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Summary

Motion-compensated hybrid DPCM/DCT approach has dominated video coding over
the last two decades. Best examples are successful MPEG and H.26X coders. Today,
these coders are being challenged by new algorithms based on the discrete wavelet
transform (DWT). Early approaches based on 2D (spatial) subband decomposition
followed by motion compensation did not perform well primarily due to inefficiency
of the motion-compensation of aliased signal components. However, various methods
extending the wavelet transform to 3D (space-time) have shown great promise; works
of Ohm, of Choi and Woods, and of Kim, Xiong and Pearlman have all exploited tem-
poral correlation in 3D-DWT-transformed data. Although some methods exploited
motion compensation to account for this correlation, the problem turned out to be
challenging due to difficulties with temporal motion continuity. As an extension of
these early results, recently several researchers have proposed separable 3D DWT (1D
temporal transform followed by 2D spatial transform) with motion adaptation. Some
of the methods proposed use transversal (standard) implementation of the motion-
compensated temporal transform, while others use lifted implementation of the same
transform. Although, in general, these implementations are equivalent, under motion-
compensation this equivalence occurs only under certain conditions. Recently, Konrad
has derived necessary and sufficient condition on such equivalence; the general condi-
tion states that motion composition must be a well-defined operator (for the case of
Haar DWT the condition is that motion must be invertible). However, since not all
motion models obey such properties (block matching is one example), in this report
we investigate coding performance under different motion compensation scenarios. In
particular, we compare the performance of two independently-estimated vector fields
(forward and backward) with that of a single vector field (forward) plus interpolation
of the backward vector field in both transversal and lifting implementations. Our
experimental results show that the interpolation-based method outperforms the in-
dependent estimation in terms of coding PSNR not even considering the lower rate
needed to transmit one single vector field instead of two.
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Chapter 1

Introduction

The goal of video compression is to reduce the amount of data to represent a video
sequence thus facilitating video transmission and storage. The main idea in video
compression is to exploit spatial correlation between pixels in the same frame and
temporal correlation between consecutive frames of a video sequence [6]. In the past
two decades, motion-compensated hybrid DPCM /DCT video coding algorithms have
been very successful in all kinds of applications. With the rapid development of new
telecommunication services and electronic devices, people expect to receive video
from different types of terminals and through channels with different capacity. Thus,
scalability of video coding methods is highly desired and significant effort has been
put into the design of scalable video coding algorithms.

In 2003, Secker and Taubman [3] proposed a new framework for highly scalable
video compression called lifting-based invertible motion adaptive transform or LIMAT.
In this framework, lifting-based implementation of the discrete wavelet transform
(DWT) is applied along the temporal direction under motion compensation. This
technique allows for very high temporal scalability [2] and also utilizes spatial scal-
ability of JPEG-2000 image compression standard, while it is more efficient com-
putationally than the transversal implementation. Recently, Konrad derived neces-
sary and sufficient conditions on motion transformation for perfect reconstruction in
motion-compensated transversal DW'T, and also for the equivalence between motion-
compensated transversal and lifted implementations of the temporal DWT [1]. In
general, the condition is that the motion model must allow composition; a special
case, e.g., for the Haar DWT, is that motion must be invertible. In practice, many
motion models do not obey such properties. In this project, we investigate cod-
ing performance under different motion compensation scenarios. In particular, we
compare the performance of two independently-estimated vector fields (forward and
backward) with that of a single vector field (forward) plus interpolation of the back-
ward vector field using a nearest-neighbor interpolator. We perform this comparison
for both transversal and lifting implementations. Our experimental results show that
the interpolation-based method outperforms the independent estimation in terms of
coding PSNR not even considering the lower rate needed to transmit one single vector
field. These results confirm the importance of motion invertibility in the case of the
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Haar DWT, and thus suggest a new approach to motion compensation in compression
methods based on temporal DW'T.

In the next chapter, we review the necessary background material needed to un-
derstand details of the methods investigated. Chapter 3 describes the basic methods
and algorithms used in experiments. Chapter 4 shows the results and discusses con-
clusions.



Chapter 2

Motion-compensated discrete
wavelet transforms

2.1 Transversal and lifting approach to DWT

The discrete wavelet transform in temporal direction can be implemented using vari-
ous kernels, such as Haar, 5/3, 9/7, etc. For each such kernel, there are two different
ways of implementation: transversal approach (standard FIR filtering) and lifting-
based approach. The lifting-based approach is more efficient computationally than
the transversal approach. We can see this by using the 5/3 kernel as an example.

Let f; denote the k-th frame of an image sequence, and let x denote spatial
position of a pixel in this frame. The discrete wavelet transform based on the 5/3
filters can be described ed by the following equations:

e 5/3 transversal analysis equations:

hilx] = foppa[x] — ;(ka (2] + forsalx])

lklz] = gf% ] + i(f%—lm + fors1[z]) (far—2[7] + fori2[z])

1
8

e 5/3 transversal synthesis equations:

fule] = b= 5 heafe] + hule)
3 1 1
faeale] = 3hale] = SCcale] + b lo]) + 3] + e o)

e 5/3 analysis equations using lifting:

hilr] = fopyalz] — %(ka[m] + fortolx])

hla] = ula] + healo] + hele])
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e 5/3 synthesis equations using lifting:

fule] = tefa) = 0 afe] + hule)

faweale] = bufir) + 5(fonle] + fosole)

From the above equations we can see that in the lifting-based approach, the second
equation (called the update step) always uses the result from the first equation (called
the prediction step). Thus, it is more efficient computationally than the transversal
approach and, therefore, more desirable in practical applications.

2.2 Temporal decomposition under motion com-
pensation

By carrying out the temporal decomposition without motion compensation, however,
significant energy will concentrate in the high subband (temporal prediction is ineffi-
cient without motion compensation). This is not desirable in compression. To achieve
better compression performance, we need to incorporate motion information into the
temporal DWT (Fig. 2.1). If the motion model works well, we can apply the temporal
filters from previous section along motion trajectories of each sample position, and
thus reduce energy in the high subband [3]. This is illustrated in Fig. 4.1.

Then, a question arises: Will the transversal and lifting-based approaches be still
equivalent, and will they allow perfect reconstruction in presence of motion compen-
sation? The answer is easy for the lifting approach since non-linearities introduced
into the lifting equations do not prevent perfect reconstruction. However, this is not
clear for the transversal approach. Also, equivalence between the two approaches is
not a given. Recently, Konrad has derived the necessary and sufficient conditions
for perfect perfect reconstruction of the transversal implementation and also for the
equivalence of the two approaches under motion compensation. This condition states
that motion transformation must allow composition [1]. This condition simplifies to
motion invertibility for the Haar transform as will be detailed in the next section.

2.2.1 Haar discrete wavelet transform

In this section, we consider the Haar DWT under motion compensation. The standard
temporal Haar transform (non motion-compensated) equations are:

e Haar transversal analysis equations:

hilz] = fosalz] — forla]
Wl = 3/l + 5 fonsale]
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Figure 2.1: Filtering along motion trajectory

e Haar transversal synthesis equations:

forlz] = lfz] — Shy[x]

Jorprz] = Shelz] + k7]

e Haar lifting-based analysis equations:

hilz] = f2k+1[37]1f2k[35]
lr] = forle] + Shlal

e Haar lifting-based synthesis equations:

fulel = Gle] = Shule

Jorprlz] = hglx] + for[x]

Let My_;(z) denote the motion transformation from frame & to frame [. In an ideal
case, fr[My—i(z)] = fi[z] holds. With this notation, the Haar motion-compensated
transversal equations are:

e Haar motion-compensated transversal analysis equations:

hile] = forsi[2] = for[Mok—oni1 ()]
hlel = S fale] + 5 oria[Matsr (o)
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e Haar motion-compensated transversal synthesis equations:

farlz] = Liz] - ;ﬁk[MzkH—»zk(ff)]

Fanle] = ghale] + KMo (o)

By substituting h, and [, into the synthesis equations, one can show that the
conditions for perfect reconstruction are:

Mo —op11(Mogr1-2k(2))

Moji1—0k(Mag—o41(2))

These two equations mean that the motion transformation M needs to be invertible

[1].

Frame O Frame 1

- -1
Motion O -- 1

Y

)

)

Motion 1 -- O

Lowpass O Highpass O

Figure 2.2: Use of motion in lifting-based Haar DWT

As for the Harr motion-compensated lifted transform, Fig. 2.2 show the role mo-
tion plays in the decomposition. The corresponding lifting equations are:

e Haar motion-compensated lifting-based analysis equations:

hile] = forsi[2] = for[ Moo i1 ()]
hlel = fale] + gl Mok (@)



Motion compensation in temporal discrete wavelet transforms

e Haar motion-compensated lifting-based synthesis equations:

Jolz] = li[2] - %Ek[M%H—Qk(m)]
Jorpalz] = hilz] + JNFQk; [Mog—o141()]

Note that in lifting implementations perfect reconstruction always holds, even if non-
linearity is included into equations. However, the above Haar motion-compensated
lifting equations produce exactly the same output as the Haar motion-compensated
transversal equations only if motion model used is invertible [1].

2.2.2 Haar sub-optimal lifting

In the analysis equations of the motion-compensated lifted Haar transform, we first
calculated the high subband (prediction step) and then we calculated the low subband
based on the high subband. The motion fields used to calculate the high subband, i.e.,
Moy _9r11, were estimated in standard way by minimizing the motion-compensated
prediction error:

min Z | for41[x] — ka [M2kﬂ2k+1($)”2

Mok —2k4+1 7

Clearly, the resulting motion fields minimize energy in the high subband, a highly
desirable effect. We call this optimal lifting.

However, we wondered what would happen had we not used the optimal lifting
but instead, for example, lifting such that motion estimation criterion is not directly
related to the energy of the high subband. In this case, motion fields (Mo _ok11)
obtained by minimizing the criterion above are applied to calculating the low subband.
Th high subband is computed by motion fields inverted from these motion fields and
thus the high subband may contain a lot of energy.

e Haar motion-compensated sub-optimal lifting-based analysis equations:

hle] = 3 fale] + 5 Foria Mot (o)
hilr] = 2farsa[r] = 20 [ Mo k41 (7))

e Haar motion-compensated sub-optimal lifting-based synthesis equations:

Joralz] = %hk[x]+lk[M2k—>2k+1(93)]

Forla] = 20lz] = Fopr [Mor1-ok(2)]
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2.2.3 5/3 discrete wavelet transform

We also considered DWT based on the 5/3 filters as follows:

e 5/3 motion-compensated transversal analysis equations:

hkm = f2k+1[$] - %(f%[Mzka%H(l')] + f2k+2[M2k+2ﬂ2k+1(33)]>
lhlx] = %f%[x] + i(ka—l[MZk—ler(x)] + forer [Mag 1o (2)])

1

8 (.]?21%2 [Mog—o—or(2)] + f2k+2 (Mot 2—2k()])

e 5/3 motion-compensated transversal synthesis equations:

Fulel =l = 7 (na (Moo -ae(0)] + Mot -n(2)
foralz] = th 2] — %(%1[]\/[21@1%2“1(13)] + 1 [Mog 321 (2)])
gl Mot (0] + s Mg s ()

For the 5/3 motion-compensated transversal DWT, sufficient conditions for perfect
reconstruction are [1]:

Mok —op—1(Mag—1-9x(z

M2k+1ﬂ2k(M2kH2k+1 x

|
B 8 8 8

(z))
Mzk—>2k+1(M2k+1—>2k(I))
(x))
Mop1—2kt2(Mogy2—2r41())
plus several conditions of the form: Mj._.,,(M,_,;(z) = My_;(z). The equations listed
mean that the motion transform needs to be invertible, but the last condition is more

general and requires that motion composition be well defined [1].
As for the 5/3 motion-compensated lifted DWT, we have:

e 5/3 motion-compensated lifting-based analysis equations:

hk[l’] = f2k+1[l‘] - %(ka[M%—Qk—H(x)] + Jg2k+2[M2k+2—>2k+1($)]>
lx] = falz] + i(ﬁk—l[MQk—lﬁ%(m)] + ilk[MZk—i-l—»%(x)])

e 5/3 motion-compensated lifting-based synthesis equations:

Fulel = = s (Mot ()] + Mo -n(2)

Fanle] = hefe] + 5 oslMokaioale] + Fapal Motz (0)])
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Frame 0 Frame 1 Frame 2 Frame 3 Frame 4

Highpass 0 Lowpass { Highpass 1

Figure 2.3: Use of motion in lifting-based 5/3 DWT.

In order that the 5/3 motion-compensated transversal and lifted DWTs be equiv-
alent (outputs of their respective analysis and synthesis equations be the same), the

conditions are again that motion be invertible and that motion composition be well
defined [1].



Chapter 3

Motion models for temporal DWT

Clearly, in this project motion fields are an essential element of the overall compression
scheme. Such motion fields are usually computed between two consecutive frames
although they may also be derived from three or more frames. For a review of motion
modeling and estimation paper by Stiller and Konrad is highly recommended [4].

The underlying model used in motion estimation from image sequences is intensity
constancy along motion trajectories. Thus, for intensity ¢ and displacement (motion)
(dy,d,) we can write [6]:

V(x4 dy,y+dy,t+dy) = (x,y,1)

After applying Taylor’s expansion, we get:

_ o oy W
Y@ +dpy +dyt+di) = P(a,y, 1) + 5ode + 5 o™ B

Using the intensity constancy above, we obtain:

3@/} o oy
0 gyl e =0

Finally, dividing the above equation by d; we obtain:

WL

8x 8 =0

Since the above equation if scalar and we have two unknowns (velocities v, and v,),
it is clear that we cannot determine both of them at the same time. We need to set
up other constraint to make the equations complete. One way to impose constrains
is to assume that neighboring pixels undergo the same motion. One example of using
neighboring pixels is called block matching that we describe below.
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3.1 Block matching

Block matching is a straightforward motion estimation method that is amenable to
VLSI implementations. This method is widely adopted by current hybrid video com-
pression standards. Block matching will be used here in motion-compensated DWT's
as well.

However, motion fields resulting from block matching do not assure one to one
mapping for pixel pairs between two adjacent frames; there will be multiple pixels
from frame #1 pointing to the same position in frame #2 and some pixels in frame #2
will be never pointed to by any motion vectors. Clearly, the model is not invertible.
Lifting-based approach and transversal approach will not result in the same output
with this motion model.

Block matching is typically implemented as follows:

e frame #1 (called reference frame) is divided into non-overlapping blocks,

a block in frame #1 is selected and a candidate vector is assigned to all pixels,

e an error metric is computed between intensities of the selected block in frame
#1 and its translated version (by the selected motion candidate) in frame #2,

vector with the lowest error for each block is selected and assigned to this block,

the procedure is repeated for all blocks in frame #1.

Mean squared error is one of the most popular error metrics, which is also adopted
in this work. Motion field is estimated by minimization of the sum of differences
between intensities of block pairs :

E,(dy) = Z 2 (x + dy) —%(X)\Q

XEBm

Example of vector field computed using this approach is shown in Fig. 3.3.

3.1.1 Unrestricted motion vectors

In order to provide a more reasonable description of motion in a given sequence
and improve coding efficiency at image boundaries we allow motion vectors to point
outside of the image [6]. In this project, images are expanded by one block in both
directions by mirroring blocks at the boundary. Thus, motion vector candidates can
point outside of the image by one block. Examples of the original and expanded
image are shown in Fig. 3.1 and 3.2.
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Figure 3.1: One frame from sequence “Stefan”.

3.2 Sub-pixel search

In general, the motion between consecutive frames need not be composed of of in-
teger horizontal and vertical components. For more precise motion fields, sub-pixel
accuracy search is needed. Sub-pixel positioned points can be interpolated from the
available intensities at grid points. In Fig. 3.4(a), points denoted by gray bullets
are at sub-pixel positions, namely shifted by (i, i) from grid points (black bullets).
Intensities at those sub-pixel positions may be needed in motion compensation. They
can be interpolated from the known intensities at grid points (black bullets) using

interpolation (linear, cubic, etc.). We use bilinear interpolation in this work.

3.3 Backward motion estimation

In order to implement analysis and then synthesis equations of motion-compensated
temporal DWT, both forward and backward motion fields are needed. One approach
is to estimate both motion fields independently (from frame #1 to frame #2, and
from frame #2 to frame #1). The advantage is simplicity, but drawbacks are that two
vector fields need to be transmitted and also that the two vector fields are unlikely
to be inverses of each other.

An alternative is to compute the forward vector field directly but to estimate the
backward field by some sort of inversion procedure. Since motion model used in block
matching is not invertible, the inversion procedure cannot be exact but instead only
an approximation. We developed a method based on nearest-neighbor interpolation
of the forward vector field. The idea is as follows: each forward motion vector points
to a position in frame #2 at which it can be reversed to point back to frame #1, and
thus defining the backward vector field on an irregular set of positions. The main
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Figure 3.2: Frame from Fig. 3.1 after expansion.

issue is to perform irregular-to-regular grid interpolation [5]. While nearest-neighbor
interpolation on pixel-precision vector fields is quite straightforward, it is a bit more
complicated for sub-pixel accuracy.

Fig. 3.4(b) shows regular grid points (hashed) at which we need to estimate the
backward motion vectors and irregular 1/4-pixel precision positions (black) that result
from motion compensation; forward motion vectors are projected from frame #1 to
frame #2 thus resulting in a set of irregular positions but always at 1/4-pixel precision
(hashed). Based on the knowledge of x and y motion components at black points we
need to recover these components at hashed points.

The nearest-neighbor interpolation algorithm that we developed can be described
as follows (applied to both = and y components of motion vectors):

1. Initialize a all-zero matrix M in such a way that each element represents a
full-pixel (grid) and sub-pixel position.

2. According to the forward motion field, assign the x component to those positions
that are pointed to by the vector. To those positions that are not assigned a
vector, assign a constant as a flag.

3. Depending on motion precision, initialize the vertical search range (HSV) and
the horizontal search range (HSH). Both are adjustable.

4. Calculate how many points (Num) are within this search range and generate
value pairs [-1,0],[0,-1],[1,0],...,[HSV,HSH] that denote search positions from the
closest to the farthest away. Let V denote this ordered array of positions.
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!
50 100 150 200 250 300 350

Figure 3.3: Motion field overlaid onto a frame of sequence “Stefan”.

5. On grid points, where we seek backward vectors, apply the following algorithm:
for i = grid points index
for j = grid points index
if M(i,j) == "flag"
inx = 1;
while inx<=Num AND M(i+V(inx,1),j+V(inx,2))=="flag"
inx++
end
if inx<=Num
M(i,3)
else

M(i,j)

M(i+V(inx,1),j+V(inx,2));

’flag?2’
end
end
end

6. Find those grid points that contain a 'flag2’, and perform the above algorithm
with a very large search range.

Experiments show that a pair of motion fields obtained by nearest-neighbor in-
terpolation described above are more invertible than two motion fields calculated
directly. In other words, the absolute difference between two fields calculated directly
is much larger. An example of independently estimated vector fields (horizontal com-
ponent shown as intensity) is shown in Figs. 3.5-3.6. Note that the interpolated
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(a) Sub-pixel search positions (b) Nearest-neighbor interpolation

Figure 3.4: (a) Sub-pixel search positions and (b) interpolation of motion vectors at
regular positions (hashed) from vectors at irregular positions (black).

backward motion field is very similar to the estimated field although it is difficult to
say which pair is closer to being invertible. In order to measure this objectively we
developed the following invertibility error:

ed—Z|df —d’(x+df (x))]

where d/ = [df,d/]" and d* = [d},d}]" are forward and backward motion vectors,
respectively, while d denotes interpolation, in our case bilinear, of z and y components
of d at non-grid positions. Clearly, this error measures the sum of departures of points
in frame #1 when each of them is projected onto frame #2 using the forward motion
field and then back projected onto frame #1 using the backward motion field. A pair
of motion fields being perfect inverses of each other would result in zero error €.

In Table 3.1, we show the invertibility error €¢; for independently estimated and
interpolated backward motion field for various sequences. Note the consistently lower
error for the interpolated backward field as compared to the independently estimated
field. Assuggested by theoretical results from Chapter 2, we expect that a motion field

pair with lower invertibility error should result in better compression performance.
3.4 Video coding performance measurement
To compare the impact of different motion fields on video compression performance,

an objective criterion needs to be defined. To find an ideal criterion is very difficult.
One popular way is to calculate PSNR, the peak-signal-to-noise ratio, in decibels
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50 100 150 200 250 300 350

Figure 3.5: Horizontal component of forward motion field estimated from “Stefan”

(dB) [6] as follows:

2

2

2 is computed

where 9,4, is the maximum intensity in the data, and the variance o
as follows:

2 _ 1 2
O = NZZ(wl(manv k) - ¢2(m7 n, k)) :

k. mn
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50 100 150 200 250 300 350

Figure 3.6: Horizontal component of backward motion field estimated from “Stefan”

50 100 150 200 250 300 350

Figure 3.7: Horizontal component of backward motion field obtained by nearest-
neighbor interpolation for “Stefan”
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| 1/4-pixel

1/2-pixel

full-pixel

“Stefan” (search range £50)

Two independent fields

2.3855/67.0981

2.4003/67.3284

2.3537/68.2659

Nearest-neighbor interp.

1.4295/45.0815

1.4182,/45.0345

1.3793/45.7176

“Coastguard” (search range £20)

Two independent fields

0.0866/0.0298

0.0616,/0.0365

0.0463/0.0475

Nearest-neighbor interp.

0.0066,/0.0029

0.0038/0.0022

0.0044/0.0051

“Mobile” (search range +25)

Two independent fields

0.7827/12.6154

0.7913/12.6754

0.7739/12.7974

Nearest-neighbor interp.

0.3696/6.7768

0.3655/6.7487

0.3486/6.5995

“Akiyo” (search range £20)

Two independent fields

0.0310/0.1541

0.0288/0.1591

0.0153/0.1482

Nearest-neighbor interp.

0.0113/0.1241

0.0104/0.1197

0.0093/0.1239

“Hall” (search range +25)

Two independent fields

1.1953/11.5678

1.2023/11.5734

1.1378/11.9603

Nearest-neighbor interp.

0.4529/5.1760

0.4528/5.1810

0.4312/5.4574

Table 3.1: Comparison of invertibility error ¢4 for various sequences; two independent
motion fields estimated using block matching, or forward motion field estimated using
block matching and backward recovered using nearest-neighbor interpolation.



Chapter 4

Experiments and results

4.1 Experiment setup

In this chapter, experimental procedure and results are provided, and conclusions are
drawn.

We conducted experiments are on CIF-resolution video sequences at 30 frames
per second. Fach frame contains 288 x 352 pixels. After the temporal transform,
subband frames are spatially compressed by JPEG-2000 still-image coder. Then,
video sequences are reconstructed by temporal synthesis filters. Single-level motion-
compensated temporal Haar transform was performed by three different approaches:
transversal approach, lifting-based approach and sub-optimal lifting-based approach.
Backward motion fields were obtained by two different methods: direct estimation of
forward and backward vector fields, and by inversion of directly-estimated forward
motion field by means of nearest-neighbor interpolation.

Video sequences were coded at the bit rate of 500kbps. 90% of all bits were
assigned to the low subband and 10% of all bits were assigned to the high subband.
After decoding by JPEG-2000 decoder, corresponding motion-compensated synthesis
filters were used to reconstruct each video sequence. All of the results are obtained
by neglecting the cost of coding motion fields. Differences result only from motion
fields and temporal filters.

As mentioned before, block matching is used to estimate motion. For all sequences
we used (—25,425)-pixel search range. Full-, half- and quarter-pixel accuracy motion
vectors have been computed using bilinear interpolation. The block size was 16 x 16.
All intensity interpolations in analysis and synthesis equations were carried out using
linear interpolation.

4.2 Experimental results

For the frame from Fig. 3.1 we show the low and high subbands with no motion
compensation (Fig. 4.1(a-b)), and with motion compensation (Fig. 4.1(c-d)). Note
the reduced energy in the high subband when motion compensation is used.



20 Wei Zhao

Figure 4.1: Lowpass (a,c) and highpass (b,d) subbands for frame of “Stefan” from
Fig. 3.1 after one level of 5/3 temporal decomposition without motion compensation
(a,b) and with motion compensation (c,d).
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4.3 Motion compensation benefits

The first experiment is to evaluate how much motion compensation will benefit the
compression performance, and what is the improvement due to the use of 5/3 filters
compared to simple Haar filters. Table 4.1 shows that the compression performance
can be improved by introducing motion compensation rather than no motion com-
pensation. For Haar filters the improvement introduced by motion compensation is
1.79dB. The improvement due to 5/3 filters instead of Haar filters is an additional
0.3dB. Results are obtained by transversal filters and nearest-neighbor interpolation
at quarter-pixel precision. Experiment was performed on 30 frames of sequence ”Ste-
fan” starting at the third frame.

Stefan PSNR | Energy in high subband
Haar no motion | 22.5778 1.3584e9
Haar with motion | +1.7945 1.5460e8
5/3 with motion | 4+2.0950 1.2082e8

Table 4.1: Coding performance expressed as PSNR for Haar DWT without motion,
with motion and 5/3 with motion on “Stefan”.

4.4 Optimal and sub-optimal lifting

In this experiment we evaluate the difference between optimal and sub-optimal lift-
ing (Table 4.2). Numbers after PSNR values are total energies in high subbands
(prediction error). Results are obtained for the Haar filters and show that optimal
filters outperform sub-optimal filters by 0.3dB. The experiment was performed on 30
frames of sequence ”Stefan” starting from the third frame and 30 frames of sequence
"Foreman” starting from the 203rd frame.

4.5 Lifting versus transversal implementation for
independent two motion fields and nearest-neighbor
inversion

The main object of this project was to examine how motion invertibility affects video
compression performance. As mentioned before, motion field pair with backward field
obtained through nearest-neighbor interpolation is, by definition (and confirmed by
Table 3.1), closer to invertibility than motion field pair with backward field estimated
directly. Since both the lifting approach is closer to transversal approach, and the
transversal approach is closer to perfect reconstruction when motion is more invert-
ible, a better performance can be expected of nearest-neighbor interpolation over two
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Stefan

1/4 precision

1/2 precision

full precision

Two fields optimal

24.2810(1.5460e8

24.1936(1.7100¢8

24.0151(2.2347e8

Two fields sub-optimal

23.9454(5.0645¢8

23.7690(5.4084e8

Nearest-neighbor optimal

Nearest-neighbor sub-optimal

)
( )
24.3156(1.5460e8)
24.0145(6.0809¢8)

)
23.8871(5.2697¢8)
24.2845(1.7100e8)
24.0104(6.1011¢8)

)
( )
24.1619(2.2347¢8)
23.9599(5.9331e8)

Foreman

1/4 precision

1/2 precision

full precision

Two fields optimal

30.5808(4.8534¢e7

30.5020(5.2336¢€7

30.4111(6.5041e7

Two fields sub-optimal 30.1866(1.7329e8

Nearest-neighbor optimal

)
30.1666(1.7859¢8)
30.6634(5.2336¢7)

( )

)

( )
30.6918(4.8534e7)
( ) | 30.1467(3.1682e8

(
30.5881(6.5041e7
30.1895(3.0861e8 (

Nearest-neighbor sub-optimal

30.0419(1.7627e8

30.0921(3.1656e8

Table 4.2: Coding performance expressed as PSNR for Haar optimal and sub-optimal
lifting filters on “Stefan” and “Foreman”. Energy in the high subband is shown in
parentheses.

fields estimated independently. Results in Table 4.3 show that motion field pairs
with backward fields inverted by nearest-neighbor interpolation outperform motion
field pairs with backward fields estimated directly by up to 0.15dB. In Table 4.4, we
also show results for “Stefan” using the 5/3 filters. As can be seen, the 5/3 filters
outperform the Haar filters by about 0.3dB in both transversal and lifted implemen-
tations with two independent motion fields and nearest-neighbor interpolation.

4.6 Conclusions and acknowledgments

4.6.1 Conclusions and future directions

Invertibility of motion models plays an important role in wavelet temporal transforms.
In this work, simple interpolation method to construct backward motion field from
a forward one has been proposed. This has lead to motion fields that are closer to
forming an invertible pair than a pair of motion fields estimated directly. Experiments
have been carried out to evaluate compression performance of both approaches to the
construction of motion field pairs under both transversal and lifting-based temporal
DWTs. Results show that motion field pairs that are more invertible perform better
than motion field pairs that are less invertible. This confirms the theoretical results
recently derived.

Future work includes studying this issue for longer filters like 9/7 and also multi-
stage decomposition. Motion fields can be estimated by mesh model and inverted by
more advanced spline based method. These are all very interesting experiments to
work on. In block matching, different block size and motion precision are also worth
testing. In experiment experiments reported here, we used a simple JPEG-2000 still
image coder and we coded each subband frame separately. Bits assigned to each
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Stefan

1/4-pixel

1/2-pixel

full-pixel

Two fields transversal

24.2758(1.5460€8)

24.2203(1.7100¢8)

24.1026(2.2347¢e8)

Nearest-neighbor transversal

24.3723(1.5460e8)

24.3115(1.7100e8)

24.2231(2.2347¢8)

Improvement

0.0965

0.0912

0.1205

Two fields lifting

24.2810(1.5460e8)

24.1936(1.7100e8)

24.0151(2.2347€8)

Nearest-neighbor lifting

24.3156(1.5460e8)

24.2845(1.7100¢8)

24.1619(2.2347¢8)

Improvement

0.0346

0.0909

0.1468

Coastguard

1/4-pixel

1/2-pixel

full-pixel

Two fields transversal

28.2011(5.1550e7)

28.1954(5.5213e7)

28.1157(6.5637¢7)

Nearest-neighbor transversal

28.2243(5.1550e7)

28.1980(5.5213¢7)

28.1502(6.5637¢7)

Improvement

0.0232

0.0026

0.0345

Two fields lifting

28.1646(5.1550e7)

28.1540(5.5213¢7)

28.1496(6.5637¢7)

Nearest-neighbor lifting

28.1884(5.1550¢7)

28.1619(5.5213e7)

28.1543(6.5637¢7)

Improvement 0.0238 0.0079 0.0047
Mobile 1/4-pixel 1/2-pixel full-pixel
Two fields transversal | 20.8407(1.7329¢8) | 20.7865(2.1365¢8) | 20.6967(3.6593¢8)
Nearest-neighbor transversal | 20.8593(1.7329¢8) | 20.8174(2.1365e8) | 20.7167(3.6593¢8)
Improvement 0.0186 0.0309 0.0200
Two fields lifting 20.8166(1.7329¢8) | 20.7809(2.1365¢8) | 20.6995(3.6593¢8)
Nearest-neighbor lifting 20.8327(1.7329e8) | 20.7903(2.1365e8) | 20.7421(3.6593e8)
Improvement 0.0161 0.0094 0.0426
Akiyo 1/4-pixel 1/2-pixel full-pixel
Two fields transversal 37.1277(3.0422e6) | 37.0983(3.7547e6) | 37.0566(4.7553€6)
Nearest-neighbor transversal | 37.1531(3.0422¢e6) | 37.1067(3.7547¢6) | 37.0551(4.7553¢6)
Improvement 0.0254 0.0084 -0.0015
Two fields lifting 37.1617(3.0422¢6) | 37.1029(3.7547¢6) | 37.0508(4.7553¢6)
Nearest-neighbor lifting 37.1820(3.0422e6) | 37.1189(3.7547e6) | 37.0480(4.7553e6)
Improvement 0.0203 0.0160 -0.0028
Hall 1/4-pixel 1/2-pixel full-pixel

Two fields transversal

31.5369(3.9562¢7)

31.5337(4.1639¢7)

31.4347(4.5563e7)

Nearest-neighbor transversal

31.6155(3.9562¢7)

31.6071(4.1639¢7)

31.5382(4.5563¢7)

Improvement

0.0786

0.0734

0.1035

Two fields lifting

31.6221(3.9562¢7)

31.6226(4.1639¢7)

31.5369(4.5563¢7)

Nearest-neighbor lifting

31.6950(3.9562¢7)

31.6991(4.1639¢7)

31.6345(4.5563¢7)

Improvement

0.0729

0.0765

0.0976

Table 4.3: Coding performance expressed as PSNR for Haar lifting versus transversal
under two motion fields and nearest-neighbor inversion for “Stefan”, “Coastguard”,
“Mobile”, “Akiyo”, “Hall”. Energy in the high subband is shown in parentheses.
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Stefan

1/4-pixel

1/2-pixel

full-pixel

Two fields transversal

24.5141(1.0994€8)

24.5345(1.1658e8)

24.3916(129721701)

Nearest-neighbor transversal

24.6728(1.2082€8)

24.6544(1.2844e8)

24.4970(1.4547¢8)

Improvement

0.1587

0.1199

0.1054

Two fields lifting

24.5326(1.0994e8)

24.5112(1.1658e8)

24.3600(129721701)

Nearest-neighbor lifting

24.6779(1.2082¢8)

24.6563(1.2844¢8)

24.4391(1.4547¢8)

Improvement

0.1453

0.1451

0.0791

Table 4.4: Coding performance expressed as PSNR for 5/3 lifting versus transversal
under two motion fields and nearest-neighbor inversion for 30 frames of ”Stefan”.
Energy in the high subband is shown in parentheses.

frame were fixed. A video coder that uses more advanced bit assignment algorithm

would prove more beneficial.
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