps (in an interleaved fashion) at the same spatial location (i, j) across

channel d:

yn,cat(i, j, 2d) = xn
s (i, j, d), (2.4)

yn,cat(i, j, 2d+ 1) = xn
t (i, j, d) (2.5)

where yn,cat ∈ RHo×Wo×Do , Do = Ds +Dt. Unlike the summation fusion, the concate-
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nation fusion does not actually blend the feature maps together.

Conv Fusion: The third fusion operator we explore is convolutional fusion. First,

xn
s and xn

t are concatenated as shown in (2.4, 2.5). Then, the stacked up feature map

is convolved with a bank of filters F ∈ R1×1×Do×D′o as follows:

yn,conv = yn,cat ∗ F + b, (2.6)

where b ∈ RD′o is a bias term. The filters have dimensions 1× 1×Do, Do = Ds +Dt

and are used to learn weighted combinations of feature maps xn
s ,x

n
t at a shared pixel

location. For our experiments, we have set the number of filters to D′o = 0.5×Do.

Note, that regardless of the chosen fusion operator, the network will select fil-

ters throughout the entire network so as to minimize loss, and optimize recognition

performance. Also, we would like to point out that other fusion operators, such as

max, multiplication, and bilinear fusion (Lin et al., 2015), are possible, but have been

shown in (Feichtenhofer et al., 2016) to perform slightly worse than the operators

we’ve discussed. Finally, it is worth noting that the type of fusion operation and the

layer in which it occurs have a significant impact on the number of parameters. The

number of parameters can be quite small if fusion across networks occurs in early

layers. For example, convolutional fusion requires additional parameters since intro-

ducing a convolutional layer requires more filters. Regarding where to fuse the two

networks, we adopt the convention used in (Feichtenhofer et al., 2016) to fuse the two

networks after their last convolutional layer (see Fig.2·10). We later report the results

of fusion after the last convolutional layer (Conv3) and the first fully-connected layer

(Fc4) and contrast their classification performance.
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Semi-coupled networks

Applying recognition directly to eLR video is not robust as visual features tend to

carry little information (Wang et al., 2016). However, it is possible to augment

ConvNet training with an auxiliary, HR version of the eLR video, but only use an

eLR video in testing. In this context, we propose to use semi-coupled networks which

Figure 2·10: Visualization of the proposed semi-coupled networks of
two fused two-stream ConvNets for video recognition. We feed HR
RGB and optical flow frames (32× 32 pixels) to the HR ConvNet (col-
ored in blue). We feed eLR RGB (16×12 interpolated to 32×32 pixels)
and optical flow frames (computed from the interpolated 32× 32 pixel
RGB frames) to the eLR ConvNet (colored in red). In training, the
two ConvNets share kn (n = 1, ..., 5) filters (gray shaded) between
corresponding convolutional and fully-connected layers. Note that the
deeper the layer, the more filters are being shared. In testing, we decou-
ple the two ConvNets and only use the eLR network (the red network
which includes the shared filters).

share filters between eLR and HR fused two-stream ConvNets. The eLR two-stream

ConvNet takes an eLR RGB frame and its corresponding eLR optical flow frames

as input. As we will discuss later, each RGB frame corresponds to multiple optical

flow frames. The eLR RGB frames are interpolated to 32 × 32 pixels from their

original 16× 12 resolution. The eLR optical flow is computed from the interpolated
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32× 32 eLR RGB frames. The HR two-stream ConvNet simply takes HR RGB and

its corresponding HR optical flow frames of size 32× 32 as input. In layer number n

of the network (n = 1, . . . , 5), the eLR and HR two-stream ConvNets share kn filters.

During training, we leverage both eLR and HR information, and update the filter

weights of both networks in tandem. During testing, we decouple these two networks

and only use the eLR network which includes shared filters. This entire process is

illustrated in Fig. 2·10.

The motivation for sharing filters is two-fold: first, sharing resembles domain

adaptation, aiming to learn transferable features from the source domain (eLR im-

ages) to the target domain (HR images); second, sharing can be viewed as a form

of data augmentation with respect to the original dataset, as the shared filters will

see both low and high resolution images (doubling the number of training inputs).

However, it is important to note that in practice, as shown in (Lui et al., 2009), the

mapping between eLR and HR feature space is difficult to learn. As a result, the

feature space mapping between resolutions may not fully overlap or correspond prop-

erly to one-another after learning. To address this, we intentionally leave a number

of filters (Dn − kn) unshared in layer n, for each n. These unshared filters will learn

domain-specific (resolution specific) features, while the shared filters learn the non-

linear transformations between spaces. To implement this filter sharing paradigm, we

alternate between updating the eLR and HR two-stream ConvNets during training.

Let θeLR and θHR denote the filter weights of the eLR and the HR two-stream Con-

vNets. These two filters are composed of three types of weights: θshared, the weights

that are shared between both the eLR and HR networks, and θeLR∗ , θHR∗ , the weights

that belong to only the eLR or the HR network, respectively. With these weights, we
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update both networks as follows:

θmeLR =


θm−1

eLR∗ + µ
∂Lm−1

eLR

∂θm−1
eLR∗

θ2m−2
shared + µ

∂Lm−1
eLR

∂θ2m−2
shared

 (2.7)

θmHR =


θm−1

HR∗ + µ
∂Lm−1

HR

∂θm−1
HR∗

θ2m−1
shared + µ

∂Lm−1
HR

∂θ2m−1
shared

 (2.8)

where µ is the learning rate, m is the training iteration, and LeLR and LHR are,

respectively, the loss functions of each network. In each training iteration, the shared

weights are updated in both the eLR and the HR ConvNet, i.e., they are updated

twice in each iteration. Specifically, in each training iteration m, we have

θ2m−1
shared = θ2m−2

shared + µ
∂Lm−1

eLR

∂θ2m−2
shared

(2.9)

θ2m−2
shared = θ2m−3

shared + µ
∂Lm−2

HR

∂θ2m−3
shared

(2.10)

However, the resolution-specific unshared weights are only updated once: either in

the eLR ConvNet training update or in the HR ConvNet training update. Therefore,

the shared weights are updated twice as often as the unshared weights.

Our approach has been inspired by Partially-Coupled Super-Resolution Networks

(PCSRN) (Wang et al., 2016) where it was shown that leveraging HR images in

training of such networks can help discover discriminative features in eLR images

that would otherwise have been overlooked during image classification. PCSRN is a

super-resolution network that pre-trains network weights using filter sharing. This

pre-training is intended to minimize the MSE between the output image and the

target HR image via super-resolution. In our approach, we differ from this work
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Figure 2·11: Basic ConvNet used in our model. The spatial and
temporal streams have the same architecture except that the input
dimension is larger in the temporal stream (the input to the temporal
stream is a stacked optical flow). In our two-stream fusion ConvNets,
two base ConvNets are fused after either the “Conv3” or “Fc4” layer.

by leveraging HR information throughout the entire training process. Our method

does not need to pre-train the network; instead, we learn the entire network from

scratch, and minimize the classification loss function directly while still incorporating

HR information as shown in the equations above. Overall, we extend this model in

two aspects: first, we consider shared filters in the fully-connected layers (previously

only convolutional layers were considered for filter sharing). Second, we adapt this

method for action recognition in fused two-stream ConvNets. We also report results

for semi-coupled two-stream ConvNets across various fusion operators.

Implementation details

Two-stream fusion network. Conventional standard-resolution ConvNet architec-

tures can be ill-suited for eLR images due to large receptive fields that can sometimes

be larger than the eLR image itself. To address this issue, we have designed an eLR

ConvNet consisting of 3 convolutional layers, and 2 fully-connected layers as shown

in Fig. 2·11. We have tried many variations, but found that larger models do not

improve performance. Also, the model in (Ryoo et al., 2016) is larger than ours, but

achieves lower CCR. We base both our spatial and temporal streams on this ConvNet,
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and explore fusion operations after either the “Conv3” or “Fc4” layer. We train all

networks from scratch using the Matconvnet toolbox (Vedaldi and Lenc, 2015). The

weights are initialized to be zero-mean Gaussian with a small standard deviation of

10−3. The learning rate starts from 0.05 and is reduced by a factor of 10 after ev-

ery 10 epochs. Weight decay and momentum are set to 0.0005 and 0.9 respectively.

We use a batch size of 256 and perform batch normalization after each convolutional

layer. At every iteration, we perform data augmentation by allowing a 0.5 probability

that a given image in a batch is reflected across the vertical axis. Each RGB frame

in the spatial stream corresponds to 11 stacked frames of optical flow. This stacked

optical-flow block contains the current, the 5 preceding, and 5 succeeding optical flow

frames. To regularize these networks during training, we set the dropout ratio of both

fully-connected layers to 0.85.

Semi-coupled ConvNets. In Section 2.3.2, we have discussed how to incorpo-

rate filter sharing in a semi-coupled network. However, it is not obvious how many

filters should be shared in each layer. To discover the proper proportion of filters we

should share, we conducted a coarse grid search for the coupling ratio cn from 0 to 1

with a step size of 0.25. The coupling ratio is defined as:

cn =
kn

Dn
, n = 1, · · · , 5 (2.11)

where the two ConvNets are uncoupled when cn = 0 (n = 1, · · · , 5). For the step sizes

that we consider, a brute force approach would be unfeasible, as the total number of

two-stream networks to train would be 55 = 3125. Therefore, we follow the method-

ology used in (Wang et al., 2016) to monotonically increase the coupling ratios with

the increasing layer depth. This is inspired by the notion that the disparity between

eLR and HR domains is reduced as the layer gets deeper (Glorot et al., 2011; Wang

et al., 2014). For all our experiments, we used the following coupling ratios: c1 = 0,



44

c2 = 0.25, c3 = 0.5, c4 = 0.75, and c5 = 1. We determined these ratios by performing

a coarse grid search on a cross-validated subset of the IXMAS dataset (subjects 2, 4,

6).

Normalization. In our experiments, we apply a variant of mean-variance nor-

malization to each video vi,j[t], i, j = 1, · · · , R, t = 1, · · · , T , where R is the spatial

size, T is the temporal length, and vi,j[t] denotes the grayscale value of pixel (i, j) at

time t, as follows:

v̂i,j[t] =
vi,j[t]− µi,j

σ
. (2.12)

Above, µi,j denotes the empirical mean pixel value across time for the spatial location

(i, j), and σ denotes the empirical standard deviation across all pixels in one video.

The subtraction of the mean emphasizes a subject’s local dynamics, while the divi-

sion by the empirical standard deviation compensates for the variability in subject’s

clothing.

Optical flow. As discussed earlier, we use a stacked block of optical flow frames

as input to the temporal stream. We follow (Wu et al., 2016) and use colored optical-

flow frames. First, we compute optical flow between two consecutive normalized RGB

frames (Liu et al., 2009). The computed optical flow vectors are then mapped into

polar coordinates and converted to hue and saturation based on the magnitude and

orientation, respectively. The brightness is set to one. As a reminder, the eLR optical

flow is computed from the interpolated 32×32 pixel eLR frames. Further, we subtract

the mean of the stacked optical flows to compensate for global motion as suggested

in (Simonyan and Zisserman, 2014a).

Source code: More implementation details as well as source code are available

on project web site (Chen, 2017).
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(a) IXMAS

(b) HMDB

Figure 2·12: Sample frames from IXMAS and HMDB datasets. (a)
From left to right are original frames, and resized 32× 32 and 16× 12
frames from the IXMAS dataset. (b) From left to right are original
frames, and resized 32×32 and 12×16 frames from the HMDB dataset.
Note that we resize the IXMAS dataset to 16 × 12 and the HMDB
dataset to 12×16 in order to preserve the original aspect ratio. We use
32×32 resized videos as HR data. The 16×12 (12×16) eLR videos are
upscaled using bi-cubic interpolation to 32×32 interpolated-eLR video
which is used in our proposed semi-coupled fused two-stream ConvNet
architecture.

2.3.3 Experimental Results

Datasets

In order to confirm the effectiveness of our proposed method, we conducted exper-

iments on two publicly-available video datasets. First, we used the ROI sequences

from the multi-view IXMAS action dataset, where each subject occupies most of the
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field of view (Weinland et al., 2010). This dataset includes 5 camera views, 12 daily-

life motions each performed 3 times by 10 actors in an indoor scenario. Overall, it

contains 1,800 videos. To generate the eLR videos (thus eLR-IXMAS), we decimated

the original frames to 16 × 12 pixels and then upscaled them back to 32 × 32 pixels

using bi-cubic interpolation (Fig. 2·12). The upscaling operation does not introduce

new information (fundamentally, we are still working with 16 × 12 pixels) but en-

sures that eLR frames have enough spatial support for hierarchical convolutions to

facilitate filter sharing. On the other hand, we generate the HR data by decimating

the original frames straight to 32 × 32 pixels. We perform leave-person-out cross

validation in each case and compute correct classification rate (CCR) and standard

deviation (StDev) to measure performance.

We also test our algorithm on the popular HMDB dataset (Kuehne et al., 2011)

used for video activity recognition. The HMDB dataset consists of 6,849 videos di-

vided into 51 action categories, each containing a minimum of 101 videos. In compar-

ison to IXMAS, which was collected in a controlled environment, the HMDB dataset

includes clips from movies and YouTube videos, which are not limited in terms of

illumination and camera position variations. Therefore, HMDB is a far more chal-

lenging dataset, especially when we decimate to eLR, which we herein refer to as

eLR-HMDB. In our experiments, we used the three training-testing splits provided

with this dataset. Note that since there are 51 classes in the HMDB dataset, the

CCR based on a purely random guess is 1.96%.

Results for eLR-IXMAS

We first conduct a detailed evaluation of the proposed paradigms on the eLR-IXMAS

action dataset. For a fair comparison, we follow the image resolution, pre-processing

and cross-validation as described in (Dai et al., 2015). We first resize all video clips

to a fixed temporal length T = 100 using cubic-spline interpolation.
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Table 2.5 summarizes the action recognition accuracy on the eLR-IXMAS dataset.

We report the CCR for separate spatial and temporal ConvNets, as well as for vari-

ous locations and operators of fusion, with and without eLR-HR coupling. We also

report the baseline result from (Dai et al., 2015) which employs a nearest-neighbor

classifier. We first observe that dedicated spatial or temporal ConvNet outper-

Table 2.5: Action recognition performance of different ConvNet ar-
chitectures against baseline on the eLR-IXMAS dataset. “Spatial &
Temp avg” has been performed by averaging the temporal and spatial
stream predictions. The best performing method is highlighted in bold.

Method Fusion Layer eLR-HR CCR StDev
coupling?

Baseline (Dai (Dai et al., 2015)) - - 80.0% 6.9%

Spatial Network - No 88.6% 6.2%

Temporal Network - No 91.6% 4.9%

Spatial&Temp avg Softmax No 92.0% 6.0%

Concat Fusion

Fc 4 No 92.2% 5.2%

Fc 4 Yes 92.5% 5.5%

Conv 3 No 92.2% 5.2%

Conv 3 Yes 93.3% 5.6%

Conv Fusion

Fc 4 No 92.0% 5.8%

Fc 4 Yes 93.1% 5.2%

Conv 3 No 93.3% 4.0%

Conv 3 Yes 93.7% 4.5%

Sum Fusion

Fc 4 No 92.2% 5.5%

Fc 4 Yes 92.8% 7.1%

Conv 3 No 93.0% 4.7%

Conv 3 Yes 93.6% 4.0%

forms the benchmark result from (Dai et al., 2015) by 8.6% and 11.6% respectively,

which validates the discriminative power of a ConvNet. If we equally weigh these two

streams (“Spatial&Temp avg”), we can see that the fusion only marginally improves

recognition performance. Secondly, we can see that fusing after the “Conv3” layer
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(a) eLR-IXMAS pixel-wise time series fea-
tures (Dai et al., 2015)

(b) eLR-IXMAS ConvNet features after
‘Fc 5’ layer

Figure 2·13: 2-D t-SNE embeddings (Maaten and Hinton, 2008) of
features for the eLR-IXMAS dataset. A single marker represents a
single video clip and is color-coded by action type. (a) Embeddings of
pixel-wise time series features (Dai et al., 2015). (b) Embeddings of the
last fully-connected layer’s output from our best performing ConvNet.

provides a consistently better performance than fusing after the “Fc4” layer. In our

preliminary experiments, we also found that fusing after the “Conv3” layer was con-

sistently better than fusing after the “Conv2” layer, which suggests that there is an

ideal depth (which is not too shallow or too deep in the network) for fusion. Regard-

ing which fusion operator to use, we note that all 3 operators we consider provide

comparable performance after the “Fc4” layer. However, if we fuse features after the

“Conv3” layer, convolutional fusion performs best.

As for the effectiveness of semi-coupling in the networks using HR information, we

can see that eLR-HR coupling consistently improves recognition performance. Our

best result on IXMAS is 93.7%, where we find that without coupling, our performance

drops by 0.4%. This result is very close to that achieved by using only HR data in

both training and testing, which is 94.4% CCR. Effectively, this should be an upper-

bound, in terms of performance, when using eLR-HR coupling in training but testing

only on eLR data. That the performance gap between HR and eLR is small may
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Table 2.6: Comparison of the number of parameters of our best-
performing action recognition ConvNet as compared to those of the
standard-resolution image classification ConvNets.

Network Task Input resolution # param
Ours Action Rec. 32× 32× 3 0.84M
AlexNet Image Class. 224× 224× 3 60M
VGG-16 Image Class. 224× 224× 3 138M
VGG-19 Image Class. 224× 224× 3 144M

be explained by the distinctiveness of actions and the controlled indoor environment

(static cameras, constant illumination, etc.) in the IXMAS dataset. Additionally, the

fine details (e.g., hair, facial features), that are only visible in HR, are not critical for

action recognition.

We also conduct experiment to evaluate the privacy-preserving performance at

eLR. We train a person identifier using the best-performing ConvNet architecture

(showed in bold in Table. 2.5), where two of the three repetitions of each action for

each person are used for training and the remaining videos are used for evaluation.

The resulting identification CCR is 23.10% which is only about two times random

guess performance (10%), indicating that reducing the spatial resolution to extremely

low level can protect user’s privacy to a large extent.

In order to qualitatively evaluate our proposed model, we visualize various feature

embeddings (for action recognition) of the eLR-IXMAS dataset. We extract output

features of the “Fc5” layer from the best-performing ConvNet (shown in bold), and

project them to 2-dimensional space using t-SNE (Maaten and Hinton, 2008). For

comparison, we also apply t-SNE to the pixel-wise time series features proposed in

our benchmark (Dai et al., 2015). As seen in Fig. 2·13, the feature embedding from

our ConvNet model is visually more separable than that of our baseline. This is not

surprising, as we are able to consistently outperform the baseline on the eLR-IXMAS

dataset.
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Regarding the number of parameters, our ConvNet designed for eLR videos needs

about 100 times less parameters than state-of-the art ConvNets designed for image

classification like AlexNet (Krizhevsky et al., 2012), VGG-16, and VGG-19 (Simonyan

and Zisserman, 2014b) (Table 2.6). In consequence, this significantly reduces the com-

putation cost of training and testing compared to these standard-resolution networks.

Results for eLR-HMDB

In this section, we report the results of our methods on eLR-HMDB. Note that,

for this dataset, we only report results for fusion after the “Conv3” layer, based on

our observations from eLR-IXMAS. We follow the same pre-processing procedure as

used for eLR-IXMAS except that we do not resize the video clips temporally for the

purpose of having a fair comparison with the results reported in (Ryoo et al., 2016).

Our reported CCR is an average across the three training-testing splits provided with

this dataset.

First, we measure the performance of a dedicated spatial-stream ConvNet and a

dedicated temporal-stream ConvNet. As shown in Table 2.7, using only the appear-

ance information (spatial stream) provides 19.1% accuracy. If optical flow is used

alone (temporal stream), performance drops to 18.3%. This is likely because videos

in the HMDB dataset are unconstrained; camera movement is not guaranteed to be

well-behaved, thus resulting in drastically different optical-flow quality across videos.

Such variations are likely to be amplified in eLR videos. We then evaluate the same

three fusion operators after the “Conv3” layer. Compared to the average of predic-

tions from a dedicated spatial network and a dedicated temporal network, fusing the

temporal and spatial streams improves the recognition performance by 0.8%, 0.9%

and 1.8% with concatenation, convolution, and sum fusion, respectively. The perfor-

mance improvement from fusion is not significant. This, however, is consistent with

the observations in (Feichtenhofer et al., 2016).
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Table 2.7: Action recognition performance of different ConvNet ar-
chitectures and current state-of-the-art method on the eLR-HMDB
dataset. The two-stream networks are all fused after the “Conv3” layer.
The best method is highlighted in bold.

Method eLR-HR CCR
coupling?

Spatial Network No 19.1%

Temporal Network No 18.3%

Spatial & Temp avg No 19.6%

Concat Fusion
No 20.4%

Yes 27.1%

Conv Fusion
No 20.5%

Yes 27.3%

Sum Fusion
No 21.4%

Yes 29.2%

ConvNet feat - 18.9%
+ SVM(Ryoo et al., 2016)

ConvNet feat - 20.8%
+ ISR + SVM(Ryoo et al., 2016)

ConvNet + hand-crafted feat - 28.7%
+ ISR + SVM(Ryoo et al., 2016)

When fusion is combined with eLR-HR coupling, the gains are significant. We

achieve large performance gains from 20.4% to 27.1% using concatenation fusion,

20.5% to 27.3% using convolutional fusion, and 21.4% to 29.2% using sum fusion.

Such notable improvements validate the discriminative capabilities of semi-coupled

fused two-stream ConvNets. Compared to the state-of-the-art results reported in

(Ryoo et al., 2016), our approach is able to outperform their ConvNet feature-only

method by 8.4%. We also exceed the performance of their best method, that uses an

augmented hand-crafted feature vector, by 0.5%.

Please note that HMDB dataset does not come with identity labels. Thus we

cannot evaluate the privacy protection performance of our methods on this dataset.
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2.4 Discussions

In this chapter, we investigated three visual analysis tasks at extremely low resolu-

tions. For head pose estimation, we showed that a monocular camera with 10 × 10

resolution can provide estimates that have about twice error of state-of-the-art meth-

ods at full resolution. Even at 5× 5 resolution, reasonable results are still attainable.

As for indoor occupant localization, we have demonstrated that on average using

six single-pixel color sensors is capable of localizing a single individual to within 35

cm of the true position on a floor area of 2.37m×2.72m. This could be useful for

applications such as visible light communication. Regarding action recognition, we

proposed multiple eLR ConvNet architectures, each leveraging and fusing spatial and

temporal information. Further, in order to leverage HR videos in training we incor-

porated eLR-HR coupling to learn an intelligent mapping between the eLR and HR

feature spaces. We achieved state-of-the-art performance on two public datasets at

low resolutions.

Although we achieved promising results, we also observed noticeable discrepancy

between task performance at low resolutions and high resolutions. It seems inevitable

that task performance will drop when data resolution decreases.



Chapter 3

Methodologies Based on Invariant

Representation Learning

In the previous chapter, we showed that concerns about privacy can be partially

addressed by significantly reducing the camera resolution. This, however, degrades

recognition accuracy. Another extreme approach is to withhold releasing the imagery

data altogether and only release estimates of the utility information.

However, the smart room scenario calls for scalability to various visual analysis

tasks. However, this approach demands installation of a customized multi-task recog-

nition algorithm on each local camera, which precludes “future-proofing” because the

types of specified utilities may change over time. As a result, the local cameras

will require to be updated every time a new task utility needs to be accommodated.

Additionally, this approach provides no visual utility.

In order to address the aforementioned concerns, we propose a third radically

different approach: seamlessly replace the private information in an image without

significantly degrading its visual quality or the ability to accurately infer the utility

information for the task of interest. Meanwhile, a low-dimensional identity-invariant

utility-preserving image representation is created. Both the generated image and

representation can be safely sent to cloud for processing or released to public (if nec-

essary). Specifically, this chapter introduces two novel methodologies that leverage

the Variational Auto-Encoder (VAE) (Kingma and Welling, 2013) and the Generative

Adversarial Network (GAN) (Goodfellow et al., 2014) to learn an image representa-

53
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tion which is invariant to a specified factor of variation (e.g., user-identity) while

enabling the synthesis of a utility-equivalent, realistic version of the source image

with a different specified factor value.

3.1 Background Material

Before introducing the proposed methods in detail, we first provide the following

necessary background material.

3.1.1 Invariant Representation Learning

Invariant representations/features, by definition, have reduced sensitivity in the di-

rection of invariance. This is the goal of building features that are insensitive to

variation in the data that are uninformative to the task at hand (Bengio et al., 2013).

Invariant representation learning has been extensively studied in various contexts. For

instance, transformation-invariant feature learning has deep roots in computer vision;

features are often designed for a specific case, e.g., rotation or scale invariance. Early

examples include hand-crafted features such as HOG (Dalal and Triggs, 2005) and

SIFT (Lowe, 1999). More recently, deep Convolutional Neural Networks (CNNs) ap-

pear to be exceptionally effective in learning transformation-invariant representations

(Cheng et al., 2016; Cohen and Welling, 2016; Soatto and Chiuso, 2014)

An emerging research area aims to learn domain-invariant representations which

compensate domain mismatch (Hoffman et al., 2013; Ganin et al., 2016; Li et al.,

2018b; Johansson et al., 2019). Another line of research aim to build fair, bias-free

classifiers that also attempt to learn representations invariant to “nuisance variables”,

which could potentially induce bias or unfairness (Li et al., 2014; Zafar et al., 2015;

Edwards and Storkey, 2015; Xie et al., 2017). (Li et al., 2014) proposed to obtain

fairness by imposing l1 regularization between representation distributions for data

with different nuisance factors of variation. The Variational Fair Auto-Encoder (Zafar
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et al., 2015) tackles the same task using a VAE with maximum mean discrepancy reg-

ularization. Particularly relevant to our work are the methods proposed in (Edwards

and Storkey, 2015; Xie et al., 2017), which also incorporate adversarial training in a

VAE framework. Our models differ in that we apply adversarial training in the image

space instead of the latent space. This creates better quality images. In addition, we

propose a cyclic training process in the second model to further improve the quality

of invariance.

3.1.2 Disentangled Representation Learning

Disentangled representation learning is closely related to invariant representation

learning, as both attempt to separate factors of variation in the data. The major

difference between them is that invariant representations eliminate unwanted factors

in order to reduce sensitivity in the direction of invariance, while disentangled rep-

resentations try to preserve as much information about the data as possible (Bengio

et al., 2013). A number of models have been proposed in the literature to learn

disentangled representation for imagery data. Early work (Tenenbaum and Freeman,

2000) proposed a bilinear model to separate content and style for face and text images.

Method proposed in (Ghahramani, 1995) utilized E-M algorithm to discover the in-

dependent factors of variation of the underlying data distribution. Manifold learning

was also leveraged in (Elgammal and Lee, 2004) to explicitly separate body config-

uration and appearance. In (Desjardins et al., 2012), a method based on Restricted

Boltzmann Machines were developed to separate factors of variations in images. An

autoencoder augmented with simple regularization during training was proposed and

demonstrated to learn latent factors of variation (Cheung et al., 2014). In (Kingma

et al., 2014; Higgins et al., 2017; Burgess et al., 2018), Variational Auto-Encoder

(VAE) based methods were proposed to learn an interpretable factorised represen-

tation in the latent space. A recent work (Harsh Jha et al., 2018) proposed to use
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cycle-consistency in a VAE framework to disentangle the latent space into two com-

plementary subspaces in a semi-supervised setting.

Adversarial training was also employed for disentangled representation learning.

Adversarial auto-encoder (Makhzani et al., 2015) uses a semi-supervised approach to

disentangle style and content of images. It learns to disentangle label information

from the latent space by providing additional labels as input to the decoder. Models

in (Edwards and Storkey, 2015; Hadad et al., 2018; Lample et al., 2017) directly

apply adversarial training to latent space within a VAE in order to learn invariance

to attributes. However, methods with sole pixel-wise reconstruction objective in the

image space tend to produce blurry images. Recent works (Mathieu et al., 2016;

Szabó et al., 2017) both combine auto-encoders with adversarial training to disentan-

gle specified and unspecified information into two subspaces. Indeed, the resulting

unspecified representation is equivalent to an invariant representation that is disen-

tangled from the specified factor. However, their methods lack necessary constraints

over the latent space. Thus, the disentanglement quality falls short in comparison to

other methods (Harsh Jha et al., 2018).

In this thesis, we also compare our methods with disentangled representation

learning methods that learn to produce, for a given input image, two latent vectors.

One of the latent vectors captures information related to the unspecified factors of

variation and is, in an ideal scenario, devoid of any information related to the specified

factor of variation (e.g., identity information). This latent vector is the counterpart

of the latent invariant representation in our methods.

3.1.3 Conditional Image Generation

Recent advances in image modeling with neural networks have made it feasible to

create realistic-looking images with desired attributes, conditioned on different types

of source information such as class label, text and image. PixelCNN (Van den Oord
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et al., 2016) was proposed as a image density model that can be conditioned on

any vector including class labels or latent embeddings created by other networks.

(Sohn et al., 2015) developed a conditional variational auto-encoder (CVAE) which

is a conditional directed graphical model whose input observations (e.g., face im-

ages) modulate the prior on Gaussian latent variables that generate the outputs. The

popular GAN architecture is able to produce convincing image samples (Goodfellow

et al., 2014). However, it lacks the capability to control its outputs, since the outputs

only depend on input random noise. Auxiliary-Classifier GAN (AC-GAN) (Odena

et al., 2017) is a variant of GAN architecture. It adds more structure to the GAN

latent space along with a specialized cost function, which enables AC-GAN to gen-

erate images from a particular class. Concurrently, Pix2Pix (Isola et al., 2017) and

CycleGAN (Zhu et al., 2017) show success in paired and unpaired image-to-image

translation using adversarial networks, respectively. The task of text to image trans-

lation also has been successfully tackled in (Zhang et al., 2017) using stacked GANs.

The idea of combining VAE and GAN was first proposed in (Larsen et al., 2015) for

better-quality image generation. Later, conditional VAE-GANs (Bao et al., 2017; Di

and Patel, 2017; Shang and Sohn, 2019) were proposed for synthesizing images in

fine-grained categories. While our models are related to the aforementioned works in

terms of using VAE and GAN, our goals are very different. We explicitly optimize our

models to create invariant image representations. Once trained, our models becomes

conditional image generators.

3.1.4 Variational Autoencoder Network

A VAE network consists of two neural networks: an encoder network (Enc) and a

decoder network (Dec). The encoder is a randomized mapping of a data sample x to

a latent representation z while the decoder is a randomized mapping z from a latent
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representation back to data space:

z ∼ Enc(x) = q(z|x) (3.1)

x̂ ∼ Dec(z) = p(x|z) (3.2)

In practice, these randomized mappings are implemented via deterministic maps

(given by the neural networks) with additional inputs which provide the source of

randomness. For example, it is common to set z = µx +Axw where the vector µx

and the square matrix Ax are the outputs of a neural network with input x, and

w ∼ N (0, I), a standard multivariate Gaussian, is the source of randomness. Then,

q(z|x) = N (µx,AxA
T
x). VAE networks are trained by minimizing a cost function

which is additive over all training data samples. The cost function for a single data

sample x is given by

LV AE
x = −Ez∼q(z|x)[log p(x|z)] +KL

(
q(z|x)||p(z)

)
(3.3)

where KL is the Kullback-Leibler divergence and p(z), the marginal distribution of

the latent representation, is typically taken to be N (0, I). The first term encourages

the decoder to assign higher probability to the observed data samples x. In practice,

the expectation in the first term is replaced by an empirical average across a small

batch of independent and identically distributed z for a given x. The KL term

encourages the encoder q(z|x) to be close to a target p(z) which has sufficient spread

(diversity) in the latent space. The KL term has a closed analytic form since both

of its arguments are Gaussian (Kingma and Welling, 2013). The total cost across all

data samples is typically minimized via mini-batch gradient descent.
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3.1.5 Generative Adversarial Network

A standard GAN consists of a generator neural network G and a discriminator neu-

ral network D that are trained by making them compete in a two-player min-max

game. The discriminator network D adjusts its weights so as to reliably distinguish

real data samples x ∼ pd(x) from fake data samples G(z) generated by passing z,

randomly sampled from some distribution pz(z), through the generator network G.

The generator network G adjusts its weights to fool D. The discriminator D assigns

probability D(x) ∈ [0, 1] to the event that x is a “real” training data sample and

the probability 1 − D(x) to the event that x is a “fake” sample synthesized by the

generator. The two networks are trained iteratively using a loss function given by

LGAN(G,D) = Ex∼pd(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (3.4)

with G aiming to minimize LGAN(G,D) and D aiming to maximize it. In practice,

the expectations are replaced by empirical averages over a mini-batch of samples and

the loss function is alternately minimized and maximized from one mini-batch to the

next as in mini-batch gradient descent.

3.2 Model I: Privacy-Preserving Representation-Learning

Variational-GAN (PPRL-VGAN)

3.2.1 Introduction

In this section, we introduce a Privacy-Preserving Representation-Learning Varia-

tional Generative Adversarial Network (PPRL-VGAN) for learning a face image rep-

resentation that is explicitly invariant to the identity information. At the same time,

this representation is discriminative from the standpoint of one specific utility in-

formation (e.g., facial expression) and generative as it allows utility-equivalent face

image synthesis. We leverage variational generative-adversarial networks (VGANs) to
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PPRL-VGAN

!

Identity code "
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Figure 3·1: Basic functionality of PPRL-VGAN: given an input face
image x, the network produces an identity-invariant representation z,
and a utility-preserving face image with another identity specified by
identity code c.

learn an identity-invariant representation of an image while enabling the synthesis of

a utility-equivalent, realistic version of this image with a different identity (Fig. 3·1).

Beyond its application to privacy-preserving visual analytics, our approach could also

be used to generate realistic avatars for animation and gaming.

3.2.2 Formulation of PPRL-VGAN

Given a face image x with an identity label yid = 1, ..., Nid and a label yu for a

specified utility attribute, where Nid is the number of distinct subjects, the proposed

model has two objectives: 1) to learn an identity-invariant face image representation

z that retains the specified utility information, and 2) to synthesize a realistic face

image x̂′ with the same specified utility attribute as in x and target identity specified

by a one-hot encoded identity code c ∈ {0, 1}Nid .

Discriminator: Different from the discriminator network in a conventional GAN, the

discriminator D = (D1, D2, D3) in PPRL-VGAN is a multi-task estimator consisting
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Figure 3·2: Schematic diagram of the proposed PPRL-VGAN (⊕
represents concatenation).Training alternates between optimizing the
weights of D keeping G fixed and vice-versa. Both original and synthe-
sized images with their labels are used during training.

of three separate neural networks (Fig. 3·2): 1) the D1 network classifies an input face

image x as real or synthetic, 2) the D2 network estimates the identity of the person in

the input face image, and 3) the D3 network recognizes the specified utility attribute.

The weights of the networks in D are trained to classify real face image inputs x as

real and accurately recognize the person’s identity and the utility attribute of interest.

They are also trained to classify synthetic image inputs x̂′ as fake.

Specifically, if the specified utility attribute yu is categorical, then we adjust the

network weights to maximize the following discriminator cost function:

LD(G,D) =λD1
{
Ex∼pd(x)[logD1(x)] − Ex∼pd(x),c∼p(c)[log(D1(G(x, c)))]

}
+

E(x,y)∼pd(x,y)[λ
D
2 logD2

yid
(x) + λD3 logD3

yu(x)] (3.5)

where D2
i , D

3
i are the predicted probabilities of the ith class for identity and the

specified utility attribute, respectively. The tuning parameters λD1 , λD2 and λD3 control

the relative importance between image quality, identity recognition, and expression

recognition objectives. Whereas if yu is continuous, we instead adjust the network
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weights to maximize the following discriminator cost function:

LD(G,D) =λD1
{
Ex∼pd(x)[logD1(x)] − Ex∼pd(x),c∼p(c)[log(D1(G(x, c)))]

}
+

E(x,y)∼pd(x,y)[λ
D
2 logD2

yid
(x)− λD3 ||D3(x)− yu||p] (3.6)

where D3 is a regressor that is trained to produce an approximation of yu.

Generator: In contrast to the generator in a conventional GAN which directly maps

a “noise” vector to a synthesized image, the generator G in a PPRL-VGAN maps

a real input image x with identity yid and the specified utility attribute yu to a

synthesized output image x̂′ = G(x, c) with a target identity y′(c) and the same

utility attribute yu. This is accomplished via a VAE-like encoder-decoder structure.

Specifically, the encoder aims to learn an image representation z from x via a ran-

domized mapping z ∼ q(z|x) parameterized by the weights of the encoder neural

network. Similarly to a VAE, the cost function for training the generator includes

KL divergence between a prior distribution on the latent space p(z) ∼ N (0, I) and

the conditional distribution q(z|x). The training attempts to minimize this KL term.

The generator cost function also includes a term that encourages the decoder to learn

to synthesize a face image x̂′ ∼ p(x|z, c) that can fool D into classifying it as a

real face image having the same specified utility attribute yu as the input image x,

but with a target identity y′(c) determined by c. Specifically, if yu is categorical

the generator network weights are adjusted during training to minimize the following

generator cost function:

LG(G,D) =− E(x,y)∼pd(x,y),c∼p(c)[λ
G
1 log(D1(G(x, c))) + λG2 log(D2

y′(c)(G(x, c)))

+ λG3 log(D3
yu(G(x, c)))] + λG4 KL

(
q(z|x)||p(z)

)
(3.7)

where λG1 , λG2 , λG3 and λG4 are tuning parameters of the loss functions for D1, D2, D3

and KL divergence respectively. A key difference compared to the cost in Eq. 3.3
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is that the first term (reconstruction error) in Eq. 3.3 has been replaced with a

perceptual loss term for the discriminator D1 in Eq. 3.7.

If yu is continuous, the generator network weights are adjusted to minimize the fol-

lowing generator cost function:

LG(G,D) =− E(x,y)∼pd(x,y),c∼p(c)[λ
G
1 log(D1(G(x, c))) + λG2 log(D2

y′(c)(G(x, c)))

− λG3 ||D3(G(x, c))− yu||p] + λG4 KL
(
q(z|x)||p(z)

)
(3.8)

the training alternates between maximizing Eq. 3.5 (or Eq. 3.6) with respect to the

weights of the networks in D and minimizing Eq. 3.7 (or Eq. 3.8) with respect to the

weights of the networks in G. As the target identity code c ranges over all Nid distinct

subjects, Nid synthetic images x̂′ are produced for each training or test image x. As

in the training of VAEs and GANs, the expectations are approximated by empirical

averages computed from a mini-batch of training examples.

Over successive training epochs, G learns to fit the true data distribution and

creates a realistic face image that can fool D1 having the specified utility attribute as

the input image, which can be correctly recognized by D3, and identity y′(c), which

can be correctly recognized by D2. As the latent code c determines the identity of x̂′,

the encoder is encouraged to disentangle the identity information from z. Moreover,

as x̂′ retains information about the specified factor, the encoder is also encouraged

to embed as much information about the specified factor as possible into z. As a

consequence, z is a generative representation that is not only invariant to identity,

but also discriminative for recognizing the specified utility attribute.
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3.2.3 Experimental Results

Datasets

In order to validate the effectiveness of the proposed model, we conducted experiments

on two facial expression datasets: FERG (Aneja et al., 2016) and MUG (Aifanti et al.,

2010), and a synthetic human head pose dataset: UPNA Synthetic (Larumbe et al.,

2017).

FERG is a database of cartoon characters with annotated facial expressions con-

taining 55,769 annotated face images of six characters. The images for each character

are grouped into 7 types of cardinal expressions, viz. anger, disgust, fear, joy, neutral,

sadness and surprise. The MUG database is video-based. It consists of realistic image

sequences of 86 subjects performing the same 7 cardinal expressions. For the sake

of computational efficiency, we chose 8 subjects with the most image samples as our

training and testing data. In each image sequence, we removed the first and last 20

frames which mostly correspond to the neutral expression. We used 11,549 images in

total. In experiments with these two facial expression datasets, we randomly selected

(without replacement) 85% images of each expression from each subject for the train-

ing set. The remaining 15% of images were used as testing data. We also resized each

RGB image to 64× 64-pixel resolution.

The UPNA Synthetic dataset contains 10 videos for each of 10 subjects. In total,

this dataset includes 35,990 frames. Ground-truth continuous head pose angles (yaw,

pitch, roll) and a face-centered bounding box are provided for each frame. In our

experiments, we first cropped each frame using the provided bounding box and then

resized it to 64×64-pixel resolution. We randomly chose (without replacement) 85%

frames from each video to populate the training set. The remaining frames were used

for evaluation.

The specified utility attribute we investigated for FERG and MUG is facial ex-
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pression, while the three head pose angles are considered as the utility attributes of

interest for UPNA Synthetic.

Training Details

We used the same network architecture for both facial expression datasets and only

modified D3 for UPNA Synthetic to make it produce real-valued estimates of the

head pose angles. Details of PPRL-VGAN structure are listed in Table 3.1. We

implemented our algorithm in Keras (Chollet, 2015) and trained all networks from

scratch. The weights were initialized to be zero-mean Gaussian with a small standard

deviation of 10−2. We used a batch size of 256 and performed batch normalization

after each convolutional/deconvolutional layer except the last deconvolutional layer

in the decoder. We set α = 0.2 for LeakyReLU’s across the network. We used

RMSprop optimizer (Hinton et al., 2012) with a learning rate of 0.0002. We observed

that network training is very sensitive to the choice of the tuning parameters in the

generator and discriminator cost functions. We optimized these parameters using

grid search. We found that the following values: λD1 = 0.25, λD2 = 0.5, λD3 = 0.25

for discriminator training and λG1 = 0.108, λG2 = 0.6, λG3 = 0.29 , λG4 = 0.002 for

generator training work well. In conventional GANs, it is common to optimize the

discriminator more frequently than the generator.

However, we update the generator twice as frequently as the discriminator dur-

ing training because the identity and utility attribute labels used in PPRL-VGAN

provide additional supervision signals that help the discriminator training, whereas

such signals are unavailable for the generator training. The source code, additional

implementation details and more experimental results are available on our project

website (Chen, 2018).
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Table 3.1: Architecture of PPRL-VGAN. ↓ and ↑ represent down- and
upsampling operations, respectively. D1, D2 and D3 share the weights
of all convolutional layers and of the first fully-connected layer.

Layer Encoder Decoder Discriminator

1 5× 5× 32 conv. ↓, BNorm, LeakyReLU 2048 FC layers
Reshape−−−−−→ 4× 4× 128 , LeakyReLU 5× 5× 32 conv, BNorm, LeakyReLU

2 5× 5× 64 conv. ↓, BNorm, LeakyReLU 5× 5× 256 deconv. ↑, BNorm, LeakyReLU 5× 5× 64 conv, BNorm, LeakyReLU

3 5× 5× 128 conv. ↓, BNorm, LeakyReLU 5× 5× 128 deconv. ↑, BNorm, LeakyReLU 5× 5× 128 conv, BNorm, LeakyReLU

4 5× 5× 256 conv. ↓, BNorm, LeakyReLU 5× 5× 64 deconv. ↑, BNorm, LeakyReLU 5× 5× 256 conv, BNorm, LeakyReLU

5 128 fully-connected (FC), Linear 5× 5× 3 deconv, tanh 256 fully-connected, LeakyReLU

6 D1: 1 FC , D2: Nid FC , D3: 1 or 3 FC

Threat Scenarios

We evaluate privacy-preserving performance of the proposed PPRL-VGAN under

three threat scenarios.

Attack scenario I: This is a simple scenario in which the attacker has access to

the unaltered training set (xtrain, y
train
id ). However, the attacker’s test set consists of

all images in the original test set after they have been passed through the trained

PPRL-VGAN network. Thus, the attacker never gets to see the original test image

xtest but only its privacy-protected version x̂′
test. Also, the test set for the attacker

contains all Nid distinct privacy-protected versions x̂′
test of each xtest corresponding

to Nid distinct values of the identity code c.

Attack scenario II: This is a more challenging scenario (from the perspective of

protecting privacy) where the attacker has access to the privacy-protected training

images x̂′
train and knows their underlying ground-truth identities ytrainid . Therefore,

the attacker can train an identifier on training images that have the same type

of identity-protecting transformation as the test images. If the proposed privacy-

preserving transformation is weak and the identifier has sufficient learning capacity,

it may be possible for a trained identifier to correctly predict the underlying ground-

truth identity even from a privacy-protected test image. Similarly to scenario I, there
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are Nid images for each training and testing image.

Attack scenario III: In this scenario, the attacker gets access to the encoder network

and can obtain the latent representation z for any image x. Then, if the produced

latent representation is not void of identity traits, the attacker can train an identifier

using (ztrain, y
train
id ) and apply it to ztest for identification. Although more challenging

than scenario II, because the attacker can access the “more pristine” z, there are fewer

training and test samples available since the identity code c does not enter into the

picture and thus there is no Nid-fold dataset expansion. Moreover whereas x̂′
train

resembles a real image, z needs not (and typically does not).

In terms of utility, we train a dedicated estimator in each scenario with the avail-

able format of training data and the corresponding ground-truth utility attribute

labels. Then, we apply this estimator to test data and measure the recognition per-

formance.

Privacy Preservation versus Data Utility

Results for facial expression datasets: We first report the evaluation results

for the facial expression datasets with respect to privacy preservation and data util-

ity. We use correct classification rate (CCR) in person identification to measure how

much privacy is preserved (the lower the CCR, the better) and also in facial expres-

sion recognition to measure the utility of data (the higher the CCR, the better).

Table 3.2 summarizes the performance of the proposed approach on the FERG and

MUG datasets under a privacy-unconstrained scenario (training and testing sets are

both unaltered), under a random-guessing attack and under the three attack scenar-

ios described earlier. In each scenario, the identification and facial expression are

estimated separately by different neural network classifiers.

For attack scenario I, we train an identifier using the original training set

(xtrain, y
train
id ) and apply it to privacy-protected test images x̂′

test. The identifier has
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Table 3.2: Person identification and facial expression recognition per-
formance in different scenarios on FERG and MUG datasets.

Scenario
Identification Expression Recognition

FERG MUG FERG MUG

Privacy Unconstrained 100% 100% 100% 87.90%

Random Guess 16.67% 12.50% 14.29% 14.29%

Attack Scenario I 17.01% 12.80% 93.02% 82.33%

Attack Scenario II 28.30% 22.08% 95.00% 85.14%

Attack Scenario III 22.42% 20.62% 100.00% 87.58%

the same structure as D2 (Fig. 3·2). We first observe that the identification CCRs are

17.01% for FERG and 12.80% for MUG. Both are close to a random guess (16.67% for

FERG since there are 6 characters and 12.50% for MUG since we selected 8 subjects).

However, the same classifier applied to the privacy-unconstrained test images results

in 100% identification performance on both datasets. Such a huge performance gap

confirms the proposed model effectively protects users’ privacy when the attacker has

no information about the applied privacy-preserving transformation. For utility eval-

uation, we train a dedicated facial expression classifier, with the same structure as

D3, using (xtrain, y
train
u ) pairs and test it on x̂′

test images. The resulting expression

recognition accuracies are 93.02% for FERG and 82.33% for MUG. These results are

close to those achieved in the privacy-unconstrained scenario, which indicates that

the synthesized images look realistic and retain the expression of the input images.

In attack scenario II, we use the privacy protected training data x̂′
train and the

corresponding ground-truth identity labels to train an identity recognizer and the

ground-truth expressions to train a facial expression classifier (having the same archi-

tectures as in scenario I). We first observe that the identification accuracy in scenario

II is about 11% higher than that of a random guess for both datasets, which suggests

that some identity-related information is leaked into the synthesized images, but this

is still much lower than in the privacy-unconstrained scenario. With respect to facial

expression recognition, the performance in scenario II is consistently better than that
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in scenario I. This is likely because the number of training samples in scenario II

is Nid times that in scenario I, which benefits the training of the facial expression

classifier.

In attack scenario III, we assume the attacker can access the latent representations

of the training and probe images. We simulate this attack scenario by training an

identifier using (ztrain, y
train
id ) and test it on ztest. However, as ztrain is a 1-D vector,

the 2-D ConvNet classifiers we used before are not suitable. We have experimented

with 3 classifiers for ztrain, namely a Support Vector Machine (SVM), a customized

1-D ConvNet and a customized Artificial Neural Network (ANN). The customized

ANN (3 hidden layers, each with 256 nodes) performed best in terms of identifica-

tion and expression recognition accuracy. Therefore, only results for the customized

ANN classifier are reported. As shown in Table 3.2, the identification performance is

reduced in comparison with scenario II. However, the expression recognition perfor-

mance in scenario III is the best among the three attack scenarios. Effectively, this

suggests that the learned image representation z contains crucial facial expression

information, but is largely disentangled from the identity information.

Results for head pose dataset: We then report the experimental results for UPNA

Synthetic. We use correct classification rate (CCR) and mean absolute error (MAE)

to measure the performance of identification and head pose estimation, respectively.

In all three attack scenarios, a low identification CCR and a small head pose estima-

tion error are favored. The identification and head pose estimation performance are

summarized in Table 3.3. In the privacy unconstrained scenario, both training and

testing data are unaltered. The resulting identification CCRs upper-bound the at-

tainable identification accuracy while the resulting head pose estimation MAEs lower-

bound the attainable estimation error. On the other hand, the resulting identification

CCR from the random guessing scenario lower-bound the identification performance
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and the resulting head pose estimation MAEs from the “Median” estimate (the me-

dian value of ground truth across the entire training set) upper-bound the attainable

estimation error.

Table 3.3: Person identification and head pose estimation performance
in different scenarios on UPNA Synthetic dataset.

Scenario Identification
Head Pose Estimation

Yaw◦ Pitch◦ Row◦

Privacy Unconstrained 100% 0.69± 0.54 0.77± 0.80 0.50± 0.46

Random Guess/Median 10.00% 5.10± 6.70 4.98± 5.02 4.68± 6.88

Attack Scenario I 13.20% 2.89± 2.61 2.47± 2.24 2.03± 2.41

Attack Scenario II 20.57% 2.88± 2.56 2.34± 2.18 2.10± 2.38

Attack Scenario III 24.17% 2.47± 2.12 2.27± 2.01 2.01± 2.42

In attack scenario I, we observe that the identification performance of the pro-

posed model is close to pure chance (10%). This indicates our model succeeds in

protecting identity when the attacker has no knowledge about the applied privacy-

protection transformation. As for head-pose estimation, we can see our model consis-

tently outperforms the “Median” estimate by about 2 degrees. In attack scenario II,

the identification CCR is higher than that in attack scenario I by 7%. This indicates a

small amount of the identity information has leaked into the synthesized images, this

is consistent with the observations on the facial expression datasets. However, the

resulting CCRs are still much lower than those in the privacy unconstrained scenario.

In terms of preserving head pose, the proposed model again significantly outperforms

the “Median” estimate. As for attack scenario III, the identification and pose estima-

tion performance are similar to that in scenario II. Overall, the quantitative results

show that PPRL-VGAN performs well for privacy-preserving head pose estimation

in various attack scenarios.
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Image Synthesis

Identity Replacement/Expression Transfer: In addition to producing an

identity-invariant image representation, PPRL-VGAN can be applied to an input

face image of any identity to synthesize a realistic, utility-equivalent output face im-

age of a target identity specified by the latent code c (see Fig. 3·3). This may also

be equivalently viewed as “transferring” a facial attribute from one face to another.

Unlike in a standard GAN, the synthesized image contains a lot of detail about the

target identity due to the incorporation of the identifier D2 and the utility attribute

estimator D3.

Face Image Synthesis without Input Image: Once trained, our model can also

synthesize face images without using an input image. This is due to the constraint

we impose on the encoder which forces the distribution of the latent representation

to follow a prior distribution (in our experiments: z ∼ N (0, I)). To generate a

new face image, we simply sample a latent vector from the prior distribution and

concatenate it with an identity code. Then, we feed the concatenated vector into

the decoder for image generation. As shown in Fig. 3·4, the synthesized images are

realistic and the identities are consistent with the identity code c. While the current

model is incapable of controlling the specified utility attribute like facial expression

of a generated image when no input image is given, we believe the synthesized images

are useful for other applications, e.g, augmenting the original dataset.

Face Image Synthesis for Left-Out Expression: In order to further evaluate

the generative capacity of PPRL-VGAN, we conducted experiments where we inten-

tionally left out all samples of a specific facial expression e from subject i in training

(images of expression e from other subjects are still used) and then synthesized the

left-out expression for subject i after the model had been trained. This was done by

feeding the generator G an image with expression e from subject j, j 6= i, and an
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Figure 3·3: Examples of identity replacement for MUG (top) and
UPNA Synthetic (bottom). In each row, from left to right, is an in-
put image followed by synthesized images with identity code ci, i =
1, ..., Nid.

identity code ci with ith entry equal to 1 and all other entries 0.

Figure 3·5 shows examples of left-out expression synthesis. While artifacts are

clearly visible, the synthesized images capture the essential traits of a left-out expres-

sion, thus validating the generative capacity of PPRL-VGAN.
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Figure 3·4: Image synthesis without input image; z is sampled from
N (0, I) with identity code ci, i = 1, ..., Nid.

(a) FERG (b) MUG

Figure 3·5: Image synthesis of left-out expressions (left: synthesized
image of a left-out expression; right: corresponding ground-truth im-
age).

Expression Morphing: Facial expression morphing is a challenging problem be-

cause a human face is highly non-rigid and significantly deforms across expressions.

Most methods perform face morphing in image space. Here, we leverage the latent

representation and apply linear interpolation in latent space. Let xinitial, xfinal be a

pair of source images with different expressions for subject i and zinitial, zfinal their

corresponding latent representations. First, we linearly interpolate zinitial and zfinal

in the latent space to obtain a series of new representations zinterp as follows:

zinterp = (1− α)zinitial + αzfinal, α ∈ [0, 1] (3.9)
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Then, we feed zinterp and identity code ci into the decoder to synthesize images.

Figure 3·6 shows two examples of expression morphing. We can see that in both cases,

the facial expression changes gradually from left to right. These smooth semantic

changes indicate the model is able to capture salient expression characteristics in z.

Figure 3·6: Examples of expression morphing for FERG (top) and
MUG (bottom) datasets. The first and last images in each row are
the source images, while those in-between are synthesized by linear
interpolation in latent space.

Image completion: PPRL-VGAN can be also applied to an image completion task.

We tested two different masks (Fig. 3·7): one covering the eyebrows, eyes and nose,

and the other covering the mouth (each mask occupies ∼ 7% of the image). To

complete the missing content of a query image xq of subject j, we first pass xq to the

encoder to produce a latent representation zq. Then, we feed zq and ci to the decoder

for synthesizing a new image x̂′ ∼ Dec(zq, ci). Finally, we replace the missing pixel

values of xq with values from corresponding locations in x̂′.

Examples of both successful and unsuccessful image completions are shown in

Fig. 3·7. Figure 3·7a shows examples for which our model was able to accurately

estimate the missing image content. This demonstrates that our model learns cor-

relations between different facial features, for example that opening the mouth is

likely to appear jointly with raising eyebrows. However, our model occasionally fails

(Fig. 3·7b). One possible reason for this is that some critical facial features (e.g., low-

ered eyebrows and narrowed eyes in the angry expression) are missing. A distortion
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(a) Examples of successful image completion

(b) Examples of unsuccessful image completion

Figure 3·7: Example of image completion for FERG and MUG
datasets. From left to right: original image, masked image and im-
age completion result. Note that the original images are excluded from
the training set.

may also occur when a face in the synthesized images is not accurately aligned with

the one in the query image.

3.3 Model II: Invariant Representation Learning Variational-

GAN (IRL-VGAN)

3.3.1 Introduction

In section 3.2, we presented a framework, namely PPRL-VGAN, for privacy-

preserving representation learning and face image synthesis. Experimental results

on both facial expression datasets and a head pose dataset demonstrate that PPRL-

VGAN strikes a balance between preservation of privacy and data utility. However,

PPRL-VGAN is designed to retain only one specific utility information (with labels

available for training) in the representations. Moreover, in PPRL-VGAN a discrimi-

nator is trained for each factor of variation so the number of model parameters grows

linearly with the number of factors.

This section introduces our second invariant representation learning model. We

call this model Invariant-Representation-Learning Variational-GAN (IRL-VGAN).
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IRL-VGAN uses a single discriminator which only requires labels of the specified

factor of variation (e.g., identity). Moreover, it is designed to automatically capture

all unspecified factors of the data (e.g., pose and illumination) into the representation

with no need for corresponding labels. Specifically, IRL-VGAN is a cyclically-trained

adversarial network for learning mappings from image space to a latent representation

space and back such that the latent representation is invariant to a specified factor of

variation. The learned mappings also assure that the synthesized image is not only

realistic, but has the same values for unspecified factors as the original image and a

desired value of the specified factor. We encourage invariance to a specified factor,

by applying adversarial training using a variational autoencoder in the image space.

We strengthen this invariance by introducing a cyclic training process (forward and

backward pass). We also propose a new method to evaluate conditional generative

networks. It compares how well different factors of variation can be predicted from

the synthesized, as opposed to real, images. We demonstrate the effectiveness of this

approach on factors such as identity, pose, illumination or style on three datasets and

compare it with state-of-the-art methods. Finally, we provide a performance com-

parison of IRL-VGAN and PPRL-VGAN on privacy-preserving head pose estimation

task.

3.3.2 Formulation of IRL-VGAN

Let X denote the image domain and Y = {y1, ..., yK} a set of possible factors of

variation associated with data samples in X, where K is the number of factors.

Given an image x ∈ X and one specified factor ys, where ys ∈ {1, ..., Ns} and Ns is

the number of possible classes, our proposed approach has two objectives: 1) to learn

a latent representation z which is invariant to the specified factor but preserves the

other unspecified factors of variation, and 2) to synthesize a realistic sample x̂′ which

has the same unspecified factors as x and a desired specified factor value which is
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determined by an input class code c(y′s), where y′s ∈ {1, ..., Ns} is generated from a

distribution p(y′s) and c(·) is a one-hot encoding function. For simplicity, we consider

here the case where ys is categorical, but our approach can be extended to continuous

ys.

Generator: We structure the generator in the proposed model similarly to a varia-

tional auto-encoder (Fig. 3·8). The encoder (Enc) aims to create a low-dimensional

data representation z = Enc(x) via a randomized mapping z ∼ p(z|x) parameterized

by the weights of the encoder’s neural network. On the other hand, the decoder

(Dec) is responsible for learning a mapping function x̂′ ∼ p(x|z, c(y′s)) that can map

the latent representation z in combination with with class code c(y′s) back to the

image space. The latent space is regularized by imposing a prior distribution, in our

experiments a normal distribution r(z) ∼ N (0, I).

Discriminator: Different from the discriminators in conventional GANs, the dis-

criminator D in our model is a multi-class classifier. The output of the discriminator

D(x) ∈ RNs+1 are the predicted probabilities of each class corresponding to Ns dif-

ferent values of the specified factor and an additional “fake” class.

Forward pass: First, we sample an image x from the training set and pass it through

the encoder to generate a latent representation z. The decoder is trained to produce

a reconstruction of the input x̂ ∼ p(x|z, c(ys)) and also to synthesize a new data

sample x̂′ ∼ p(x|z, c(y′s)) that can fool the discriminator D into classifying it as the

specified class y′s. Specifically, the weights of the generator network are adjusted to

minimize the following cost function:

Lfw
G (G,D) = −λG1 Ex∼p(x),y′s∼p(y′s)

[
logDy′s

(
G(x, c(y′s))

)]
+

λG2 E(x,ys)∼p(x,ys)

[
||x−G(x, c(ys))||22

]
+ λG3 KL(p(z|x)||r(z)) (3.10)

where p(x, ys) denotes the joint distribution of the real image and the specified factor
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Figure 3·8: Schematic diagram of the proposed model (⊕ represents
concatenation): (a) forward pass in which training alternates between
optimizing G and D; (b) backward pass that only optimizes G. Note:
the label for image synthesis is denoted by y′s in forward pass and y′′s in
backward pass.
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in the training data, p(x) the corresponding marginal distribution of the real image,

p(y′s) a distribution of the specified factor used to synthesize a “fake” image, Di is

the predicted probability of the i-th class, and λG1 , λ
G
2 , λ

G
3 are weighting factors.

The discriminator aims to correctly classify a real training sample x to its ground-

truth class value ys of the specified attribute but, when given a synthetic sample x̂′

from the generator, it attempts to classify it as fake. This is accomplished by adjusting

the weights of the discriminator by maximizing the following cost function:

Lfw
D (G,D) = λD1 E(x,ys)∼p(x,ys)[logDys(x)] + λD2 Ex∼p(x),y′s∼p(y′s)[logDNs+1(G(x, c(y′s)))]

(3.11)

where λD1 and λD2 are tuning parameters.

The weights of the networks in G and D are updated in an alternating order. Over

successive training steps, G learns to fit the true data distribution and reconstruct

the input image as well as synthesize realistic images that can fool D. The generator

objective (second term in Eq. (3.10)) encourages the encoder to pass as much informa-

tion about the unspecified factors as possible to the latent representation. Since the

class code c determines the specified factor value of x̂′, the encoder is also encouraged

to eliminate information about the specified factor of x in the latent representation.

The encoder may, however, fail to disentangle the specified and unspecified factors

of variation and the decoder may still learn to synthesize images according to the

class code c by ignoring any residual information about the specified factor that is

contained within the representation. To avoid such a degenerate solution, we use a

backward pass to further constrain the latent space.

Backward pass: This pass requires a synthesized image x̂′′ of class y′′s generated from

a real image x of class ys. We intentionally choose y′′s 6= ys so that x̂′′ and x carry

different specified factor values. Two latent representations z = Enc(x) and z′′ =
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Enc(x̂′′) can be computed by passing, respectively, x and x̂′′ through the encoder (see

Fig. 3·8b). If the encoder fails to transmit information about unspecified factors from

the input to its latent representation, or if it retains considerable information about

the specified factor in the latent space, then we would expect the representations z

and z′′ to have a large pairwise distance. In addition, we would like to encourage

the generator to reconstruct the input x from its synthetic version x̂′′ in combination

with a class code c(ys) that encodes the ground-truth label of the specified factor of

x. These considerations motivate optimizing the generator in the backward pass by

minimizing the following cost function:

Lbw
G = E(x,ys)∼p(x,ys),y′′s∼p(y′′s )

[
λbw1 ||z− z′′||1 + λbw2 ||x−G(x̂′′, c(ys))||22

]
(3.12)

Lbw
G = E(x,yid)∼p(x,yid),y′′id∼p(y′′id)

[
λbw1 ||z− z′′||1+ (3.13)

λbw2 ||x−G(x̂′′, c(yid))||22
]

(3.14)

where λbw1 and λbw2 are two weighting factors. The first term in Eq. (3.14) penalizes

the generator if z is not close to z′′. The second term encourages the synthesized x̂

to resemble x.

Essentially, the forward pass translates x to a synthetic image x̂′′ = G(x, c(y′′s ))

followed by a backward transform x̂ = G(x̂′′, c(ys)), such that x̂ ' x. This cyclic

training process assists the model in generating good quality images and further

encourages invariance to the specified factor in the latent space.

3.3.3 Experimental Results

We evaluate the performance of IRL-VGAN on three image datasets: 3D

Chairs (Aubry et al., 2014), YaleFace (Lee et al., 2005) and UPNA Synthetic (Ariz

et al., 2016). We first conduct a quantitative evaluation of the degree of invariance
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in the latent space by training dedicated neural networks (one per factor) to predict

the values of the specified and certain unspecified factors (that have ground-truth

labels) from the latent representation. The factor prediction accuracies quantify how

much information about each factor has been preserved in the latent representation.

If the model succeeds in eliminating all information about the specified factor and

preserving all information about unspecified factors, we should expect the prediction

accuracy for the specified factor to be close to pure chance and the prediction accu-

racies for the unspecified factors to be nearly perfect. We also evaluate the quality of

the image generation process. Unlike previous works (Hadad et al., 2018; Harsh Jha

et al., 2018), which only provide a qualitative evaluation through visual inspection of

the synthesized images, we propose a new method to quantitatively assess the capa-

bility of a conditional generative model to synthesize realistic images while preserving

unspecified factors. We will present details of the proposed evaluation method and

associated experimental results in a later section.

We compare our model with two state-of-the-art methods (Hadad et al., 2018;

Harsh Jha et al., 2018) that learn to produce, for a given input image, two latent

vectors (as opposed to just one in our method). One of the latent vectors captures

information related to the unspecified factors of variation and is, in an ideal scenario,

devoid of any information related to the specified factor of variation. This latent

vector is the counterpart of the latent invariant representation in our method. For

synthesizing an image with a desired value for the specified factor, the methods in

(Hadad et al., 2018; Harsh Jha et al., 2018) require an additional surrogate image

which has the desired value for the specified factor. They would then substitute the

latent vector of the specified factor in the original image with that of the surrogate

image and then decode the result. Our approach, in contrast, uses a class code (as

opposed to a surrogate image) to explicitly set the value of the specified factor in
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the synthesized image. In our experiments, we compare the latent vectors for the

unspecified factors from the competing methods and the latent representation from

our method in terms of their ability to predict the specified and unspecified factors

which indicates the quality of invariance. We used the publicly available source code

to implement both benchmarks, but slightly modified their network architectures to

ensure that all three competing models have similar numbers of parameters. We also

did parameter tuning for each method for each of the three datasets.

Additional results of performance comparison between IRL-VGAN and PPRL-

VGAN regarding privacy-preserving head pose estimation are presented in sec-

tion 3.3.4.

Datasets

3D Chairs: This dataset includes 1,393 3D chair styles rendered on a white back-

ground from 62 different viewpoints that are indexed by two values of angle θ and 31

values of angle φ. Each image is annotated with the chair identity indicating its style

as well as viewpoint (θ, φ). For each chair style, we randomly picked 50 images (out

of 62) to populate the training set, and used the remaining 12 images in the testing

phase. This gives, in total, 69,650 images in the training set, and 16,716 images in

the test set.

YaleFace: This dataset consists of gray-scale frontal face images of 38 subjects under

64 illumination conditions. In our experiments, we randomly chose 54 images (out of

64) from each subject for training, and use the rest as the test set for performance

evaluation.

UPNA Synthetic: This is a synthetic human head pose database. It consists of

12 videos for each of 10 subjects; 120 videos in total with 38,800 frames. Ground-

truth continuous head pose angles (yaw, pitch, roll) are provided for each frame. We

randomly selected 85% of the frames from each video for each subject for the training
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and used the remaining 15% for testing.

For computational efficiency, in our experiments, we resized each RGB image to

64 × 64-pixel resolution for all three datasets. Table. 3.4 summarizes the specified

and unspecified factors of variation that we investigate across the three datasets.

Table 3.4: Specified and unspecified factor(s) of variation investigated
in the three datasets.

Dataset Specified factor Unspecified factor(s)

3D Chairs (Aubry et al., 2014) Chair style View orientation (θ, φ)

YaleFace (Lee et al., 2005) Identity Illumination Cond.

UPNA Synthetic (Ariz et al., 2016) Identity Head pose

Quality of invariance

We follow previous methodology (Harsh Jha et al., 2018; Hadad et al., 2018) and train

dedicated neural network estimators to predict the specified and unspecified factors

of variation based on the learned latent representations generated by each competing

model. We use correct classification rate (CCR) and mean absolute error (MAE) to

measure the performance of classification tasks and regression tasks, respectively.

In the 3D Chairs dataset, we regard chair style as the specified factor and the

viewing orientation angles as the unspecified factors. Since both orientation angles

are discrete, we treat viewing orientation estimation as a classification problem. As

shown in Table 3.5, all three competing models manage to reduce the style information

contained within the latent representation to a large extent (very low style prediction

CCR values). However IRL-VGAN outperforms the benchmark models, in terms of

the ability to predict the viewing orientation angles, by a large margin (about 11–

28% CCR improvement for φ and 9–13% CCR improvement for θ). We also observe

that the backward pass significantly improves invariance, i.e., style prediction CCR

decreases from 3.21% to 0.79%.
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Table 3.5: Classification CCRs for predicting chair style and discrete
viewing orientation angles (θ, φ) based on the latent representations of
3D Chairs dataset. Lower is better for style classification. Higher is
better for orientation classification.

Method Style θ φ

Random guess 0.07% 50% 3.22%

(Hadad et al., 2018) 0.77% 68.92% 50.23%

(Harsh Jha et al., 2018) 0.70% 64.22% 43.75%

IRL-VGAN 0.79% 78.17% 71.90%

IRL-VGAN w/o backward pass 3.21% 74.37% 69.45%

Table 3.6: Classification CCRs for person identification and illumina-
tion condition recognition based on the latent representations for the
YaleFace dataset. Lower is better for person identification and higher
is better for illumination condition recognition.

Method Identity Illumination Condition

Random guess 2.63% 1.56%

(Hadad et al., 2018) 4.68% 77.80%

(Harsh Jha et al., 2018) 5.50% 32.36%

IRL-VGAN 6.97% 85.50%

IRL-VGAN w/o backward pass 12.36% 85.40%

Table 3.7: Classification CCRs for person identification, and
MAE/standard deviation for head-pose estimation based on the latent
representations for the UPNA Synthetic dataset. Lower is better for
both tasks.

Method Identity Yaw◦ Pitch◦ Roll◦

Random guess/
10% 5.10± 6.70 4.98± 5.02 4.68± 6.88

Median

(Hadad et al., 2018) 15.80% 2.77± 2.00 2.43± 2.10 1.19± 1.43

(Harsh Jha et al., 2018) 18.83% 2.42± 2.52 2.88± 2.71 1.65± 2.35

IRL-VGAN 18.05% 2.12± 2.12 2.23± 2.10 1.16± 1.24

IRL-VGAN w/o backward pass 33.40% 2.10± 2.08 2.20± 2.06 1.29± 1.43

Table 3.6 summarizes the performance of each model on the YaleFace dataset. In

this case, subject identity is considered as the specified factor and illumination con-

dition as the unspecified factor of variation. We first observe that the identification

performance of the three models is comparable and close to a random guess, which
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suggests the competing models perform equally well in creating representations that

are invariant to identity. For the recognition of illumination condition, the classifica-

tion CCR for our model is 85.50%, which again surpasses the two benchmark CCRs

by about 8% and 53% in accuracy. Such large performance gaps suggest that the

invariant representation learned by our model is better, than the competing alter-

natives, in preserving information about unspecified factors of variation. Lastly, we

observe that the identification CCR of the complete IRL-VGAN model is about 5%

less than that of using forward pass only, which again verifies the effectiveness of the

backward pass.

In the case of UPNA Synthetic dataset, the specified and unspecified factors of

variation used in evaluation are subject identity and head pose, respectively. Head

pose is defined as a three-dimensional angular value (yaw, pitch, roll) in continuous

space. Thus, we train neural-network based regressors to estimate head pose and

report the mean and standard deviation of the absolute errors for yaw, pitch and

roll angles separately. Detailed evaluation results are shown in Table 3.7. In terms

of identification accuracy, the performance of the three methods is similar (no more

than 3% difference in CCR or about 2-3 times that of a random guess). For our

model, the incorporation of backward pass greatly helps to reduce identification CCR

from 33.40% to 18.05%. As for head-pose estimation, we use “Median” estimate as a

baseline, i.e., the median value of ground truth across the entire training set. We note

that our model slightly, but consistently, outperforms the benchmarks, and signifi-

cantly outperforms the median estimate. This once again confirms the effectiveness

of our model in preserving information pertaining to the unspecified factors in the

latent representation while discarding information related to the specified factor.
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Quality of image generation

Many studies have proposed measures to evaluate generative models for image syn-

thesis. Some of them attempt to quantitatively evaluate models while some others

emphasize qualitative approaches, such as user studies (e.g., visual examination).

However, such subjective assessment may be inconsistent and not robust as human

operators may fail to distinguish subtle differences in color, texture, etc. In addition,

such a measure may favor models that can merely memorize training samples. In

terms of quantitative methods, some studies proposed to use measures from image

quality assessment literature such as SSIM, MSE and PSNR. However, they require

a corresponding reference real image for each synthesized one. Other widely-adopted

reference-free quantitative measures like Inception Score (Salimans et al., 2016) and

Fréchet Inception Distance (Heusel et al., 2017) are designed for generic GANs and

only measure how realistic a GAN’s output is. Thus, they are not suitable for condi-

tional models that aim to generate samples from a particular class. Several quantita-

tive evaluation methods have been proposed for conditional generative models. For

example, it was proposed to feed fake colorized images (of real grayscale images) to

a classifier that was trained on real color images (Zhang et al., 2016). If the classifier

performs well, this indicates that the colorization is accurate.

Inspired by the previous studies that use an off-the-shelf classifier to assess the

realism of synthesized data, we propose a quantitative method that utilizes a number

of attribute estimators to evaluate the quality of conditional generative models. The

intuition is that a good generative model for learning an invariant/disentangled repre-

sentation should have the capability to explicitly and accurately control the specified

factor value when it generates a novel image. Furthermore, it should precisely trans-

fer the other unspecified factors of variation from the source image to its synthetic

version. Therefore, we can evaluate a model by measuring how well the different
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factors of variation in the synthesized images can be predicted via estimators that are

pretrained on the real images.

Specifically, we train a number of attribute estimators F j, where j ∈ {1, ..., K}, on

the original training sets of real images. For each (real) test image x having specified

and unspecified factors of variation yj, j ∈ {1, . . . , K}, we synthesize a new version

x̂′ = G(x, c(y′s)) using the generator, where y′s is sampled at random, independently

of x, ys, from a distribution p(y′s). The image x̂′ thus synthesized is passed to the

pretrained estimators to obtain a prediction for each attribute (whether specified or

unspecified). If a factor of variation yj is categorical, then F j(x̂′) is a probability

distribution over the set of all possible values that factor can take. In particular,

F j
yj

(x̂′) = p(yj|x̂′). If yj is continuous, then ŷj := F j(x̂′) is a numerical value which

should be approximately equal to yj. In order to quantify performance, we introduce

the following Generator Label Score (GLS ) for both discrete and continuous factors

of variation. For a categorical unspecified factor yj,

GLS := E(x,yj)∼p(x,yj),y′s∼p(y′s)

[
F j

yj

(
G(x, c(y′s))

)]
whereas for a categorical specified factor ys,

GLS := Ex∼p(x),y′s∼p(y′s)

[
F j

y′s

(
G(x, c(y′s))

)]
.

For a quantitative unspecified factor yj,

GLS := E(x,yj)∼p(x,yj),y′s∼p(y′s)||F j
(
G(x, c(y′s))

)
− yj||p

whereas for a quantitative specified factor ys,

GLS := Ex∼p(x),y′s∼p(y′s)||F j
(
G(x, c(y′s))

)
− y′s||p.
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For a good conditional generative model, the value of GLS should be high for every

categorical factor of variation (whether specified or unspecified) and low for every

quantitative factor. Although quantitative, GLS need not correlate well with the

subjective quality of synthesized images as perceived by humans. It is also worth

mentioning that GLS provides a vector of values for a given set of factors, but they

can be converted to a single value if the relative importance of each attribute is known.

In order to compute GLS, we use the three competing models to create, separately,

synthetic versions of test images for each dataset. For the proposed model, the input

image x and class code c provide the necessary information about unspecified and

specified factors, respectively. Thus, we synthesize a new version for each test image

by passing it through the generator in combination with a randomly-generated class

code. For the benchmark methods, we follow the procedure described in the respective

papers to generate new images. In order to generate a new sample, we combine the

unspecified latent representation of a test image and the specified latent representation

of another image randomly picked from the same test set.

Tables 3.8, 3.9 and 3.10 report the GLS for the three datasets. We first observe

that our model consistently achieves better scores compared to the benchmark models.

In particular, GLS values for the specified factors (chair style and identity) for our

model are nearly perfect suggesting that our model manages to accurately alter the

specified factor value in the generated images. With respect to unspecified factors

of variation, our model yields a high GLS value for the illumination condition (0.70)

and a low value for head pose (e.g., 1.37 for roll angle). While the achieved scores on

viewing orientation (θ, φ) for our model are slightly lower than expected, they are still

better than those for the benchmarks. This is likely because our model occasionally

fails to precisely construct chairlegs or arms (see Fig. 3·9a), which provide important

cues for recognizing the viewing orientation. It is worthwhile to mention that the



89

performance differences are less significant on UPNA Synthetic dataset. One possible

reason is that it has the maximum number of training samples per class among the

three datasets which could benefit the training of the generator.

Table 3.8: GLS values for chair style and viewing orientation (θ, φ)
for 3D Chairs dataset. Higher is better for both factors.

Model Chair style θ φ

IRL-VGAN 0.87 0.66 0.57

(Hadad et al., 2018) 0.02 0.56 0.38

(Harsh Jha et al., 2018) 0.02 0.61 0.49

Table 3.9: GLS values for identity and illumination condition for
YaleFace dataset. Higher is better for both factors.

Model Identity Illumination cond.

IRL-VGAN 0.98 0.70

(Hadad et al., 2018) 0.24 0.17

(Harsh Jha et al., 2018) 0.07 0.29

Table 3.10: GLS values for identity and head pose (yaw, pitch and
roll) for UPNA Synthetic dataset. Higher is better for identity. Lower
is better for head pose.

Model Identity Yaw Pitch Roll

IRL-VGAN 1.00 2.55 2.46 1.37

(Hadad et al., 2018) 0.88 3.51 4.07 3.17

(Harsh Jha et al., 2018) 0.98 2.65 2.84 1.47

In addition to quantitative results, we also show qualitative results of modifying

a specified factor of variation within an image using the three competing models (see

Figure 3·9). One can see that IRL-VGAN can change a specified factor of variation

in an input image, such as face identity or chair style, by adjusting class code c.

Meanwhile, the other unspecified factors such as orientation, illumination condition

or head pose of the input image are largely preserved in its synthetic version. Over-

all, images generated by IRL-VGAN are realistic although distortions may occur in

image details, e.g, chair legs (see the fifth image in the second row of Fig. 3·9a). In

contrast, the benchmark methods can only combine the specified factors from one
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(a) Image synthesis results for IRL-VGAN

(b) Image synthesis results for the model in (Hadad et al., 2018)

(c) Image synthesis results for the model in (Harsh Jha et al., 2018)

Figure 3·9: Image synthesis by altering the specified factor of variation
in 3D Chairs (Aubry et al., 2014), YaleFace (Lee et al., 2005) and UPNA
Synthetic (Ariz et al., 2016) (from left to right). (a): The proposed
model can modify a specified factor of variation (e.g, chair style) by
adjusting the input class code c. (b) & (c): Both benchmark models
swap the specified latent representation (from the left column images)
and the unspecified latent representation (from the top row images) to
synthesize new images.
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source image and the unspecified factors from another source image to generate a

new image. Therefore, they have less flexibility to modify a specified factor of vari-

ation to a desired value. Images shown in Figures 3·9b and 3·9c are generated by

feeding the specified representations from images in the first row, and the unspecified

representations from images in the first column to the decoder. The visual quality

of corresponding images is inferior to those from our model; blur and distortions are

clearly visible. Furthermore, the benchmark methods are less effective in maintaining

certain important factors of variation, e.g., color in the synthesized images (see the

generated chair images in Figs. 3·9b and 3·9c).

The remarkable consistency of the quantitative and qualitative results confirms

the effectiveness of the proposed model in creating realistic images with a desired

value for the specified factor and the same unspecified traits as the source images.

Interpolation of synthesis variables

In order to further evaluate the generative capacity of the proposed model, we con-

ducted additional experiments wherein we linearly interpolate between latent rep-

resentations and class codes of an initial and a final image in order to obtain a

series of new image representations and class codes which are then combined and

fed to a trained decoder to synthesize new images. Specifically, let zinitial, zfinal

and cinitial, cfinal denote, respectively, the learned latent representations and class

codes of the initial and final images and cinterp = (1 − αc)cinitial + αccfinal and

zinterp = (1 − αz)zinitial + αzzfinal their interpolated values, where αc, αz ∈ [0, 1].

We synthesize new images by passing (cinterp, zinterp) to the decoder. Surprisingly,

when this is applied to a face dataset, our trained model can generate a sequence

of face images that show a seamless transition from one identity into another, i.e.,

face morphing (rows of Figs. 3·10), and also a seamless transition from one value of

an unspecified factor (e.g., illumination, pose) into another (columns of Fig. 3·10).
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(b) UPNA Synthetic

Figure 3·10: Linear interpolation results for the proposed model in
the latent space (z) and class code space (c). The top-left and bottom-
right images are taken from the test set.



93

Figure 3·11: Image synthesis without input image; z is sampled from
N (0, I).

This is despite the fact that the model can only see one-hot codes specifying discrete

identities during training. In Fig. 3·10, the class code is constant within each column

while the representation is constant within each row. We observe that when inter-

polating c, the unspecified factors such as illumination or head pose are consistent,

while the specified factor (identity) changes gradually. In contrast, when interpolat-

ing z the specified factor remains unchanged but the unspecified factors transform

continuously.

Image synthesis without input image

IRL-VGAN can also synthesize novel images without using an input image as the

latent space distribution has been forced to be close to a prior distribution during

training. To generate a new image, we first sample a latent vector from a prior

distribution (in our experiments: z ∼ N (0, I)). Then, we concatenate it with a class

code and feed them into a trained decoder to synthesize a new image. As shown in

Fig. 3·11, the synthesized images are realistic and could be useful for applications

such as dataset augmentation.
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3.3.4 Performance Comparison of IRL-VGAN and PPRL-VGAN on

Privacy-Preserving Head Pose Estimation

We compare the performance of PPRL-VGAN and IRL-VGAN on the task of privacy-

preserving head pose estimation. We use the same evaluation strategy described in

section 3.2.3 and provide quantitative and qualitative results of both methods under

three privacy-threat scenarios.

Table 3.11: Classification CCRs for person identification and MAE
for head pose estimation on UPNA Synthetic. Lower is better for both
tasks.

Scenarios

Identification(%) Yaw◦ Pitch◦ Roll◦

IRL- PPRL- IRL- PPRL- IRL- PPRL- IRL- PPRL-

VGAN VGAN VGAN VGAN VGAN VGAN VGAN VGAN

Privacy Unconstrained 100 0.64 0.77 0.50

Random Guess/Median 10.00 5.10 4.98 4.68

Attack Scenario I 10.00 13.20 2.55 2.89 2.46 2.47 1.37 2.03

Attack Scenario II 19.53 20.57 2.10 2.88 2.25 2.34 1.18 2.10

Attack Scenario III 18.85 24.17 2.12 2.47 2.23 2.27 1.16 2.01

Table. 3.11 reports the identification and head pose estimation results of the two

proposed approaches on the UPNA Synthetic dataset. In each scenario, the identifi-

cation and head pose are estimated separately by different neural network classifiers.

We first observe that the identification CCRs of IRL-VGAN are consistently lower

than those of PPRL-VGAN by 1 to 5 percent, which suggests IRL-VGAN is more

effective in protecting user’s privacy. In terms of head pose estimation, both methods

manage to significantly outperform the median estimate, but IRL-VGAN performs

slightly better than PPRL-VGAN. This is encouraging because it indicates that bet-

ter identity-invariant utility-preserving image representations can be achieved even

without using labels for utility attributes.

We also provide evaluation results for image synthesis. Figure. 3·12 shows identity

replacement examples for both methods. We can observe that the synthesized images
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Figure 3·12: Examples of identity replacement for UPNA Synthetic.
In each row, from left to right, is an input image followed by synthesized
images with different identity codes.

from both models are realistic-looking, showing the target identities and accurately

preserving the original head pose of the input images. While compared to the images

generated by PPRL-VGAN, the synthetic face images generated by IRL-VGAN have

better visual quality (e.g., contain fewer artifacts). This is also consistent with the

GLS results shown in Table. 3.12.

Overall, the empirical results suggest both PPRL-VGAN and IRL-VGAN perform

well in privacy-preserving head pose estimation. Whereas, IRL-VGAN slightly out-

performs PPRL-VGAN in terms of creating identity-invariant, head pose-preserving
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Table 3.12: GLS values for identity and head pose (yaw, pitch and
roll) for UPNA Synthetic dataset. Higher is better for identity. Lower
is better for head pose.

Model Identity Yaw Pitch Roll

IRL-VGAN 1.00 2.55 2.46 1.37

PPRL-VGAN 0.90 2.89 2.47 2.03

image representations and synthesizing novel face images. Furthermore, training IRL-

VGAN does not rely on labels for utility attributes. These factors could make IRL-

VGAN more favorable in practice.

3.4 Discussions

This chapter presented two invariant representation learning models that can be ap-

plied to privacy-preserving visual recognition tasks, e.g., facial expression recognition.

The PPRL-VGAN is designed to create an identity-invariant representation of a face

image that also permits synthesis of a utility-preserving and realistic version. Training

this model requires labels for both identity and utility attributes. The IRL-VGAN is

capable to generate an image representation that is invariant to a specified factor of

variation (e.g., identity and style), while maintaining all unspecified factors. It further

promotes invariance using a novel cyclic forward-backward training strategy. Quanti-

tative and qualitative results from a broad set of experiments show that both models

perform well in various tasks. IRL-VGAN slightly outperforms PPRL-VGAN despite

the fact that it does not need labels for utility attributes. Once trained, both models

are also generative as they enable synthesis of a realistic image having a desired value

for the specified factor. Finally, both models facilitate image manipulation, such as

face morphing.

An alternative approach for protecting user’s visual privacy while also providing

high utility is to create an “isolated” smart room equipped with standard-resolution
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cameras, and a state-of-the-art multi-task visual recognition algorithm which is de-

signed to capture all currently specified utilities. This approach could potentially

mitigate privacy concerns since no information about the room would be shared.

However, the types of specified utilities may change over time and it may be expen-

sive to keep updating the distributed local cameras in order to adapt them for new

smart room functionalities.

In contrast, using our proposed IRL-VGAN enables the local cameras to produce

low-dimensional image representations and synthesized images that are, in principle,

capable of retaining most unspecified utility information. The visual recognition

tasks could be done remotely without privacy loss if the room were to only share the

generated data from IRL-VGAN. As a result, if the desired utilities change in the

future, there would be no need to update the local cameras. All we need to do is to

update the recognition algorithms in the remote computing center.

Whereas, it is important to note that even though our IRL-VGAN approach aims

to preserve all unspecified attributes, strictly speaking, not all data utilities can be

preserved. For example, any utility information tied directly to identity (e.g., gender)

could be altered in the privacy-protected data. Only the utility information that is

completely independent or very weakly dependent on identity (e.g., activity) would be

preserved. In addition, our proposed approaches are based on data-driven algorithms.

Therefore, if a utility is inadequately represented in the training set, it is possible

that our proposed methods may fail to learn to preserve that utility in the generated

representations/images.

It is also worthwhile to mention that, in our experiments we have only demon-

strated this capability for 2 utilities. This is primarily because we aimed for a proof-of-

concept demonstration and the datasets that we worked with only provide labels for

at most two distinct utilities. One promising future direction for further exploration
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is to validate the capability of the proposed approach to simultaneously preserve more

than two utilities. This could be done, for example, by conducting experiments on

large-scale datasets which have multiple face attributes labeled such as CelebA (Liu

et al., 2015).



Chapter 4

Concluding Remarks and Outlook

This thesis proposed two distinct approaches for visual analytics that protect user’s

(visual) privacy while preserving utility for inference task(s). It was motivated by the

desire to have reliable and accurate visual analytics methodologies without invasion

of privacy, which are critical to achieving the expected benefits of a smart room.

The first approach addresses privacy concerns by significantly reducing camera

resolution (e.g., 12×16 pixels). It is a low-complexity approach in terms of sensing

modality, data processing and transmission. We conducted proof-of-concept studies

for three recognition tasks at extremely low resolutions, namely, human head pose

estimation, indoor occupant localization and human action recognition. The impact

of spatial resolution on the preservation of privacy and data utility was investigated.

Both classical machine learning and modern deep learning algorithms were leveraged

to maximize task performance. The empirical results demonstrated that using eLR

cameras is suitable for scenarios does not require high accuracy.

The second approach took advantage of the recent advancements in representa-

tion learning to design an identity-invariant image representation that also permits

synthesis of utility-equivalent realistic image. This approach relies on HR cameras

and high-complexity deep learning techniques. Specifically, we proposed two novel

models, namely, PPRL-VGAN and IRL-VGAN. Quantitative and qualitative results

from a broad set of experiments demonstrate that the generated representations and

images from our models largely eliminate the original identity information while accu-

99
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rately preserve the utility information, and therefore are suitable for scenarios calling

for high accuracy. Once trained, both PPRL-VGAN and IRL-VGAN are also gen-

erative as they enable synthesis of a realistic image having a desired value for the

specified factor. Beyond their application to privacy-preserving visual analytics, they

also can be used to generate realistic avatars for animation and gaming. In addition,

as the proposed models are capable of generating images from a particular class, they

can be applied to targeted data augmentation. Last but not least, with necessary

modifications on neural network architectures, our models could potentially be used

to capture human dynamic information from 3D videos. Thus, they could be used in

conjunction with a motion capture system to animate photo-realistic digital character

models that can take up the appearance of any person desired.

4.1 Future Directions

This thesis is a first step towards developing privacy-preserving visual analytics

methodologies for smart rooms. There exist interesting directions that can be pursued

based on our works.

Regarding the eLR-based approaches, we have not considered multiple subjects

in the field of view of the sensors. Additionally, our algorithms work under the

assumption that ground-truth labels can be attained during the training process,

however these measurements can be difficult to obtain in practice. Therefore, ex-

tending our approaches to more complicated indoor scenarios and proposing new

semi-supervised/unsupervised approaches would be two interesting research direc-

tions. Another plausible direction is to incorporate other sensing modalities into the

system.

In terms of the representation learning methods, we have only focused on 2D im-

ages. It would be interesting to generalize our proposed models to action recognition
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based on video where time and action dynamics should be tackled. Having a video

as input, we will need to modify the structures of both generator and discriminator

of our models to better capture the dynamic information. One possible solution is to

leverage Long Short Term Memory (LSTM) type recurrent neural networks (Hochre-

iter and Schmidhuber, 1997) which are known to be efficient in modeling dynamic

temporal behavior. 3D convolution is another possible option given its recent success

in action recognition (Hara et al., 2018).

With the rise of advanced generative image models such those based on GANs

or VAEs, synthesized images have become photo-realistic to the point where it is

often hard for lay people to reliably distinguish them from real images. This could

significantly complicate efforts to detect fraudulent impersonation or fake news and

even cast serious doubt about the use of image and video data as forensic evidence

in courts. Therefore, an interesting future research topic is to develop forensic tools

to reliably detect images generated from GANs/VAEs. Given that real images are

generated by imaging devices while the synthesized ones are created through a very

different pipeline with convolution, activation, etc., in deep neural networks, they are

likely to have different statistical properties. One recent work proposed to distinguish

real images from synthesized images by comparing statistics of certain color compo-

nents (Li et al., 2018a). Another possible direction is to leverage the photo-response

non-uniformity (PSNU) pattern (Lukáš et al., 2006), which can be used as a device

fingerprint and is very difficult to mimic even for a deep neural network.
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Weinland, D., Özuysal, M., and Fua, P. (2010). Making action recognition robust to
occlusions and viewpoint changes. In European Conference on Computer Vision.
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