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SUPERRESOLUTION USING SPLINES AND ANISOTROPIC

DIFFUSION

ELIZABETH BEGIN

ABSTRACT

High-resolution images are valuable in many applications such as medical imaging, satellite

imaging or video surveillance. One way to increase the resolution of an imaging sensor is

to decrease the size of pixels while increasing their number. However, decreasing the size

of pixels results in increased shot noise. An alternative to modifying the hardware is to

improve the resolution of images by means of signal processing. This is often referred to

as superresolution image reconstruction.

Superresolution from a single image relies on exploiting specific characteristics of the

image, and is very difficult for general imagery. An alternative is superresolution from

multiple images that are mutually offset by subpixel shifts (”shaky video”). By combining

multiple images together, some of the frequency content lost in the imaging process can be

recovered. Superresolution reconstruction exploits this property to obtain a high-resolution

image. There are two key steps in superresolution reconstruction, motion estimation and

image restoration. In order to combine the low-resolution images, so that additional spec-

tral content can be recovered, the low-resolution images must be aligned, resulting in an

irregular set of samples. Once the locations of pixels are known, the high-resolution im-

age can be estimated through image restoration. In this thesis, we focus on the image

restoration step.

To date, image restoration for superresolution has been studied in the context of it-

erative back-projection, projection onto convex sets, maximum a posteriori probability

estimation, etc. The fundamental difference between different superresolution methods lies

in the underlying continuous image model. One of the more recent and effective super-

resolution methods uses bi-cubic splines as the underlying image model, and 2-D spline

fitting under thin-plate regularization. The thin-plate model applies isotropic smoothing

v



regardless of local image content, thus smoothing across intensity boundaries and limiting

the performance.

In this thesis, we extend this method by introducing spatially-adaptive, or anisotropic,

regularization. The anisotropic weighting uses local image gradient to adapt the smoothing

to intensity edge orientation. Since gradient of the high-resolution image is unknown, we

estimate it from the low-resolution images. Although this is only a coarse gradient estimate,

it has a beneficial impact on superresolution performance.

For data sets with known motion parameters, our results confirm the edge enhancing

effects of the spline-based anisotropic approach. The improvements are verified both quan-

titatively and visually. However, for data that requires motion estimation this performance

gain over isotropic methods is significantly reduced. Therefore, we conclude that without

precise motion estimation the benefits of superresolution with anisotropic diffusion are

limited.
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Chapter 1

Introduction

The objective of superresolution reconstruction is to recover a high-resolution (HR) frame

from multiple low-resolution (LR), degraded images. The basic premise of superresolution

is that there exist LR images which are spatially offset by subpixel amounts (Park et al.,

2003). Superresolution refers to the ability to recover higher frequency content than what

is available in any of the individual LR images. This additional frequency information is

provided by the offset of each of the LR images. Superresolution can be used to construct

a single HR image or multiple images for a video sequence. For video reconstruction, a

moving window of frames is utilized to create each of the HR video frames (see Figure 1.1).

Superresolution consists of two steps, both of which are extensive fields of study, image

registration and image restoration. In this thesis, we focus on image restoration.

1.1 Superresolution

It is evident that SR is valuable on the basis that a user or system is able to obtain more

detailed information from a higher resolution image. It is not always feasible to increase

the resolution of a sensor through hardware modifications. For example, although the

resolution of an image can be improved by decreasing the size of a pixel and increasing

the number of pixels in a sensor, this solution is not always an option due to shot noise

(Park et al., 2003). As pixel size decreases, the amount of light captured by each pixel

also decreases, resulting in the possibility of shot noise. Superresolution is an effective way

to increase resolution through signal processing, an excellent alternative to modifying the

dimensions of the pixels.

There exists a variety of applications which can benefit from SR reconstruction. For
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Figure 1·1: Superresolution video restoration uses a moving window of
frames to construct the HR images.

example, in medical imaging, such as magnetic resonance imaging (MRI), a higher res-

olution image helps doctors more accurately diagnose a patient. In radar and satellite

applications, SR improves a sensor’s ability to distinguish separate objects and correctly

classify them. In digital camera and video applications, a user may want to zoom-in on a

particular region of an image. Through the use of SR, artifacts introduced by the zoom

can be suppressed. SR can be applied to almost any imaging application in which multiple

spatially offset images are being acquired.

The primary requirement for SR reconstruction is the existence of multiple LR im-

ages shifted by subpixel amounts. Integer-shifted images contain the same information

and therefore do not provide any additional information for the SR reconstruction of the

underlying HR image. Combining multiple subpixel-shifted images results in LR samples

with higher spatial density than an individual LR image. Ideally, all samples, derived from

R frames, are unique in position, meaning there is no spatial redundancy in samples over

time. An implicit assumption is that the scene is static, meaning there is no local motion
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Figure 1·2: Basic steps for superresolution.

between images. Prior to image restoration, the low resolution pixels must be aligned

through image registration (see Figure 1.2), often referred to as motion estimation, the

term we will use in this thesis. The synthetic-motion data sets presented in this thesis

(Chapter 5) consist of globally translated LR images.

According to Hadamard’s definition of ill-posedness, image restoration for superres-

olution is considered an ill-posed inverse problem (Borman, 2004; Hadamard, 1923). A

problem is considered well-posed by Hadamard if the solution:

1. exists,

2. is unique,

3. and depends continuously on the data.

Given a set of LR frames, the goal of SR is to recover the original underlying scene from

the LR observations. Superresolution is considered ill-posed due to the fact that there is

no unique solution. Multiple solutions occur when the size of the restored image is larger

than the set of observed images. Therefore, there are multiple underlying scenes which
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could yield the same set of observed images. Some superresolution problems may also

fail to meet the other two conditions, existence of a solution and continuous dependence.

However, the superresolution applications in this thesis focus on basic cases which do not

have this degree of ill-posedness. We will be examining simple data sets in which the

observations are digital images of a well-behaved scene with limited noise.

Superresolution can be broken down into two main steps, frame registration (motion

estimation) and image restoration. Motion estimation and image restoration are two broad

areas of image processing and are often researched independent of one another. Many au-

thors assume perfect motion estimation and focus solely on image restoration, or vice versa.

In a number of cases we will use perfect motion parameters to verify the implementation

of our algorithm. The perfect motion cases will allow us to analyze the effectiveness of the

SR implementation without biases caused by inaccuracies in the motion estimation. We

will then examine the impact of motion estimation on the SR reconstruction. The motion

estimation algorithm utilized will be discussed in Chapter 3.

1.2 Thesis Overview

This thesis is organized as follows. First, Chapter 2 contains a review of prior SR work.

Next, in Chapter 3 we cover some preliminary topics which are utilized throughout the

remainder of the thesis. In Chapter 4 we formulate the problem and propose a solution

based on the conjugate gradient approach. In Chapter 5 experimental results are shown.

The SR method presented utilizes splines and anisotropic diffusion to obtain a high-quality

image. This method will be compared to a simple cubic interpolation scheme as well as

the isotropic reconstruction using mean square error (MSE) and visual comparison. The

results of the anisotropic superresolution using real video sequences are also presented.

Lastly, Chapter 6 includes concluding remarks and suggestions for future work.
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Chapter 2

Review of Prior Work

In this section, we review previous superresolution work. The methods can be broken

down into two broad categories, frequency-domain methods and spatial-domain methods.

Spatial-domain methods are the most flexible when it comes to the inclusion of a priori

knowledge and are therefore the most extensively studied. The benefits and drawbacks of

the methods are compared.

Frequency-domain methods, in general, are fairly simple and efficient. However, they

are often very restrictive when it comes to the inclusion of a priori information and there-

fore are frequently outperformed by spatial-domain methods. Since the frequency-domain

methods rely on the shifting properties of the Fourier transform to estimate motion, the

complexity of the motion model for superresolution is very limited. In terms of frequency-

domain restoration methods, the objective of SR reconstruction is to obtain frequency

information beyond the Nyquist rate of the low-resolution image. A single LR frame is

aliased if the sample rate is below the Nyquist rate of the underlying HR image (twice

the bandwidth) (Borman, 2004). However, superresolution utilizes multiple frames which

are slightly offset, and therefore obtains additional spatial information which can recover

aliased data and form a high-resolution image.

Spatial-domain techniques are a bit more flexible than frequency-domain methods. One

of the main benefits of spatial-domain methods is that they allow for the inclusion of

a priori constraints through regularization. Regularization alleviates the degree of ill-

posedness of the superresolution inverse problem by constraining the space of possible

solutions based on valuable a priori information. Through regularization, we can make

use of known characteristics of the desired solution such as smoothness or known edge
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locations. Spatial-domain methods also allow for more complex motion models. Since

spatial methods do not rely on Fourier shifting properties, the motion of the low resolution

frames is not restricted to basic motion models. Although spatial-domain methods are

generally superior to frequency-domain techniques in terms of the reconstruction quality,

they usually require a bit more computation and are not as straightforward as frequency-

domain methods.

2.1 Frequency-Domain Alias Removal

The frequency-domain methods for resolving superresolution images rely on the shifting

and sampling properties of the Fourier transform (Borman, 2004; Tsai and Huang, 1984).

Although this reliance allows for intuitive and fast results, it significantly restricts the

complexity of the motion and observation models. The objective of superresolution in the

frequency domain is to obtain an image which contains information with higher frequency

than the Nyquist rate of the low resolution frames. Tsai and Huang published the first work

on the topic of superresolution in 1984 (Tsai and Huang, 1984). Their work was motivated

by the need to construct high-resolution images from a Landsat satellite. The images

from the satellite were slightly spatially offset, therefore each of the images contained new

information about the scene although they were generally of the same region. Tsai and

Huang utilized this information to obtain a HR image.

Tsai and Huang exploited the shifting properties of the Fourier transform to perform

image restoration. A shift in position translates to a frequency-domain shift in phase.

It is this property which makes the frequency-domain SR reconstruction possible. The

authors proposed a method which relates the continuous world, modeled as a continuous

frequency-domain function, to the discrete Fourier transform coefficients of the LR images.

The continuous Fourier representation is related to the discrete Fourier transform through

aliasing. Naturally, a sampled signal is band-limited to the sampling frequency. Therefore,

any part of the real world which contains information higher than the sampling frequency

will be aliased in the LR images.
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Let f(x, y) represent the continuous underlying image. The globally-translated image

of frame number n can be represented as,

fn(x, y) = f(x+ δxn, y + δyn). (2.1)

where (δxn, δyn) represents the spatial shift of the nth frame in x and y. Therefore, if

F (u, v) represents continuous Fourier transform of a f(x, y), then frame n, which is shifted

relative to this frame, can be written in frequency domain as:

Fn(u, v) = ei2π(δxnu+δynv)F (u, v) (2.2)

Tsai and Huang assume impulse sampling of f(x, y), which results in the following formu-

lation for the observed images,

yn[nx, ny] = f(Txnx + δxn, Tyny + δyn), (2.3)

where nx ∈ (0, 1, ..., Nx − 1) and ny ∈ (0, 1, ..., Ny − 1). Nx and Ny are the dimensions of

the low-resolution sampled images, Tx and Ty are the sampling periods in x and y. The

relationship between the continuous Fourier transform and the discrete Fourier transform

of the shifted and down sampled images can therefore be expressed as (Tsai and Huang,

1984; Smith, 2007):

Yn[u, v] =
1

TxTy

∞∑
m=−∞

∞∑
n=−∞

Fn(
u

TxNx
+
m

Tx
,

v

TyNy
+

n

Ty
) (2.4)

where [u, v] represent discrete frequency pairs. If the original continuous function f(x, y)

is bandlimited, then the infinite sum can be reduced to some finite number of sums. Tsai

and Huang assume this to be true and as a result, are able to construct a matrix set of

equations combing equations (2.4) and (2.2).

Y = ΨF (2.5)

Y is the vector of discrete Fourier transform coefficients for the observed low resolution
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image, Ψ is a matrix which relates coefficients of the discrete-space Fourier transform to

samples of the unknown continuous Fourier transform coefficients contained in vector F . In

order to construct Ψ the global motion parameters, δx and δy, must be known. Therefore,

this SR reconstruction method is broken into two steps (as are most methods), motion

estimation and image restoration. In most cases, the accuracy of reconstruction is limited

by motion estimation.

There are several drawbacks to the alias removal method proposed by Tsai and Huang.

The major hindrance being the requirement of global translational motion. Global trans-

lational motion in the spatial domain appears as phase shifts in the frequency domain.

However, more often than not, global translational motion models are not accurate enough

to represent the motion in image sequences. It is this fact which makes the spatial domain

methods more attractive.

Another drawback of Tsai and Huang’s method is that it assumes impulse sampling.

Any blur added by the camera is not accounted for in Ψ. Tekalp, Ozkan and Sezan address

this issue by including a point-spread function in the observation model (Tekalp et al.,

1992). Therefore, the low-resolution sampled images are modeled as impulse sampled

points of the blurred continuous world. The blur kernel is convolved with the continuous

representation and subsequently down-sampled to yield the low resolution images. There

are a variety of other frequency domain approaches including (Kim et al., 1990; Kim and

Su, 1993; Prendergast and Nguyen, 2005).

2.2 Iterative Back-Projection

In 1990, Irani and Peleg formulated the iterative back-projection algorithm for superreso-

lution (Irani and Peleg, 1990). Back-projection is commonly associated with tomography

and the formulation for superresolution is similar to the tomography implementation. The

basic idea is to estimate how the low-resolution images were formed and then construct LR

images from this model. The LR observations are simulated for each estimate of the HR

image. The residual error between the simulated image and the measured low-resolution
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image is computed. Back-projection is utilized to update the estimate of the underlying

scene using the residual error. In order to ensure that the high-resolution image is being

updated properly, it is imperative that the observation model be accurate.

The basic relationship between the observed LR images y and the underlying HR image

x can be written as,

y = Ax (2.6)

where y contains the low resolution images stacked in lexicographic order and x represents

the high resolution underlying image also in lexicographic order. A is a matrix which

relates the high-resolution samples to the low-resolution samples through the image forma-

tion model. For example, if the image formation were modeled as a Gaussian point spread

function (PSF), the entries of the A matrix would contain samples of the continuous Gaus-

sian kernel. Once A and an estimate of x are obtained, the observed LR images are easily

simulated through linear equation (2.6).

Let yn represent the nth estimate of y. For each estimate of yn, the residual is computed

and back projected using the back projection operator ABP . The back projection operator

is usually an estimate of the inverse of the forward model A. The estimate of the underlying

HR image, x, is updated using the following update equations:

xn+1 = xn +ABP (y − yn) (2.7)

= xn +ABP (y −Axn) (2.8)

One drawback of this approach is the lack of regularization. Regularization limits the

range of possible solutions and promotes convergence. Without regularization, the above

iterative steps may not converge and could vary between several solutions.

As with most superresolution techniques, the iterative back-projection solution is only

as accurate as the model. Inaccuracies in the image model will limit the possibility of

fully recovering the HR image. The residual estimated between the simulated LR images

yn and measured LR images y will always have some bias introduced by the inaccuracies
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in A. Therefore, the HR reconstruction will never be able to fully recover the underlying

scene if the residual errors being back projected are inaccurate. Additional iterative back-

projection methods are proposed in (Irani and Peleg, 1993; Mann and Picard, 1994; Dai

et al., 2007)

2.3 Maximum A Posteriori Estimation

Schultz and Stevenson first introduced the Bayesian approach to superresolution in 1994

(Schultz and Stevenson, 1994). The Maximum A Posteriori Probability (MAP) method

is a common method for solving stochastic problems. MAP maximizes the a posteriori

probability density function by utilizing Bayes’ rule. The MAP formulation allows for the

inclusion of a priori information and therefore helps regularize the solution. As before,

let y represent the observed low-resolution image stacked in lexicographic order. Through

basic stochastic modeling, y can be written as

y = Ax+N (2.9)

where A is the matrix that relates the high resolution underlying image x to y, and N is

additive noise. The authors assume that the motion has been estimated, allowing them

to construct A . Using Bayes’ rule, which relates conditional probabilities, the MAP

expression can be formulated as follows,

xMAP = argmax
x

(P (x|y)) (2.10)

xMAP = argmax
x

(
P (y|x)P (x)

P (y)

)
(2.11)

where xMAP is the MAP estimate of the HR image. The maximum is independent of

y, therefore the denominator can be removed from the equation. Since both remaining

probabilities are positive, the log can be taken resulting in the following expression:

xMAP = argmax
x

(log(P (y|x)) + log(P (x))) (2.12)
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The first term is referred to as the log-likelihood function and the second is the prior term.

Without the prior, this formulation would be the Maximum Likelihood (ML) estimation.

Assuming a Gaussian noise model for the conditional probability yields the following equa-

tion:

P (y|x) =
1

(
√

2πσ)M1M2
e−

1
2σ2 ||y−Ax||2 (2.13)

where [M1,M2] represents the dimensions of the HR image. The log of equation (2.13)

results in the following equation:

log(P (y|x)) = log

(
1

(
√

2πσ)M1M2

)
− 1

2σ2
||y −Ax||2 (2.14)

The first term of the log likelihood function is a constant and can be dropped from the

overall cost function. Similarly, 1
2σ2 is also a constant and will only scale the cost function.

This term may also be dropped, resulting in the following maximization:

xMAP = argmax
x

(−||y −Ax||2 + log(P (x))) (2.15)

The next step is to choose a prior distribution, P (x). A typical choice for a prior distribu-

tion is a Markov Random Field (MRF) model which is represented by a Gibbs distribution:

P (x) =
(

1
Z

)
e−αER(x) (2.16)

log(P (x)) = log

(
1
Z

)
− αER(x) (2.17)

where ER(x) is a Gibbs energy function. The energy function, applied to the solution x, is

chosen based on the desired solution constraints, some examples include an L2 norm, the

magnitude of the gradient or an L1 norm. α is the regularization weight which determines

the behavior of the solution and the amount each term affects the solution. Once again

the constant, 1
Z , can be dropped from the maximization. Substituting equation (2.17) into
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equation (2.15) yields the following MAP maximization:

xMAP = argmax
x

(−||y −Ax||2 − αER(x)) (2.18)

Flipping the signs, equation (2.18) can be rewritten as a minimization:

xMAP = argmin
x

(||y −Ax||2 + αER(x)) (2.19)

Notice that the MAP estimate of x, using an L2 norm as the prior model, results in a

Tikhonov formulation. Therefore, a MAP formulation with a Gaussian conditional proba-

bility function, a MRF prior distribution and a L2 norm regularization function results in

a Tikhonov minimization (Karl, 2000).

xMAP = argmin
x

(||y −Ax||2 + α||x||22) (2.20)

To minimize the cost function, the derivative with respect to x is set equal to zero. The

solution to the set of normal equations can then be found using an iterative minimization

method such as the conjugate gradient algorithm. There are a variety of modifications to

this method which have been proposed, using different prior models, observation models

and minimization techniques (Cheeseman et al., 1994; Borman and Stevenson, 1999; Segall

et al., 2004; Hardie and Droege, 2007; Chantas et al., 2007). One of the benefits of the

MAP method is that it allows for the inclusion of a priori information, thereby limiting

the range of possible solutions to the ill-posed inverse problem.

2.4 Projection onto Convex Sets

The two dimensional implementation of Projection onto Convex Sets (POCS) was first

proposed by Stark and Oskoui in 1989 and ever since has become a very popular method

in superresolution (Stark and Oskoui, 1989). POCS restricts the space of solutions to the

intersection of a set of convex constraints. Therefore, within the set of all possible super-

resolution images, the solution must lie within the intersection of the convex constraints.
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The set of constraints Ck are determined by modeling how the images are captured. The

simplicity of the POCS method allows for easy addition of various regularization terms.

Examples of constraints include positivity, minimum difference between the estimated and

observed data and smoothness. POCS, like most methods, is solved iteratively to find the

solution which satisfies the set of constraints.

xn+1 = PmPm−1...P1x
n (2.21)

where Pk is the operator which projects the current estimate of x onto the convex set Ck.

Some commonly used constraints are limiting the energy of the solution,

Cenergy = {x : ||x||2 ≤ E} (2.22)

where E is a constant. Another example is to limit the solution to lie within some distance

to a rough estimate of the solution, such as a cubic interpolation estimate of the HR image,

x̂.

Cestimate = {x : ||x− x̂||2 ≤ E} (2.23)

There are a variety of other constraints which may be included in the POCS method (Elad

and Feuer, 1997; Patti and Altunbasak, 1998; Ozkan et al., 2001; Hsu et al., 2004; Stasinski

and Konrad, 2006).

Another benefit of the POCS method is that nearly any kind of motion model may be

used provided that the motion estimation is accurate. As with the previously-discussed

methods, it is assumed that the motion is previously estimated.
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Chapter 3

Preliminary Material

Prior to revealing the details of the superresolution reconstruction formulation of this

thesis, there are several preliminary topics that need to be reviewed. First, splines are

examined. They will later be used as the basis for the SR image model. Second, a brief

description of the conjugate gradient algorithm is covered. The conjugate gradient method

will be used to find a solution which minimizes the cost function developed in Chapter 4.

Lastly, a review of the optical flow algorithm developed by Horn and Schunk will follow.

Although motion estimation is not the focus of this work, it is a critical step to obtaining

a superresolution image and consequently worth some discussion.

3.1 Splines

Splines were first described by Schoenberg in his 1946 paper, just before the introduction

of Shannon’s sampling theory (Unser, 1999). Scheonberg demonstrated the effectiveness of

splines for interpolation of a regularly-spaced sample set. Although splines were introduced

prior to the work of Shannon, the band-limited functions introduced by Shannon were far

more popular until the 1960’s. Splines became very popular in a number of applications,

however the area of signal processing did not begin to take advantage of splines until more

recently. According to Unser, the interest among the signal processing community began

with the increased popularity of wavelet theory. There are several properties which make

splines an attractive choice for interpolation and continuous-signal representation.

The first and foremost beneficial property of splines is that they provide a simple way

of obtaining a continuous representation of a discrete signal. There are a number of signal

processing applications in which it is necessary to estimate or model the continuous signal
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from a set of discrete samples. In the case of superresolution, the LR images captured are

discrete samples of the continuous scene. Ideally, we would like to recover the exact function

which describes the continuous signal, however in most cases this is highly improbable given

the complexity of an image. Therefore, we approximate the scene using a continuous spline

function. Thanks to the continuous representation, the HR image can be constructed at

any resolution by sampling the spline function.

Splines are smoothly-connected, well-behaved, piecewise polynomials. They are de-

signed such that they are n − 1 times continuously differentiable, where n represents the

degree of the spline. A spline representation is a linear combination of equally-spaced basic

splines, also referred to as B-splines. Therefore, although they are continuous functions,

they can be solved for discretely.

b(x) =
∑
k∈Z

C[k]βn(x− k) (3.1)

where b(x) represents the continuous spline, C represents the 1-D spline coefficients, βn

represents the nth order B-spline. B-splines are compactly supported. Consequently, there

is a limited computational cost of using splines, an important property to consider when

modeling a signal. A continuous representation of a signal is easily described as a linear

combination of these compactly-supported B-splines, making the implementation of splines

for signal modeling straightforward.

B-splines are defined as symmetric functions which result from the (n+ 1)-fold convo-

lution of a rectangular pulse β0,

β0(x) =


1, −1

2 < x < 1
2

1
2 , |x| = 1

2

0, otherwise

(3.2)
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Figure 3·1: 1-D B-splines of order 0 to 3

Therefore, β0 must be convolved (n+ 1) times to obtain a B-spline of degree n,

βn(x) = β0 ∗ β0 ∗ ... ∗ β0(x)︸ ︷︷ ︸
(n+1)

(3.3)

Cubic splines are the most popular for interpolation,

β3(x) =


2
3 − |x|

2 + |x|3
2 , 0 ≤ |x| < 1

(2−|x|)3
6 , 1 ≤ |x| < 2

0, 2 ≤ |x|

(3.4)

Figure 3.1 shows a plot of B-splines from order 0 to 3.

In order to model an image, we must use 2-D splines. A 2-D B-spline, φn, can easily

be constructed from the 1-D B-spline functions using a tensor product in x and y.

φn(x, y) = βn(x)βn(y) (3.5)
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Figure 3·2: 2-D B-splines of order 0 to 3

A 2-D spline representation is the sum of shifted and scaled 2-D B-splines,

b(x, y) =
∑
n∈Λ

C[nx, ny]φn(x− nx, y − ny) (3.6)

where Λ represents a regularly sampled grid and n = [nx, ny]T .

In the formulation proposed in this thesis, the spline coefficients of the underlying

high-resolution image will be solved for to obtain a continuous representation of the scene.

Once the coefficients are estimated, they can be convolved with the 2-D B-spline function

to acquire the super-resolved image.

Solving for the coefficients of splines of degree 0 or 1 is straightforward since their

coefficients are equal to signal sample values. However, solving for a higher order spline

is less trivial. To determine the coefficients for higher-order splines, a digital filtering

technique was developed (Unser, 1999). Two filters are used to determine the coefficients,

c+ which is causal and the other, c−, which is anti-causal,

c+[k] = s[k] + z1c
+[k − 1], for (k = 1, ..., N − 1) (3.7)
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(a) Cubic spline interpolation of a discrete signal
(b) Individual b-splines shown in blue. Linear com-
bination of splines shown in red.

Figure 3·3: (a) Result of the cubic spline filtering algorithm; and (b) plot
of the contribution of each spline to the linear combination.

c−[k] = z1(c−[k + 1]− c+[k]), for (k = N − 2, ..., 0) (3.8)

This iterative algorithm is initialized with

c+[0] =
1

(1− z2
1)

2N−3∑
k=0

s(k)zk1 (3.9)

c−[N − 1] =
z1

(1− z2
1)

(c+[N − 1] + z1c
+[N − 2]) (3.10)

where z1 = −2 +
√

3, N is the number of samples in the discrete signal s and the final

coefficients are obtained from C = 6c− (Unser, 1999). Figure 3.3a shows a 1D example

of cubic spline interpolation using this filtering algorithm. Figure 3.3b demonstrates the

contribution of each spline to the overall linear combination.

3.2 Conjugate Gradient

The conjugate gradient algorithm is one of the most common iterative methods for solving

systems of linear equations (Shewchuck, 1994). It is effective in solving equations of the

form

y = Ax (3.11)
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where x and y are column vectors and A is a matrix. The method of conjugate gradients

works best for cases in which A is positive-definite, otherwise the minimization may have

difficultly determining the solution. The conjugate gradient algorithm can be used to solve

systems where A is not positive-definite. In such cases, there may be no solution to the

equation, however, the conjugate gradient method will find a solution that minimizes the

error. The method of conjugate gradient is a combination of two other methods, steepest

descent and conjugate directions.

The method of steepest descent begins at a point and takes a step in the steepest

direction of q(x). In this case, q(x) represents the quadratic form of a vector (Shewchuck,

1994),

q(x) =
1
2
xTAx− yTx+ c (3.12)

where c is a constant. The point which minimizes q(x) provides the solution to y = Ax.

Along the line of steepest descent, the point which minimizes q(x) is chosen as the next

point. Therefore, each step is taken in the direction of the residual. The residual is defined

as the r = y − Ax, and indicates how far the current step is from the correct value of y.

The error, e, indicates how far the current location is from the solution, and is related to

the residual through A, r = −Ae. The method of steepest descent focuses on stepping

in the direction of the residual, therefore, the search direction is always orthogonal to the

previous search direction. The drawback of steepest descent is that it often has to take

steps in the same direction as previous steps.

The method of conjugate directions is very similar to the steepest descent algorithm.

However, the direction of each step is chosen to be A-orthogonal or conjugate. Two vectors,

d1 and d2, are considered A-orthogonal if

dT1 Ad2 = 0 (3.13)

By stepping in the conjugate direction, the number of steps required to find the minimum

is limited to n steps, where n represents the length of the vector x. With each step
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an error term along a particular direction is eliminated. Along each conjugate step, the

minimum point of q(x) is chosen. The difficulty with conjugate directions is that all of

the previous search directions must be stored in order to create a new search vector which

is A-orthogonal to all previous directions. The conjugate gradient method alleviates this

problem.

The method of conjugate gradient combines both steepest descent and conjugate di-

rections. Conjugate gradient steps in a direction which is constructed by conjugate of

the residual (Shewchuck, 1994). As a result, the residual of each step is orthogonal to

the previous search direction and the previous residuals. The conjugate gradient method

converges in n steps, the same number of steps as the conjugate directions method. The

residual of each step is already A-orthogonal to the previous search directions, therefore

there is no need to store the previous search directions. It is this property which makes

conjugate gradient one of the more popular minimization algorithms. Since the previous

search directions do not need to be stored, the number of computations per iteration is

reduced.

In this thesis, the conjugate gradient algorithm will be utilized to minimize the superres-

olution cost function. To verify the convergence of the algorithm, the normalized residual

is compared to a residual threshold. When the residual is below the desired threshold, the

minimization is considered completed.

3.3 Optical Flow

One of the most critical steps for superresolution reconstruction is frame registration, also

referred to as motion estimation. Inaccuracies in motion estimation will result in artifacts

in the HR image. If pixels are not mapped to the correct location, the algorithm will

diffuse these inaccuracies to the neighboring pixels of the HR image. To create a HR

image, a set of LR frames are chosen from a video sequence. The motion of each frame

is estimated relative to some reference frame (typically the center frame). The motion

estimation algorithm utilized for this work is the Horn and Schunck optical flow method
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(Horn and Schunck, 1981).

Given two images, optical flow describes the motion of each of the pixels between the two

images. The Horn and Schunck method of estimating optical flow applies a smoothness

constraint to the solution. This method employs a minimization function to solve for

the motion parameters. This function uses image intensity values E(x, y, t) and velocity

horizontal and vertical components u = dx
dt and v = dy

dt , respectively. The first term of the

Horn and Schunck cost function is formulated on the basis that the intensity of a pixel will

not change between the images, it will only move. Therefore, the first term seeks to make

the change in intensity of paired pixels between the two images

Eb = Exu+ Eyv + Et (3.14)

as close to zero as possible, where Ex, Ey and Et are the derivatives of image intensity

values in x, y and t (time). The second term is designed to apply smoothness to the

solution. Pixels of most images do not move independently of one another and therefore

their movement between frames should be dependent on the neighboring pixels. Thus, a

regularization term is introduced:

E 2
c =

(
∂u

∂x

)2

+
(
∂u

∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2

(3.15)

which is small only for locally smooth velocities. Combining the two terms, the total error

to be minimized is,

E =
∫∫ (

E 2
b + α2E 2

c

)
dxdy (3.16)

where α denotes the regularization parameter. This controls the amount of smoothing

applied to the solution. The Horn-Schunck method is utilized in this thesis to estimate

optical flow for synthetic and real video sequences which have global translational motion.

In these cases, since the motion is the same across the entire image, a large value for the

regularization parameter must be used to ensure a smooth estimate of the motion. Figure

3.4 shows two examples of optical flow estimation between the same two images. Figure
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3.4a corresponds to an optical flow estimation with a large regularization parameter and

Figure 3.4b utilizes the same images but with a small α. These images are globally offset

in x and y. Consequently, the optical flow vector for every pixel should be the same. It is

apparent that the small regularization parameter yields significantly more errors than the

estimate with a large regularization weight.

When computing optical flow, it is important that the images do not contain artifacts

such as aliasing. In these cases, the optical flow algorithm will try to match these artifacts

between images and produce undesirable errors in the estimated vector fields.
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(a) Optical flow vectors for large regularization parameter.

(b) Optical flow vectors for small regularization parameter.

Figure 3·4: Optical flow vectors computed for the same pair of images, but
with varying regularization parameter. The images are globally translated
relative to one another. Therefore, the optical flow vectors should be the
same at every pixel, as in (a)
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Chapter 4

Problem Formulation and Solution

In this chapter we will discuss the focus of this thesis, an improved superresolution method.

Ideas from several existing methods have been combined to create an anisotropic, spline-

based superresolution image reconstruction.

First, it is important to define key notation. Throughout this derivation C repre-

sents spline coefficients of the high resolution image, with C[n] being a coefficient at

n = [nx, ny]T ∈ Λ. The matrices Dxx, Dyy and Dxy are defined as convolution matri-

ces to perform ”spline-based derivatives” where xx refers to the second-order derivative in

the x direction, yy refers to the second-order derivative in the y direction and xy refers

to the derivative in the x and then y direction. Ixx, Iyy and Ixy denote the second-order

derivatives of the spline function, in other words Ixx = DxxC.

4.1 Image Model

The image model used for the superresolution reconstruction is based on the work of

Vazquez (Vazquez, 2002; Vazquez et al., 2003). Vazquez utilizes 2-D splines to model

the underlying high-resolution scene. One advantage of using splines is that they are a

simple way of constructing a continuous function. Given discrete samples of a signal, the

coefficients of a spline can easily be solved for by using well-known filtering algorithms (see

Section 3.1). Similarly, the continuous spline function can be computed given the spline

coefficients. The low-resolution images are modeled as discrete samples of a continuous

spline function. Therefore, to obtain a superresolution reconstruction, the coefficients of

this underlying function must be computed.

Let y represent the low resolution images stacked in lexicographic order. If Φ relates
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the spline coefficients to the low resolution image, and C represents the spline coefficients,

then,

y = ΦC (4.1)

Matrix Φ is a very large and sparse matrix of size RN1N2xM1M2, where R is the number

of low resolution frames, [N1, N2] are the dimensions of the low resolution images, and

[M1,M2] are the dimensions of the high resolution spline grid.

For simplification, we assume perfect impulse sampling. Consequently, no point spread

function (PSF) is included in the Φ matrix. We chose to exclude the PSF in order to

strictly evaluate the effectiveness of the anisotropic spline-based reconstruction. Once the

PSF is known, or approximated, it can easily be incorporated into the model by convolving

the PSF with the discrete spline model.

To compute the entries of the Φ matrix, the 2-D spline function must be sampled at each

of the low-resolution points. This requires the motion of each of the frames to be computed.

For each pixel, n, in the low resolution frame the optical flow vector, [vx[n], vy[n]], is

computed. This vector maps a pixel in the low-resolution image to a location on the high-

resolution grid. If Vx and Vy represent matrices of the vector components vx[n] and vy[n],

the location of the low-resolution images relative to the reference frame (see Figure 1.2)

can be obtained. Thus, the following relationship is derived,

[XLR, YLR] = [Xr + Vx, Yr + Vy] (4.2)

where Xr and Yr are the pixel positions of the reference frame repeated R times stacked

in lexicographic order. XLR and YLR are matrices of the LR pixel locations in the x and y

direction relative to the regular HR grid. One of the benefits of using splines is that once

we obtain a continuous estimate of the underlying HR image, we can sample the spline

at any resolution to obtain the HR image. Throughout this work, we will use the same

HR sampling lattice as the spline coefficient lattice. Therefore, the location of the spline

coefficients is also the location of the HR pixels.
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The density of LR samples varies depending on the type of motion and the up-sampling

factor of the HR grid. For simple global translational motion, the points will be irregular,

however there will be a repeating sample pattern. Using these points, the distance of each

irregular sample to the high resolution spline coefficient grid points is computed. This

distance determines the contribution of a each 2-D cubic B-spline to each of the irregular

points. The 2-D spline is zero outside of the region -2 to +2, therefore, only distances less

than 2 will contribute to a particular point. Using the position of the low resolution points

relative to the high resolution regular grid the Φ matrix is computed as follows,

Φ[i, j] = φ(XHR(i)−X(j), YHR(i)− Y (j)) for i = (1, 2, ...RN1N2), j = (1, 2, ...M1M2)

(4.3)

where XHR and YHR represents the HR lattice, and φ represents the 2-D cubic B-spline

function (see equation (3.5)). Fortunately, cubic B-splines are compactly supported, mak-

ing Φ a sparse matrix.

4.2 Cost Function

4.2.1 Error Term

The cost function used for this work is similar to the MAP formulation described in Sec-

tion 2.3 but with a different prior. The first term, the log-likelihood term, quantifies the

deviation of the solution from the sampled data

EL(C) = ||y − ΦC||2 (4.4)

where y represents the low resolution frames stacked in lexicographic order, C represents

the estimate of the spline coefficients in lexicographic order and Φ is the matrix which

relates the spline coefficients to the irregular samples in y. Since there is nothing in EL to

control splines in areas without samples, the minimization would likely lead to intensity

values which extend beyond the dynamic range of the image in these regions. As a result,

we include a regularization term to control the smoothness of the solution. There are many
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possible choices for the regularization term. This thesis focuses on the implementation of

a spline thin-plate model, similar to Vazquez’s work (Vazquez, 2002; Vazquez et al., 2003).

4.2.2 Regularization Term

The regularization term increases the control over regions with little or no data. The

regularization term proposed in this work is similar to the continuous formulation Vazquez

proposed (Vazquez, 2002; Vazquez et al., 2003). However, to simplify the inclusion of

a priori information (gradients), the spline-based regularization term will be discretized.

Vazquez utilizes a spline thin plate model to control the curvature of the solution through

the second order derivative of the spline. Since this thesis uses a slightly different approach

than Vazquez has proposed, it is worthwhile to compare the convolution kernels of the two

formulations. This is done to verify that there is no loss in fidelity. First, the comparison

will begin with the derivation of the continuous formulation.

Vazquez formulates his regularization term continuously. The continuous thin-plate

regularization function, ER(C), is defined as follows:

ER(C) = α2

∫∫ ((
∂2b

∂x2

)2

+ 2
(
∂2b

∂x∂y

)2

+
(
∂2b

∂y2

)2
)
dxdy (4.5)

where b(x, y) =
∑

n∈ΛC[n]φ3(x− nx, y − ny) and Λ represents the regular high-resolution

grid. To control the smoothness of the image, the regularization parameter α is utilized.

If α is too large, the solution will be over-smoothed. If α is too small, the solution will be

under-smoothed.

Plugging in the equation for the 2-D spline, the first term of the integral equation can

be rewritten as, (
∂2b

∂x2

)2

=

(∑
n∈Λ

C[nx, ny]φ3
xx(x− nx, y − ny)

)2

(4.6)

=
∑
n∈Λ

∑
m∈Λ

C[nx, ny]C[mx,my]φ3
xx(x− nx, y − ny)φ3

xx(x−mx, y −my) (4.7)
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Expanding the regularization function (4.5), the following equation is obtained:

ER(C) = α2
∑
n∈Λ

C[x− nx, x− ny]
∑
m∈Λ

C[x−mx, x−my]

∫∫
φ3
xx(x− nx, y − ny)φ3

xx(x−mx, y −my)dxdy

+2
∫∫

φ3
xy(x− nx, y − ny)φ3

xy(x−mx, y −my)dxdy

+
∫∫

φ3
yy(x− nx, y − ny)φ3

yy(x−mx, y −my)dxdy (4.8)

Substituting the 1-D splines results in the following equation,

ER(C) = α2
∑
n∈Λ

C[x− nx, x− ny]
∑
l∈Λ

C[x−mx, y −my]

∫∫
β3
xx(x− nx)β3(y − ny)β3

xx(x−mx)β3(y −my)dxdy

+2
∫∫

β3
x(x− nx)β3

y(y − ny)β3
x(x−mx)β3

y(y −my)dxdy

+
∫∫

β3(x− nx)β3
yy(y − ny)β3(x−mx)β3

yy(y −my)dxdy (4.9)

Once n and m are chosen, the integrals can be evaluated. For our implementation, n and

m are chosen to be on a regularly spaced grid with integer spacing. All of the parameters

within the integrals of equation (4.8) are known and therefore the equation can be solved

for analytically.

One of the nice properties of B-splines is that their derivatives are easily computed

using the following formula (Unser, 1999):

dβn(x)
dx

= βn−1(x+
1
2

)− βn−1(x− 1
2

) (4.10)

The first and second order derivatives of the cubic B-spline, using equation (4.10), are
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(Vazquez et al., 2003):

β3
x(x) =



0 x < −2
(x+2)2

2 −2 ≤ x < −1

− (3x2+4x)
2 −1 ≤ x < 0

(3x2−4x)
2 0 ≤ x < 1

− (x−2)2

2 1 ≤ x < 2

0 2 ≤ x

(4.11)

β3
xx(x) =


3|x| − 2, 0 ≤ |x| < 1

2− |x|, 1 ≤ |x| < 2

0, 2 ≤ |x|

(4.12)

Since B-spline functions are compactly supported from -2 to 2, the thin-plate spline inte-

grals only need to be evaluated from -2 and 2. The first-order and second-order derivatives

of the cubic B-spline are zero at points greater than or equal to 2. The coefficients of the

2-D splines which are contributing to a particular integral evaluation only extend from -3

to 3, therefore, [nx, ny] and [mx,my] are evaluated for integer values between -3 and 3.

The energy term (4.9) is a discrete summation of the continuous integrals and can be

rewritten in a matrix format. Combining the error term (4.4) and the regularization term

(4.9) the following cost function is formulated,

J(C) = ||y − ΦC||2 + α2CTPC (4.13)

where P represents the convolution matrix of p, the spline thin-plate convolution kernel.

The 7x7 matrix p, is computed by evaluating the integral equations at each of the grid of
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Figure 4·1: Cubic B-spline first-order and second-order derivatives.

points between -3 and 3 in x and y.

p =
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

(4.14)

To compare Vazquez’s continuous formulation to the discrete formulation proposed in

this thesis, each term of the integral equation will be examined separately. Simplifying

to a discrete formulation allows for straightforward inclusion of anisotropic regularization.

First, the integrals are approximated with summations,∫∫
β3
xx(x− nx)β3(y − ny)β3

xx(x−mx)β3(y −my)dxdy ≈
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2∑
x=−2

2∑
y=−2

β3
xx[x− nx]β3[y − ny]β3

xx[x−mx]β3[y −my] (4.15)

This can be rewritten using matrices and convolution,

= φ′xx ∗ φ′xx (4.16)

where φ′xx denotes φxx, the second-order derivative of the 2-D B-spline, evaluated at discrete

locations. The 2-D B-spline is a tensor product of the 1-D B-splines, therefore, φ′xx can be

written as the tensor product of β′ and β′xx, the vectors of the B-spline function and the

second-order derivative of the B-spline function evaluated at integer points.

φ′xx = β′xxβ
′T (4.17)

Each integral of the regularization term can be approximated in this manner,∫∫
β3
xx(x− nx)β3(y − ny)β3

xx(x−mx)β3(y −my)dxdy ≈ φ′xx ∗ φ′xx (4.18)

2
∫∫

β3
x(x− nx)β3

y(y − ny)β3
x(x−mx)β3

y(y −my)dxdy ≈ 2φ′xy ∗ φ′xy (4.19)∫∫
β3(x− nx)β3

yy(y − ny)β3(x−mx)β3
yy(y −my)dxdy ≈ φ′yy ∗ φ′yy (4.20)

where φ′xy = β′xβ
′T
x . Figure 4.2 shows the spline derivative kernels for the two formulations.

The first column of plots represents the discrete spline derivative kernel, the second cor-

responds to samples of the continuous spline derivative kernel, and the third displays the

difference between the two. These plots demonstrate only slight differences between the

continuous and discrete formulations. The reconstruction of the continuous and discrete

convolution kernels was compared for several data sets. The results confirm that there is

no loss in fidelity with the discrete approximation. There was no visible difference between

the reconstructions for the two implementations and only slight differences in MSE. As a

result, the approximation of the spline thin plate model closely replicates the continuous

formulation proposed by Vazquez.
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Using the above definitions, the regularization term can be rewritten as,

ER(C) = α2(||DxxC||2 + 2||DxyC||2 + ||DyyC||2) (4.21)

where Dxx, Dxy and Dyy represent the convolution matrices of the spline derivative kernels

φ′xx, φ′xy and φ′yy, respectively.

4.2.3 Anisotropic Diffusion

One of the drawbacks of including a regularization term is the possibility of over-smoothing

the solution. This risk can be mitigated by adjusting the regularization parameter. None-

the-less, there are likely to be regions which are over-smoothed and other regions which are

under-smoothed. Ideally, the image recovered would be smoothed appropriate to the con-

tent of the underlying scene. The formulation, up to this point, applies isotropic smoothing

(i.e., is independent of scene content). To improve the impact of the regularization term,

anisotropic diffusion will be applied.

The objective of anisotropic diffusion is to preserve image intensity boundaries. In

other words, the smoothing should be performed along edges and in regions with constant

intensity, but not across intensity boundaries. By incorporating anisotropic diffusion in

our regularization term, the amount of smoothing can be dynamically controlled.

Anisotropic diffusion has been utilized for a number of image processing applications.

Perona and Malik apply anisotropic diffusion for image scaling and creating coarser images

(Perona and Malik, 1990). Their approach is to apply a separate weighting of the regular-

ization term in the x and y directions. They apply this weighting through monotonically

decreasing functions g(|Ix|) and g(|Iy|), where Ix and Iy represent the gradient in the x

and y directions. The prior term of the cost function is computed as follows:

ER(C) =
∑
n∈Λ

 [Ixx[n] Iyy[n]]

 g(|Ix[n]|) 0

0 g(|Iy[n]|)

 Ixx[n]

Iyy[n]

 (4.22)

where, g(|I|) = e
−
(

|I|
K

)2

, K is a constant, and Ixx and Iyy represent the second order
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(a) Discrete and Continuous spline derivative kernel comparison for the second order derivative in
the x direction.

(b) Discrete and Continuous spline derivative kernel comparison for the second order derivative in
the y direction.

(c) Discrete and Continuous spline derivative kernel comparison for the second order derivative in
the x then y direction.

Figure 4·2: Discrete and continuous spline derivative convolution kernel
comparison.
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(a) Original Test Image (b) y Gradient (c) x Gradient

Figure 4·3: Binary Stripes image utilized for comparison of anisotropic
diffusion methods.

derivatives in the x and y directions. As K →∞, the matrix becomes the identity matrix

and therefore applies isotropic weighting. For a very large horizontal gradient and small

vertical gradient, g(|Ix|) is small and g(|Iy|) is large. Therefore, smoothing is disabled in

the horizontal direction and smoothing is performed in the vertical direction. Similarly,

strong vertical gradients and small horizontal gradients will result in smoothing only along

the horizontal intensity boundaries. Although this method performs well for horizontal

and vertical gradients, off-axis edges are not smoothed as well.

Consider the binary image shown in Figure 4.3a, with horizontal, vertical and diagonal

stripes with an intensity value of 1 and a background values of 0. The gradient for the

horizontal and vertical stripes will result in anisotropic weighting such that smoothing will

be performed along the edges and not across. For example, let K = 0.1 and let H represent

the anisotropic weighting matrix.

H[n] =

 g(|Ix[n]|) 0

0 g(|Iy[n]|)

 (4.23)

The values of H for horizontal, vertical and diagonal edges are as follows:

HHorizontal =

 1 0

0 0

 HV ertical =

 0 0

0 1

 HDiagonal =

 0 0

0 0

 (4.24)
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Therefore, for the horizontal and vertical edges, smoothing will be performed in the ap-

propriate directions. However, the diagonal edges will not be smoothed in either direction.

The gradient of the diagonal stripes has an absolute value of 1 (gradient of a binary image)

in both the x and y directions. Therefore, g(|Ix|) and g(|Iy|) is small in both directions,

resulting in no smoothing. This will result in rough edges along the diagonals (see Figure

4.4a).

Another approach to anisotropic diffusion is presented by Mansouri et al (Mansouri

et al., 1998). The motivation of Mansouri’s work is to reconstruct image disparities through

image diffusion. Although the problem is a bit different from the superresolution recon-

struction problem, the anisotropic diffusion equation which Mansouri et al propose is ap-

propriate for our problem. The anisotropic weighted regularization term they propose

is:

ER(C) =
∑
n∈Λ

 [Ixx[n] Iyy[n]]

 µ2+Iy [n]2

µ2+||−→O I[n]||2
−Ix[n]Iy [n]

µ2+||−→O I[n]||2

−Ix[n]Iy [n]

µ2+||−→O I[n]||2
µ2+Ix[n]2

µ2+||−→O I[n]||2


 Ixx[n]

Iyy[n]


 (4.25)

where µ is a constant and −→O I[n] = [Ix[n], Iy[n]]T . For simplification, let H[n] represent the

anisotropic matrix for pixel n, and Hxx, Hxy and Hyy represent the entries of the matrix

evaluated at each pixel location in lexicographic order.

H[n] =

 µ2+Iy [n]2

µ2+||−→O I[n]||2
−Ix[n]Iy [n]

µ2+||−→O I[n]||2

−Ix[n]Iy [n]

µ2+||−→O I[n]||2
µ2+Ix[n]2

µ2+||−→O I[n]||2

 (4.26)

Hxx =
µ2 + I2

y

µ2 + ||−→O I||2
(4.27)

Hxy =
−IxIy

µ2 + ||−→O I||2
(4.28)

Hyy =
µ2 + I2

x

µ2 + ||−→O I||2
(4.29)

As µ → ∞, this matrix becomes an identity matrix yielding an isotropic equation.

Similarly, if the gradient is small relative to µ, isotropic diffusion is performed. Once
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again, this matrix is evaluated against the simple binary Stripes image shown in Figure

4.3. For example let µ = 0, the smoothing parameters for horizontal, vertical and diagonal

edges are weighted as follows,

HHorizontal =

 1 0

0 0

 HV ertical =

 0 0

0 1

 HDiagonal =

 1
2 ±1

2

±1
2

1
2

 (4.30)

Therefore, in the horizontal case smoothing will only be performed in the horizontal direc-

tion and in the vertical direction for the vertical stripes. The diagonal case will have some

smoothing in both directions. Figure 4.4b demonstrates the effectiveness of this anisotropic

matrix for the simple striped case. It is evident that the diagonal edges in the Perona and

Malik formulation are slightly rougher than the edges in the Mansouri et al implementa-

tion. This equation is reformatted to the matrix format used in the prior term, resulting

in the following equations,

ER(C) =
∑
n∈Λ

(
HxxI

2
xx[n] + 2HxyIxx[n]Iyy[n] +HyyI

2
yy[n]

)
(4.31)

ER(C) = ||DxxC||2Hxx + 2||DxyC||2Hxy + ||DyyC||2Hyy (4.32)

Note that DxxDyy = DxyDxy. This results in the same spline thin-plate prior term as

previously proposed, however, it now has anisotropic weighting.

Figure 4.5 compares anisotropic and isotropic diffusion for a simple 1-D case. The

original signal, containing two square waves, was randomly sampled and reconstructed

using the formulation proposed. Figure 4.5a shows the isotropic result and Figure 4.5b

displays the anisotropic result. In this case, the gradient is constructed from the original

signal, therefore the gradient is exact. The same regularization parameter is used for the

two reconstructions. It is apparent that the anisotropic method significantly outperforms

the isotropic method in this example. The isotropic reconstruction is overly smoothed and

bridges the gap between the two square waves. On the other hand, the anisotropic method

creates sharp edges with only small errors where there are few samples.
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(a) Perona and Malik method for
anisotropic weighting using monotoni-
cally decreasing function.

(b) Mansouri et al anisotropic weighting us-
ing matrix.

Figure 4·4: Comparison of anisotropic diffusion methods. Mansouri et
al implementation (Mansouri et al., 1998) provides improved smoothing of
diagonal edges.

4.2.4 Gradient Estimation

In order to compute the anisotropic weights, we need to estimate the underlying HR image

gradient. Any inaccuracies in the gradient estimation will result in undesirable anisotropic

weighting and artifacts in the HR image. If it were possible to obtain perfect gradient

information from the LR frames, then there would be no need for superresolution since all

of the frequency content of the underlying scene would be present.

The anisotropic diffusion methods presented by Perona and Malik, and Mansouri et

al estimate the edge information for every iteration of the minimization. This works well

given their applications. Perona and Malik implement anisotropic diffusion to create high

quality coarse images. Given a HR image, their objective, is to create a coarse image with

distinct intensity boundaries. Therefore, they begin with ’perfect’ gradient information of

the high resolution image and with each iteration obtain new edge information based on

the anisotropically diffused image. Mansouri et al apply anisotropic diffusion to disparity

estimation. The basic assumption is that image intensity boundaries correspond to dispar-

ity boundaries and, therefore, smoothing should be disabled along these boundaries. Once
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(a) 1-D example of isotropic diffusion for randomly sampled data.

(b) 1-D example of anisotropic diffusion for randomly sampled data.

Figure 4·5: 1-D example of isotropic and anisotropic diffusion demon-
strates the edge-enhancing effects of the anisotropic implementation.
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again, this application has the advantage of knowing the gradient information of each of

the frames and therefore will be properly updated with each iteration. The application of

anisotropic diffusion to superresolution, however, is a bit different.

Superresolution images are constructed from a set of LR images. Therefore, the gradient

information of the HR image is unknown at the onset of the minimization. The only

gradient information available is the gradient of the LR, degraded images. The HR image

may be estimated using a basic interpolation scheme and then this information used to

initialize the minimization. However, any inaccuracies in the interpolation scheme will

result in artifacts in the reconstruction. Another problem with this implementation is

that there will be holes in the data where there are few irregular samples. As a result,

the gradient estimate for each iteration will have artifacts caused by these holes. Based

on these realizations, the solution chosen is to estimate the gradient of the high resolution

image prior to minimization. Every iteration of the minimization utilizes the same gradient

information thus necessitating an accurate superresolution gradient estimation. Several

approaches for the estimation of the gradient were experimented with. These methods

include estimating the gradient from the estimate of a HR image using:

1. Nearest-Neighbor Interpolation

2. Linear Interpolation

3. Cubic Interpolation

4. Isotropic Diffusion

For these approaches the HR image is estimated, a low pass filter is applied to eliminate

any high-frequency errors and then the gradient is computed. The gradient is approximated

using finite-differences in the x and y direction.

Three different data sets were utilized for the gradient comparison. The construction

of these data sets is detailed in Chapter 5. For each of the data sets, the gradient was

approximated with the methods detailed above and then the mean square error (MSE) was
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computed. Based on the experimental results, it was found that isotropic reconstruction,

followed by low pass filtering and gradient estimation provided the best overall gradient

estimation.

4.2.5 Minimization

Combining equations (4.4) and (4.32), we construct the following cost function:

J(C) = (||y − ΦC||2) + α2
[
||DxxC||2Hxx + 2||DxyC||2Hxy + ||DyyC||2Hyy

]
(4.33)

The function is minimized by computing the derivative and setting equal to zero:

J(C) = (y − ΦC)T (y − ΦC) + α2
[
(DxxC)THxx(DxxC)+

2(DxyC)THxy(DxyC) + (DyyC)THyy(DyyC) (4.34)

dJ

dC
= 2(ΦTΦC)− 2(ΦT y) + 2α2

[
DT
xxHxxDxxC + 2DT

xyHxyDxyC +DT
yyHyyDyyC

]
= 0

(4.35)

Rearranging the equation we obtain,

ΦT y = ΦTΦC + α2
[
DT
xxHxxDxxC + 2DT

xyHxyDxyC +DT
yyHyyDyyC

]
(4.36)

To determine the solution to equation (4.36), for which J(C) is minimized, the conjugate

gradient algorithm is utilized.
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Chapter 5

Experimental Results

In this chapter, we evaluate the effectiveness of the proposed spline-based, anisotropic

superresolution algorithm on several data sets. First, we present results for ground-truth

data that allow a numeric comparison in terms of reconstruction error. While one data

set includes random sample positions, the other set includes three LR images undergoing

translational motion. Then, we present results for real video sequences.

5.1 Synthetic Motion

We tested our anisotropic spline-based algorithm on several synthetically-generated data

sets. These data sets allow us to control the presence of blur (PSF of the capture system)

as well as motion parameters used to generate the LR images. Therefore, the SR algorithm

could be tested under different conditions such as with perfect motion and with estimated

motion, with and without PSF, with perfect gradient and with estimated gradient. In each

case, the improvements were quantified using the mean squared error (MSE). Three HR

images were used to construct three corresponding LR data sets (see Figure 5.1). The

reconstruction for each of these three images and each type of low-resolution modeling was

evaluated. To obtain samples for reconstruction, two different methods were used. The

first method consists of randomly sampling the HR image and estimating the original image

from these irregular samples. In the second method, a more realistic approach, globally-

translated LR images were created from the HR image. Each of the modeling techniques

and the corresponding results are detailed in Sections 5.1.1 and 5.1.2.

For each synthetic data set the MSE was computed for a variety of regularization

parameters. Unfortunately, MSE is not always an accurate measure of image quality.
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(a) High-resolution Squares image (480x528).

(b) High-resolution Brick image (672x896).
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(c) High-resolution Jeep image (448x832).

Figure 5·1: HR images used to generate synthetic-motion data sets.

When comparing two images, one image may have a lower MSE than the other image,

however the image with a higher MSE could be more visually pleasing. This is likely to

occur when there are overshoots at a few pixels only. The cases in this thesis for which this

holds true will be identified and the corresponding images will be provided. Given that

there were many images generated to evaluate the effectiveness of the SR algorithm, it is

impractical to include all of the images in this thesis. Therefore, through MSE and several

representative examples the effectiveness of the SR algorithm will be demonstrated.

5.1.1 Randomly-Sampled Images

The first and simplest method for testing the SR implementation involved randomly sam-

pling a high resolution-image. The original image is then reconstructed from the irregularly-

sampled data. There is no motion estimation needed since only one set of sample points

is used (in a sense, one image). The effectiveness of the anisotropic reconstruction is

compared to isotropic reconstruction. Anisotropic diffusion was performed using gradient

information of the original HR image. This is a very simple test case, however it allows for

examination of the impact of anisotropic diffusion under ideal conditions (gradient of the

original image). For each of the images tested, 30% of the pixels from original HR image
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were used.

As the MSE plots in Figure 5.2 demonstrate, the proposed anisotropic algorithm based

on perfectly-known edges (gradient) significantly outperforms the isotropic reconstruction.

This is also clearly visible in reconstructed images (Figure 5.3), especially on the checker-

board pattern.

(a) Squares

(b) Brick (c) Jeep

Figure 5·2: Mean square reconstruction error using randomly-sampled
data set for both isotropic as well as anisotropic algorithm.

5.1.2 Global Translational Motion

The second set of test images were created using global translational motion. To generate

this test set two different approaches were used, one with pre-filtering and the other without
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(a) Squares original image.

(b) Squares isotropic reconstruction with α = .4 (MSE = 639).
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(c) Squares anisotropic reconstruction using perfect gradient informa-
tion with α = .4, µ = 5 (MSE = 301).

Figure 5·3: Results of reconstruction for randomly-sampled Squares im-
age: (a) original image; (b) isotropic reconstruction; and (c) anisotropic
reconstruction using perfect gradient information. Each image is pre-
sented with α resulting in lowest MSE. The edge enhancing effects of the
anisotropic diffusion are clearly visible in (c) on the checkerboard pattern.
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pre-filtering. Pre-filtering is typically used prior to downsampling to eliminate aliasing.

The drawback to using a pre-filter to create the LR frames is that the blur introduced will

appear in the HR reconstruction. To demonstrate the impact of blurring, each data set

will be tested with and without pre-filtering.

In the case without pre-filtering, the LR images are aliased, however the reconstruction

is not limited by the blur introduced by a PSF. In the second test, a Gaussian pre-filter is

used to eliminate aliasing (see Figure 5.4 for the impact of pre-filtering). The variance of the

pre-filter was chosen by visual inspection. Since this pre-filter (PSF) is not accounted for

in the Φ matrix, the HR images constructed from the pre-filtered LR images are expected

to be blurred. In both data sets, the HR images were shifted using global translational

motion and then downsampled. In order to obtain LR images that are shifted by subpixel

amounts, at least one shift, either x or y, cannot be a multiple of the sample period. The

images were cropped after down-sampling to eliminate regions without data (caused by the

shifting in x and y directions). The SR up-sampling factor for each image is the same as

the down-sampling factor used in preparing each data set, thus allowing for computation

of the MSE between the SR image and the original HR image.

The number of frames necessary for superresolution reconstruction can vary signifi-

cantly depending on the up-sampling factor and the displacement between frames. For

each test set, the number of LR frames for SR reconstruction is limited to three. The

motivation for using only three frames for reconstruction is to show a slightly stressing

case (using more frames naturally leads to improved reconstruction results) and highlight

the effectiveness of the anisotropic superresolution algorithm.

For all 3 test images, Squares, Brick and Jeep, the HR image was shifted by [2, 13],

[0, 0] and [5, 11]. In the Squares case, the HR image was downsampled by 3 in x and y,

resulting in 3 LR images with subpixel shifts of [0.67, 4.33], [0, 0] and [1.67, 3.67]. Figure

5.5 shows the locations of the LR pixels relative to the HR grid. The original HR Squares

image is 480x528, therefore each LR image is 160x176. Since 3 frames are utilized for

reconstruction, the percentage of HR pixels used for reconstruction is 33%. The Brick
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(a)

(b)

Figure 5·4: Impact of pre-filter on down-sampled image quality: LR image
obtained (a) with pre-filtering; and (b) without pre-filtering. Gaussian pre-
filter minimizes aliasing in the LR frames, but also limits the improvements
of the SR algorithm.
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(a) Location of LR pixels on HR grid for Squares im-
age. For this case, 3 frames were used for the superres-
olution reconstruction and the images were up-sampled
by 3 in both dimensions.

(b) Location of LR pixels on HR grid for Brick and
Jeep images. For these images, 3 frames were used
for the superresolution reconstruction and the images
were up-sampled by 4 in both dimensions.

Figure 5·5: Location of LR pixels on HR grid.

image was downsampled by 4, resulting in 3 LR images with subpixel shifts of [0.5, 3.25],

[0, 0], and [1.25, 2.75]. The original HR image is 672x896 and the LR images are 168x224.

In this case, the percentage of HR pixels used for reconstruction is 19%. Similarly, the

448x832 Jeep image was downsampled by 4, resulting in 112x208 LR images.

In order to evaluate the effectiveness of the SR reconstruction, the SR image was

computed using either perfect or estimated motion parameters. Also, the pre-filter was

either used or not. This resulted in the following four test conditions:

1. no pre-filter, perfect motion,

2. no pre-filter, estimated motion,

3. Gaussian pre-filter, perfect motion,

4. Gaussian pre-filter, estimated motion.

Motion estimation was performed in each case using the Horn and Schunck optical flow

algorithm described in Section 3.3, implemented over a hierarchy of resolutions (multi-

resolution implementation). For each of the above conditions, we evaluated isotropic dif-

fusion, anisotropic diffusion using the gradient of the HR image and anisotropic diffusion
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using the gradient estimated from LR images (Section 4.2.4). This comparison permits

verification of the improvement of anisotropic diffusion over isotropic diffusion in the ideal

case (perfect gradient) and for the proposed method (estimated gradient).

Tables 5.1 and 5.2 show the minimum MSE obtained using various reconstruction al-

gorithms applied to Squares, Brick and Jeep images. Note that we also included results

for a a simple 2-D cubic interpolation of one LR image to gauge the improvement afforded

by SR reconstruction.

Clearly, all SR reconstruction algorithms compared in Tables 5.1 and 5.2 outperform

the simple bi-cubic interpolation, which was to be expected. It can be also concluded

that anisotropic diffusion outperforms the isotropic diffusion when the motion is precisely

known. As expected, the anisotropic diffusion with perfect gradient has the lowest MSE

and is significantly lower than that of the isotropic reconstruction. The estimated gradient

case does not perform as well as the perfect gradient case, however it still outperforms

the isotropic reconstruction. The inaccuracies in the gradient estimation limit the edge

enhancement potential of the anisotropic method.

Table 5.1: Minimum MSE for Each Test Set with Perfect Motion
Anisotropic Anisotropic

Cubic Perfect Estimated
Filtering Image Interpolation Isotropic Gradient Gradient

Squares 280.7 245.6 204.4 226.9

Pre-Filtered Brick 183.5 172.9 148.6 160.4

Jeep 107.0 97.4 77.0 85.8

Squares 284.4 237.2 174.4 213.1

No Pre-Filter Brick 176.0 175.7 136.2 159.5

Jeep 116.1 111.8 80.6 97.3

Figures 5.6, 5.7 and 5.8 show complete MSE plots as a function of the regularization

parameter α2. Clearly, a very small α2 results in an under-regularized image and therefore a
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Table 5.2: Minimum MSE for Each Test Set with Estimated Motion
Anisotropic Anisotropic

Cubic Perfect Estimated
Filtering Image Interpolation Isotropic Gradient Gradient

Squares 323.1 307.4 261 304.7

Pre-Filtered Brick 217.7 207.2 186.0 198.8

Jeep 133.1 124.4 107.4 117.6

Squares 565 505.2 407.1 508.8

No Pre-Filter Brick 388.7 343.4 318 340.2

Jeep 210.4 190.4 169.4 187.2

very high MSE. Similarly, a large α2 results in an over-regularized reconstruction and a high

MSE. Each of the MSE plots is zoomed-in to show the range of regularization parameters

of interest. Again, note the degrading impact of imprecise motion (inaccurate estimation)

on the performance of SR algorithms, especially in the case without pre-filtering.

Finally, reconstructed images with the lowest MSE (from Tables 5.1 and 5.2) for all three

images are shown in Figures 5.9–5.11. The improvements are subtle but clear, especially in

the zoomed-in images (Figures 5.9f, 5.10f, and 5.11f). Based on the subjective comparison

of reconstructed images, it can be also concluded that anisotropic diffusion outperforms the

isotropic diffusion. The isotropic diffusion image, such as one shown in Figure 5.10b, has

highly visible artifacts along the edges. The spacing of these artifacts corresponds to the

spacing of the LR samples shown in Figure 5.5. The regularization parameter is too low in

these cases to smooth out the regions void of LR samples. As the regularization parameter

is increased, these effects are reduced, however the image then becomes severely blurred.

Anisotropic diffusion allows the regularization parameter to increase to the point where the

sampling artifacts are eliminated without causing an overly blurred image. The Gaussian

pre-filtered images lead to similar results, however, the effects are not as prominent due to

the blurring introduced by the pre-filter (see Figures 5.9f, 5.10f, and 5.11f).



52

The comparison of the MSE plots with optical flow estimation reveals the impact of

aliasing in the LR images. In the case of no pre-filter, the MSE value increases significantly.

Aliasing in the LR images is interpreted as motion by the optical flow algorithm. Therefore,

pixels are mapped to incorrect locations causing severe artifacts in the SR images. On the

other hand, the optical flow test for the pre-filtered images only slightly increases the MSE

values.
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(a) Results for Squares image: no pre-filter and perfect motion.

(b) Results for Squares image: no pre-filter and optical flow motion estimation.
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(c) Results for Squares image: Gaussian pre-filter and perfect motion.

(d) Results for Squares image: Gaussian pre-filter and optical flow motion estimation.

Figure 5·6: MSE results for Squares image.
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(a) Results for Brick image: no pre-filter and perfect motion.

(b) Results for Brick image: no pre-filter and optical flow motion estimation.
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(c) Results for Brick image: Gaussian pre-filter and perfect motion.

(d) Results for Brick image: Gaussian pre-filter and optical flow motion estimation.

Figure 5·7: MSE results for Brick image.
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(a) Results for Jeep image: no pre-filter and perfect motion.

(b) Results for Jeep image: no pre-filter and optical flow motion estimation.
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(c) Results for Jeep image: Gaussian pre-filter and perfect motion.

(d) Results for Jeep image: Gaussian pre-filter and optical flow motion estimation.

Figure 5·8: MSE results for Jeep image.
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(a) Original HR Squares Image

(b) Lowest-MSE SR reconstruction of Squares: no pre-filter and isotropic diffu-
sion.
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(c) Visually-optimal SR reconstruction of Squares: no pre-filter and isotropic
diffusion.

(d) Lowest-MSE SR reconstruction of Squares: no pre-filter, anisotropic diffusion,
perfect motion and perfect gradient.
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(e) Lowest-MSE SR reconstruction of Squares: no pre-filter, anisotropic diffusion,
perfect motion and estimated gradient.

(f) Zoomed-in comparison for Squares image.

Figure 5·9: SR reconstruction results for Squares HR image for synthetic-
motion data and no pre-filter.
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(a) Original HR Brick Image

(b) Lowest-MSE SR reconstruction of Brick : no pre-filter and isotropic diffusion.
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(c) Visually-optimal SR reconstruction of Brick : no pre-filter and isotropic diffusion.

(d) Lowest-MSE SR reconstruction of Brick : no pre-filter, anisotropic diffusion, perfect
motion and perfect gradient.
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(e) Lowest-MSE SR reconstruction of Brick : no pre-filter, anisotropic diffusion, perfect
motion and estimated gradient.

(f) Zoomed-in comparison for Brick image.

Figure 5·10: SR reconstruction results for Brick HR image for synthetic-
motion data and no pre-filter.
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(a) Original HR Jeep Image

(b) Lowest-MSE SR reconstruction of Jeep: no pre-filter and isotropic diffusion.
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(c) Visually-optimal SR reconstruction of Jeep: no pre-filter and isotropic diffusion.

(d) Lowest-MSE SR reconstruction of Jeep: no pre-filter, anisotropic diffusion, perfect motion and esti-
mated gradient.
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(e) Lowest-MSE SR reconstruction of Jeep: no pre-filter, anisotropic diffusion, perfect motion and esti-
mated gradient.

(f) Zoomed-in comparison for Jeep image.

Figure 5·11: SR reconstruction results for Jeep HR image for synthetic-
motion data and no pre-filter.
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5.2 Real Motion Data Sets

The results for the synthetic data sets demonstrate the edge-enhancing effects of the

anisotropic SR reconstruction. They also demonstrate the need for precise motion esti-

mation and the limitations introduced by blur. Any inaccuracies in the motion estimation

result in artifacts in the SR image. Pixels which are misaligned and mapped to incorrect

locations on the HR grid also result in errors in the gradient estimation which limits the

effectiveness of the anisotropic diffusion. To further test the SR implementation, real video

sequences were evaluated.

For the video sequence analyzed, three LR 240x352 frames were used to create a

960x1408 HR image, up-sampling by 4 in x and y. This sequence was captured by a

camera subject to vibrations caused by wind load and nearby air conditioning equipment.

The exact motion of the camera is unknown, however, it appears to be globally trans-

lational (far away objects, very small camera pan and tilt). Therefore, the optical flow

estimation should yield a smooth vector field. Figure 5.12 displays a zoomed-in region of

the optical flow field computed from for the first video sequence. As expected, the optical

flow vector field is fairly uniform across the entire image.

In order to compare the best reconstructions for both methods, the regularization

parameter was chosen based on the lowest MSE for synthetic data sets with optical flow

estimation. For the synthetic data sets with optical flow estimation, a regularization weight

of 0.1 for the anisotropic reconstruction and 0.004 for the isotropic reconstruction had the

lowest MSE. The images in Figure 5.13 show the isotropic and anisotropic reconstruction

results obtained from 3 video frames of the video sequences. The images are shown at a

25% scale, therefore it is very difficult to observe differences in the reconstructions. The

improvements of the anisotropic method are more visible in the zoomed-in images shown

in Figure 5.14.
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(a) Zoomed-in region of normalized optical flow vectors between images 1 and 2 for
real video sequence. Average (unnormalized) optical flow vector = (-3.7692, 0.3521)

(b) Zoomed-in region of normalized optical flow vectors between images 2 and 3 for
real video sequence. Average (unnormalized) optical flow vector = (-1.3184, -0.2419)

Figure 5·12: Optical flow vectors for real video sequence.
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(a) Results for isotropic reconstruction for α2 = 0.004.

(b) Results for anisotropic reconstruction for α2 = 0.1.

Figure 5·13: Isotropic and anisotropic SR reconstruction results for a real
video sequence.
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Figure 5·14: Zoomed-in region of isotropic and anisotropic SR reconstruc-
tion from Figure 5.13.
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Chapter 6

Conclusions

6.1 Discussion of Results

In this thesis we have presented an anisotropic spline-based superresolution reconstruction

method. Building on the work of Vazquez, the SR cost function proposed implements a dis-

crete spline thin-plate model with edge-preserving anisotropic weighting. To construct the

anisotropic weighting matrix, the gradient was estimated from the LR images. Although

this estimate only provided a coarse estimate of the gradient, the anisotropic implementa-

tion still had a beneficial impact. In order to control the complexity of the experiments,

the method was tested against several synthetic data sets with varying motion and blur

parameters. The results were compared to Vazquez’s isotropic diffusion method visually

and using MSE. The results of the synthetic data sets confirm the edge enhancing effects of

the anisotropic implementation. However, the performance gain over the isotropic method

is strongly dependent on accuracy of motion estimation. Under ideal conditions, when the

motion is perfectly known, the anisotropic method significantly outperforms the isotropic

approach.

We have also tested the impact of Gaussian pre-filtering (during the generation of

synthetic-motion data sets) on the SR reconstruction results. Such a pre-filter minimizes

aliasing in the LR images, however, it also limits the improvements of the HR reconstruc-

tion. The differences of pre-filter and no pre-filter case are not clearly visible through MSE,

rather the effects of the Gaussian blur are more apparent through visual inspection. The

blur limits the sharpness of the high-resolution reconstruction. The SR method proposed

here models the underlying high-resolution image as a continuous spline function. Note,
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however, that the observed LR images are modeled as perfect impulse samples of the con-

tinuous spline function. Therefore, there is no PSF introduced into the image formation

model and thus our solution does not take such a PSF into account. As a result, the

algorithm does not accurately represent the image formation model for LR images with

blur. The inclusion of PSF would improve the results of the pre-filtered reconstruction and

possibly make it better than the no pre-filter case.

Lastly, the anisotropic SR algorithm was tested against real video sequences. As ex-

pected, the anisotropic diffusion method shows only slight improvement over the isotropic

implementation. Inaccuracies in motion estimation, unaccounted camera blur and com-

pression artifacts hinder the improvements of the SR reconstruction.

6.2 Suggestions for Future Work

The SR algorithm proposed in this thesis assumes impulse sampling of the continuous spline

function. To further improve this implementation, a PSF should be incorporated into the

image formation model. As a result, the Φ matrix would be a function of both the 2-D

cubic B-spline function and the PSF. Ideally, the PSF would exactly describe the imaging

systems response to a point source. However, a rough approximation, such as a Gaussian

blur kernel, may be sufficient to improve the anisotropic implementation. Including a PSF

in the matrix Φ would more accurately model the image formation process.

This work may also be extended to applications with more complicated motion, for

example moving objects. In this thesis, we evaluated data sets with a static scene and

global translational motion. Most video sequences consist of more complicated motion,

with moving objects, zoom, warping etc. However, prior to applying this implementation

to other motion models, the motion estimation itself needs to be improved. The effects of

inaccurate motion estimation have been demonstrated throughout this thesis.

Superresolution image restoration relies on aliasing in the LR images so that HR fre-

quency content can be recovered. However, motion estimation does not perform as well

when aliasing is present. These two steps of the superresolution process have conflicting re-
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quirements. This SR implementation could be further improved with a motion estimation

algorithm which can better handle aliased images. A possible solution may be to apply

special filtering (based on some knowledge about aliasing present) to the LR images to

smooth out the high-frequency aliasing prior to motion estimation.
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