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Abstract

This thesis addresses the problem of modeling and computing dense 2-D veloc-
ity and acceleration fields from time-varying images and applying them to motion-
compensated interpolation. Unlike in many other approaches that assume motion to
be locally translational, the approach proposed here uses a quadratic motion trajec-
tory model that incorporates both velocity and acceleration. This model corresponds
better to natural image sequences especially when processing over multiple frames is
considered. One of the advantages of using accelerated motion over linear trajectories
is in motion-compensated processing over multiple images. This is due to the fact
that over longer time frame, a quadratic motion model is capable of providing a better
intensity match along trajectories than the linear model. The side effect is, however,
that with more images used for estimation occlusion effects play a more dominant role.
Therefore, another motion model is proposed to account for occlusions and motion
discontinuities. The algorithm for the estimation of velocity, acceleration, occlusion
and discontinuity fields is formulated using Gibbs-Markov models that are linked to-
gether by the Maxzimum A Posteriori (MAP) probability criterion. This is equivalent
to regularization where the stabilizing functional is related to a priori motion models.
The resulting multiple term cost function is optimized using deterministic relaxation
implemented over a pyramid of resolutions. Numerous experimental results are pre-
sented for interlaced and progressive test images. Mean-squared error is calculated for
motion estimates obtained from images with (known) synthetic motion. For sequences
with natural motion temporal interpolation compensated for motion is implemented
and the estimates are evaluated with respect to the image reconstruction error. It
is concluded that for images containing acceleration, such as “talking heads”, the
quadratic motion model permits a substantial reduction of the reconstruction error
when compared with the ubiquitous linear model. A further improvement, especially
around motion boundaries, is observed when motion as well as occlusions are esti-

mated. The improvements are particularly striking around the mouth and eyes of a
“talking head”.



Sommaire

Le présent mémoire traite le probleme de modélisation et de calcul de champs denses
2-D de vélocités at d’accélérations a partir de séquences d’images dynamiques et leur
applications dans un contexte de codage interpolatif avec compensation du mouve-
ment. L’approche proposée utilise un modele quadratique de trajectoire de mouve-
ment, incorporant des vélocités et des accélérations, en contraste a plusieurs autres
approches qui supposent un mouvement de translation. Le modele quadratique cor-
respond mieux aux séquences d’images naturelles surtout quand le traitement sur
plusieurs trames est considéré. Un des atouts de ce modele en comparaison avec
le modele linéaire apparait lors d’un traitement compensé par le mouvement sur
plusieurs images. Ceci est di au fait que sur une plus longue période de temps,
un modele de trajectoire quadratique est capable d’offrir un meilleur appariement
d’intensités le long des trajectoires que le modele linéaire. Par contre, les effets
d’occlusions jouent un réle dominant quand l’estimation est étendue sur plusieurs
images. Un autre modele de mouvement qui tient compte des occlusions et des dis-
continuités en mouvement est en conséquence proposé. L’algorithme d’estimation de
champs de vélocités, d’accélérations, d’occlusions, et de discontinuités est formulé a
partir de modeles de Gibbs-Markov reliés par le critere de probabilité A postérior:
Mazimale (APM). Ceci est équivalent a la méthode de régularisation ou le fonc-
tionnel stabilizateur est relié aux modeles a priori de mouvement. La fonction de
cout résultante, a termes multiples, est optimisée par relaxation déterministe avec
un traitement hierarchique. Plusieurs résultats expérimentaux sont présentés pour
des tests d’images a structures d’échantillonage progressives et entrelacées. L’erreur
quadratique moyenne est calculée sur les parametres de mouvement estimés a partir
de séquences d’images ayant un mouvement synthétique (connu). Une interpola-
tion temporelle avec compensation du mouvement est par ailleurs implémentée pour
les séquences d’images naturelles. L’estimation de mouvement sur ces dernieres est
évaluée par rapport a I'image d’erreur reconstruite. Il sera conclu que pour les images
contenant des accélérations, comme dans les “tétes parlantes”, le modele de mouve-
ment quadratique, en comparaison avec le modele linéaire omniprésent, permet une
réduction considérable de l'erreur reconstruite. Une amélioration plus importante,
surtout autour des contours en mouvement, est observée quand le mouvement aussi
bien que les occlusions sont estimés. Ces améliorations sont particulierement sail-

lantes autour de la bouche et des yeux d’une “téte parlante”.
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Chapter 1

Introduction

1.1 Video compression

The amount of data associated with visual information is very large. Typi-
cal television images, for instance, generate data rates exceeding 10 million pixels
per second. Storage and/or transmission of such data require large capacity and/or
bandwidth, which could be very expensive. Video compression is concerned with the
reduction of number of bits required to store or transmit images under the constraint
of achieving some target quality. The 2:1 line interlacing in conventional television
was one of the first techniques used to provide a simple means of 2:1 bandwidth re-
duction without objectionable flicker or image breakup. The success of this method
rests on the fact that the Human Visual System (HVS) acts as a low-pass filter and

has a poor response to simultaneous high spatial and temporal frequencies.

Video compression methods fall into two common categories [23]. The first cat-
egory is concerned with statistical redundancy removal such as Huffman, run-length,
and arithmetic coding. Huffman coding is one of the most efficient techniques in this
category that increases the average compression by assigning shorter code words to
frequently encountered blocks (or symbols) and longer ones for rarely encountered

blocks. This technique is not very practical for television images whose long-term



histogram is approximately uniform, but it is quite useful for coding of binary data
such as graphics and facsimile images, and also in predictive and transform coding
algorithms. These algorithms fall in the second category that is concerned with per-
ceptual irrelevancy removal. They try to exploit the low-pass response of the HVS
by removing mutual redundancies in the video signal while preserving a good sub-
jective quality. One of the most common techniques used in predictive coding is the
differential pulse code modulation (DPCM) or differential PCM. Transform coding,
such as the Discrete Cosine Transform (DCT), is an alternative to predictive coding.
In this method, a block of data is unitarily transformed so that a large fraction of
its total energy is packed in relatively few transform coefficients, which are quantized
independently. The optimal transform coder is defined as the one that minimizes the

mean square distortion of the reproduced data for a given number of total bits.

On the other hand, moving image compression can exploit temporal redun-
dancy due to the high correlation of intensity along motion trajectories. For in-
stance, motion-compensated prediction is a powerful tool, provided that motion is
known, helpful in removing interimage redundancy. This technique has given rise to

the currently most sophisticated realizable coder, known as the motion-compensated

hybrid (DPCM/DCT) coder (Figure 1.1), used in MPEG-1, MPEG-2, and H.261
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Figure 1.1: Motion-compensated hybrid (DPCM/DCT) coder.



standards. This encoder consists typically of a temporal DPCM, with a prediction
based on motion parameters estimated at the encoder and transmitted to the decoder
as side information. The difference between the predicted and actual fields is then

compressed like a still image using DCT transform.

In motion-compensated predictive coding [8][33], the main goal of motion com-
pensation is to minimize the variance of the prediction error; it is not necessary to
obtain the true motion field since errors in motion estimates simply increase the mag-
nitude of the prediction error. This error is quantized and transmitted at the cost of a
few extra bits with little impact on picture quality. Thus highly accurate motion esti-
mation is not crucial with DPCM coding schemes currently used. The block-oriented

motion field estimates are probably adequate for this application.

1.2 Motion-compensated processing

Motion-compensated processing is another important area which exploits the
high correlation along motion trajectories. Sampling structure conversion that relies
on spatio-temporal interpolation, and interpolative coding are two frequently encoun-

tered applications that fall into this category.

There are two main situations where the use of motion-compensated interpola-
tion in sampling structure conversion is advantageous over the use of fixed spatial
interpolation filters. The first is when the current image field is spatially aliased,
usually because a nonorthogonal spatio-temporal sampling structure (such as in in-
terlaced sampling) has been used, so that spatial interpolation alone does not perform
adequately. A use of temporal interpolation perhaps jointly with spatial interpola-
tion as proposed in [34] can considerably increase the quality of interlaced images.
An example of this application is the conversion from interlaced scanning to pro-
gressive scanning known as deinterlacing. The second situation arises when no input

data is available at a certain time instant for which interpolation is being carried out



and hence purely temporal interpolation must be used. In other words, an image
field is being generated at a time for which no input image fields exists. This is the
case for applications such as field rate conversion (e.g., between 50 Hz and 60 Hz),
upconversion from temporally subsampled signals, and field rate increase to reduce
display artifacts or for slow motion effects. Sampling structure conversion is also
used in standards conversion (such as conversion from NTSC to PAL and vice versa),
and in spatio-temporal pyramidal coding [37][38][39] for multiscale representation of
video signals (i.e., HDTV, videophone, and video-conference). It should be noted that
there is no possibility of recovering from errors during sampling structure conversion,
thus it is imperative that motion estimates be of high quality, and that occlusions be
properly handled. The occlusion effect is a common problem in motion estimation
algorithms. It manifests itself by the fact that moving objects in a sequence of images
generate occluded regions (i.e., covered or exposed) in which the estimation of motion

becomes much more complex or even maybe impossible.

Motion-compensated processing can also be used in the context of interpola-
tive coding. In this application, images are omitted in the transmitter and then
reconstructed in the receiver by motion-compensated interpolation. These images
correspond to the B-frames (Figure 1.2) in MPEG standards where [-frames are intra-
coded frames, P-frames are predictive-coded frames, and B-frames are bidirectionally

interpolated frames using motion compensation. The motion estimates and/or the

/
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Figure 1.2: Typical MPEG motion compensation structure.

motion-compensated interpolation error (residual) of the omitted fields are encoded
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and transmitted. If motion estimates are not precise, then correction by the trans-
mitted residual is possible. However, in case of no transmission of residual, motion

estimates must be precise.

1.3 Motion estimation

As discussed, motion is widely used in motion-compensated processing and video
compression. On the other hand, estimation of motion from dynamic images is a
very difficult task due its ill-posedness [2]. Despite this difficulty, however, many
approaches to the problem have been proposed in the last dozen years [20][18][27][7].
Most of these approaches use only 2 fields to estimate motion. In this thesis, a new
motion estimation algorithm that uses multiple fields to estimate motion is addressed.
For this task a quadratic model, incorporating both velocity and acceleration, is used
to model motion trajectories. The side effect is, however, that with more images
used for estimation occlusion effects play a dominant role. Therefore, another feature
which helps in canceling this side effect, has also been added to the motion estimation
algorithm. This feature consists of simultaneously detecting occlusion areas [9] and
estimating motion in order to maintain high quality of motion estimates near motion

discontinuities.

1.4 Organization of the thesis

The ill-posed nature of the motion estimation problem and its solution via reg-
ularization theory are discussed in Chapter 2. An overview of motion estimation
techniques is then presented. Various approaches used to improve motion estimates,
such as hierarchical processing, modeling of motion discontinuities and occlusions, and
multiframe processing, are finally described. Chapter 3 is concerned with the descrip-
tion of the new motion estimation algorithm. The derivation of the objective function

is illustrated in detail using Gibbs-Markov models linked together by the Mazimum



A Posteriori (MAP) probability criterion. The optimization of this objective func-
tion using deterministic relaxation implemented over a pyramid of resolutions is then
discussed. Experimental results for image sequences with synthetic and natural mo-
tion are also presented. In Chapter 4, the proposed motion estimation algorithm is
extended to account for occlusions. Experimental results illustrating the advantages
of occlusion processing in generating piecewise-continuous motion fields rather than
globally-continuous are presented at the end. The conclusions and summary of the

main contributions of this thesis are discussed in Chapter 5.



Chapter 2

Overview of Motion Estimation

Techniques

In this chapter definition of the motion estimation problem is given and some
existing methods that solve it are described. The image acquisition process along with
the definition of the displacement field and some applications of motion estimation
are presented in Section 2.1. Section 2.2 is concerned with the ill-posed nature of
the problem and with its solution via regularization theory. Various approaches to
motion estimation are discussed and compared in Section 2.3. Techniques used to
improve motion estimates such as hierarchical processing, modeling of discontinuities

and occlusion areas and multiframe processing are reviewed in Section 2.4.

2.1 Introduction

2.1.1 Apparent motion

The relative motion between objects in a scene and a camera gives rise to the
apparent motion of objects in a sequence of images. This motion can be characterized
by observing the apparent motion of a discrete set of features or brightness patterns

in the images. Two distinct categories have been developed for the computation of



motion from image sequences.

1. The first category, known as feature matching, requires an extensive image anal-
ysis to extract a set of relatively sparse, but highly discriminatory, 2-D features
in the images (i.e., points, corners, lines). Such features are extracted from
each image, and then are identified in subsequent images leading ultimately to
the computation of motion parameters of different objects in the image. This
category is very suitable for establishing the long range correspondence in a

sequence of images.

2. The second category, characterized by pixel-based processing, consists of using
pixel intensities to compute 2-D field of instantaneous velocities of pixels in
the image plane. This relatively dense field is known as the optical flow and is
usually defined for every pixel in the image. This category, on the other hand, is

suitable for establishing the short range correspondence in a sequence of images.

Optical flow, or 2-D velocity field, represents “the distribution of apparent veloci-
ties of movement of brightness patterns in an image” [20]. For images sampled in
the temporal direction, the concept of the velocity field is replaced by that of the
displacement field which will be shortly defined. The motion field which can denote
either a velocity field or a displacement field, can be used in conjunction with added
constraints or information regarding the scene to compute the actual 3-D relative
velocities between scene objects and camera [1]. Also, discontinuities in the motion

field can help in segmenting images into regions that correspond to different objects.

2.1.2 Applications

Apparent motion estimated from a sequence of images (often called video) is

used in a wide range of applications such as:

1. transmission and processing of video: motion-compensated interpolation for
sampling structure conversion, motion-compensated filtering for noise reduc-

tion, motion-compensated coding for bit rate reduction,



2. biomedical applications: analysis of medical imagery for generation of diagnos-

tics,

3. meteorology: interpretation of satellite images for prediction of atmospheric

processes,

4. computer vision (robotics): structure from motion for passive navigation, 3-D

motion from 2-D motion for passive navigation and object tracking.

All these applications reveal the importance of 2-D motion information, and the
need of a good estimation algorithm capable of calculating motion that is close to the

true underlying motion.

2.1.3 Observation process

The data from which motion is estimated is usually obtained by an image ac-
quisition system. Thus, the observed image ¢ is related to the true underlying image
u by the observation process which can be modeled at varying degrees of sophisti-
cation. In general, this process has three main elements: a nonlinear shift-variant
spatio-temporal filtering, a random perturbation, and a spatio-temporal sampling
operation.

The basic model typically used is the filtering of u by a linear shift-invariant

camera aperture (impulse response h) and addition of noise n
ge(x, 1) = h(x,t) * u(x,t) + n(x,1), x€ R teER (2.1)
followed by sampling on lattice (A,); [10] every T seconds
g9(x,1) = g.(x,1), X € (A, t =kT. (2.2)

In this thesis, progressive and interlaced lattices are studied. Without loss of general-
ity, the case of no filtering, i.e., h(x,t) = 6(x,t) with 6 being the Dirac delta function,

is used to simplify subsequent developments.



The degree of sophistication used in modeling the observation process undoubt-
edly has an impact on the estimated motion fields. It is not clear, however, whether
it is more advantageous to increase the complexity of the observation process or of
the models used in the estimation algorithm, especially in the view of the usual un-

availability of imaging system parameters.

2.1.4 Definition of the displacement field

Most of the estimation methods proposed in the literature rely on spatio-temporal
variations of the observed intensity ¢ to estimate 2-D motion. In the context of digital
coding adapted to motion information, the goal is to find such a motion field that
minimizes the amount of information to be transmitted. Displacement field at time
t establishes a correspondence between points from the image at time ¢ and points
from images at time ¢{_ and ?;. The displacement field d(¢) at time ¢ of a sequence
of images consisting of a sphere moving downward on a still background is shown

in Figure 2.1. Only the displacement vectors of point x that belongs to the moving
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Figure 2.1: Illustration of the displacement field d; at time ¢ estimated from two

image fields at ¢t_ and ¢, (only 2 displacement vectors d(x,?) and d(y,t) are shown).

sphere, and the point y that belongs to the stationary background are shown. The

notation d; will be used to denote the displacement vector d(x;,t) at position (x;,1).
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Estimation of displacement fields usually relies on the following assumptions:
1. Image intensity remains constant along the motion trajectory.
2. Displacement fields are spatially smooth.
3. Displacement field consists of a dense set of motion vectors.
4. Effects of occlusions are negligible.
5. Motion is locally translational, i.e., linear motion trajectory model is used.

These assumptions often do not reflect real case situations; the intensity along mo-
tion trajectories can vary due to a change of illumination in the scene and hence
assumption 1 is violated. The true displacement vectors at the boundaries of two
objects underlying different motion trajectories are usually not smooth, and hence
assumption 2 is violated at motion discontinuities. The assumption of locally transla-
tional motion (assumption 5) is violated for motion trajectories with longer temporal
support. All these assumptions can however be modified in such a way to improve
the motion estimates, as will be discussed in Section 2.4 which will investigate the
modeling of discontinuities and occlusion areas and the use of a non-linear motion

trajectory model.

2.2 Ill-posed nature of motion estimation

2.2.1 Statement of the problem

Problems encountered in early vision [2], such as the recovery of 3-D motion
and optical flow, shape from shading, surface interpolation, and edge detection, are
common in nature. They can be regarded as inverse problems that try, for instance,
to recover physical properties of 3-D surfaces from their projection onto an image
plane. It is clear that the data (observations) used (i.e., 2-D images) contain in

general limited information about the solutions (i.e., the 3-D properties). This lack
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of information implies that problems of early vision are very often ill-posed. In the
original sense of Hadamard [2], a well-posed problem is characterized by the following

three properties:
1. Existence: There is a solution.
2. Uniqueness: The solution is unique.
3. Continuity: The solution depends in a continuous manner on the data.

Hence in an ill-posed problem, the solution may not exist, may not be unique (giving
an ambiguous reconstruction), or it may not depend continuously on the data. From
this definition, it is clear that motion estimation based on assumptions from the

previous section is ill-posed as it may violate the above properties:

x| d(x,)=0

t- t t+

[C] Moving region y
..
‘ Occluded region

Figure 2.2: Illustration of the ill-posed nature of the motion estimation problem (d

and dz are two possible displacement vectors at position (z,1)).

1. For occluded pixels there is no solution as the intensities of those pixels (i.e., the
data) are not available in the next or previous frames (violation of existence).
Figure 2.2 shows an example of occluded regions generated at time ¢ when the
object is moving upward from time t_ to time ¢;. Hence, for pixels (w,1)

and (y,t), both belonging to occluded regions at time ¢, displacement vector

12



does not exist. This is due to the fact that pixel (y,t) becomes covered at
time t;, whereas pixel (w,t) becomes exposed only at time ¢, and hence no
correspondence can be established for these pixels along the three considered

time instants.

2. There are many possible motion trajectories that satisfy the data even for some
predefined motion trajectory model (violation of uniqueness). For instance, if
the moving object in Figure 2.2 has constant intensity, d; and d; may be two
possible displacement vectors at position (z,¢) when linear motion trajectory is

considered.

3. For a small local modification of intensities, there may be significant change in

the estimated motion vector length and/or orientation (violation of continuity).

The need to analyze ill-posed problems such as motion estimation has given rise to

reqularization theory discussed in the next section.

2.2.2 The regularization theory

Most linear inverse problems can be formulated as follows. Suppose that func-
tional spaces X and Y are given along with a continuous operator £ from X into
Y. The problem is then to find, by some regularization theory, a function v € X for
some observation ¢ € Y such that ¢ = Lu. The approach proposed by Tikhonov,
which is addressed in [2], attempts to solve this problem while minimizing a certain

cost function. The minimization problem can be formulated as follows [2]:
min {[1£u = glly + AlCullZ (2.3)

with || - ||y denoting the norm in Y, and C being a linear operator from X into the
constraint space 7 that expresses a certain a priori property of the solution such as
spatial smoothness in the case of motion estimation. A is the regularization parameter
that plays a crucial role in weighting the compromise between the two terms of the

cost function.
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In spite of existing theory for the optimal choice of A, such choice is probably
the most difficult problem in the regularization theory as will be shown later. It is
worth to note that regularization theory can provide optimal techniques to reduce
the effect of noise but cannot produce new information if it is not originally available.
Most of the motion estimation methods that will be discussed next can actually be

viewed as a direct consequence of the regularization theory via the solution proposed

by Tikhonov in (2.3).

2.3 Methods of motion field estimation

2.3.1 Transform-domain methods

The Fourier-phase approach [15] is the most common one used. It uses the
shift property of the Fourier transform which states that a spatial shift in a signal
corresponds to a shift in phase in the Fourier transform of that signal. Hence, if
G(wy,w,) denotes the Fourier transform of the image ¢(z,y), then, if this image

undergoes a uniform translation d = [d, d,]7,
g(x — dpyy — dy) = G(wy,w,) - e 127 Wedstuwydy) (2.4)

Measuring the difference in phase between the 2-D Fourier transforms of the images
at t_ and t,, one can deduct a displacement vector corresponding to a sufficiently
large bloc of the image. However, the position of the obtained displacement vector is
not known, and therefore has to be localized in some way.

Another approach is the spatio-temporal frequency method [22] that consists
of calculating the orientation of the 3-D Fourier spectrum of a time-varying image
g(z,y,t) undergoing a translational motion with some constant velocity v = [v, vy]T

In this case, g(z,y,t) can be expressed as follows:

g($7 y7t) = g(I - ’U$t, Yy — ’Uyt, 0) = g(Iv Y, 0) * 5(1; - 'Ul?t7 Yy — ‘Uyt, 0) (25)
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The Fourier transform of g(x,y,t) in (2.5) is then derived as follows:
G(wg, Wy, wy) = G(wg, wy) - 6(vzw, + vyw, + wy). (2.6)

Hence, the spectrum of such an image has all its energy concentrated in a plane
defined by: vyw, +vyw, +ws = 0. The orientation of such a plane is uniquely defined
by the components of the velocity vector v.

These methods allow to determine a velocity vector for the whole analyzed block.
They are used to determine the velocity of a single object moving on a uniform
background. On the other hand, they cannot be used just by themselves on real
television sequences where the motion is much more complex but can be followed by

some other methods.

2.3.2 Matching algorithms

Matching algorithms associate structures in a reference image with correspond-
ing structures in subsequent images. The best match is detected following a search
that yields the optimal displacement vector for each structure. These algorithms are

divided into two categories.

Feature matching

This is the only method structured to resolve the long-range correspondence
problems. A number of approaches to this method is presented in [1]. Usually, fea-
tures (i.e., points, lines, corners) are first identified in the images used, and then
correspondence between those features is established. The task of establishing and
maintaining such correspondence is, however, nontrivial. The ambiguity is also in-
creased by occlusion effects which cause features to appear or disappear and also give

rise to “false” features.
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Block matching

A simpler method that does not require a search for features is block matching.
This approach is based on the assumption that all pixels inside a block have the same
motion (only a single vector is estimated for each block). The problem is then to
estimate motion of an M x N block of pixels of the image ¢; at time ¢ with respect

to the previous image at time ¢_. For this purpose, the block in ¢; is compared with

Figure 2.3: Matching of an M x N block of pixels at time ¢ within a (M +2p) x (N +2p)

search area R at {_.

another block inside a search area R of dimensions (M 4 2p) x (N 4 2p) in ¢, (Figure
2.3) where p is the maximal allowed displacement. The mean distortion function
between these two blocks is defined as:
| M N

Did) = 55 X X0 (gemn) =g (m+in+3)), —p<ij<p (27
where ¢;(m,n) denotes the brightness value at pixel position (m,n) and time ¢, and
é(x) is a positive ascending distortion function (i.e., the resulting criterion is M SFE
for ¢(z) = 22, absolute minimal error for ¢(z) = |z|). The direction of minimal
distortion is then given by (:*,5*) such that:

(i%,J7) = min DG, j), —p<i,j <p (2.8)

To speed up the search procedure many methods have been proposed such as the 2D-
logarithmic search [24], the three-step search [26], and the conjugate direction search
[36].
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Block matching is usually suitable for the short-range correspondence problems,
while it is inappropriate for the long-range ones. This can be explained by the fact
that for a larger search area, the search procedure becomes too costly, and equation
(2.7) tends to be non-convex, leading to convergence to a local minimum. This
method, however, works well with image sequences sampled in time at 60 Hz that do

not contain violent motion.

2.3.3 Spatio-temporal gradient methods

Block matching is a simple technique to implement and relatively fast. It gen-
erates a single displacement vector for each block of pixels. But this method becomes
very slow and costly when dense displacement fields are required (i.e., the bloc is
reduced to a single pixel). For higher spatial resolution of the optical flow, spatio-
temporal gradient methods are recommended. Three approaches to these methods are

hereby introduced with an emphasis on the Horn-Schunck and Bayesian approaches.

Minimization of the DFD

This approach introduced by Netravali-Robbins [33] is based on the iterative
minimization of the square of the DF' D (Displaced Frame Difference), a measure of
the motion-compensated prediction error. Displacement field d; at time ¢ is estimated
on a pixel-by-pixel basis using the images at times ¢_ and ¢, with A, = 1 (Figure

2.1). The DF D is defined as follows:
DFD(X7d):g(X7t)_g(X_d7t—)7 (29)

where d is displacement vector for pixel x at time ¢, and ¢(x, t) represents the observed
intensity of pixel x at time t. A displacement field estimate d, can be derived as

follows:

d= min DFD*(x,d),  ¥x € (A, (2.10)
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The minimization is carried out iteratively using the steepest descent algorithm. The
resulting iterative update equation is expressed as:

N

d' =d"! —eDFD(x,d")\VaDFD(x,d"?)

. .. N (2.11)
= d! — eDFD(x, d1)Vyg(x — [d1], 1),

where Vg is the gradient with respect to d, Vx = [% aa—y]T is the spatial gradient, d
is the estimate of d at iteration z, and L&HJ denotes the closest lower integer value
of di=1,

The resulting estimated displacement field is more representative of the real
motion when compared with the one obtained by block matching. This is due to
the fact that the above algorithm overcomes, to a large extent, the problems of
multiple moving objects. It also permits different parts of an object to undergo
different displacements, provided the recursive algorithm in (2.11) has sufficiently

rapid convergence.

The Horn-Schunck approach

Horn and Shunck [20][19] proposed to estimate the 2-D velocity field v at time
t using the motion constraint equation, where v(x,t) = [v, v,|T denotes the velocity
vector at position (x,t). If de and dy denote the corresponding horizontal and vertical
displacements of pixel (z,y,t) after a time increment dt, then the assumption of

constant image intensity along motion trajectories can be expressed as follows:
g(z +da,y +dy,t + dt) = g(,y,1) (2.12)

If the intensity varies smoothly with z, y, and ¢, the expansion of the left-hand side
of (2.12) by the Taylor series results in the following:

8_g + dya—g + dt@
oz

g(z,y,t) + dz

where e contains second and higher order terms in dz, dy, and dt. Canceling ¢g(z,y,1)

in (2.13), dividing through by dt, and taking the limit as dt — 0, the motion constraint
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equation ¢(v) at (x,t) can be obtained:

c(v)=v(x,t) - Vig + % = 0. (2.14)

Using the motion constraint equation, one can only derive the component of the
velocity vector in the direction of the brightness gradient (but not the component
along the isobrightness contour). This ambiguity is known as the aperture problem.
In order to solve this ambiguity, regularization approach proposed by Tikhonov
(equation (2.3)) is used. Hence, an additional motion smoothness error s(v) which
ensures the smoothness of the calculated velocity field is added to the error based on
the motion constraint equation. s(v) is expressed as the sum of squared magnitudes

of gradients of the velocity components:

v, \ v\’ v, \ v\’
_ 2 oz T T Ovy Ovy .
) = sl + 190l = (52 ) +(52) + () + (52) - e

The estimated velocity field v can then be derived by solving the following continuous

minimization problem:

min / (A(v) +A-s(v)) dx, (2.16)
where ) is the regularization parameter that weighs the error ¢(v), relative to the
smoothness error s(v). This parameter is ideally small if the assumption expressed in
(2.12) is accurate, and large otherwise. The choice of a fixed value for this parameter
remains to be a very crucial problem in such motion estimation algorithms.

After discretization of g and v, an estimate V; j), where (7,j) denotes the dis-

5,7)s
cretized spatial position x, can be calculated directly by solving a linear system of
the form: Av(; jy = b. This linear system is obtained by using the necessary condition
for optimality of the objective function in (2.16) [20]. If N, is the number of velocity
sites at time ¢, then standard methods such as Gauss-Jordan elimination, used in an
attempt to solve simultaneously the 2V, linear equations (2 for each position), are
very costly. The reason for this is that the corresponding matrix of order 2N, is very

large and sparse. Therefore, Horn and Schunck proposed to use deterministic relax-

ation (Jacobi, Gauss-Seidel) to solve iteratively this linear system. The relaxation
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algorithm resulted in the following iterative update equation:

- , t

ot —gn V) Viind T 96, )9
7 2, 2,7)9
G = 76D XN [Vipal?

(2.17)

T T Yy 11

where V(; yg = [g(i i) gf’i j)]T, and g(; 5, 90,y Y(i,j) are finite-difference approximations
of the horizontal, vertical, and temporal derivatives of ¢ respectively. Note that the

~n+1

new value of Vi) at (7,7) is set equal to the average of the surrounding vectors

Vi)

at the previous iteration minus an adjustment which, in velocity space, is in
the direction of the brightness gradient. This algorithm results in velocities that are
estimated at points lying midway between the pixels and successive frames. This is
due to the fact that the first derivatives ¢%, ¢¥, and ¢', required in the iterative scheme

are estimated using finite differences in a 2 x 2 x 2 cube of brightness values [20].

The Bayesian approach

This probabilistic approach consists of estimating the 2-D displacement field at
time ¢ using images at t_ and ¢4 (Figure 2.1) [28]. The estimated displacement field
is a Maximum A Posteriori Probability (MAP) estimate that represents the most
likely displacement field d; on the basis of the two observed fields g;_ and g, :

N

d, =arg I%ETXP(Dt =di|Gi_ = g1, Gy, = g1)
= argrrg::x [P(Gmr =¢:,|Dt =de, G = g¢_) - P(Dy = d4| G = gt_)] )
(2.18)
Two models are therefore needed in the formulation: a structural model that models
the relationship between observed images and the real displacement field, and a dis-
placement field model that ensures the smoothness of the displacement field over all
spatial positions (disregarding discontinuities and occlusion effects).
The structural model relies on the assumption of constant intensity along motion
trajectory and is expressed by the Gibbs distribution (Appendix A) with a potential
function U, equal to the square of the DPD (Displaced Pixel Difference). The DPD

can be regarded as a motion-compensated prediction error measure between the im-

20



ages at t_ and 4, and is expressed as follows [27]:
DPD(XZ', dz) = f](XZ + (1 - At)di,ﬁ_) — f](XZ - Atdi,t_), (219)

where d; is defined at (x;,t), and ¢(x,t) denotes the interpolated intensity at time ¢
and position x which does not necessarily belong to the sampling grid of the image
(refer to Figure 2.1 for illustration of this case). The potential function U,(d) that
describes the ill-posed matching problem of the data by the motion field, is then

expressed as follows:

Ng
U,(d) =S DPD*(x;,d,), (2.20)
=1

where Ny is the number of displacement vectors to estimate at time ¢.

The displacement field d at time ¢, on the other hand, is modeled by a 2-D
VMRF (Vector Markov Random Field) expressed also by Gibbs distribution whose
energy function U, captures the smoothness of the displacement field as follows:

Na
Ud)=3%_ > ldi—d;|* (2.21)
i=1 {x; X, }€C;
with || - || denoting the norm in R*. This potential function represents the cost asso-
ciated with the lack of smoothness of the motion field through a first-order neighbor-
hood system n' (Figure A.1) where C; denotes the ensemble of 2-element cliques [31]
at position x;.
Using the above models, the MAP problem in (2.18) reduces to one of minimizing

an energy function UU/(d), having the following regularized form:
U(d) = A\U,(d) + A\Uq(d), (2.22)

and which is, in a sense, equivalent to the objective function used by Horn and
Schunck in equation (2.16) except that the motion constraint equation is replaced by
the DPD measure. The ratio A,/ A, plays the role of the regularization parameter A,
introduced in the Horn-Schunck approach, and weighs the confidence in the a prior:
model.

The global minimum of U(d) in (2.22) can be calculated using simulated annealing
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[27], a stochastic optimization method. However, using a deterministic relaxation
with first-order neighborhood 7!, as the one used by Horn and Schunck, will only
result in an approximation of the MAP estimate [30]. This is calculated from the

following iterative update equation:

5 . DPD(x;,t
drtt =dr - - (i, 1) ViDPD(x;,t). (2.23)
473 + [|[VaDPD(x;,1)||?

The algorithm in (2.23) is a modified version of the Horn-Schunck algorithm in (2.17)

whereby:

e Algorithm (2.23) allows computation of displacement vectors for arbitrary po-
sitions unlike the Horn-Schunck algorithm. This property is crucial for motion-

compensated interpolation applications.

e The motion constraint equation is replaced by the the DPD measure in (2.23).
This modification is important because it allows intensity pattern tracking thus

permitting more accurate intensity derivative computation.

e The spatial intensity derivatives are computed from a separable polynomial
model instead of finite difference approximation over a cube as proposed by

Horn and Schunck.

The simulations that have been carried out in [30], showed that the MAP estimation
algorithm (stochastic and deterministic) resulted in a better estimation than the
original Horn and Schunck algorithm which produces over-estimated motion vectors

at strong edges, and under-estimated vectors in uniform areas.

2.4 Other important aspects of motion estima-
tion

Since the purpose of this thesis is to estimate dense motion parameters from real

TV image sequences, a spatio-temporal gradient approach is chosen. Such method,
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as shown earlier, requires the minimization of an objective function of the form:

U(p) = Us(p) + AUy(p), (2.24)

where p is the field of motion parameters (in the continuous case p; = [v, v,]T
represents one velocity vector at x;, and in the discrete case p; = [d, d,]” represents

one displacement vector). The regularized objective function in (2.24) consists of a

combination of two terms:

1. The structural model term Ug(p) that represents a measure of matching er-
ror between images used in the estimation. This term consists of the motion
constraint equation in the Horn and Schunck algorithm, and the DPD in the
Bayesian approach. Any other error measure, such as the sample variance over
multiple frames, can be used in this term. However, the choice of a partic-
ular measure depends directly on the type of motion-compensated processing
applications (interpolation, coding, filtering) for which the estimated motion is

intended.

2. The smoothness term U,(p) that measures how well motion field p conforms
to an a priori model, such as spatial smoothness with the exception of isolated
boundaries. Equation (2.21) is a typical expression of this term through a first-
order neighborhood system n*. A high value of U,(p) indicates that the motion

field is not smooth.
On the other hand, the role of the regularization parameter A in (2.24) is three-fold:

e Compensate errors due to noise present in the image. Noise in the image can
render invalid the structural model. In [20] it is proposed to choose A as the

variance of the noise in the image.

e Control the propagation of motion information in low contrast regions from the
neighboring regions. This behavior, however, must be inhibited in occluded

areas and across discontinuities where motion is not smooth.
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e Minimize the bit rate allocated to image residual and to motion information in a
DPCM-like coding scheme where motion parameters are coded and transmitted.
As will be seen in Chapter 3, the minimum of Us(p) and U,(p) cannot be
achieved simultaneously. Hence A must be chosen in a way to obtain the best

compromise.

In this section, several factors that may help in optimizing the objective function in
(2.24) and may result in estimating motion field p that is closest to the true underlying

motion are investigated.

2.4.1 Minimization of the objective function

The minimization of U(p) in (2.24) is very complex. For a motion field p of
N, vectors with each vector consisting of 2 motion parameters (i.e., the horizontal
and vertical displacements), the number of variables of the problem is 2V,. In ad-
dition, these variables are not independent because of the smoothness term U,(p)
that establishes a relation between neighboring motion vectors as in equation (2.21).
Standard methods such as Gauss-Jordan elimination are very costly as explained ear-
lier in the Horn and Schunck approach. For this reason the minimization problem
is carried out using an iterative relaxation algorithm which from a certain approxi-
mation of the solution p” is going to produce a better approximation p™*! such that
U(p™*) <U(p").

To this end, the minimization problem is expressed in the form of a system of 21V,
linear equations of 2V, unknowns. This is accomplished by using Taylor expansion
to approximate the objective function U(p) by a quadratic function of p, and then

using the necessary condition for optimality:

aU(p . o

for each of the N, motion vectors.
The resulting system of equations can be solved using deterministic relaxation

such as the Gauss-Seidel or Jacobi iterative algorithms. The difference between these
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two methods is that in the Gauss-Seidel method, the motion vector p! at position ¢
and iteration n is iterated using the updated neighbor motion vectors (usually from
a first-order neighborhood system n') at the current iteration. The Jacobi method,
however, uses the neighboring motion vectors of the previous iteration n—1 to update
p; at iteration n. Hence, the Gauss-Seidel method is faster in convergence than the
Jacobi method as in the latter one has to wait a complete field iteration in order to
use the latest updated motion vectors. The order of update in both of these methods
usually follows a horizontal sequential scan of the motion field being estimated.

The iterative update equations in (2.17) for the Horn-Schunck approach, and
(2.23) for the Bayesian approach are examples of relaxation algorithms solved by the
Gauss-Seidel method. A detailed derivation of such an algorithm will be presented in
Chapter 3 where the new algorithm is discussed.

These deterministic relaxation algorithms fail to converge to the global minimum
when the objective function U(p) is not convex. A stochastic relaxation algorithm
based on simulated annealing has been proposed in [27] and allows to obtain the
global minimum. However, the improvement in the subjective quality of the resulting

motion vectors applied to motion-compensated interpolation is marginal.

2.4.2 Hierarchical processing
Motivation

The approximation, by Taylor expansion, of the objective function U(p) by
a quadratic function of p is weakened when the data structure is characterized by
relatively high frequency content such as very sharp edges and noise. Hence, for
instance, the second and higher order terms in (2.13) become no more negligible and
have to be considered in order to derive the motion constraint equation. Smoothing
may reduce this high frequency content, so that the data is closer to a locally linear
behavior. The convergence to the global minimum will be more likely since U(p)

becomes closer to a convex function. Therefore, the minimization of U(p) is extended
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over a pyramid of image resolutions. Such hierarchical processing may also allow
handling rapid motion since reducing high frequency image content allows to perform

matching at larger displacements [29].

The hierarchical extension

Various multiresolution methods have been proposed for motion estimation
[5][13][29]. One class of such methods is based on a non-recursive multigrid (coarse-
to-fine resolution) approach [29]. It consists of generating a pyramid of varying image
resolutions from the lowest resolution at the top level (k = L) to the full resolution
at the bottom level (k = 0) of the pyramid. Figure 2.4(a) is an example of a 4-level
(L = 4) pyramid of 1D data resolution. A second pyramid for motion fields is then
constructed as follows. The estimation starts at the top level (k = L) of the pyramid

° ° ® X &
X X X
o k=3 e} ® Xe-otdl
© b
° ° k=2 ° >0 g2
o) o o o k=1
X X X X X x X x k=0 ® ® o

@ (b)

Figure 2.4: Schematic (1D) representation of a 4-level pyramid (a) for hierarchical
data representation; (b) illustration of hierarchical displacement vector update over

3 image resolutions.

(coarse resolution), where the number of motion vector sites is small, and hence a
minimum is located very quickly. Then, the resulting estimate from this coarse level
is interpolated to the next finer resolution level (k = L — 1) where it is used as an ini-
tial solution for the estimation at this finer resolution level. This hierarchical process
is repeated until the full resolution estimate at the bottom of the pyramid (k = 0) is

obtained. An illustration of this hierarchical displacement vector update for L = 2 is
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shown in Figure 2.4(b). The end point of the displacement vector at position (k,)
for each resolution level k is denoted by d*, and the displacement update vector at

each resolution level is shown by a dotted line.

Choice of the smoothing filter

Generation of each resolution level of the image pyramid consists of spatial sub-
sampling, preceded by filtering in order to avoid aliasing effects which can significantly
deteriorate the quality of motion estimates. However, the images do not have to be
subsampled when moving up the pyramid, as subsampling causes data loss. This loss
may affect the performance of spatio-temporal gradient methods that require the cal-
culation of derivatives. Hence a “constant-width” pyramid for images and a regular
pyramid for motion fields are sometimes used in such algorithms.

The choice of the optimal smoothing filter (low-pass or band-pass) is not yet
clear. Enkelmann [13] has used the circularly symmetric Gaussian low-pass filter

with radius R = 4 pixels and spatial variance o* = 2.5. The 1D magnitude response
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Figure 2.5: Magnitude of the frequency response of the Gaussian filter used in the

generation of the pyramid of resolutions.

of such a filter is shown in Figure 2.5. Note that the large transition band in the

magnitude response is essential in reducing the ringing effects near the contours.
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On the other hand, the filtering may introduce unwanted artifacts, such as con-
fusion of objects with background, which usually leads to locally unreliable estimates.
To overcome this, a multiscale estimation (another class of coarse-to-fine algorithms)
has been proposed for globally smooth linear motion (displacements) based on Markov
hierarchical model [17] where instead of subsampling, the size of a block in which all
estimates are kept constant varies from level to level. In this approach, Markov models
at higher levels of the pyramid are rigorously derived from the full resolution model.
This method has been reported to give results similar to those obtained by stochas-
tic monoresolution techniques [28] and superior to those obtained by deterministic

multiresolution methods using the smoothing filters [30].

2.4.3 Modeling of discontinuities and occlusion areas

Gradient-based motion estimation methods allow dense motion measurements,
but generally suffer from severe shortcomings especially near discontinuities and in
occlusion areas. Moreover, for real TV images the underlying motion is piecewise con-
tinuous rather than globally continuous. Taking into account motion discontinuities
is thus important when accurate motion estimates are required.

The smoothness term U,(p) in (2.24) captures the smoothness of the motion field
p to estimate. However, the smoothness constraint is violated at the boundaries of
an object moving across a still background. Hence, it was proposed [27][16] to include
a line field [ in order to inhibit the smoothness constraint at certain boundaries, and
therefore to allow the estimation of a piecewise continuous motion field. The typical

smoothness term in (2.21) is then modified [27] as follows:

Ng
Up(p, )= > lIpi = pill*[1 = I(xi, %)), (2.26)
=1 {Xl‘,X]}Eci

where [(x;,x;) is the binary-valued line element defined between two pixel positions
at x; and x; (0 and 1 represent respectively absence and presence of a discontinuity).
If the line element separating motion vectors from clique {x;,x;} is “turned on”

(I(x;,x;) = 1), there is no cost associated with that clique, and hence the cost function
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U,(p,1) is not increased. However, if the line element is “turned off” (I(x;,x;) = 0),
there exists an associated cost if the motion vectors p; and p; depart from the assumed
a priori model.

The above extension implies simultaneous estimation of two fields: motion field
and line field. It is interesting to note that if all the line elements in the line field are
“turned on”, then the smoothness term in (2.26) is null and therefore is at minimum.
A model of the line field is therefore necessary. A binary MRF model is proposed
in [27] leading to the addition of U;(I) to the objective function in (2.24). This term
has the role of introducing penalties discouraging certain configurations such as the
introduction of a line element on a non-edge site, or the occurrence of an isolated
motion site.

On the other hand, it was shown in [16] that the detection of motion disconti-
nuities alone is not sufficient, but that the processing of occlusion areas (along with
motion discontinuities) is necessary in order to maintain a high quality of estimation
near motion discontinuities.

This approach has been investigated in [9] for the estimation of a displacement
field from 3 images at ¢_, ¢, and t;. The three-state (M, F, C) occlusion field o
defined on the same sampling lattice as the motion field, was defined as follows: M
indicates that the point is visible over the entire interval from ¢_ to ¢, F represents
newly exposed points over the interval from ¢_ to ¢, and C indicates covered points
over the interval from ¢ to ;. An illustration of this three-state occlusion field is
depicted in Figure 2.2 where point z should be labeled as M, point y as C', and point
w as F. Note that the number of states an occlusion tag can take, depends on the
number of fields used in the estimation algorithm.

Using this definition of the occlusion field o, along with that of the line field
[, an additional term U,(o,!) is used in the objective function (2.24) which can be

expressed now as follows:

U(p,0,1) = Us(p,0) + AUp(p, 1) + AoUs(0,1) + NiUi(1) (2.27)
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where the \'s denote weights associated with each term. Note that the structural
term Us(p, 0) becomes dependent on the occlusion tag in the sense that if a point is
labeled as occluded, the fields on which this point is invisible are discarded in the
evaluation of U;. The additional cost introduced by U,(o,[) depends on whether or
not there is a discontinuity between two vector positions, and reflects the fact that
occlusion tags should only appear near motion discontinuities.

The same deterministic minimization techniques, as discussed earlier, can be
applied in order to minimize the modified objective function in (2.27). However,
the number of variables of this minimization problem is enormous. It consists of
Card(p) (the cardinality of the motion vector p) motion parameters, plus one or two
line elements (depending whether inside or at the boundary), plus one occlusion tag
per sampling point. For this reason, an interleaved optimization approach is used
whereby a sequential minimization with respect to each of the three fields is carried
out, while maintaining the other two fields fixed. This process is repeated until
suitable convergence is achieved.

The processing of discontinuities and occlusions has shown [9] to be helpful in
obtaining a more realistic estimate of the motion field especially in presence of ac-
celeration. This is due to the fact that accelerated motion tends to generate larger
occluded regions and hence the computation of these regions becomes vital for ob-
taining good motion estimates. The estimation of occlusion and line fields will be
discussed in more detail in Chapter 4 where they will be incorporated into the new

motion estimation algorithm.

2.4.4 Multiframe processing

Most of the existing motion estimation methods use two fields to estimate mo-
tion parameters (displacements, velocities). But motion estimation, and in particular
the identification of occlusion areas, can be considerably improved by using multiple
images as discussed in [8] where 3 fields have been used. Hence, considering a match-

ing error measure over several images should allow a more robust pixel-matching (with

30



a certain allowable range of illumination variation). Also, accumulating the occlusion
tags over several fields should allow easier identification of occlusion regions (i.e., the
newly exposed and covered points).

The only problem in this approach is that the assumption of the locally transla-
tional motion model is no more valid over multiple fields. This is illustrated in Figure

2.6 where the real motion trajectory of point (x,t) is shown in solid line. In this

t+1 t+2 t-2 t-1

t+1 t+2

Figure 2.6: Motion estimation using 5 fields and (a) first-order motion trajectory

model; (b) second-order motion trajectory model.

example, the estimation is done for field at time ¢ using the five fields (N = 5) at
t—2,t—1,t,t+1,t+2. The estimated displacement vector d = [d, d,]T at (x,1)
obtained in the case of a first-order trajectory model (i.e., linear model) is shown in
dotted line in Figure 2.6(a). However, for a second-order trajectory model [12] (i.e.,
both velocity v and acceleration a are included), the vector p = [v, v, a, a,]t of
motion parameters is estimated. This results in the quadratic trajectory drawn in
dotted line in Figure 2.6(b) through the point (x,1).

Note that the use of a higher order motion model in multiframe processing should
result in a better approximation of the real motion trajectory, and hence reduction
of the matching error in the structural term. This is expected to have consequence

in motion-compensated interpolation applications.
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Hence, for multiframe processing (i.e., N > 3), the consideration of a higher-
order motion model should be an asset in motion-compensated applications. In Chap-
ter 3, a detailed formulation of a new spatio-temporal gradient motion estimation
method over multiple frames is discussed along with some simulation results. A
second-order (quadratic) motion model is used to model motion trajectories over a
variable number of fields (selected by the user). The proposed algorithm relies on a
deterministic relaxation approach implemented over a pyramid of image resolutions.
Subjective and quantitative comparison between the use of a linear and quadratic
motion trajectory models with multiframe processing is also discussed. The proposed
algorithm is then extended in Chapter 4 to handle occlusions and motion discontinu-

ities.
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Chapter 3

Estimation of Motion Trajectories

with Acceleration

In this chapter, the estimation of trajectories for accelerated motion from image
sequences is proposed. Unlike in many other approaches that assume linear tra-
jectories, a higher order model that incorporates both velocity and acceleration is
considered. This model corresponds better to real case situations especially when the
estimation is carried out over several images.

One of the advantages of using accelerated over linear trajectories is in motion-
compensated processing over multiple images. This is due to the fact that over longer
time frame, a quadratic motion model is capable of providing a better intensity match
along trajectories than the linear model. In particular, the standards conversion
problem, has been addressed in the presence of accelerated motion in [35] where it
has been demonstrated that by taking into account acceleration during frame rate
conversion and deinterlacing, a superior result can be achieved. In the above work,
however, it was assumed that the velocity and acceleration parameters in an image
sequence are known a priori. However, in real TV sequences these motion parameters
are unknown. Hence, a good estimate of the velocity and acceleration parameters is
essential.

In Section 3.1 the notion of a motion trajectory is introduced and the motion
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estimation problem is defined. The algorithm for the estimation of dense accelerated
motion fields is formulated in Section 3.2 using Gibbs-Markov models linked together
by the Maximum A Posteriori (MAP) probability criterion. This results in a mini-
mization of a regularized cost function. The solution that is proposed in Section 3.3
is based on deterministic relaxation implemented over a pyramid of resolutions. The
test images that are used to simulate the proposed algorithm are presented in Section
3.4 along with a description of the measures that will be used to evaluate the valid-
ity of motion estimates. The parameters used in the estimation algorithm are then
optimized in Section 3.5. Finally, experimental results of the proposed algorithm are
presented in Section 3.6 along with a comparison between the linear and quadratic

motion trajectory models.

3.1 Definition of motion trajectory

To describe motion with acceleration, the concept of motion trajectory is used
[11]. The projection of each scene point traces out a trajectory in the image plane W
during the time it is visible in the image. Hence, the motion in the image sequence
is characterized by the collection of all such trajectories. An illustration of a typical
trajectory of the center of a circle moving across the image plane is shown in Figure
3.1. The trajectory starts at the time ¢;(x,t) = t_ when the point first becomes
visible, and ends at time t(x,?) = ¢4 when the point disappears. The trajectory of
point (x,1) can be specified by the function ¢(7;x,?) which gives the spatial position
at time 7 of an image point located at position x at time ¢.

For 7 # t, let V(7;t) define a subset of W at time ¢ consisting of pixels that are

visible over the entire interval between ¢ and 7:
V(rit) = {x: ti(x,t) <7 < tp(x,1)}. (3.1)

For 7 > t, W — V(7;t) is the set of pixels covered or leaving the image between ¢
and 7, while for 7 < ¢, W — V(7;) is the set of pixels exposed or introduced into the

image between 7 and .
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Figure 3.1: Trajectory of a projected scene point in 3-D z-y-t space.

From this mathematical description of motion in the image plane, one can derive

the optical flow which consists of the instantaneous velocities in the image:

de(7;x,1)

vix,t) = S

(3.2)
For linear trajectory model, the displacement field, defined in the previous chapter,
is used. It can be described as follows:

x —c(mx,t) ifr <t
d(r;x,t) = x € V(7;t). (3.3)
c(r;x,t)—x if 7 >t

Note that for 7 > ¢, d(7;x,1) is a forward displacement field, while for 7 < ¢ it is a
backward displacement field. The displacement field can also be calculated from the
velocity field by integration:

d(r;x, 1) = /;v(c(s;x,t),s)ds, x € V(r;1). (3.4)

For constant velocity v(c(s;x,1),s) = v(x,1), the displacement is simply d(7;x,1) =

v(x,t)(7 — t). Thus, it follows from (3.3) that
c(m;x,t) =x + v(x,t)(1 — 1), x € V(r;1). (3.5)

To make the estimation problem tractable, we model each motion trajectory ¢

by a parametric function c¢P of a vector of motion parameters p [12]. Hence for the
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linear trajectory model in (3.5), p = v. For quadratic trajectories based on velocity

and acceleration, p = [vl aT]T and
cP(rix,t) =x+ v(x,t)(r — 1) + a(x,t)(r — )% (3.6)

Note that v(x,t) is the instantaneous velocity, and a(x,t) is the constant acceleration

over the length of the trajectory, both at (x,¢). Equation (3.6) can be rewritten as

follows:
cP(r;x,t) =x 4+ A.p(x,1) (3.7)
with
[ va(x,1) |
ao|TTt 0 (r—1)?* 0 | i) = | x1) | (3.8)
0 7—t 0 (r—1)* az(x,1)
I ay(x,1) |

The goal of this chapter is to estimate the field of motion parameters p; at time
t defined on the 2-D dense lattice (A,); which corresponds to the sampling grid of the

image. Let g; be an image at time ¢, and let
Z, = {7 : gi4+ is used in estimation of p;} (3.9)

with Card(Z;) = N. The estimation of motion at time ¢ is carried out over images
{gt++} such that 7 € Z;. Figure 3.2 illustrates an example of quadratic trajectory
over N fields characterized by the vector of motion parameters p(x,1).

Assuming that the following is true

vreT o ti(x,t) <t+7 < ty(x,t), and (3.10)

x € V(7;t)
implies that the estimation is performed only on moving or stationary (i.e., not oc-
cluded) pixels. Hence, the effects of occlusions are not considered in the estimation
algorithm. For the remaining of this chapter it is assumed that (3.10) is true which
is not the case in real sequences. For this reason, in Chapter 4, an occlusion model

will be incorporated into the estimation algorithm, in conjunction with a motion

discontinuity model, in order to obtain better estimates in occluded regions.

36



N fields

- -8 ---@---

t+1

t-2 t1
Figure 3.2: Estimated quadratic trajectory cP(r;x,1) at (x,1).
3.2 Formulation

The estimation of accelerated motion trajectories is tackled using a spatio-
temporal gradient method based on a statistical approach. This method has been
overviewed in Chapter 2 for the estimation of 2-D displacement fields, and will be ex-
tended in detail in this chapter to handle the estimation of the motion field p defined
for quadratic trajectories.

In the following sections MRFs, characterized by Gibbs distributions (GD), are
used to model both the matching error along motion trajectories and the motion field
p. In the case of MAP estimation [28], it was shown that the use of GD can lead
directly to a cost function of the same form as equation (2.22).

According to the MAP criterion, the estimated motion field p; at time ¢ is the
most likely motion field p; based on observations G; = {giy. : 7 € Z;}. Using the
Bayes’ rule, MAP estimation for p; is a modified version of equation (2.18), and is
expressed as follows:

p: = argmax P(p:|Gy) (3.11)

= argoax [P(G|pe; gt) - P(Pelge,)]
where t,, =t + 7, is an arbitrary chosen time instant such that 7, € Z; , and G =
{gt4+ : 7 € Iy — {7, }}. It is assumed that vectors p; are samples from a vector random

field P;, and that images g; are samples from the luminance random fields GG;. The
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first probability P(G/*|pt, g1, ) in (3.11) is determined by the structural model relating
motion to the observed image, and P(p¢|gs,) is determined by the motion trajectory

model. These two models are discussed in the next two sections.

3.2.1 Structural model and matching error

The structural model follows directly from the constant intensity assumption
along motion trajectories. The conditional probability P(G/*|p:, g1,,) depends directly
on the intensity variation along motion trajectories. This variability is assumed to be
independent for each distinct trajectory on the lattice (A,);, and similarly to [31] is
modeled here by independent and identically distributed Gaussian random variables.
Since Gaussian distribution is a special case of GD, the intensity variation along
motion trajectories can be expressed by the GD (equation (A.3)). The conditional
distribution along each trajectory cP' at a certain pixel site (x;,t) € (A,); is therefore

expressed as follows:

PGP gi) = -5 P, (3.12)
where U{)(p) is an energy function that measures departure of the observations from
the structural model, and hence must represent a measure of the intensity match-
ing error between the Card(Z;) = N fields used in the estimation. Since the main
interest in this chapter is to estimate motion fields for applications related to motion-
compensated interpolation, the energy U (p) at pixel site (x;,t) € (A,); (refer to

Figure 3.2) is defined as the sample variance:

U9 (p) = 3 [a(xt 1+ k) — (i, 1)) (3.13)
with
C(xit) = % Y x4 7). (3.14)

G(xf,t + k) is the interpolated intensity at time ¢ + k and position x¥ defined as

follows:

x¥ = x;+v(xi, t)k+ a(x;, t)k?
= X; + Apyr)Ps
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with A(¢4r), and p; = p(x;,t) defined in (3.8).
The total conditional distribution is then a product over the entire field of Np

pixel sites in (A,)¢, of the distributions P'(G}|p:, g:, ) along each trajectory:

Pgnp7gn = >, € Lﬁé
(7 Iperse.) EZ; (3.16)

where, Us(p) is known as the structural model term:
Np
Up)= > UV (p)
i=1

= f{Z [Q(Xfat‘l‘k) _C(Xivt)]Q}v

1=1 k€T,

(3.17)

which constitutes the main term of the objective function (2.24) discussed in Chapter

2, and whose minimization yields a MAP estimate of the motion field p.

3.2.2 DMotion trajectory model

It was assumed earlier that motion vectors p; are samples from a vector random
field P;. Defining P; as a vector MRF on the lattice (A,);, the a priori distribution

P(ptlgs,) can be expressed as a Gibbs distribution:

1 _u®

P(ptlgr,) = ¢ ro (3.18)
P

where U,(p) is the energy function that captures the desired smoothness property of
the motion field through a first-order neighborhood system 7' (Figure A.1):

Np
Up) =3 > (pi—p)"T(pi—pj). (3.19)
i=1 {xivxj}eci

Note that p; and p; are parameter vectors for trajectories passing through (x;,1)
and (x;,1), respectively, and I' is a 4 x 4 positive definite weight matrix that was
introduced in order to permit different weighting of horizontal and vertical motion

parameters as well as of lower and higher order motion parameters (i.e., velocity and
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acceleration parameters). For this purpose, I' was chosen to be a diagonal matrix of

the form:

w,, 0 0 0
0 w, 0 0
0 0 w, 0
0 0 0 w,

, (3.20)

where w,,, w,,, w,,, and w,, are the respective weights assigned to each of the four
motion parameters in p. This weight matrix I' was discussed in [32] where its entries,
not necessary on the diagonal, were chosen as functions of the observations g¢;, in
order to allow suitable adaptation of the smoothness property to the local image
structure. Note that when I' is the identity matrix, the Euclidean norm results and
hence, the smoothness term in (3.19) is reduced to the same form as equation (2.21)

which was introduced earlier for the linear trajectory model.

3.2.3 Derivation of the objective function

Combining now the calculated conditional distributions of the previous sections

into equation (3.11), the following results:

A

p: = argmax P(p|G;)

1 - (p)} X
= —e 21
arg n}gx{ € (3.21)

= argminU(p),

where 7 is a new normalizing constant incorporating Zs and Z,, and U(p) is the new

energy function defined as follows:
U(p) = Us(p) + AUn(p), (3.22)

with A\, = 1/3,, and 35 = 1. Like in equation (2.24) the regularized form of the
objective function U(p) follows directly from the MAP criterion. A, is a regularization
parameter that plays a vital role in weighting the importance of the a priori motion

trajectory model with respect to the structural model.
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3.3 Solution method

The optimization of the objective function in (3.22), which is a non-linear,
non-quadratic, and non-convex function, has been briefly discussed in Section 2.4.1.
Complex non-linear optimization approaches are not suitable here. Hence, a deter-
ministic relaxation algorithm resulting in an iterative update equation of the same
form as equation (2.23) is derived in this section. This algorithm is derived by approx-
imating U(p) by a quadratic function of p, and then using the necessary condition
for optimality expressed in (2.25) to derive a linear system of the form Ap, = b for
each of the Np motion vector positions in (A,):. The solutions of these dependent
linear systems are then calculated iteratively by using the Gauss-Seidel relaxation

approach, discussed in Chapter 2.

3.3.1 Approximation of the objective function

Approximation of the objective function in (3.22) by a quadratic function of p
is made possible by using the Taylor expansion of §(x¥,t+ k) = §(x;+ Asr)pi, t+ k)

in (3.17) about some intermediate solution p;:

9(Xi + ApppmPist + k) = §(Xi + ApgmPis t + k) + ngl(xi + Ayr)Pir t + k) (pi — Pi),
with Vpg(-) being the gradient of §(-) with respect to the motion vector p expressed

as:

fo](‘) = A(jzsq-k)-vxg(')

k0
0 k )
= 20 ' 83() (3.24)
Jy
L 0 k2_
_ [p950) 090) .090) ,.090)]"
| Oz Jdy Oz dy
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Substituting equation (3.23) into (3.17), U(p) can be approximated as follows:

U(p) ~ i { Yol ) + (si) (pi—p)lP+ X Y. (pi—p) T(pi — Pj)} ,

i=1 |\ keZ; {x:,x;}eC;
(3.25)
where
[ . ) 1 . . o
ri(pi) = g(x; + A(H-k)Pz’,t +k)— N Z g(x; + A(t+T)Pi7t +7), (3.26)
TET:
and

) N ) 1 . . o
(s¥(pi)" = V3g(xi + Apnypir t + k) — v S VE(xi + Asnypist+ 7). (3.27)

TET:

3.3.2 The iterative algorithm

Now that the objective function U(p) is a quadratic function of p, the global
minimum p;,,,, which corresponds to an approximation of the MAP estimate p; (equa-
tion (3.21)) can be obtained by establishing the necessary condition for optimality
over the entire motion field at time ¢:

oU(p)
api

=0, i=1,---,Np. (3.28)

The derivative of U(p) with respect to the motion vector p; defined at pixel site

X; € (Ap): is expressed as follows:

aU(p) _ 0
op; B E op;

ke

. . NNE: 0
rE) + (s (D) (0 = b)) #2053 (pi=py) T(pipy):
pZ {Xz‘,X]}ECz‘
(3.29)
After some straightforward differentiations, equation (3.28) becomes
> (st (Ba) + | X (sEBo)(st (90)) | (pi=Bi)+26 A, T-(pi=pi) = 0, (3.30)
kel kel

where p; is the average motion vector at position x; given by:

1 o
p: = g Z P;- (3‘31)
¢ jent(s)
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n'(¢) is the first-order neighborhood at position x; resulting in ¢ = 4 everywhere
except at the boundaries of the lattice (A,): where & < 4 (in particular, & = 2 at the
four corners).

Hence, the global minimum p;_, of the quadratically approximated objective
function (3.25) is determined by solving (3.30) for p,; at each of the Np pixel sites
on the lattice (A,);. But since each solution p; depends on p; which is a function
of motion vectors in the neighborhood of x;, then an iterative relaxation method is
needed. Considering that each iteration n consists of a full scan of the field at time ¢,
and letting p? = p’~' at each iteration, then p? is updated at iteration n by solving
the following linear system:

Al -pi =b/, (3.32)

which directly follows from equation (3.30) with:

Al = [Z (s¥(Br)(sE(P!)T) | +26M, - T, (3.33)
and
b = ({Z CHERICHO +2@-Ap-r)-p?— ];;(rf<p?>sf<p?>). (3.34)

The deterministic relaxation method is based on the Gauss-Seidel approach, which
calculates p? at iteration n using the latest updated neighbor motion vectors at the
current iteration. That is why for a horizontal scan at each iteration, the average
motion vector p!' makes use of the updated left and top neighbor motion vectors at
iteration n, as well as of the right and bottom neighboring motion vectors at iteration
n — 1 (since the ones at iteration n are not yet available). This characterization of p
changes obviously with the scan mode.

The Gauss-Seidel relaxation method is used to iterate the complete motion field,
and this process is repeated until a convergence is achieved. Convergence is detected
by monitoring the oscillatory decreasing behavior of U™(p) in (3.22) after each itera-

tion, and hence the following condition:

U(p) —U"'(p)
U(p)

<e (3.35)
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can serve as a robust stopping criterion for convergence.

3.3.3 Spatial interpolation

The motion vector p; defined at pixel x; € (A,); is described by continuous-
valued parameters. Hence, in order to evaluate the components of the linear system
in (3.32), intensities §(x¥,¢ + k) (Figure 3.2) and there respective spatial derivatives
at non grid points x; + A1) Pi € (A,)¢ are needed. Therefore, a spatial interpolation
method is needed.

For this task, a C'* cubic convolution interpolation [25] has been used. Note
that by using cubic convolution instead of linear interpolation or nearest-neighbor
resampling, the degree of complexity of functions that can be exactly reconstructed
is increased. The 2-D cubic convolution interpolation function (used in the motion
estimation algorithm) is just a separable extension of the 1-D interpolation function
(Figure B.1). It is worth to note here that the order of accuracy of the cubic convolu-
tion method, introduced by Keys, is between that of the linear interpolation and that
of cubic splines. However, cubic convolution is much more efficient than the method

of cubic splines in terms of both storage and computation time.

3.3.4 Estimation over a hierarchy of resolutions

The approximation of the objective function U(p) by a quadratic function of p
in (3.25) is made possible by the use of first-order Taylor expansion. The higher order
terms of this expansion are considered to be negligible in the case of small motion
parameters and are therefore dropped. However, in the case of fast motion (large
displacements), a first-order approximation is not sufficient as these higher order
terms cannot be neglected anymore. To deal with the above problem a hierarchical
approach is used in the motion estimation algorithm. This hierarchical processing that
has been explained in Section 2.4.2 consists of updating the motion fields (velocity

and acceleration) at each image resolution level until the full image resolution is
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reached (Figure 2.4). These updates become smaller at the bottom level of the image
pyramid and hence less iterations are needed to reach convergence. Besides of saving
computational time (since the number of motion vectors to estimate is divided by
four at each lower resolution), the hierarchical method allows to reduce the risks of
convergence to a local minimum especially when estimating large motion. This is due
to the fact that the image at each resolution is filtered by a Gaussian filter (Figure
2.5) and hence the high frequency content in the data, that is the main reason of

forcing the solution to be trapped in a local minimum, is reduced.

3.4 Test images

The motion estimation algorithm presented so far has been tested on some image
sequences with synthetic and natural motion. These test images are described next

along with the measures that will be used to evaluate the validity of motion estimates.

3.4.1 Image sequences with synthetic motion

In order to test the accuracy of motion estimation, natural sequences with syn-
thetic motion are generated. Each sequence consists of a 45 x 38 pixel rectangle
moving on a still background. The moving rectangle follows a quadratic trajectory
at a certain initial velocity vg and constant acceleration parameter a. The position

of the rectangle at field ¢ is then described as follows:
x(t) = xg + vot + at?, (3.36)

where Xg is its initial position at field 0. The instantaneous velocity v(t) at field ¢ of

any pixel within that rectangle is therefore described by:
v(t) = vo + 2at. (3.37)

The data in the moving rectangle was obtained from a still image different from

that of the background by the following procedure. An image had been first prefiltered
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by a 2-D low-pass Gaussian FIR filter in order to avoid aliasing after subsampling.
The data inside the rectangle was then obtained by a suitable shift of the 4 times
subsampled version of the prefiltered image. The subsampling factor of 4 provides
a 1/4 pixel precision of the motion parameters. Figure 3.3 illustrates the idea for
a moving rectangle of 2 x 2 pixel. The 2 x 2 pixels are selected from the 8 x 8

0.0 025 050 075 10 125 150 175
00| ® . . . ® . . .

025 | o . . . . . . .

050 | e . [o] . . . [o] .

10| ® . . . ® . . .

125 | . . . . . . .

150 | . [o] . . . [o] .

175  © . . I .

Figure 3.3: Adaptive shifting of a 2 x 2 pixel rectangle for 1/4 pixel precision.

pixel grid according to the real displacement of the moving rectangle. Hence, for
no displacement the pixels surrounded by a circle are selected, for a displacement of
(0.50,0.50) the pixels surrounded by a square are selected, and for a displacement of
(0.25,0.75) the pixels surrounded by a diamond are selected. Due to this sub-pixel
accuracy, the matching in the rectangle area is not perfect and hence providing a
more realistic testing than pixel accuracy.

In this context, two test images with synthetic motion and different sampling
structures have been generated: the test image 1 in Figure 3.4a is an interlaced test
sequence, whereas the test image 2 in Figure 3.4b is a progressively sampled test
sequence.

In each of these test images the white frame emphasizes the area of 72 x 64
pixels (the actual size of test image 1 shown in Figure 3.4a is twice larger in the

vertical dimension due to its interlaced sampling structure) over which the motion
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Figure 3.4: Field #2 of (a) test image 1 (interlaced); field #2 of (b) test image 2

(progressive). The white frames encircle the areas used for estimation.

estimation algorithm will be tested. Each area comprises the 45 x 38 pixel rectangle
which is moving at 1/4 pixel accuracy according to the quadratic trajectory described
in (3.36).

The validity of motion estimates within the 72 x 64 pixel estimation area is
verified by the following Mean Square Error (M SE) measure. The M SE measure is
expressed as follows:

MSE = E[(p(t) ~ b()F] 5 3 Iplxit) ~ bl (3.39)

R x,eR

where p(t) and p(t) are the real and estimated motion fields respectively in the region
R of Pr pixel sites. R can either be the full estimation area (Ry), or the area of the
moving rectangle (Ry), or the area Ry = Ro — Ry. In order to eliminate boundary
effects of the moving rectangle, the areas labeled R} and R will also be used to
represent the areas Ry and R, respectively deprived of a narrow strip of 5 pixels that
contains the boundaries of the moving rectangle. R}, for instance, represents the area

inside the moving rectangle.
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3.4.2 Natural sequences

The test image 3 is an interlaced 256 x 212 pixel sequence “femme et arbre”

whose field #23 (from a total of 120 fields) is displayed in Figure 3.5.

Figure 3.5: Field #23 of test image 3: “femme et arbre”. The white frame encircles

the area used for estimation.

It contains complex motion, primarily of the hand and the arm. The second
natural sequence “Miss America” which is labeled test image 4 (displayed in Figure

3.6) is a typical progressively sampled 360 x 288 pixel CIF video conference sequence.

Figure 3.6: Field #16 of test image 4: “Miss America”. The white frame encircles

the area used for estimation.
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These natural sequences have been obtained with a video camera. No filtering or
any other processing has been applied to them after their acquisition. Nevertheless,
some aliasing is present in the data due to insufficient filtering before sampling.

The validity of motion estimates for these natural sequences can be verified by
using these estimates in a motion-compensated interpolation scheme as described

next.

3.4.3 Motion-compensated interpolation application

In various video coding schemes temporal subsampling of image sequences is
often used to assure high compression ratios needed. Then, at the receiver the miss-
ing images are reconstructed via motion-compensated interpolation using transmitted
motion parameters or motion parameters computed at the receiver from the transmit-

ted images. In Figure 3.7 the first scenario for the case of 4:1 subsampling is presented.

TRANSMITTER RECEIVER
C
Motion estimation P H d
onfields#1.2,3 A
N
g ’ E : a
5 S___| Motion-compensated
4:1 Subsampling L interpolation

Figure 3.7: Hlustration of a typical motion-compensated interpolation scheme used

in video coding.

Motion fields p; for the images to be omitted at the transmitter (images #1,2,3) are
estimated from images #0,1,2,3,4, i.e., 7, = {—2,—1,0,1,2} for estimation at field
#2 (Table 3.1).
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Let J; = {7 : g1+~ is used in motion-compensated interpolation}. Then, im-
ages g5 #0 and 4 are transmitted, and jointly with motion estimates p; are used to

reconstruct images #1,2.3 at the receiver as follows:

f](xz7t+7-): Z"}/kf](Xf,t—I—k), izlv"'7NP7 TE’Ct (339)
kET:
where Z v =1 and Z; = J; U K.
keT:
t 7 T 7]'7.j SV

1] {-1,0,1,23} | {-1,3} | 0.75, 0.25
2| {-2,-1,0,1,2} | {-2,2} | 0.50, 0.50
3| {3,2,-1,0,1} | {-3,1} | 0.25, 0.75

Table 3.1: Configurations of 7; and J; as well as the weights v for each of the 3
omitted fields for the motion-compensated interpolation scheme described in Figure
3.7.

Since for each 7 € Ky we know the original image ¢;4 -,

Ctrr = Jt4r — Jt4rs T €Ky (3.40)

is the reconstructed error at ¢ + 7 that can be used to evaluate the quality of motion
estimates p;y,. Note that in order that e;;, be small, the trajectories c?_I_T must
be close to the true motion trajectories in the image. To describe quantitatively
the quality of motion estimates p:y., the Peak Signal to Noise Ratio (PSNR) is

calculated as follows:

255*

var(ewyr)

PSNR = 10[0910 5 T € ICt (341)

where var denotes variance.

The motion-compensated interpolation scheme described above will be used to
illustrate the advantages of using a quadratic trajectory model over a linear one. The
estimated quadratic and linear trajectories over N = 5 images will be compared.

Another scenario for the case of 4:1 subsampling is to estimate linear motion at the



receiver using the 2 received images g, #0 and 4 (i.e., N = 2). In this case, the set Z;
will be equal to the set J; defined in Table 3.1 for each of the 3 omitted fields. This
scenario seems more practical than the linear trajectory model over 5 images since

no motion estimates need to be transmitted.

3.5 Selection of parameters

The motion estimation algorithm, discussed in this chapter, is quite flexible
from the point of view of a possible choice of parameters. The primary parameters

of the algorithm are:
1. The number of resolution levels L in the hierarchical processing.

2. The maximum number of iterations at each resolution level of the image pyra-

mid.

3. The set Z; of time instants of the test image used during the estimation algo-
rithm, e.g., 7, = {—2,—1,0, 1,2} indicates that the estimation of motion field
p: at time ¢ is carried out using 5 fields at t —2, ¢t — 1, ¢, ¢t + 1, and ¢ 4 2.

4. The choice between linear and quadratic trajectory models. This will be useful
in comparing the two approaches by quantifying the gain/loss achieved in a
motion-compensated interpolation application. Note that in all simulations,

the quadratic trajectory model is used by default unless otherwise stated.

5. The regularization parameter A, which plays a crucial role in weighting the

importance between the smoothness term and the structural term.
6. The matrix I' that permits different weighing of individual motion parameters.

The maximum number of iterations at each image resolution level was set to 50.
However, the algorithm was allowed to stop or switch to the next higher resolution

level if the condition expressed by (3.35) is satisfied for a sufficiently small e. When



the algorithm stops, the motion field p of the best converged energy U™(p) at iteration
n selected among the last 10 iterations is stored as a final result.

On the other hand, the diagonal elements of the weight matrix in (3.20) were
chosen as follows: [w,, w,, w,, we] =[1 1 2 2]. In this way, more weight is
given to the acceleration parameters in the smoothness term (3.19), and hence more
smoothness is enforced on the acceleration field than on the velocity field. This seems
reasonable especially if more than 2 fields (i.e., N > 2) are used in the estimation
since a small deviation in the estimated acceleration causes a significant deviation of
the two end points of the estimated trajectory (dependence on (7 —¢)? in (3.6)). In

the following sections the selection of the rest of the parameters is discussed.

3.5.1 Selection of L

The number of resolution levels I has been varied from 1 to 4 in the estimation al-
gorithm applied to field #2 of test image 2. A quadratic motion trajectory at pixel
accuracy has been selected with the actual motion parameters p(2) =[1 2 1 1]T at
field #2. Note that the velocity parameters have been calculated directly from equa-
tion (3.37). The behavior of the objective function U”(p) as a function of the iteration
number n for each case is shown in Figure 3.8 for A\, = 30, 7, = {—2,—-1,0, 1,2}, and
I’ = I, where I is the identity matrix.

The discontinuities in Figures 3.8b, 3.8c, and 3.8d correspond to switching of
the estimation algorithm to the next higher resolution level which is determined
when the inequality in (3.35) is satisfied for certain e. It is worth to notice here
the advantage of using a multiresolution approach: the rate of convergence to a
minimum is improved. Hence, without a multiresolution approach, i.e., L = 1, the
algorithm failed to converge to the optimum, and instead converged to a local one
at U™(p) = 165 (Figure 3.8a). However, for L > 1, the optimum U"(p) = 20 has
been detected successfully with a lower computational burden. Thus, for L = 2 the
global optimum is detected at n ~ 60 (Figure 3.8b), for L = 3 the global optimum
is detected at n &~ 50 (Figure 3.8¢), and for L = 4 the global optimum is detected at
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Figure 3.8: Behavior of U"(p) as a function of the iteration number n for field #2 of
test image 2 with A\, =30, Z; = {-2,—1,0,1,2},and I' = I, for (a) L = 1; (b) L = 2;
(¢) L=3;(d) L =4.

n ~ 40 (Figure 3.8d). The estimated motion fields p(2) for L = 1, and L = 4 are
shown in Figures 3.9 and 3.10, respectively.

The estimated motion parameters for L = 1 in Figure 3.9 correspond to a local
minimum, that is why the estimation inside the moving rectangle is far from the
true motion parameters. For L = 4 the estimate in Figure 3.10 is consistent with
the true motion except at the boundaries of the moving rectangle where the motion
of the rectangle has smeared outside the boundaries due to the desired smoothness
property of motion introduced by the smoothness term. Hence L = 4 will be used in

the estimation algorithm for the rest of the simulations in this chapter.
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Figure 3.9: Estimated: (a) velocity v(2), and (b) acceleration a for L = 1 and field

#2 of test image 2 with p(2) =[1 2 1 1]%.
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Figure 3.10: Estimated: (a) velocity v(2), and (b) acceleration a for L = 4 and field

#2 of test image 2 with p(2) =[1 2 1 1]T.



3.5.2 Selection of ),

The test image 2 has been used with the same set of synthetic motion parameters

but now the regularization parameter A, is varied from 10 to 200 with a step of 10.

The results are shown in Figure 3.11.

() (b)
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! 15
=6 a
T T 1
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Figure 3.11: Energies: (a) Us.(p); (b) Uy.(p); (¢) Uc(p) after convergence and (d) the
MSE of motion estimates in Ry as a function of A, for field #2 of test image 2 with
p2)=[1 21 1)1 Z;={-2,-1,0,1,2},and T = L.

Figures 3.11a, 3.11b, and 3.11c illustrate the behavior of the following energies:
Use(P), Upe(p), Uc(p) = Use(p) + ApUpe(p), respectively, as functions of A, (the addi-
tional subscript 'c’ is used to denote converged energy). Figure 3.11d, on the other
hand, illustrates the behavior of the M SE as a function of A, for each of the 4 mo-
tion parameters estimated over Ry. Note that the graphs of Figures 3.11c, and 3.11d
both show a minimum around A, = 30. The estimated motion fields for A, = 10 and

A, = 200 are shown in Figures 3.12 and 3.13 respectively.
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Figure 3.12: Estimated:

Figure 3.13: Estimated: (a) velocity v(2), and (b) acceleration a for A,

field #2 of test image 2 with p(2) =[1 2 1 1]T.



For A, = 10, the smoothing at the boundaries of the moving rectangle is not
sufficient causing the estimates at the boundaries to deviate noticeably from the
true motion vectors. On the other hand, for A, = 200 the high importance of the
smoothness term has caused the estimates within the moving rectangle to propagate

far away from its boundaries (Figure 3.13). This illustrates the convex property of the

(@) (b)

120 T T T 4

100 3 3
= =

g 80 1 g2
-] -)

60 1 1

40 0

0 50 100 150 200 0 50 100 150 200
lambda lambda

(d) [Fvx;CIvyi[-Jaxi[--lay

MSE

0 50 100 150 200 0 50 100 150 200
lambda lambda
Figure 3.14: Energies: (a) Us.(p); (b) Uy.(p); (¢) Uc(p) after convergence and (d) the
MSE of motion estimates in Ry as a function of A, for field #2 of test image 1 with
p(2)=[1.75 1.5 1 1.5, 7, ={-2,-1,0,1,2},and T = 1.

MSE curves drawn in Figure 3.11d. A value of A\, = 30 (Figure 3.10) seems to give a
reasonable trade-off between under- and over-smoothing, and also coincides with the
minimum of U.(p) (Figure 3.11c). The same test has been performed for test image
1 but with sub-pixel accuracy of motion parameters p(2) = [1.75 1.5 1 1.5]7. The
same kind of behavior can be noticed in the results shown in Figure 3.14.

The selection of A, on natural sequences has been performed on field #30 of test



image 3 with Z, = {—2,—1,0,1,2} and I' = I. Two evaluation measures are plotted

as a function of A, in Figure 3.15.
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Figure 3.15: Behavior of the PSNR (a) and the converged energy U.(p) (b) as a
function of A, resulting from motion estimation performed on field #30 of test image

3 with 7, = {-2,-1,0,1,2}, and J; = {—1, 1}.

The first one (Figure 3.15a) is the PSN R in dB of the reconstructed field #30
using interpolation. The reconstruction is done using the estimated motion vectors
and a simple bilinear interpolation of the motion-compensated pixels between the
previous (#29) and the next (#31) fields. Hence, the case J; = {—1,1} is used here.
The second measure (Figure 3.15b) represents the best converged value U,(p) of the
objective function U(p) during the estimation algorithm. A, = 20 seems to result in a
good PSN R and the best converged energy. The estimated motion fields at A, = 20
are shown in Figure 3.16. These fields illustrate the motion of the hand that is moving

downward with some deceleration (note the acceleration vectors on the hand that are
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Figure 3.16: Estimated: (a) velocity v(30), and (b) acceleration a (scaled by 4) for
A, = 20 and field #30 of test image 3.

pointing upward).

To conclude, one can say that it is difficult to choose a fixed value of A, for all
the sequences. However, a range of 20 < A, < 30 seems to yield to best compromise
for the tests that were performed on test images 1, 2, and 3. The value of A, has been
divided by 2 between a higher and a lower resolution level. This is due to the fact
that the distance between two consecutive motion vectors at the next lower resolution
level is multiplied by two and hence the contribution of the smoothness should be

reduced.

3.5.3 Selection of 7,

The number of fields N =Card(Z;) used in the estimation algorithm has been varied
by selecting different configurations of the set Z;. This was done for A, = 25, and field
#2 of test image 1 with the rectangle moving at subpixel accuracy along a quadratic
trajectory characterized by the set p(2) =[1.5 1.5 0.5 1]7.

The MSE of motion estimates inside the moving rectangle (i.e., region R})

for each case is shown in Table 3.2. Note that the overall M SE measure (of the 4



T, vz(2) vy(2) ay ay
{—1,1} 0.035082 | 0.054667 | 0.249625 | 0.838163
{-1,0,1} 0.056641 | 0.068800 | 0.010226 | 0.910025
{-2,-1,0,1} 0.081383 | 0.146087 | 0.025569 | 0.073454
{-1,0,1,2} 0.057416 | 0.048389 | 0.043047 | 0.055020
(=2,-1,0,1,2) | 0.045844 | 0.028816 | 0.027701 | 0.034414
(=2,-1,0,1,2,3} | 0.040133 | 0.029073 | 0.020734 | 0.020564

Table 3.2: MSE of motion estimates in region R} at field #2 of test image 1 with
p(2) =[1.5 1.5 0.5 1.0)T for different sets Z;, and A, = 25.

parameters) decreases when N increases.

This is illustrated in Figure 3.17 that displays the real and estimated trajectories
at position x(2) = [37 30]T (a point inside the moving rectangle chosen at random)
for field #2 of test image 1 for each of the 6 combinations of the set Z;.

The estimated and real trajectories are drawn in dotted and full lines respectively
around the selected motion site x(2) at field #2 indicated by a ’o’. The positions
indicated by an 'x’ represent the tracked (on the dotted line) or real (on the full line)
positions of pixel x(2) at fields #0,1,3,4,5 of test image 1.

It is clear from Figure 3.17 that a better tracking of the real trajectory is achieved
for larger temporal support N which seems to be reasonable. However, for much larger
temporal support (i.e., N > 5), occluded areas begin to play a role in the estimation
algorithm, especially on natural TV sequences. Since occlusions are not considered
in this chapter, a choice of Z, = {—2,—1,0,1,2} i.e., N = 5 seems to be reasonable
(Figure 3.17¢) and will be used for the rest of the simulations in this chapter.
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Figure 3.17: Estimated (dotted line) and real trajectories (full line) at x(2) =
[37 30]T for field #2 of test image 1 with p(2) = [1.5 1.5 0.5 1.0 |7 for (a)
I, ={-1,1}; (b) Z, = {-1,0,1}; (¢) Z, = {-2,-1,0,1}; (d) Z; = {—1,0,1,2}; (e)
T, ={-2,-1,0,1,2}; (f) Z, = {-2,-1,0,1,2,3}.
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3.6 Simulation results

3.6.1 Results for synthetic sequences

The test image 1 has been generated using 4 different sets of synthetic motion
parameters p1, P2, P3, and p4, where p; and ps are motion fields generated at pixel

accuracy, while p3 and p4 are motion fields generated at sub-pixel accuracy.

va(2)

vy (2)

az

ay

pi(2)

1.000000

0.000000

0.000000

1.000000

MSE in Ry
MSE in R,
MSE in R}
MSE in R,
MSE in R,

0.036494
0.006976
0.002572
0.053912
0.003176

0.005016
0.001729
0.000982
0.006955
0.000346

0.014221
0.001633
0.001027
0.021648
0.015453

0.044516
0.025963
0.018506
0.055463
0.029455

p2(2)

2.000000

2.000000

1.000000

1.000000

MSE in Rq
MSE in R}

0.316888
0.008364

0.217085
0.020709

0.114484
0.003950

0.091598
0.003291

p3(2)

1.500000

1.500000

0.500000

1.000000

MSE in Rq
MSE in R/

0.163142
0.045844

0.103574
0.028816

0.057372
0.027701

0.073342
0.034414

p4(2)

1.250000

1.750000

0.250000

0.750000

MSE in Rq
MSE in R/

0.173114
0.096116

0.173606
0.054574

0.069072
0.081085

0.082292
0.063015

Table 3.3: MSE of motion estimates in various regions at field #2 of test image 1

for 4 different sets of synthetic motion parameters.

In each case the motion fields at field #2 are estimated with L = 4, A\, = 25,
I, ={-2,-1,0,1,2}, and [w,, w,, we, wg,]=[1 1 2 2]. The MSE in Ry & R}

along with the true velocity and acceleration parameters at field #2 for each case are
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(a) velocity v(2), and (b) acceleration a for field #2 of

. Estimated:

Figure 3.18

test image 1 with p(2) = p1(2) (due to interlacing, the actual distance between two

is twice larger than it appears).
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shown in Table 3.3.

The estimated motion fields for the sets p; and p3 of synthetic motion parameters
are shown in Figures 3.18 and 3.19, respectively. Note that the estimated motion and
acceleration fields correspond well to the motion of the rectangle (the smoothing at
boundaries is due to lack of a motion boundary model). This is confirmed by the

MSE in R} (no boundary effects) that is in general much smaller than the error in

Ro (Table 3.3).

v:(2)

vy (2)

az

ay

pPs(2)

2.000000

1.000000

0.000000

0.000000

MSE in Rq
MSE in R/

0.229595
0.005424

0.068679
0.007288

0.012156
0.000961

0.009899
0.003390

Ps(2)

1.000000

2.000000

1.000000

1.000000

MSE in Rq
MSE in R/

0.126479
0.001685

0.250304
0.008511

0.100246
0.001823

0.096698
0.002857

p7(2)

1.750000

1.500000

1.000000

1.500000

MSE in Rq
MSE in R/

0.690936
0.106735

0.279143
0.069062

0.312324
0.057062

0.275153
0.036957

Ps(2)

1.750000

2.250000

0.750000

1.250000

MSE in Rq
MSE in R/

0.585331
0.145411

0.613616
0.231920

0.227904
0.120366

0.268670
0.188574

Table 3.4: MSFE of motion estimates in regions R & R at field #2 of test image 2

for 4 different sets of synthetic motion parameters.

The MSE in various regions of the motion field estimate for the p; set of syn-
thetic motion parameters is also shown in Table 3.3. Note that the small values of the
MSE in regions R} and R} (no boundary effect) demonstrate well the ability of the
motion estimation algorithm to detect accurately the quadratic trajectory specified

by motion parameters at pixel accuracy.
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The same simulation has been carried out for test image 2 using another set of
synthetic motion parameters ps, ps, pr, and ps, where ps and pg are motion fields
generated at pixel accuracy, while p; and pg are motion fields generated at sub-pixel
accuracy. The MSE results in Ry and R} for each case are shown in Table 3.4.

To illustrate how well the motion parameters with sub-pixel accuracy are de-
tected, a comparison between the estimated and real trajectories at a certain point

inside the moving rectangle is considered.

() (b)

25 T T 20
30 25
> >
35 30
X
40 35
20 25 30 35 25 30 35 40
X X
(c) (d)
25 T T 38 T
40
30
42
> >
44
35
46
40 48
30 45 35 50

Figure 3.20: Estimated trajectories at: (a) x(2) = [22 27]%; (b) x(2) = [28 22]%;
(c) x(2) = [33 30]T; (d) x(2) = [39 39]7 inside the moving rectangle of test image 2
with p(2) = p#(2) = [1.75 1.5 1 1.5]7, and T, = {2, —1,0,1,2}.

Figure 3.20 illustrates the estimated trajectories at 4 different positions (chosen
at random) inside the moving rectangle of test image 2 for the set p7. Note that the
deviation from the real trajectory is more noticeable at the furthest fields, i.e., fields

#0 and 5, however, in general, the quadratic trajectory is very well followed.
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This trajectory representation is useful to illustrate the difference in tracking be-
tween linear and quadratic motion trajectory models. The estimation was performed
using both models on test image 1 with the set p3 of synthetic motion parameters
generated at sub-pixel accuracy.

The resulting velocity field estimates v(2) obtained using the linear and quadratic
motion trajectory models are compared in Figure 3.21. The discrepancy between the
two models can be seen in Table 3.5 that shows the calculated M SE in Ry and R

for the two considered models.

Model v:(2) vy(2) a, ay
MSE in Rq | quadratic | 0.163142 | 0.103574 | 0.057372 | 0.073342
linear 0.811878 | 0.512640 - -

MSE in R} | quadratic | 0.045844 | 0.028816 | 0.027701 | 0.034414
linear 2.230566 | 0.932370 - -

Table 3.5: Comparison of the M SE of motion estimates in Ry and R resulting from
quadratic and linear trajectory models at field #2 of test image 1 with p(2) = p3(2) =
1.5 1.5 0.5 17, and Z; = {-2,-1,0,1,2}.

From Figure 3.21, and Table 3.5 one can deduce that the use of a linear tra-
jectory model is not enough to track the real instantaneous velocities on a quadratic
trajectory, and hence the use of the quadratic trajectory model is advantageous in
comparison with the linear one.

This difference between the two models is also illustrated graphically in Figure
3.22 in which the real trajectory at a certain point (x,2) (chosen at random inside
the moving rectangle) is drawn in full line. Trajectory resulting from the use of the
quadratic motion trajectory model is shown in dotted line, and trajectory resulting
from the use of the linear model is shown in dashed line. It is worth to note how well
the real trajectory is represented by using the quadratic trajectory model. However,
in the case of the linear model, the algorithm failed to track the real trajectory because

of the restricted degree of freedom of this model.
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Figure 3.21: Estimated velocity v(2) at field #2 of test image 1 with p(2) = p3(2)

using (a) linear and (b) quadratic motion trajectory models.

24 T

28t < .

30

34r-

36

30 32 34 36 38 40 42 44

Figure 3.22: Estimated linear (dashed line) and quadratic (dotted line) trajectories
at the point x(2) = [37 30]7 inside the moving rectangle of test image 1 with
p(2) = ps(2) = [1.5 1.5 0.5 1]7, and T, = {—2,-1,0,1,2}.

67



3.6.2 Results for natural sequences

In order to simulate the motion-compensated interpolation application described
in Figure 3.7, the estimation algorithm was applied to the first 33 fields of test image
3 (over the estimation area defined in Figure 3.5) with L = 4, A\, = 20, and the sets
7Z; and J; defined as in Table 3.1. This experiment was performed three times: using
first a linear trajectory model with N = 5, then a quadratic trajectory model with
N =5, and finally a linear trajectory model with N = 2. In the last case the set Z;
is equal to the set [J;, as described in Section 3.4.3. The PSNR curves for all the

processed fields are plotted in Figure 3.23.

a4

42

o
=
o 38 —
=
72]
a-
36 =
o: quadratic, N=5
x: linear, N=5
34 *: linear, N=2 7
E
e X
32 . . I . . .
[0) 5 10 15 20 25 30 35

FIELD #

Figure 3.23: Comparison of the PSNR for reconstructed fields from test image 3
using linear (dashed line) and quadratic (full line) motion trajectory models with

N =5 and linear trajectory model with N = 2 (dotted line).

The resulting means for PSN R (PSN R) obtained from the estimation algorithm
are shown in Table 3.6 for the linear and quadratic trajectory models.

The use of the quadratic trajectory model resulted in an average gain of +1.89
dB with respect to the linear trajectory model with N = 5, and +3.27 dB with
respect to the linear trajectory model with N = 2. These gains are due to better
tracking of the real motion trajectories that causes the structural term Us(p) in (3.17)

to decrease substantially.
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Model PSNR

linear (N = 2) 37.79
linear (N = 5) 39.17
quadratic (N =5) | 41.06

Table 3.6: Means for PSN R evaluated over 24 fields of test image 3 using linear and

quadratic motion trajectory models.

()

Figure 3.24: Estimation area (a) of field #26 of test image 3; interpolation error (mag-
nified by 2) using: (b) linear trajectory model (PSNR = 39.03 dB); (c¢) quadratic
trajectory model (PSNR = 41.93 dB) with N = 5.

The error images (between the reconstructed and the original ones) for the linear
and quadratic trajectory models with N = 5 are shown in Figures 3.24, 3.25, and 3.26
for fields #26, 80, and 105 of test image 3, respectively. Also the estimated velocity
and acceleration fields for fields #80 and 105 are shown in Figures 3.27 and 3.28,
respectively.

It is evident from the motion field plots, and the interpolation error images that
in the case of the linear trajectory model the errors are more concentrated in the
regions that have accelerated motion (i.e., the hand and the arm). This explains the
degradation in the PSN R for the reconstructed fields when linear trajectory model

is used in the estimation algorithm.

The same experiment was run on 33 fields of the test image 4 (over the estimation

69



(b) ()

Figure 3.25: Estimation area (a) of field #80 of test image 3; interpolation error (mag-
nified by 2) using: (b) linear trajectory model (PSNR = 37.76 dB); (c) quadratic
trajectory model (PSNR = 41.61 dB) with N = 5.

Figure 3.26: Estimation area (a) of field #105 of test image 3; interpolation er-
ror (magnified by 2) using: (b) linear trajectory model (PSNR = 37.68 dB); (c)
quadratic trajectory model (PSNR = 41.80 dB) with N =5.

area defined in Figure 3.6) with L = 4, A\, = 20 and the sets Z; and J; defined as
in 3.1. The PSNR curves for all the processed fields are plotted in Figure 3.29.

The resulting means for PSN R (PSNR) obtained from the estimation algorithm are
shown in Table 3.7 for the linear and quadratic trajectory models. Note that the use
of the quadratic trajectory model resulted in an average gain of +4.39 dB with respect
to the linear trajectory model with N =5, and +5.72 dB with respect to the linear
trajectory model with N = 2. These results are consistent with those in Table 3.6

for test image 3. However, higher gains have been achieved by using the quadratic
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Figure 3.27: Estimated: (a) velocity v(80), and (b) acceleration a (scaled by 4)
field #80 of test image 3.

AL 27220007

U st ]

TS ITRITTRITTRITN
RITIT IA LA
..... mmumm
RTRITERETIAN

, VHLur«

Co . Lo ‘.“ru\\\\”’ ) Wortrine,
4,/mmr\' r////mH . Lo m.\ > ’im//////r
i f\!r/////!u Y R A T VI///////
oot T 004 \,\\/H/m T

ol ,,,/////////m,.,

ol L
otert et
virccnan e
vrvenl

cortttl e,

NI

YR Y SV P VI

NYRERETREREN
P Y P PPIAN

(b)

Figure 3.28: Estimated: (a) velocity v(105), and (b) acceleration a (scaled by 4)
field #105 of test image 3.
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Figure 3.29: Comparison of the PSNR for reconstructed fields from test image 4
using linear (dashed line) and quadratic (full line) motion trajectory models with

N =5 and linear trajectory model with N = 2 (dotted line).

Model PSNR (dB)
linear (N = 2) 32.87
linear (N = 5) 34.20

quadratic (N = 5) 38.59

Table 3.7: Means for PSN R evaluated over 24 fields of test image 4 using linear and

quadratic motion trajectory models.

trajectory model. This is due to motion present in the sequence that is closer to
the quadratic trajectory model than to the linear model. This hypothesis seems to
be reasonable as test image 4 is a typical video conference sequence in which the
movements of the mouth and the eyes of the speaker exhibit substantial acceleration.

The reconstructed images as well as the interpolation error for the linear and
quadratic trajectory models with N = 5 are shown in Figures 3.30, 3.31, and 3.32 for
fields #6, 14, and 22 of test image 4, respectively. Also, the estimated velocity and
acceleration fields for these same fields are shown in Figures 3.33, 3.34, and 3.35.

It is worth to note here that most of the velocity and acceleration vectors are

concentrated in the regions of the eyes and the mouth. These are basically the regions
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(d)

Figure 3.30: Reconstructed field #6 of test image 4 using: (a) linear (PSNR = 30.26
dB); (b) quadratic trajectory model (PSNR = 36.91 dB) with N = 5 and their

(d)

Figure 3.31: Reconstructed field #14 of test image 4 using: (a) linear (PSNR = 30.71
dB); (b) quadratic trajectory model (PSNR = 37.27 dB) with N = 5 and their

(b)

respective error images (magnified by 2) in (c¢) and (d).

(b)

respective error images (magnified by 2) in (¢) and (d).

where the interpolation errors are concentrated and where the use of a linear or
quadratic motion trajectory model makes the difference. The motion fields displayed
in Figures 3.34 and 3.35, for instance, reflect well the opening and closure of the
mouth, respectively. The estimated acceleration vectors in the region of the mouth
result in a substantial decrease of the interpolation errors when a quadratic trajectory
model is used. This is also reflected in the interpolated images where, in particular,

the mouth in Figure 3.32a appears to be less open than in Figure 3.32b.

73



Figure 3.32: Reconstructed field #22 of test image 4 using: (a) linear (PSNR = 30.95
dB); (b) quadratic trajectory model (PSNR = 39.42 dB) with N = 5 and their

respective error images (magnified by 2) in (¢) and (d).

Figure 3.33: Estimated: (a) velocity v(6) (scaled by 2); (b) acceleration a (scaled by
4) at field #6 of test image 4.
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Chapter 4

Estimation of Occlusions

The motion estimation algorithm that was proposed in Chapter 3 gives accu-
rate motion estimates in moving or stationary regions. However erroneous motion
estimates result in occluded regions (i.e., near motion discontinuities) due to the lack
of occlusion processing in the motion estimation algorithm. This problem is reflected
in motion-compensated interpolated images where the ability to reconstruct clearly
moving boundaries fails in general. The need to process occluded regions becomes
even more critical in the presence of accelerated motion which generally produces
larger occluded areas. Also, the use of multiframe processing contributes to the need
of processing the occluded regions. In this chapter, the motion estimation algorithm is
modified in order to take occlusion effects into consideration. The modeling of occlu-
sions and motion discontinuities is discussed in Section 4.1 along with the derivation of
a new multiple-term objective function. Section 4.2 describes an optimization method
that allows to minimize this objective function and compute piecewise smooth mo-
tion fields along with the corresponding occlusion and motion discontinuity fields.
Experimental results for sequences with synthetic motion and for natural sequences

are presented in Section 4.3.
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4.1 Extension of the motion estimation algorithm

4.1.1 Definitions and reformulation of the problem

The estimation algorithm presented in Chapter 3 is made complete by taking
into account occlusion effects present in dynamic images. This is possible, as explained
in Section 2.4.3, by defining an occlusion field o and a motion discontinuity field [,
often called line field or line process [14]. The occlusion field has its samples defined on
the lattice A, with sampling periods (Tph, T7,Ty,) [10]. Every occlusion tag o can take
one of several possible states, e.g., moving/stationary (visible), exposed, or covered.
The number of such states is finite and depends on the cardinality of Z;. On the other
hand, the line field is defined over a union of shifted lattices ¥; = vy, U v, where
v = A, + [0 TF/2 017, and ¢, = A, + [T}/2 0 0]F are orthorhombic cosets [10]
specifying positions of horizontal and vertical discontinuities, respectively. Hence,
each line element is defined between two pixel positions. The notation I(x;,x;) will
be used to denote the absence (I(x;,x;) = 0) or presence ({(x;,%;) = 1) of a motion
discontinuity between pixels x; and x;.

The algorithm is hence extended to determine the most likely triplet (py, oz, lt)
corresponding to the true underlying image u based on observations G; = {14, :
7 € Z;}. Assuming that occlusion fields o; and line fields [; are samples from scalar

random fields O; and L;, respectively, the MAP estimate is obtained by extending

equation 3.11 as follows:

(f’taéta Zt) = arg (;naxl;) P(Pt; O =0, Ly = lt|gt)

= arg (;{na}};) [ P(GP|pss 01, sy 9t,) - P(Pelos, Lty g1, )- (4.1)
P(Ot = 0t|ltagtn) ) P(Lt = lt|gtn) ]

In the following sections, models that allow to specify the constituent probabilities
in (4.1) are investigated in order to derive the new objective function U(p) (equation

(3.22)).
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4.1.2 Structural model

In the formulation of the structural model term (Section 3.2.1) it was assumed
that the trajectory through a point (x,t) extends through the whole time interval
defined by Z; (Figure 3.2). But this is only true if the necessary condition stated in
(3.10) is satisfied, i.e., the point (x,1) is visible over the N fields defined by Z;. Hence,

at each spatio-temporal position (x,t) a subset of Z; can be defined as follows:
Itx = {7' & It X € ﬁt}, (42)

where £; = (A,): N V(7;t) is the set of all pixels on lattice A, at time ¢ visible in
the image sequence between t and 7. Z¥ is called the visibility set [12] and contains
time instants from Z; at which pixel (x,t) is visible. This set can be directly derived
from the occlusion state o(x,t) at (x,t) as illustrated in Table 4.1 for 3- and 5-image

estimation. Only the most likely visibility /non-visibility combinations are taken into

7 o(x,1) Description Ir
M moving/stationary {-1,0,1}
{-1,0,1} E exposed {0,1}

C covered {-1,0}
M moving/stationary {-2,-1,0,1,2}
E exposed in (t —1,1) {0,1,2}

{-2,-1,0,1,2} E_; exposedin (t —2,t—1) {-1,0,1,2}
C covered in (t,t+ 1) {-2,-1,0}

Cy1 coveredin (t+1,t4+2) {-2,-1,0,1}

Table 4.1: Table of occlusion states and visibility sets for Z, = {—1,0,1} and Z; =
{_27 _17 07 17 2}

account for N = 5.

The structural model term in (3.17), which relies on the sample variance measure
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(equation (3.13)), is then modified as follows:

Np 9
Usp,0) =3¢ 3 [g0xt e+ k) = Cxint)] ¢ (4.3)
=1 kez'txz
with
((x;,t) = C’ardIXz Z g(xI,t471) (4.4)

and the position x¥ defined as in (3.15). Hence, the new structural term U,(p, o)
becomes dependent on the occlusion field o in the sense that only the fields referenced
by the visibility set Z;* at position (x;,¢) will contribute to the evaluation of the
sample variance. However, the dependence of Us(p,0) on the line field [ has been
omitted since the information about motion discontinuities will be conveyed through
the motion trajectory model.

It is worth also to mention that Us(p, o) is the energy function of Gibbs distri-
bution (equation (3.16)) that models the conditional distribution P(G}|p:,0:, s, g1,)
n (4.1).

4.1.3 Motion trajectory model

Defining motion vectors p; as samples from a vector MRF P, as discussed in
Section 3.2.2, the conditional distribution P(p:|os, I, ¢:,) in (4.1) can be expressed by
a Gibbs distribution whose energy function (equation (3.19)) is modified as follows:

=Y (b ) Tlp — bl — I, %)) (15)

1=1 {x;,%; }€C;
This energy captures the desired smoothness property of the motion field for the
first-order neighborhood system n' (Figure 4.1) only in the absence of motion dis-
continuities. The dependence of the smoothness term U,(p,!) on the line field ! by
the multiplicative term [1 — [(x;,x;)] has been investigated in Section 2.4.3 whereby
a jump in motion parameters is not penalized if a motion discontinuity had been de-

tected. However, the dependence on the occlusion field o is not necessary here, since
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@ (b) (©)
Figure 4.1: First-order neighborhood system n' (a) for motion field p defined over
A, with motion discontinuities ! defined over W;; (b) vertical clique; (¢) horizontal
clique (empty circle: motion position; filled circle: central motion position; rectangle:

position of a line element).

the information about occlusion state transition is considered to be passed by a line

element.

4.1.4 Occlusion model

In [7] the occlusion field o; was modeled for the case of estimation from 3 images
(ie., I = {—1,0,1}). A similar approach is used here for the case of 5-image esti-
mation (i.e., N = 5). The five possible states of an occlusion label o(x,t) are shown
in Table 4.1 for Z, = {—2,—1,0,1,2}. The occlusion field o; is thus modeled by a
discrete-valued scalar MRF described by the following Gibbs distribution

1 _Uolod)

P(Ot — 0t|lt7,gtn) = Z—e Bo (46)

0

with Z, and 3, being constants. The energy function U,(o,!) is defined as follows:

U0(07 Z) = i {VO1 (O(Xivt)) + E V02 (O(Xivt)vo(xjvt)v Z(Xivxj))} ) (4'7)

=1 {xi,x;}eC;
where V,, and V,, are potential functions associated with single- and two-element
cliques respectively. These cliques are chosen from the first-order neighborhood sys-
tem n! shown in Figure 4.1. It is expected that a typical occlusion field consists mostly
of patches of pixels labeled as visible, and some smaller clusters of pixels labeled as

occluded. Therefore, the potential function V,, provides a penalty associated with
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the introduction of an occlusion state, whereas the potential function V,, favors the
creation of continuous occlusion regions near motion discontinuities only. To achieve
this goal, the dependence of V,, on the line field [ is utilized. For instance, whenever
(xi,t) and (x;,1) have the same occlusion state, V,, (o(x;,1), o(x;,1), [(x;,%;)) is set to
0 (high probability) if the two positions are not separated by a motion discontinuity
(i.e., {(x;,x;) = 0) and to a high value (low probability) if they are separated by a
motion discontinuity (i.e., I(x;,x;) = 1).

The assigned costs associated with all possible configurations of single- and two-

element cliques in a 5-state occlusion field are shown in Figure 4.2. These costs are

0 O O ] 2
0.0 20 2.0 20 2.0
@
oo Oig <10 mm €] oo 01 <2I1¢C mm ¢le
0.0 0.0 0.0 0.0 0.0 5.0 10.0 10.0 10.0 10.0

ol o< oim Oole® O1O ol ol olm ole OIC

1.0 10 10 10 0.0 0.0 0.0 0.0 0.0 20.0

om oOle Olm Ole mle O dle <olm Ole mle

30.0 30.0 30.0 30.0 0.0 20.0 20.0 20.0 20.0 20.0

(b)
Figure 4.2: Costs assigned to: (a) V,; (b) V,, for various configurations (up to
rotation and permutation) of occlusion cliques for 7, = {—=2,—1,0,1,2} (occlusion

states: circle (M); empty square (£); empty diamond (F£_;); filled square (C); filled

diamond (C41), line element states: empty rectangle (“off”); filled rectangle (“on”)).

chosen experimentally, and therefore are not optimal in any way. Basically, the costs
associated with 2-element cliques are chosen in a way to discourage the occurrence
of an incompatible combination of neighboring occlusion tags (i.e., £ and ('), and to

favor the creation of clusters of occluded pixels near motion discontinuities.
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4.1.5 Motion discontinuity model

In order to model continuity of motion boundaries, the motion discontinuity

field I; is modeled by a binary MRF L, [12] described by the Gibbs distribution

1 _Ul(lvg)
P(Le = lge,) = - 7, (4.8)
l

with Z; and f; being the usual constants. The energy function U(l) is defined as

follows:

Ui(l,9) ZZZ:{VI1(ZZ'762')‘|’ > Villse)+ X Vlg(lt,ci)}, (4.9)

i=1 ci€C, ci€C,
where ¢; is a clique, N, is the number of horizontal and vertical line elements in the
motion discontinuity field [, [; denotes a horizontal or vertical line element at position
x; € (U;)s, and e; denotes presence (e¢; = 1) or absence (e; = 0) of an intensity edge
at x;. A line element [; is said to be turned “on” (respectively “off”) at x; if [; = 1
(respectively [; = 0) i.e., a motion discontinuity is present (respectively absent) at
x;. Vi, Vi,, and V, are potential functions associated with single-element, four-
element square-shaped, and four-element cross-shaped cliques, respectively (Figure

4.3). These cliques are chosen from a sufficiently large neighborhood system n; [31]

— e ool — HOH ;H;
[l o] = = o | o

= J

@ (b) © (d) (©

Figure 4.3: Neighborhood system #; for motion discontinuity field [ defined over ¥, (a)
for horizontal discontinuity defined over t; (b) for vertical discontinuity defined over
¥y (c) single-element clique; (d) four-element square-shaped clique; (e) four-element
cross-shaped clique (empty rectangle: positions of a line element; filled rectangle:

position of the central line element; circle: pixel position).

defined over U, at a horizontal or vertical discontinuity (Figure 4.3(a) and 4.3(b)).
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The set of four-element square-shaped cliques is denoted by C;, while the set of four-
element cross-shaped cliques is denoted by Ci,.

It is assumed that, in general, the introduction of a motion discontinuity should
coincide with an intensity edge. This is enforced by the potential function V;; which
uses single-element cliques to associate a high penalty whenever a motion discon-
tinuity does not match an intensity edge [21]. V; can therefore be formulated as
follows:

Vip(liyer) =10 - (1.1 —€;) - 5, (4.10)
with [; and e; denoting the values of the line element and the intensity edge, respec-
tively, at position x;. Hence, the introduction of a motion discontinuity (/; = 1) is
penalized by 11 in the absence of an intensity edge (¢; = 0) and by 1 if such edge is
present (e; = 1). This latter value assures a penalty associated with the introduction
of a line element since otherwise such elements could be introduced everywhere on
(U;); to bring the energy (4.5) to zero.

The field of intensity edges e; at t is calculated a priori by the application of
Canny [6] edge detector £ to the observation field g, i.e., e, = £(g:). This operator
consists of finding zero-crossings (i.e., intensity edges) of a smoothed version of ¢; at

positions x; € (¥,);, along direction n, as follows:
)
Jn " Jn

where h is a 2-D Gaussian

(h(x:) * g(xi,8)) =0,  i=1,---,N, (4.11)

h(x) = €2, (4.12)
and % is the directional derivative with respect to n which represents the direction

normal to the intensity edge e; at x; € (VU;);. Since only horizontal and vertical

intensity edges are needed, then

h— [0 1] if x; € (lbh)t, (4‘13)
10" ifx € (o)

The operator € in (4.11) can be equivalently characterized by
£: n?T Vi(h(x)*g(x,t))-n=0 i=1,---,N, (4.14)
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with VZ being the spatial Hessian matrix. This explains the dependence of the a
priori probability of the line process (4.8) on the observation g, .

The control over straight lines, corners and intersections is achieved by the
penalty functions V,, and V, using the four-element cliques in Figure 4.3(d) and
4.3(e), respectively. V,,, in particular, discourages formation of double lines and also
inhibits the generation of isolated trajectories while V,, discourages the creation of

unended and intersecting segments.

—/ || || || || ||
Joll  Jol fJoll [Jol Jol 1ol
—/ —/ || —/ || ||
00 00 60.0 00 100.0 300.0
@
o[ o o] o o] o o] o o] o o] o
—/] 3 —/] 3 —/— 3 /1 . —/— .. I ..
o[ o o[ o o] o o[ o o] o o] o
00 08 02 0.4 20 40
(b)

Figure 4.4: Costs assigned to: (a) Vj,; (b) V, for various configurations (up to rota-
tion) of line cliques (filled rectangle: line element “on”, empty rectangle: line element

“off’, circle: pixel position).

Figure 4.4 shows the proposed costs (inspired by [7]) associated with different

configurations (up to a rotation) of four-element square- and cross-shaped cliques.

4.1.6 New objective function

Substituting the conditional probabilities in (4.1), the following optimization

problem results

(ﬁt, ét, it) = min U(pt, O¢, Zt), (415)
{Pt,0t,0¢}

where U(p,0,1) is the new multiple-term objective function expressed as follows:
U(p,0,1) = Us(p,0) + AUp(p, 1) + AsUs(0,1) + MUi(1, 9). (4.16)
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The constituent energies in (4.16) are defined in (4.3), (4.5), (4.7), and (4.9) re-
spectively, and A\, = 1/3,, A\, = 1/8,, At = 1/, denote their respective associated
weights.

4.2 Optimization method

Since trajectories are described by continuous-valued parameters while occlu-
sions and motion discontinuities are described by finite discrete state spaces, different
optimization methods must be used to estimate p, o, and [. This can be accomplished
by solving the minimization problem in (4.15) in an interleaved fashion, i.e., while
one field is iteratively updated, the others are kept constant. Hence, at each iteration
(full scan of a field) n, the three fields p;, o, and [; are updated consecutively by

performing one iteration of the following minimization problems

-1
0 = 02(5n )

(a) pp = argmin{U,(ps, o) + \Up(ps, 11)} with
{p:} l, = Zgn—l)
p.=p "

-1
0 = 02(5n )

(b) I = arg fgi{l{)\pUp(Pta L) + AoUso(o0s, 1) + MU (I, 91)} with

_ (n—1)
(c) of = argf{ﬂi?{(]s(phot) + Aolo(or, 1)} with " (pt 1)
ot lt = ltn_
(4.17)

respectively. Once all three fields have been updated, the process is repeated until a

suitable convergence of U(p,o,1) is achieved.

4.2.1 Optimization of the motion field

Optimization of the motion field p; in equation (4.17a) is carried out using
the deterministic relaxation algorithm discussed in Chapter 3. The same iterative
algorithm, as derived in Section 3.3.2, results with some minor modifications. Hence,
the updating of a motion vector p} at iteration n is accomplished by solving the linear

system: A” - p?’ = b?. The matrix A? and vector b’ are defined in (3.33) and (3.34)
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respectively with the set Z; replaced by the visibility set Z;", and the average motion

vector p; at position x; modified as follows:

1

p: = 5 Z p]‘[l - Z(Xivxj)]a (4'18)

b jent(d)
with

& = E [1—I(x;,%;)] (4.19)
JENL(3)

4.2.2 Optimization of the line and occlusion fields

Optimization of the line and occlusion fields is carried out by solving the mini-
mization problems in equations (4.17b) and (4.17c) respectively using Besag’s Iterated
Conditional Modes (ICM) method [4]. Each iteration of this method consists of two
scans. During the first scan some selected positions are visited and the line ele-
ment /occlusion state at each position is updated using an exhaustive search over all
possible states (2 states for the line field, 5 states for the occlusion field). The line
element /occlusion state that yields the lowest energy is chosen as the new state. The
remaining positions are then visited during the second scan. Such a procedure has
been chosen in order to break the dependence of line/occlusion state from neighboring

states, and thus to allow quick convergence.

4.3 Simulation results

4.3.1 Definition of parameters

The modified estimation algorithm has been simulated on some test images with

the main parameters chosen as follows:

1. The number of resolution levels L in the image pyramid is set to 4. Hence, at
each resolution level k, coarse motion fields are estimated along with the corre-
sponding occlusion and line fields before switching to the next finer resolution

level k — 1 (Figure 2.4). An intensity edge field e; for each resolution level is
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therefore needed in the estimation algorithm. These intensity edges are pre-
pared a priori by application of the Canny edge detection operator £, described

in (4.14), at each resolution level.

2. The quadratic motion trajectory model is used in the subsequent simulations.

Hence, both velocity and acceleration fields are estimated.

3. The regularization parameters (\,, A;) associated respectively with the occlusion

term U,(o,1) and the line term Uj({, g) of the new objective function U(p,o,()
(4.16) are chosen experimentally for each image. On the other hand, the reg-
ularization parameter associated with the smoothness term U,(p, () was set to

A, = 20.

. I, ={-2,-1,0,1,2} is selected in the motion estimation algorithm. However,
Z, = {—1,0,1} will be used sometimes to compare the estimated occlusion and

motion discontinuity fields for N =5 and N = 3.

. The set of time instants used in the motion-compensated interpolation is set to
Jr =IFN{-2,2}. Hence the set J; is now adapted to occlusion labels. Also, a
comparison with the interpolated sequences generated using motion estimates

from the previous algorithm (Chapter 3) will be possible.

In the following, algorithm A is used to represent the motion estimation algorithm

discussed in Chapter 3 (without processing of occlusion areas and motion disconti-

nuities), whereas algorithm B represents the new modified algorithm that estimates

piecewise-continuous motion along with occlusion areas and motion discontinuities.

4.3.2 Results for synthetic sequences

In order to verify the accuracy of the occlusion and motion discontinuity esti-

mates, test image 5 with synthetic motion has been generated using the procedure

from Section 3.4.1. The test image 5, shown in Figure 4.5a, differs from test images 1
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and 2 by the fact that it is a highly detailed sequence thus making it more challenging

for motion estimation. The ability to isolate moving contours of the rectangle from

Figure 4.5: Field #2 of (a) test image 5 (the white frame encircles the area used for
estimation); (b) intensity edges detected by the edge detection operator £ applied to

the encircled area.

the rest of the intensity edges will demonstrate the validity of motion discontinuity
estimates. Therefore, test image 5 should be a good test sequence for the modified
estimation algorithm B. Intensity edges computed within the estimation area by the
Canny operator £ are shown in Figure 4.5b.

The algorithm has been tested on field #2 of test image 5 with (X,, \;) = (7,5),
and p(2) =[2 0 0 0]7 being the real motion parameters of the moving rectangle at
field #2. The resulting motion field estimates for algorithms A and B are shown in
Figures 4.6 and 4.7, respectively.

Note that the estimates in Figure 4.7 obtained by algorithm B are more accurate
around the moving rectangle than those obtained by algorithm A. The reason for this
is that the successful estimation of motion discontinuities (Figure 4.8b) in algorithm
B was helpful in disabling the motion smoothness constraint around these disconti-
nuities and hence providing a piecewise-constant estimate. This corresponds better

to the true underlying motion and leads to a substantial decrease in the M.SE of the
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Figure 4.6: Estimated: (a) velocity v(2), and (b) acceleration a using algorithm A
at field #2 of test image 5 with p(2) =[2 0 0 0]%.

(a) (b)

Figure 4.7: Estimated: (a) velocity v(2), and (b) acceleration a using algorithm B at
field #2 of test image 5 with p(2) =[2 0 0 0]T.
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estimates (Table 4.2) in the overall estimation area Ry and in the moving rectangle

area Ry (with its boundaries). The estimated occlusion 6(2) and motion discontinuity

Algorithm v;(2) vy (2) a, ay
MSE in Rq A 0.085129 | 0.021696 | 0.029210 | 0.011074
B 0.024777 | 0.002168 | 0.001252 | 0.002068
MSE in R, A 0.026600 | 0.023800 | 0.027487 | 0.014547
B 0.005794 | 0.002501 | 0.000659 | 0.004616

Table 4.2: Comparison of the M S E of motion estimates in Ry and Ry resulting from
application of algorithms A and B at field #2 of test image 5 with p(2) =[2 0 0 0]7.

fields 2(2) are shown in Figure 4.8 for Z, = {—2,—1,0,1,2} (N =5) and in Figure 4.9
for 7, = {—1,0,1} (N = 3). The assigned intensity level to each possible occlusion
state in the occlusion field is: M =128, £ =192, K1 = 255, C' =64, and C4; = 0.

(a) (b)

Figure 4.8: Estimated: (a) occlusion field 6(2), and (b) line field 2(2) at field #2 of
test image 5 with p(2) =[2 0 0 0]F and Z; = {-2,-1,0,1,2}.

Note that the detected occluded regions in Figure 4.8a for N =5 are consistent
with the horizontal motion (from left to right) of the rectangle moving at a constant
velocity of 2 pixels per field. The dark area represents the area that is going to
be covered within the next 2 time intervals whereas the bright area represent the
area that has been exposed within the previous 2 time intervals. A comparison with

the detected occlusion regions for N = 3 [9] (Figure 4.9a) shows that multiframe
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Figure 4.9: Estimated: (a) occlusion field 6(2), and (b) line field 2(2) at field #2 of
test image 5 with p(2) =[2 0 0 0]F and Z; = {-1,0,1}.

processing (i.e., N = 5) helps in a better identification of occluded regions. This is

also true for the identification of motion discontinuities (Figures 4.8b and 4.9b).

So far, Algorithm B has been tested on test image 5 with the rectangle moving
horizontally and no acceleration. In a second experiment, algorithm B has been
tested on field #2 of test image 5 with (\,, ;) = (7,9), and p(2) =[4 4 1 1]7. In
this case, the rectangle is moving diagonally (from top-left to bottom-right) with an
acceleration of a = [1 1]7 per field.

The resulting motion field estimates for algorithms A and B are shown in Figures
4.10 and 4.11, respectively, and the M SFE of the resulting motion estimates in regions
Ro and Ry is reported in Table 4.3.

Algorithm v:(2) vy (2) a, ay
MSE in Rq A 0.964976 | 1.140209 | 0.243863 | 0.197281
B 0.616461 | 0.858218 | 0.129602 | 0.096950
MSE in R, A 0.232956 | 0.211468 | 0.096320 | 0.072566
B 0.019926 | 0.024808 | 0.003422 | 0.004236

Table 4.3: Comparison of the M S E of motion estimates in Ry and Ry resulting from
application of algorithms A and B at field #2 of test image 5 with p(2) = [4 4 1 1]%.

The estimated occlusion 6(2) and motion discontinuity fields Z(Z) are shown in
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Figure 4.10: Estimated: (a) velocity v(2) (scaled by 0.5), and (b) acceleration a

algorithm A at field #2 of test image 5 with p(2) = [4 4 1 1]%.

LSS LT

L VAR B A
s

P

using

L T L I
P N o N
T Y v S NNNNNS S h AT
MR O NN
M T S
A T N T T T R N e e N
R R R R e
RN e R R R O O O i
A O e T N
M e O e e
BRI O e e idad

7

\
R N e e
R T e i

O N
RN R N NS Y

R e R e O N T

R I

R R e R

R R T N T T}

R N N R N e N T N N

R N R R R AR R

B e R e N

B I I B A AP A S
R S IR AR

""‘\\,\\\\\\\\\\0\\\\\\\\‘
SN N
AN L s
NN IR IR
TNV
ANt

(b)

Figure 4.11: Estimated: (a) velocity ¥(2) (scaled by 0.5), and (b) acceleration a
algorithm B at field #2 of test image 5 with p(2) =[4 4 1 1]T.
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Figure 4.12 for 7, = {-2,-1,0,1,2} (N =5) and in Figure 4.13 for Z, = {—1,0,1}
(N =3).

Figure 4.12: Estimated: (a) occlusion field 6(2), and (b) line field ZA(Z) at field #2 of
test image 5 with p(2) = [4 4 1 1]F and Z;, = {-2,-1,0,1,2}.

Figure 4.13: Estimated: (a) occlusion field 6(2), and (b) line field ZA(Z) at field #2 of
test image 5 with p(2) = [4 4 1 1]F and Z; = {-1,0,1}.

Similar observations as before can be made; processing of occlusion areas and
motion discontinuities helps to decrease the MSFE of motion estimates, especially
around the border of the moving rectangle (Table 4.3). Also, occluded areas are
better tracked with N = 5 then with N = 3. Note that the covered area in Figure
4.12a is larger than the exposed area due to the presence of acceleration in the diagonal
direction, and hence the detected occluded areas are consistent with the motion of

the moving rectangle.
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4.3.3 Results for natural sequences

=

Algorithm B has been also tested on test images 3 and 4 (Figures 3.5 and

3.6) with (A,, \) = (1,2). The results are illustrated in this section along with a
comparison with the results obtained by algorithm A.

The computed intensity edges at fields #26, 42, and 70 of test image 3 are shown

in Figure 4.14. These fields are used in algorithm B to penalize the introduction of

line elements at non-edge sites.
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Figure 4.14: Computed intensity edges: (a) e(26); (b) e(42); (c) e(70) at fields #30,
42, and 70 of test image 3, respectively.

Figure 4.15 illustrates the PSNR of 28 reconstructed fields from test image
3 using motion obtained from algorithm A (full line) and motion and occlusions
obtained from algorithm B (dashed line).

An average increase of +1.27 dB in the PSNR has been achieved by using
algorithm B instead of algorithm A. The PSNR boost is most apparent in fields
containing accelerated motion of the hand or arm. This can be easily explained by the
fact that accelerated motion generates more occluded regions than linear motion, and
hence the detection of these regions (in Algorithm B) in the presence of acceleration is
helpful in obtaining better motion estimates especially around motion discontinuities.

The estimated piecewise-continuous velocities at fields #26 and 42 are shown
in Figures 4.16a and 4.17a, respectively, along with the corresponding estimated line
fields. The same fields derived by algorithm A are shown in Figures 4.16b and 4.17b.

Note that the estimation of motion discontinuities has allowed to disable the motion
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Figure 4.15: Comparison of the PSNR for reconstructed fields from test image 3
using algorithm A (full line) and algorithm B (dashed line).

smoothness constraint around these discontinuities (i.e., between moving/stationary
and occluded regions), and hence to produce piecewise-continuous motion estimates
that are closer to the true underlying motion.

The occlusion and motion discontinuity fields along with the reconstructed and
error images (using algorithms A and B) for fields #26, 42, and 70 are shown in
Figures 4.18, 4.19, and 4.20 respectively.

Note that the occlusion and motion discontinuity estimates seem consistent with
the motion in the sequence. This can be confirmed by the reconstructed fields and
their respective error images in Figures 4.18, 4.19, and 4.20. For instance, one can
notice that the interpolated field #40 obtained using the motion and occlusion es-
timates obtained by algorithm B (Figure 4.19e) is closer to the true field (Figure
4.19a) than the interpolated field obtained using only the motion estimate obtained
by algorithm A (Figure 4.19d). This difference is most noticeable in the region of the
left arm. The same kind of behavior can be noticed in Figure 4.20 where the contours

of the moving right hand are better reconstructed when algorithm B is used.

The same experiments have been run for test image 4. The computed intensity

edges at fields #6, 14, and 19 of test image 4 are shown in Figure 4.21.
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Figure 4.16: Estimated (a) velocity v(26) and line fields i(26) using algorithm B; (b)
velocity v(26) using algorithm A at field #26 of test image 3.
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Figure 4.17: Estimated: (a) velocity v(42) and line fields i(42) using algorithm B;
(b) velocity v(42) using algorithm A at field #42 of test image 3.
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(f)
(2)

Figure 4.18: Estimation (a) area of field #26 of test image 3; (b) occlusion field 6(26);
() line field /(26); reconstructed field using: (d) algorithm A (PSNR = 41.96 dB);
(e) algorithm B (PSNR = 42.76 dB) with their respective error images (magnified
by 2) in (f) and (g).
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(2)

Figure 4.19: Estimation (a) area of field #42 of test image 3; (b) occlusion field 6(42);
() line field /(42); reconstructed field using: (d) algorithm A (PSNR = 36.94 dB);
(e) algorithm B (PSNR = 39.67 dB) with their respective error images (magnified
by 2) in (f) and (g).
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(2)

Figure 4.20: Estimation (a) area of field #70 of test image 3; (b) occlusion field 6(70);
() line field /(70); reconstructed field using: (d) algorithm A (PSNR = 35.31 dB);
(e) algorithm B (PSNR = 39.53 dB) with their respective error images (magnified
by 2) in (f) and (g).
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Figure 4.21: Computed intensity edges: (a) e(6); (b) e(14); (¢) e(19) at fields #6, 14,
and 19 of test image 4, respectively.

43
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Figure 4.22: Comparison of the PSNR for reconstructed fields from test image 4
using algorithm A (full line) and algorithm B (dashed line).

The resulting PSNR curves are reported in Figure 4.22 where an average in-
crease of +2.3 dB in the PSNR has been achieved by using algorithm B instead of
algorithm A.

The occlusion and motion discontinuity fields obtained for fields #5, 6, 8, 14, 19,
and 26 are shown in Figures 4.23, 4.24, 4.25, 4.26, 4.27, and 4.28 respectively. Note
that most of the occluded regions are concentrated in the area of the eyes and the
mouth. Also, the estimated motion discontinuities match well the moving contours
of the eyes and the mouth.

The reconstructed fields and their respective error images (using algorithms A
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and B) at fields #6, 14, and 19 are shown in Figures 4.24d-g, 4.26d-g, and 4.27d-g
respectively. From these results, one can conclude that the processing of occlusions
and motion discontinuities has helped to eliminate most of the interpolation errors
that were present in the regions of the eyes and the mouth prior to occlusion processing
(i.e., algorithm A). This improvement is also visible in the reconstructed fields,
especially in Figure 4.27, where a comparison of the two reconstructed fields #19
using algorithms A and B (shown in Figures 4.27d and 4.27e, respectively) with the
original field (Figure 4.27a) illustrates the difference, mainly in the region of the

mouth.
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Figure 4.23: Estimation (a) area of field #5 of test image 4; (b) occlusion field 6(5);
(c) line field 2(5)

(f)

Figure 4.24: Estimation (a) area of field #6 of test image 4; (b) occlusion field 6(6);
(c) line field ZA(G); reconstructed field using: (d) algorithm A (PSNR = 36.91 dB);
(e) algorithm B (PSNR = 41.41 dB) with their respective error images (magnified

by 2) in (f) and (g).
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Figure 4.25: Estimation (a) area of field #8 of test image 4; (b) occlusion field 6(8);
(c) line field 2(8)

(é)

Figure 4.26: Estimation (a) area of field #14 of test image 4; (b) occlusion field 6(14);

(f)

(c) line field i(14); reconstructed field using: (d) algorithm A (PSNR = 37.27 dB);
(e) algorithm B (PSNR = 41.72 dB) with their respective error images (magnified
by 2) in (f) and (g).
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Figure 4.27: Estimation (a) area of field #19 of test image 4; (b) occlusion field 6(19);
(c) line field 5(19); reconstructed field using: (d) algorithm A (PSNR = 35.79 dB);

(e) algorithm B (PSNR = 41.17 dB) with their respective error images (magnified
by 2) in (f) and (g).

Figure 4.28: Estimation (a) area of field #26 of test image 4; (b) occlusion field 6(26);
(c) line field 2(26).
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Chapter 5

Conclusions

5.1 Summary

Different types of motion-compensated processing of time-varying images, such
as predictive coding and standards conversion, require the availability of 2-D motion
estimates. In this thesis, estimation of dense motion trajectories with acceleration has
been investigated. Unlike in most of the existing motion estimation algorithms that
assume a linear trajectory model over two fields in an image sequence, the proposed
method assumes a quadratic trajectory model defined over longer temporal support.
Hence, two motion field estimates of instantaneous velocities and accelerations are
generated to describe quadratic trajectories instead of one displacement field that

describes linear trajectories in an image.

Due to the ill-posed nature of motion estimation, the algorithm for the estima-
tion of dense accelerated motion fields has been formulated using regularization. The
objective function has been derived using Gibbs-Markov models linked together by the
Mazimum A Posteriori (MAP) probability criterion. It consists of a structural model
that follows directly from the constant intensity assumption along motion trajecto-
ries, and of an a priori motion trajectory model that captures the desired smoothness

property of motion fields. Energies resulting from these models have been combined
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linearly using regularization parameter A, that plays a vital role in weighting the im-
portance of the two models. Optimization of the objective function has been carried
out using a deterministic relaxation algorithm implemented over a pyramid of reso-
lutions. The importance of multiresolution methods in the estimation of fast motion

and efficient localization of a near global optimum has also been addressed.

The motion estimation algorithm has been tested successfully on progressive
and interlaced sequences with synthetic motion parameters of 1/4 pixel accuracy.
The MSFE measure has been used to measure the validity of motion estimates and
to select certain parameters in the algorithm such as the regularization parameter
Ap, and the number of images used in the estimation. Also, plots of some estimated
trajectories have been compared with their respective true trajectories in order to
illustrate the difference in trajectory tracking when the quadratic trajectory model is

used instead of the linear model.

The usefulness of motion trajectories with acceleration for motion-based pro-
cessing has been investigated on natural sequences. The estimated trajectories have
been applied to a motion-compensated interpolation scheme for the case of 4:1 sub-
sampling. A comparison of the PSN R for the reconstructed images using linear and
quadratic motion trajectory models over 5 fields and linear trajectory model over 2
fields was carried out. Similarly to [35], it was concluded that in images containing
acceleration, the knowledge of this acceleration permits a substantial reduction of
the reconstruction error. Also, subjectively the quadratic motion trajectory model
has resulted in a remarkable improvement of the reconstructed image quality. This
observation is particularly true for image sequences containing “talking heads” where
eyes and mouth do exhibit acceleration. Occasionally, the difference between the two
models has amounted to the mouth being closed, whereas in the original image it was
open. From the transmission point of view, this improvement comes at the cost of
additional bit rate allocated to acceleration parameters. It is not clear at this point

whether this increase can be compensated by the reduced prediction residual.
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The motion estimation algorithm was finally extended in order to detect oc-
clusion areas while estimating motion parameters. This feature is vital in motion-
compensated interpolation applications, where it is imperative that estimated motion
parameters near motion discontinuities be of high quality and that occlusions be prop-
erly handled. A new multiple-term objective function including an occlusion model
and a motion discontinuity model (in addition to the structural model and a priori
motion model) has been derived. The occlusion model, in the case of estimation from
5 images, has been presented. This model favors the creation of clusters of occlusion
tags near motion discontinuities. On the other hand, the motion discontinuity model
assigns a high penalty whenever a motion discontinuity does not match an inten-
sity edge. It also controls the formation of straight lines, corners, and intersections.
The minimization of the new objective function, performed in an interleaved fashion,
results in piecewise-continuous motion fields that correspond better to real TV im-
ages than the globally-continuous motion fields generated in absence of the occlusion

model.

The use of multiframe processing in the proposed motion estimation algorithm
has been expected to be beneficial from the point of view of improved identification
of occlusion areas and motion discontinuities. This was confirmed by comparing oc-
clusion and line fields estimated using 3 and 5 images from sequences with synthetic
motion. However, the estimation of occlusion fields in the motion estimation algo-
rithm requires more computational time. Also, the occlusion information has to be
transmitted with the motion information in interpolative coding schemes resulting in
some extra bits to be transmitted. These disadvantages, however, have to be weighted
against a significant increase in the quality of reconstructed sequences at the receiver

as was discussed in the section on experimental results for natural sequences.

The work reported in this thesis is of exploratory nature. We were interested in
finding out what possible improvements could the computation of acceleration and

occlusions bring. The proposed algorithm is very complex computationally due to
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its iterative nature and due to the calculation of derivatives. It is not intended for
real-time implementation. However, we hope that the demonstrated improvements
will eventually find their way to real-time implementations through some simplified

algorithms.

5.2 Contributions

This thesis has contributed to the theory of 2-D motion estimation. The major

contributions of this work can be summarized as follows:
1. Modeling of motion trajectories with acceleration.
2. Estimation of motion and occlusions over multiple images.

3. Application of motion trajectories with acceleration to motion-compensated
temporal interpolation in a multiple-frame scenario. It has been shown that
for images containing acceleration, such as “talking heads”, the quadratic mo-
tion model permits a substantial reduction of the reconstructed error when

compared with the ubiquitous linear model.

4. Application of occlusion processing in the context of motion-compensated tem-
poral interpolation. It has been demonstrated that a further improvement,
especially around motion discontinuities, is observed in reconstructed images

when occlusions are accounted for.

5.3 Open questions

5.3.1 Regularization parameters

The regularization parameters A,, A,, and A; have been chosen empirically.
Optimal estimation of these parameters remains to be a challenging task, especially

when estimating unobservables such as motion.
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5.3.2 Hierarchical processing

In the hierarchical processing, a “constant-width” pyramid for images and a
regular pyramid for motion fields have been considered. The likelihood of convergence
to the global optimum may be improved by considering also a regular pyramid for
images. This will allow to spread the displacement vector updates proportionally over
image resolutions and may result eventually in a better optimum. However, the use of
regular image pyramids will result in data loss (due to subsampling), and hence may
affect the performance of the motion estimation algorithm (because of the derivative
computation). Moreover, the smoothing by Gaussian filters destroys the contours in
the image, and hence results in erroneous occlusion estimation at the lower resolution
levels of the pyramid. Nyquist-like filters that do not unnecessarily oversmooth the

data may be worth considering in the generation of the pyramid of image resolutions.

5.3.3 Rate-constrained motion estimation

This thesis has demonstrated the importance of the estimation of accelerated motion
and occlusions in reducing the reconstruction error in an interpolative coding scheme.
With such an improvement, the motion-compensated interpolation error is very small.
This error may be transmitted or not, depending on the target quality. It remains to
be studied whether the reduction of the transmitted residual (reconstruction error) or
the improvement in quality of reconstructed images compensate for the increased bit
rate needed to transmit the acceleration and/or occlusion information. This problem,
called “rate-constrained motion estimation”, has not been studied in-depth yet, except
for very simple cases. Perhaps, acceleration is worth considering for post-processing
in video conferencing and videophone applications where temporal subsampling is

often used.
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Appendix A

Markov Random Fields and the
Gibbs Distribution

The main focus here are 2-D random fields defined over a finite N; x N, rect-
angular lattice of points (pixels) defined as: A = {(¢,7) : 1 < < Ny, 1 <3 < Ny}
The concepts of neighborhood and cliques are essential in the definition of the Gibbs
distribution. A neighborhood system on lattice A is defined as follows:

Definition 1: A collection of subsets of A described as:

n={nj: (7)€ An; CA} (A.1)
is a neighborhood system on A if and only if
L. (4,5) & mij, and
2. if (k1) €mij = (4,7) Enqu V (1,7) € A.

A Markov Random Field (MRF) with respect to the neighborhood system 7 defined
over the lattice A is then defined as follows:

Definition 2: Let n be a neighborhood system defined over lattice A. A random
field X = {X;;} defined over lattice A is a Markov random field with respect to the
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neighborhood system 7 if and only if:

P(Xij = iy | X = e, (k1) € A (k1) # (4,7)) = P(Xij = 2ij | X = aw, (k1) € 9i5)
(A.2)

for all (z,j) € A, and P(X =) > 0 Vz.

Note that capital letters are used to denote random variables and random fields, and

lower case letters to denote specific realizations.

The first-order neighborhood system 7' is the most commonly used in image
modeling. It consists of the closest four neighbors of each pixel, and is known as
the nearest-neighbor model. The second-order neighborhood system n* = {7} is
such that 772-2]- consists of the eight pixels neighboring (i, 7). In general, the the m
order neighborhood system n™ contains all sites of systems of order up to m —1 (i.e.,
n™ = {n*: k < m}). The “cliques” associated with a lattice-neighborhood pair (A, 7)
are defined as follows [14]:

Definition 3: A clique of the pair (A,n), denoted by ¢, is a subset of A such that:
1. ¢ consists of a single pixel, or
2. for (Lv.]) 7& (kvl)7 (Lv.]) €, and (kvl) cc= (Lv.]) € Nt-

The collection of all cliques of (A, n) is denoted by C. The types of cliques associated

with 1 and n? are shown in Figure A.1.

It is known that the usual characterization of a MRF through initial and tran-
sitional probabilities is complex. On the other hand, from the Hammersley-Clifford
theorem [3] it is known that a random field has Markovian properties if and only
if it is governed by a Gibbs distribution (GD). The GD is defined in the following
manner[14]:

Definition 4: Let n be a neighborhood system defined over the finite lattice A. A
random field X = {X,;} defined on A has a Gibbs distribution or equivalently is a
Gibbs Random Field (GRF) with respect to 5 if and only if its joint distribution is
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Figure A.1: Neighborhood system n' (a) and associated cliques (b); Neighborhood

system n* (c), and associated cliques (d).

of the form:

P(X =2)= Ze_T (A.3)

where

Ule) = Y Vilw) (A1)

ceC

is the energy function and V,(x) is the potential associated with clique c. The partition
function Z =Y., e~V is simply a normalizing constant, and 3 is another constant
called the natural temperature. The only condition on the otherwise totally arbitrary
clique potential V.(z) is that it depends only on the pixel values in clique ¢. The joint
distribution in (A.3) has a physical interpretation: the smaller U(z), the energy of
the realization x, the more likely that realization.

The GD is basically an exponential distribution. However, by choosing the clique
potential function V.(x) properly, a wide variety of distributions, both for discrete
and continuous random fields, can be formulated as GD (i.e. binomial, Poisson, and
Gaussian random fileds). Unlike the MRF characterization, the GD characterization
is free from consistency problems and in some applications provides a more workable

spatial model.
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Appendix B

Cubic Convolution Interpolation

Assuming 1-D notation, let w be an input signal defined over a lattice A. The
interpolated signal @ defined over R can be obtained by the following convolution:
o) = Y wyu(z —y), zeR, (B.1)
yeA
where u is the impulse response of a low pass filter, known as the interpolation kernel
to be defined. Note that also, due to the linearity of the convolution, the derivative

of w can be obtained as follows:

a’gf) =Y uly) =5 TEeR (B.2)

Keys [25] has proposed a cubic convolution kernel u(z) for one-dimensional problem
which converts the discrete data w into a continuous function w by the convolution
operation in (B.1).

The cubic convolution algorithm, normally requires that the interpolation kernel
be continuous, and possess a continuous first-order derivative. Otherwise the interpo-
lated function will have sharp edges at sampling points which is an undesirable effect,

especially when interpolating intensities in an image. The cubic convolution kernel
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introduced by Keys:

2af® = 22?4+ 1 0<z|<1
u(@) =19 —LaP + 22— 4| +2 1< |2 <2 (B.3)
0 2 < |[a]

is symmetric, continuous, and has a continuous first derivative as shown in Figure

B.1. Moreover, it is zero for all non-zero integers, and one when its argument is

Figure B.1: Impulse response u(z) of cubic interpolator proposed by Keys.

zero (this condition has an important computational significance, namely, that the

interpolation coefficients become simply the sampled data points).
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