Joint disparity/motion estimation and seg-
mentation for object-oriented stereoscopic

image coding







Joint disparity/motion estimation and segmentation for
object-oriented stereoscopic image coding

Cheng Hong Yang

Université du Québec
Institut national de la recherche scientifique

INRS-Télécommunications

16, place du Commerce, Verdun
Québec, Canada, H3E 1H6

April 1997

Rapport technique de 'INRS-Télécommunications no. 97-05






This report describes the Ph.D thesis proposal of Cheng Hong Yang prepared under
the supervision of Prof. Janusz Konrad and defended on April 18 1997 in front of
a committee consisting of Prof. Benoit Champagne, Prof. Eric Dubois and Prof.
Janusz Konrad.






Summary

This document describes a project aiming at the development of a new approach to
video segmentation. In particular, in order to divide individual video frames into
regions corresponding to objects from a 3-D scene, the proposed approach attempts
to jointly exploit multiple sources of visual information, such as motion, disparity
and luminance/color. The resulting segmentation is expected to find applications in
object-oriented coding of monoscopic and stereoscopic video sequences. The proposed
approach is based on Markov random field models linked together by the maximum a
posteriori probability estimation criterion. In the formulation robust error functions
are used to minimize the impact of outliers, while the optimization stage is based
on a continuation method. Encouraging initial experimental results for the case of
motion segmentation are demonstrated.
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1 Introduction

This project aims at developing a new approach to video segmentation. In particular,
in order to divide individual video frames into regions corresponding to objects from
a 3-D scene, it attempts to jointly exploit multiple sources of visual information, such
as motion, disparity, luminance and color. The resulting segmentation is expected
to find applications in object-oriented coding of monoscopic and stereoscopic video
sequences.

The currently emerging moving picture standard MPEG-4 will provide many
new functionalities that are not supported by the existing standards at low bit
rates (MPEG-1, MPEG-2), such as content-based interactivity and bitstream edit-
ing [24]. In the context of MPEG-4, there is an increasing interest in object-based
(segmentation-based) video coding. This interest is due to the fact that object-based
approaches have a strong potential for increasing the coding efficiency as well as the
inherent capability for handling content-based functionalities.

In the older moving picture coding standards interframe compression is achieved
by motion compensation on rectangular blocks (block-based), hence at low data rates
suffers from coding artifacts known as blocking and mosquito effects. In the frame-
work of new standards a great attention is paid to object-oriented analysis-synthesis
coding (OOASC). Instead of dividing images into blocks, they are divided into moving
objects based on the assumption that an object corresponds to a region with uniform
motion and luminance/chrominance characteristics. Then, motion compensation can
be applied to every object, and each object can be coded by three sets of parame-
ters defining its motion, shape and luminance/color information. It should be clear
that the success of motion estimation is closely related to the accuracy of motion
segmentation. A better quality of prediction should be achieved by object-oriented
processing and hence higher compression ratios can be expected.

As far as stereoscopic video is concerned, the scenario of disparity estimation and
compensation on left and right images is similar to that of motion estimation and
compensation. Object-based techniques are also desirable in expectation of higher
compression gains. Besides, we hope to obtain a more precise description of objects
in the sequence because the additional camera provides depth information that we
couldn’t have in the case of a monocular system. If a good segmentation is avail-
able, every 3-D object can be constructed based on the depth map, and hence the
reconstruction of an image from an arbitrary view point becomes a simple synthesis
process [26]. Providing “look-around” capability in multi-view environments is also
an extension of MPEG-4. Nevertheless it’s on the condition that a good segmentation
is available. Roughly speaking, the intermediate view reconstruction can described as
an interpolation problem based on images from the existing view points. Therefore,
it is important to ensure that the corresponding points from different images belong
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to the same object.

To achieve high quality for a human observer a good segmentation has to take
luminance and color information into account. A segmentation which coincides with
object shapes is more stable temporally, although it has been shown that coding
an individual image based on rate-distortion theory does not require such a mean-
ingful segmentation [45]. A temporally stable segmentation can be predicted based
on motion compensation; its temporal redundancy is reduced. Furthermore, such a
segmentation helps the coder to adapt its coding strategy to human visual system’s
properties.

The present project focuses on simultaneous multiple-source segmentation and
estimation of, e.g., motion, disparity. We will develop a Markov random field (MRF)
approach to model the relationship between the field of segmentation labels and
individual sources. A MRF approach is very attractive as it can simultaneously
take all elements into account rather than treating them one after another as most
approaches do. Within our framework, we will also exploit a robust estimator in order
to efficiently deal with statistical outliers.

2 Literature review

In this section we present some elementary concepts involved in our project. We begin
with presenting Markov random fields (MRFS) and Gibbs random fields (GRFs). The
original work of an object-oriented analysis-synthesis coding (OOASC) is presented
in Section 2.2. In Section 2.3 we give a brief description of a stereo system and
related problems. Motion segmentation techniques are reviewed in Section 2.4. In
Section 2.5 we describe the basic principles of highest confidence first and continuation
optimization methods. The concepts of robust estimators are reviewed in Section 2.6.

2.1 MRFs and GRFs

A random field Z = {Z(x),x € A} is a stochastic process defined over a lattice A. In
our context A belongs to the image plane, A C R?. Sites x = (X,Y) in A correspond
to positions of pixels. A random field Z can be discrete-valued or real-valued. A
neighborhood of a site x is a set of sites A (x) which has the properties:

e x ¢ N(x),
ey e N(x) <= x € N(y).

A neighborhood system N over A is the collection of neighborhood of all sites.
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Markov random fields are extensions of Markov chains to 2D lattices. The random
field Z is called a MRF with respect to A if

p(Z(x)|Z(y),Vy #x) = p(Z(x)|Z(y), y € N(x)).

The definition of a Gibbs distribution is closely related to a structure in A called
a clique. A clique ¢ on A with respect to the neighborhood system N is a subset of A
such that either ¢ consists of a single site or all pairs of sites in ¢ are neighbors. The
set of all cliques is denoted by C.

The Gibbs distribution, with neighborhood system N and the associated set of

cliques, is defined as
p(7 = 2) = 5 exp(-U(2))
where
U(z) = Vel2),

ceC

and U(z) is called the energy function. V.(z) is a potential associated with clique e,

while
S=7Y exp(-Ulz)),

called the partition function, is a normalizing constant. The only condition on the
clique potential, otherwise totally arbitrary, is that it depends only on pixel values in
cliques ¢. The above expression has the physical interpretation that the smaller U(z)
(the energy of the realization z), the more likely that realization (larger p(Z = z)).

The Gibbs distribution is basically an exponential distribution. The origins of
GRFs lie in physics and statistical mechanics literature. The exponent is frequently
expressed as —%U’(z), where T is called the ”temperature”, and this distribution is
used in optimization by simulated annealing (see [25], [32]).

The valuable Hammersley-Clifford theorem, which provides us with a simple and
practical way to specify MRF's through Gibbs potentials, proves the equivalence be-
tween a MRF and a Gibbs distribution on the same neighborhood system N. Conse-
quently, the energy function of a Gibbs distribution is a more convenient and natural
mechanism for embodying image attributes than are the local characteristics of a
MREF. The theorem brought a large number of MRF applications in image process-
ing, e.g., image segmentation, motion, disparity and occlusion estimation.

A frequently used criterion in MRF-based estimation is the maximum a posterior:
probability (MAP) criterion. Let Z be a random field of attributes to be estimated,
e.g., motion and disparity, and O be a field of observation variables. The optimum
z* based on realization o can be found via the following MAP optimization:

*

z' = argmax P(Z =z|0 = o)
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P(O=0|Z=2z)P(Z=1z)

P(O =o)
= argmzaxP(O =0|Z =2)P(Z = z).

= argmax
z

According to the Hammersley-Clifford theorem, the problem is equivalent to the
minimization of the energy function of the Gibbs distribution

z' = argminf(O = 0|Z = z) + U(Z = z). (1)

The first term is related to the likelihood model while the second term is related to
the a priori model.

2.2 Object-based coding
2.2.1 Basic idea

To know what is object-oriented coding, we have to present the original work of
Musmann, Hotter and Ostermann [22, 21, 33, 35, 36].

In [34], they described and implemented a complete object-oriented analysis-
synthesis coder. An object-based analysis-synthesis encoder can be characterized
by these special steps [47]:

1. image analysis: The frame to be encoded is segmented into individually moving
objects using information from the previously encoded frames. Each object in
the frame is characterized by a set of parameters (a model).

2. 1mage synthesis: The present frame is synthesized based on the estimated at-
tribute parameters and the information from previously encoded frames.

3. coding: The parameters are encoded by suitable coding methods.

In an object-oriented coder a more efficient compression should be possible based
on the fact that every region contains many blocks that can be described by only a
couple of parameters and that within every region the correlation is high. Moreover
the human visual system is less sensitive to errors in the presence of high luminance
contrast. Experimental results to date show that object-oriented coders are able to
synthesize images which look more natural than images predicted by a block-based
hybrid coder, although the mean square prediction error may be the same or even
higher [34].

In an object-oriented coder in addition to motion information, the shape of regions
must be transmitted; this shape limits the area to which a particular set of motion
parameters applies. At the same time, since motion-based prediction is usually far
from perfect, luminance/color residual (error) information needs to be transmitted
as well. Therefore, the problem of coding the shape and luminance/color is important.



Joint disparity/motion estimation and segmentation 5)

In conclusion, compared to block-based coding, object-based coding has to deal
with three important problems:

1. Motion segmentation: we have to extract moving objects from the images. This
is the core of our project; we will return to this problem in Section 2.4.

2. Luminance/color coding,

3. Shape coding.

2.2.2 Luminance/color coding and shape coding

For luminance/color coding a representative approach is that of Gilge et al. [14].
DCT was extended to a more general form: a linear combination of orthogonal basis
functions defined on image region with arbitrary shape [14]. For each region an or-
thogonalization of the transform basis functions has to be performed separately using
Gram-Schmidt algorithm.

The main disadvantage of this approach is the computational effort which is nec-
essary for the orthogonalization of the basis functions. For each object shape an
orthogonalization of the transform basis functions has to be performed separately,
the computational load depends on the number of pixels within the object. A simpler
coding scheme which essentially uses the block-based DCT and takes into account
the segment information of the object, has been proposed by Schiller and Hotter
[40]. This approach has a simpler computation scheme with respect to the method
proposed by Gilge (generalized DCT). Schiller and Hotter have shown that the per-
formance of the two methods is similar and much better than that of block-based
DCT.

The shape of an object can be described either exactly or approximately. Lossless
encoding the contour is usually more expensive than coding with respect to a fidelity
criterion; it usually requires about 1.2 bits/contour-point [14]

In approximation methods, the distance between the original and approximated
shapes is an important measure of approximation quality. A maximum error of two
pixels horizontally, vertically and diagonally to the outside of a model-compliant
object and one pixel to its inside has been found to keep the synthesis errors still
acceptable [13, 18]. A polygonal representation of object shape is interesting for its
simplicity, but it does not necessarily provide a natural-looking shape. In [21], Hotter
improved polygonal representation by a combination of polygon and spline represen-
tation. First, the shape is approximated by a polygonal representation. The quality
is controlled by the absolute distance between the approximate and the original ob-
ject shape. By adding new vertices the polygon representation can be forced to meet
a quality criterion. In the final step, polygon vertices are used to compute a spline
approximation of the shape. If this representation satisfies the quality criterion, the
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Figure 1: Epipolar constraint: a 3-D point M is projected onto two images planes
(R; and Ry) through the optical centers C; and Cs.

spline representation replaces the polygon representation.

2.3 Stereoscopic video
2.3.1 Stereoscopic video system

Our eyes see the world from different points of view. Two slightly different images
are obtained on our left and right retinas. The mind combines two different, although
similar, images into one image (fusion) and the depth can be perceived due to the
difference between the images (disparity).

A stereoscopic vision system consists of two or more cameras (Figure 1). To re-
construct 3D coordinates from a pair (or more) of given 2D images obtained by the
cameras, we must first deal with the correspondence problem: given a token in image
1 what is the corresponding token in image 2 (see Figure 1). Because there are too
many potential candidates to choose, some properties must be exploited. The funda-
mental constraint is the epipolar constraint.

In Figure 1, the point e (e;), which is the intersection point of the line C;C5
(base line) and the plane Ry (Ry), is called the epipole of the second (first) camera
with respect to the first (second) camera. The plane C;MC, is called the epipolar
plane and is defined by M. We reason that all possible matches my in Ry of m; must
be located on the images of the half line epy (epipolar line). The epipolar lines are
intersections of the epipolar plane and the image planes R; and Ry [11].

While a stereoscopic system consists of a pair of video cameras mounted side by
side, a stereoscopic display consists of a single display surface on which the left and
right images are displayed and separated by a suitable method. The geometry of a
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Object Sensor Screen Image
Space Coordinates Coordinates Space
(Xcl,Ycl) (Xd,Xsn)
(Xo,Y0,Z0) (Xi,Yi,zi)
(Xer,Yer) (Xsr,Xsr)

Figure 2: Sequence of transformations between the true 3-D scene and viewer-
perceived 3-D space.

<

Zo

Figure 3: Parallel and convergent (toed-in) camera geometries.

stereoscopic video system can be determined by considering the imaging and display
processes as three separate coordinate transformations (Figure 2). The first transfor-
mation is from 3D coordinates of the object in the real world (object space) to the
position on the two sensors. The second transformation, is from these coordinates to
the coordinates on the display screen, and the third one to a 3D position perceived
by the viewer.

To develop the first transformation, camera geometry has to be considered. There
are two types of camera setups with respect to the convergence: parallel cameras and

toed-in or convergent cameras [5, 19].

The coordinates on the two sensors are given by Woods, Docherty and Koch [56]
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(refer to Figure 3). For parallel cameras, we have

ft+2X,)
X, = ———2 9
cl 2Zo ha ( )
f(t _ 2Xo)
Xy = —4———+h 3
oz, T (3)
Y,
Yo = Yo=-g (@)
For toed-in cameras, We have:
X = ftan (Oé - ¢)7 (5)
X = _ftan (ﬁ - ¢) (6)
fY,cosa
Yo = 7
: Zo cos (a — ¢) (7)
Y,
vy, = fY,cos 3 (8)
Zocos (B — ¢)
where t42X t—2X
o = arctan g, 3 = arctan ———2.

2Z, 2Z,

The distance between the coordinates of homologous points in the left and right
images is referred to as disparity. From the above expressions, it’s clear that there is
no vertical disparity for parallel cameras. Many computations are greatly simplified
in this case.

The transformation from the sensor coordinates to the screen coordinates is sim-
ply a magnification process. We don’t need, in the following development, the for-
mulations of the third transformation which describes how the parallaxz produces a
stereoscopic cue.

2.3.2 Disparity estimation

Disparity estimation from stereoscopic images is similar to motion estimation from
moving images. Therefore, many motion estimation techniques, such as pixel-, block-
or segmentation-based, have been adopted for disparity estimation. However, dis-
parity is characterized by several distinguishing features that need to be taken into
account while designing an estimation procedure:

1. disparity often reduces to a scalar (parallel geometry),

2. disparity is usually non-zero almost everywhere in the image (except for areas
resulting from a projection of surface in the camera convergence plane), whereas
motion is often zero in large parts of an image (background obtained by a
stationary camera),
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3. the dynamic range of disparity is usually much larger than that of motion,

4. in practice disparity does not obey view-angle continuity unlike motion’s tem-
poral continuity (too spare view-angle sampling).

[ just present here an interesting conclusion by Tamtaoui and Labit [46] and some
methods using MRF model.

The kinetic constraint describing the relationship between disparity vector and
motion vectors is often used to improve robustness [20, 53]

vV, — V. + dt - dt+1 - 07 (9)
where v;, v, are motion vectors, d’, d'™! are disparity vectors at ¢ and ¢ + 1.

Tamtaoui and Labit [46] have tested and compared three approaches to disparity
estimation that all used the kinetic constraint. The results showed that for a good
quality reconstruction disparity and motion should be jointly estimated.

Woo and Ortega [54] modeled the disparity and occlusion fields using MRFs(but
an element corresponds to a block of pixels rather than a pixel). The final expres-
sion contains three terms: observation (likelihood) model which corresponds to the
compensation error (DFD); the smoothness constraint adapted to occlusions, and the
discontinuity constraint which imposes an a priori assumption on the occlusion.

Following the same principle, they addressed disparity estimation/segmentation
problem in [55]. By comparison with the previous work, an a priori assumption has
been added and the smoothness constraint is active only within the regions. Unfortu-
nately, optimization procedure beginning with a simple luminance based segmentation
is also sequential, i.e., disparity estimation and segmentation steps are interleaved.

2.3.3 Stereoscopic video coding

Similarly to motion compensation, disparity compensation reduces spatial redun-
dancy between left and right images. Perkins [37] established a random process
model for a stereopair source, and showed, based on the Shannon’s theorem, that
a stereopair source can be optimally noiselessly encoded and decoded by a struc-
ture that employs the following strategy: encode right image, encode left image given
encoded right image; decode right image, decode left image given decoded right image.

Many block-based approaches to stereo coding (mainly MPEG-2 compatible en-
coders/decoders) [38, 49, 28, 16], and to multiview stereo coding [51, 50] have been
reported. Two object-oriented implementations of stereoscopic coding have been de-
veloped [15, 52].
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The coder proposed by Grammalidis et al. [15] works as follows. A block-based
matching is performed at first to estimate the disparity. The resulting disparity map
is stored for further motion estimation. The 3D motion is described by six parame-
ters (R, T) for each view. Motion is estimated by minimizing the sum of displaced
frame differences of left and right sequences. A fall-back block-based mode ensures
satisfactory performance even when object-based compensation fails.

The method proposed by Tzovaras et al. [52] is an attempt to describe an ob-
ject as motion and disparity object; an object is a region with similar motion and
depth parameters. In the first step, a split-and-merge segmentation scheme is applied
to segment the image into regions with uniform motion described by 6 parameters
(translation and rotation). Each region is divided into blocks with a pre-defined size.
An additional merge procedure is applied to the blocks to form regions of constant
depth, the so-called depth regions. Each depth-region is defined by the following
equation:

z(z,y) = Az + By + C.

Therefore, each object is described by a motion parameter set and a disparity param-
eter set.

Both approaches [15] [52] employed the split-and-merge process to perform a seg-
mentation on the pre-estimated motion and depth fields. From the results reported,
a strategy better than “estimate and then segment” is desirable to improve both
segmentation and estimation. It’s clear that estimation (motion and disparity) and
segmentation should be treated simultaneously to attain better quality. This problem
can be addressed by using a MRF model.

2.4 Segmentation

Object extraction means the process of finding a region in the image which corre-
sponds to the projection of a 3-D moving object. In case of moving object, it’s
referred to as motion (motion-based) segmentation.

2.4.1 Motion models

Every moving object, in most cases, can be described by a motion model. Therefore,
motion model is involved in a motion segmentation process. An object model pro-
vides a relationship between the position of pixel at (X;,Y;) in the image I* and the
position (X;,1, Y;41) based on a camera model and a geometric description of object’s
surface.

A planar rigid object with 3D motion (translation and rotation) was first studied
by Tsai and Huang [48]. An eight-parameter model was developed. Four models
known as 2D rigid source model with 3D motion, 2D flexible source model with 2D
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motion, 3D rigid source model with 3D motion and 3D flexible model with 3D motion,
were implemented and compared by Hotter [21] and Ostermann [35].

Many other models have been also proposed. A review of such models can be
found in [41]. Furthermore, many experiments show that affine transformation is a
good enough motion model for real video sequences. Not all object-based approaches
describe every region by a motion model. For example in [43, 44] a dense field was
used instead.

2.4.2 Clustering techniques

The simplest way to perform a motion segmentation is to apply clustering techniques
to a pre-estimated motion field. Clustering methods classify a set of entities (pixels)
into a number of subsets according to some dissimilarity /similarity criterion. For
spatial segmentation the criterion is usually based on color, luminance or texture in-
formation.

Many spatial segmentation technique exist in computer vision. Some of them fol-
low very intuitive reasoning. The split-and-merge approach is one that is frequently
used because of its simplicity. The application of split-and-merge to motion or dis-
parity segmentation is straightforward [15, 52]. It is performed in two stages: split
different entities into different classes according to a split criterion (dissimilarity crite-
rion) and then merge homogeneous entities to form a new class according to a fusion
criterion (similarity criterion). In the particular case of a quadtree, we have:

1. in split step: every region satisfying the split criterion is divided into four
identical regions,

2. in merge step: every two adjacent regions satisfying the fusion criterion are
merged into a new region.

A derivative of the standard split-and-merge approach which operates on flexible tri-
angular meshes has been developed as well [30].

Another segmentation technique is region growing. The central idea is to choose
some initial data units as seeds and then assign every pixel to the seeds. The technique
can be considered as a variation of the so called non-hierarchical clustering methods
with number of clusters k specified a priori or determined as part of the clustering
methods. Among the family of nearest-centroid sorting [2] methods in clustering
analysis, MacQueen’s k-means method [31] is simple and frequently employed in
image analysis. The algorithm sorting the data units into k clusters is composed of
the following steps:

1. take the first k£ units as clusters with a single member,
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2. assign each of the remaining units to the cluster with the nearest centroid; after
each assignment, recompute the centroid of the gaining cluster,

3. after all data units have been assigned in step 2, take the existing cluster cen-
troids as fixed seed points and make one more pass through the data set assign-
ing each data unit to the nearest seed point.

MacQueen proposed a variation on his basic k-means method which permits the num-
ber of clusters to vary during the initial assignment of the data units to clusters.

2.4.3 Motion segmentation

A motion segmentation approach is employed in many object-based analysis-synthesis
coding schemes, for example [22, 34, 21, 35]. Instead of performing the identification of
moving objects and estimation of mapping parameters in two steps, they are combined
in one procedure. The segmentation and mapping parameters are determined jointly.

1. First, by simply comparing two consecutive frames Iy, I; 1 two types of regions
are distinguished: changed regions and unchanged regions.

2. Each connected changed region is considered as a moving object. A motion
model and a geometric description of the surface of the object are employed.
Based on the established model (motion parameters and geometric parameters),
a mapping is sought that assures a correspondence between the image I, and a
predicted image it+1. For each region a parameter set is determined. A criterion
measures the accuracy of mapping parameter estimation: it compares it+1 and
I,.1. If the model describes the moving region well, the object is determined
and so are the mapping parameters. If a threshold is exceeded, the region will
be treated in the next hierarchical step.

3. Each region is divided into a region which can be described well by the model
and a model failure region. The model failure subregion is sent to step 2. This
scheme proceeds hierarchically until each object is characterized by a parameter
set.

The drawback of this method is that it can correctly identify different moving
objects only when there is a dominant moving object.

Following the same principle, the approach of Diehl [10] takes the color informa-
tion into account. The assumption is that moving objects and the background can
be distinguished by significant contours. Thus, the boundaries of changed regions
should coincide with contours extracted from individual images. A contour detector
is applied and the motion segmentation is refined using the contour information.
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2.4.4 MRF approaches

Using a MRF model, the motion and segmentation fields can be integrated easily into
one framework.

Konrad et al. [27] established a motion/segmentation model that is similar to
that of Woo et al. [54] for disparity described in Section 2.3.2. They applied the
same assumption about moving objects’ contours described above and employed an
intensity segmentation as initial state. The segmentation was then refined by region
fusion and boundary adjustment.

In the motion/segmentation model established by Stiller and Hurtgen [42], the
observation model, the counterpart of the compensation error distribution is pro-
vided be a zero-mean generalized Gaussian distribution. In a subsequent work [44], a
more sophisticated a priori model contained four terms which favor spatially-smooth
segmentation, temporally continuous segment boundaries along motion trajectories,
spatially smooth motion field within each segment, and temporally continuous motion
vectors along motion trajectories. From a guess of motion and segments, the opti-
mization problem is solved by the ICM method. The segmentation result reported is
of good quality.

Simultaneous motion estimation and segmentation has also been addressed by
Chang et al [4]. The authors include the affine motion model and the dense field
model in one MRF formulation, and they solve the optimization by interleaving a
segmentation problem and a motion estimation problem. First, by fixing the seg-
mentation, they solve the resulting sub-optimization problem for the motion field.
Then, by fixing the motion field and model parameters, they solve a segmentation
problem. Two processes are interleaved until convergence. They also observed that
HCF provides a better performance than ICM.

In general, a spatial segmentation contains too many regions. The fusion operation
implies re-estimation for all adjacent regions. Furthermore based on the experience
from previous work at INRS [27, 9], if a pixel is given a wrong label, it’s difficult to
correct it simply by a contour adjustment process. That’s why we are looking for new
approach which could take into account the luminance/color, motion and disparity
information and give directly a motion/disparity segmentation.

We have seen that MRF model provides a natural way to model segmentation
based on a number of sources. In many existing works, interesting models have been
established, but in practical implementations interleaved estimation and segmentation
are typically used.



Joint disparity/motion estimation and segmentation 14
2.4.5 Minimum description-length

The minimum description-length (MDL) criterion [39] demands the shortest descrip-
tion of image data using a chosen language. In information theory, the “length” of a
description is measured by the number of bits to represent information.

Leclerc [29] adopted this criterion to formulate a luminance intensity segmenta-
tion problem. He showed that in some cases MDL criterion is equivalent to the MAP
criterion. In terms of the segmentation problem, image information is described by
a selected segmentation model (piecewise-constant, or piecewise-smooth) and the de-
scription of the image data given the segmentation model (errors). An interesting
point here is that a label of a segment can also carry information about the lumi-
nance within a region rather than being a meaningless tag.

In our project, in the first step, to extract an initial disparity segmentation we
model a disparity region as a piecewise-constant region (Section 3.1).

In general, the prior probability of the segmentation is unknown. When we define
the potential function, we always follow the MDL criterion, e.g., a segmentation with
the simplest contour is preferred.

2.5 Optimization algorithms

To solve an optimization problem like (1) is difficult; standard gradient-based or
descent algorithms cannot provide a global optimum. We review some heuristic opti-
mization algorithms here. Both simulated annealing (SA), and highest confident first
(HCF) employ Gibbs distribution to model the local probability.

Simulated annealing was first reported in [32] and then in [25]. Geman and Geman
[12] developed an annealing algorithm for image restoration. They proved mathemat-
ically that the minimum can be attained if the temperature 7'(t) — 0 as ¢ — oo and
if the annealing process satisfies an “annealing schedule”. Unfortunately, it takes too
long to satisfy the schedule. Iterated conditional modes (ICM), which is a determin-
istic procedure can be considered as a special case of SA when the temperature is set
to zero.

Chou and Brown applied their Highest Confidence First (HCF) [8] technique
to a segmentation problem [7, 6]. Essentially HCF is a deterministic gradient de-
scent method. The, augmented label set contains, besides all the labels for which
the labeling problem is defined L = {l,ls,...,lx}, an extra “uncommitted” state
lo; L = LU{lp}. A site x is committed to a label [; at step t if Z(x) = [;, and it
is uncommitted if Z(x) = [,. Once a site has been committed to a label, it cannot
nullify its commitment, but it is allowed to change its commitment to other labels
in L. In HCF, every site starts in the uncommitted state. At any instant, only the
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site with the highest confidence is changing their state, i.e., the least stable ones with
respect to the current configuration, are allowed to change its states.

A continuation method embeds the objective function ¢(Z) in a family of functions
U(e, Z) for which there is a single local minimum at some large €, and for which the
local minima converge to that of U(Z) as € approaches zero. Leclerc [29] developed
a continuation algorithm for luminance segmentation problem. He used the function
e(e,x) = exp(—i—j) to approach the Kronecker delta d(z) which is typically used in
the segmentation model.

2.6 Robust Statistics

The field of robust statistics [17, 23] has been developed to address the fact that
parametric models of classical statistics are often approximations of the phenomena
being modeled. In particular, the field addresses how to handle outliers, gross error
due to the violations of assumptions about the model.

In [17] Hampel identified the main goals of robust statistics as follows
1. to describe the structure best fitting the bulk of the data,

2. to identify deviating data points (outliers) or deviating substructures for further
treatment, if desired.

In a fitting problem, the objective is to find a set of parameters a for a parametric
function f, given a set of observation data O so that the residual errors are minimum:

min > E(o— f(o,a)),

0€0

where £ is a function which measures the residual errors. In general, £ is an even
function and increasing in [0,00). The quadratic function is typically used, and the
problem is known as the standard least-squares estimation problem.

An estimation is said to be robust if the solution is relatively insensitive to small
deviations for the bulk of the data or to large deviations for a few data points. The
least-squares approach is generally not robust because it assigns a high weight to the
outliers (a simple example in [3]). To increase robustness, an estimator must be more
forgiving about outlying measurements. It means that the derivative of the function
E(x) tends to zero as x tends to co. There are a number of robust estimators enu-
merated in [3]. In [3], Black established a robust optical flow estimation framework
by replacing the least-squares estimator in the standard formulation by robust esti-
mators.
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3 Problem

3.1 Motivation

We have reviewed existing work related to object-oriented stereoscopic video coding,
especially the key problem of motion- and disparity-based segmentation.

There is a consensus that motion/disparity estimation and segmentation must be
simultaneously addressed to attain the best accuracy. To apply directly a cluster-
ing technique to a pre-estimated motion/disparity is not the best choice because the
estimation precess does not take into account the segmentation information. Most
approaches begin with a luminance segmentation, and then try to modify it by se-
quentially applying a series of criteria.

By contrast, MRF's provide an easy way to establish a general framework to deal
with the estimation/segmentation problem. Such a model can simultaneously take
into account multiple sources, e.g., motion, disparity and luminance/color. Many
models have been developed and there is a trend to make models more complete,
therefore more complicated. Nevertheless, even for the simplest model, the corre-
sponding optimization problem has not been solved satisfactorily. All optimization
methods must start with a good initial state to attain the global optimum. The
existing methods typically take a luminance-based segmentation as the initial seg-
mentation, and then try to refine it. In general, this segmentation is refined locally.
Most approaches fall back into the cycle “intensity segmentation, then estimation and
then segmentation adjustment”.

Our objective is to adopt a MRF model to establish a general framework for
segmentation based on a number of sources, such as motion, disparity and lumi-
nance/color. We first establish our approach using MRF models (formulation (1)).
We define potential functions that reflect relationship between sources and we use
continuation method to directly extract an initial motion and/or disparity-based seg-
mentation. Then we introduce robust estimators into our formulations.

We begin with disparity which is the simplest case if a parallel camera setup is
assumed.

3.2 Disparity estimation and segmentation

In the case of joint estimation and segmentation of disparity, a maximum a posterior
probability estimator will maximize the probability p(d, s|I}, I') where d is the field
of disparities and s is the segmentation field. The random field s is generally modeled
as a random field taking values from an integer set {1,,2... k}. If a parallel camera
setup is assumed, only the horizontal disparity d will be taken into account. Similarly
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to (1), it is equivalent to the problem
{s",d"} = argmaxp(I; |11, d, 5)p(d|T1, s)p(s| 1)

The superscripts are omitted to simplify the expression.

The equivalent energy optimization is

{8*7 d*} = arg ?ndl}lu(jr|[l7 d) 8) + u(d|-[l7 8) + M(S|Il) (10)

In our development, we are interested in the so called redescending robust estima-
tors which employ even functions £(z) to measure the residual errors (Section 2.6).
The function £(z) is strictly increasing for z > 0, f(0) = 0 and f'(x) — 0 as x — oo.
We will use £ to denote such a function. Then we have

Uy(d) 2 UL, d ) = S &L (X +d,Y) — L(X,Y)) (11)
(X)Y)

In most approaches using MRF models, the least-squares estimator is used instead.

From the estimators enumerated in [3], we have chosen the Lorentzian function
for 80

2

T
£(x) =log (1+ ),

where # is a scale parameter, because it is continuously differentiable. This property
is extremely important since we adopt the continuation method to solve our opti-
mization problem.

The second term in (10) gives a smoothness constraint on the disparity field within

a disparity region. In the present project, we consider only 2-element cliques ¢ =
{(X,Y), (X", Y")}. If we define

&@:{1ﬂng ,

0 otherwise

then

(1>

U,(d, s) Ud|L, s) =D Ve(d|], s),

ceC

Vo(d|l,s) = a&(d(X,Y) —d(X',Y))3(s(X,Y) — s(X",Y")).

The third term in (10) describes a priori knowledge about the segmentation:

U(s) 2 UsIL) = Vels| L)

Ve(sll) = (BG(L(X,Y) = L(X',Y")) +7)(1 = 6(s(X,Y) — (X', Y7))).
(12)
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The term G(z) is a function that gives a penalty to neighbors having similar
intensity values in order to increase the weight associated with the prior energy.
Mathematically speaking, G(x) is an even function and increasing in (—oo,0]. The
goal of G(x) is to increase the penalty in constant-intensity areas if a segmentation
boundary is introduced. There is a similar potential definition in [1]. The term
v(1 = 0(s(X,Y) — s(X',Y"))) reflecting the complexity of a region, is used in al-
most all approaches treating jointly motion estimation and segmentation problems.
Although the optimum segmentation of an image based on rate-distortion criterion
does not necessarily coincide with the real contours of objects [45], we think that
a segmentation approximating the real contours should be more stable temporally.
Note that coding of shape takes a large portion of bits in an object-based coder.

Finally, the optimization problem can be described as follows:

gl,idr}luo(d) + U(s,d) + U,(s). (13)
[t’s not easy to solve the above optimization problem; almost all optimization
methods need an initial state that is near enough to the optimum. As we mentioned
before, the existing approaches either use a first guess of disparity and segmentation
or sequentially follow the steps: spatial segmentation, then estimation, and then seg-
ment adjustment. In our development, we want to use neither a spatial segmentation
as initial segmentation nor a segmentation obtained from an initial disparity field
computed directly from intensities.

It’s clear that if we have a good disparity-based segmentation the whole estimation
procedure would be simpler. The random field s is generally modeled as a random
field taking values from an integer set S = {1,,2...,k}. Here we prefer a set with
finite number of members, not necessarily an integer set. It changes nothing because
the values are just tags. With any two finite sets of real numbers with the same
number of members (13) defines the same optimization problem. We choose one such
set that gives an approximation of disparity field. In the extreme case, if the images
contain piecewise-constant disparity surfaces, it could happen exactly that s = d.
Although not all surfaces have constant depth, this assumption is still reasonable for
images that don’t contain many surfaces with huge depth range.

We can see that
s* = arg ?m;uo(d) + Us(s,d) + Uy, (s)
subject to s=4d
= argminl(s) + Ua(s). (14)

The solution to problem (14) will give us a segmentation directly from the disparity
information. Since s is real, the only discrete term in the problem is the ¢ function. If
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the continuation technique developed in [29] is employed, a gradient-based algorithm
can be applied to compute s.

|i€
)

2
We use the same function to approach ¢ as in [29]. Let e(e,x) = e <=. Then,

lin% e(e,x) = 0(x).

€—

The approach of continuation is to replace § by e(e,z) and then let € go to 0. For
every €, we have an optimization problem

min 3 &(L(X +5,Y)— (X, 1)
{s=s(e)} (X,Y)
+ Xg(ﬁg(jl(Xa Y) - Il(Xla Y,)) + ’7)(1 - 6(67 S(X, Y) - S(XIJ YI)))(]'5)

The term e(e, x) is usually referred to as the Leclerc estimator because for any given
€, e(e,s(X,Y) — s(X',Y")) plays the role of an estimator.

The algorithm runs as follows:
1. Choose an initial €, a positive constant A < 1 and a threshold €*.
2. If ¢; > €*, solve the problem (15) and update €; : ;11 = ¢; X A. Otherwise stop.

To avoid being trapped in a local optimum, multiresolution optimization should
be adopted. Multiresolution techniques calculate the estimate at various levels of
spatial resolution. From one level to another, images are filtered by a Gaussian filter
and then sub-sampled horizontally and vertically by 2:1. The situation is depicted in
Figure 4.

Finally we return to the problem (13). s*(¢*) is not only a good state for s but
also for d. In theory, as ¢ — 0, the limit of s*(¢) tends to a segmentation. For
practical proposes, it’s only a quasi-segmentation; the neighboring values are similar
but, in general, not identical. s has to be quantized, and then a label is assigned to
s. A uniform quantizer is not suitable because we have observed during experiments
that smaller values of s (around 1) are much more reliable than greater values (e.g.,
around 5).

3.3 Motion estimation and segmentation

The only difference between motion and disparity/segmentation is that a motion
vector has two components v = (v,,v,). We can easily formulate the optimization
problem

min S &UTHX +u,, Y +u,) - (X, Y)) (16)
{v.s} (X,Y)eA
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Figure 4: Multi-resolution structure

- azcgl(uv(x, Y) = v(X,Y)|(s(X,Y) — s(X',Y"))
+ 2 (BGI(X,Y) = (X Y7) +9)(1 = 0(s(X,Y) = s(X',Y7))).

ceC

Solving directly this problem is also difficult. Following the same idea, we look for a
good initial segmentation which can approximate a piecewise-constant motion field.
The segmentation is obtained based on motion vectors, more precisely on their two
components v, and v,. The final segmentation labels will be computed from two
components s, and s,. Because s, and s, are different, they don’t have the same
contribution to the final segmentation. For simplicity however, we assume that they
contribute equally to the final segmentation, and confine the problem to the quanti-
zation and optimization steps. This means s can be obtained by superposing s, onto
sy. Formally,

s(X,Y) = s(X)Y') <= s,(X,Y) = 5,(X",Y') and s,(X,Y) = s, (X", Y").

To obtain a motion-based segmentation we have to solve the optimization problem

min Yo EUMTHX 4+ 5, Y +5,) — [H(X,Y)) (17)
{528y} (X,Y)€EA
+ D2 (BGUINXY) - I'(X",Y") + )
ceC

% (2 = 8(52(X, V) = 52 (X', Y")) = 6(5,(X, V) — s5,(X",Y"))).

Once estimated, the vectors (s, s,) must be quantized to give an initial segmentation
for s.
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3.4 Optimization problem

After solving problems (14) and (17), we have a good initial segmentation as well as
motion and disparity fields for problems (16) and (13). Take s (s, s,) as the initial
d (v, v,). Because we can never really let € — 0, a quantization process should be
performed to assign labels to s. A scalar (vector) quantizer will be developed to
obtain discrete labels. The quantized values will give a good approximation to the
segmentation sought.

To solve problems (13) and (16), I anticipate to develop an algorithm similar to
HCF optimization [6]. The reason that I want to develop an HCF-style algorithm is
that this technique provides a way to give a confidence measure to every change. I
intend to develop a local stability measure (confidence measure) different from that
described in [6]. Although I have not formulated the local stability measure yet, the
measure should, based on our experiments, depend on

e the amplitude of motion (disparity) vectors,
e the distance of a pixel from the boundary of region it belongs to.

As for the continuation of d, I need to develop it further, i.e., discrete or continue
state space.

3.5 Region-based simultaneous motion/disparity estimation

In this section we establish our complete model for joint (disparity, motion) estimation
and segmentation. Our sources are a stereopair I}, I and a pair of consecutive frames
(fields) I}, I},

For this problem, z = {v},d' st s}, } where s stands for disparity-based seg-
mentation at ¢ while s/ stands for the motion segmentation at instant t. We must

maximize
max P(a| 1}, I, ). (18)

Factoring the probability, we have

P(z, I}, I}, 1Y)

P(If, I, 1Y)
P sy of, vi,d' I 1)
P(If, I 1Y)

P(L;|d", vy, 57, 50, 1))
P(vi,d'|s}, sq, 1))
P(slsg, It) x P(sgll;).

P(z|I}, I/, I}) =

The equivalent problem in terms of energies is

: t+1| .t t t gt 7t t
min u(]l |Sd78l7vl7d7]r7[l)
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+ UL, v, 8], s, 1))
+ M(vl,dt|sf,sg,ff)
+ Ulslsg, I) +U(sglT).

The corresponding potentials are defined below.

3.5.1 Observation models

Observation models are established to reflect the quality of the compensation of lu-
minance values by motion and disparity fields:

Up(vi,d) = U by sbovh d T8 T + UL VE sty by 1)

)y L

= > &I X + vy, Y 4 vyy) — [[(X,Y))

3.5.2 Smoothness constraints

Smoothness constraints reflect the a priori knowledge about disparity and motion
fields within every region:

Us(vi,d',sp,s9) = Uvi,d'lsy, s )
= Y a&([IVi(X,Y) = v (X", Y)))(s5(X, V) — si(X',Y7))
ceC

+ Y af(d'(X,Y) = d'(X'Y")d(s54(X,Y) = s55(X,Y))

Because of different characteristics of disparity and motion fields we have to choose
different estimators for them. In case of the Lorentzian estimator

2

T
E(w) =log (1 + 575),

we will choose different 6.

3.5.3 Segmentation constraint

Here we have to define a function reflecting the relationship between s, and s}. Our
assumption is that any disparity region is contained in a motion region. In other
words, a motion boundary must coincide with a disparity (depth) boundary but not
vice versa. For a 2-element clique, we define:

Ve =

c

1 if sfi(X, V)= sfi(X’,Y’),sf(X, Y) # sf(X’,Y’)
0 otherwise



Joint disparity/motion estimation and segmentation 23

Then, we formulate an energy term using the ¢ function

U(sh,s) = U(st]sh, 1)

= > W

ceC

= Y COSX,Y) - XL Y))(1 - (X, V) — s{(X, V)

ceC

This term not only reflects an assumption about the segmentations but also joins the
problems of motion estimation/segmentation and of disparity estimation/segmentation.

3.5.4 A priori model

This model quantifies the complexity of the disparity, and therefore motion, bound-
aries (regions):

Ul(sh) = UsYIE)
= S V(shiT)

ceC

Ve(sall) = (BG(L(X,Y) = I(X",Y")) +7)(1 = 0(s4(X,Y) — 54(X",Y7))).

3.5.5 Total energy

Finally, we can formulate the minimization of the whole objective function as follows:
mzinuo(vt, d) + U (V! d', sY, s) + U4, sb) + U (sh). (19)

We will develop and compare two approaches. The first one will solve sequentially
the problems (14), (17) and (19). Formally,

1. solve independently (14) and (17).

2. quantize and fuse s,, s, to obtain s} and quantize the initial disparity segmen-
tation s, to obtain s.

3. using sg, 5y, 8¢ as initial vj,, vf,, d" respectively, and using quantized s}, and sj
as initial segmentations , apply the developed HCF algorithm to (19).

Above, initial vj,,vf,,s; and d', s}, to be used in problem (19), were computed
independently. We believe that at an increased computational cost they can be com-
puted jointly and therefore provide a more reliable result. In the second approach,
we use the continuation method (as in Section 3.1 and 3.2) to compute the initial
segmentations. Precisely, we Let s = d', s}, = v/, and sj, = vf, in each energy of
19. (The segmentation s is determined by the two components s; ,, sf,y as described
in Section 3.3.) For any given ¢, we have to solve the optimization problem

min = Us(sy ,, 5], 54) + Uc(Sl, 57 40 51, €) + Ualsy €). (20)

{sf,z ’S?,y ’sfi}
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where
Uc(Sg: 5100 11 €)
= (D exp (6 (54(X,Y) — s55(X', Y7)))
><c(e2€— exp (€, 57 ,(X,Y) — 57 (X", Y")) —exp (€, 57, (X, V) — 57, (X', Y))),
and

Ua(sg,€) = D_(BG(I(X,Y) — I(X",Y")) + ) (1 — exp(e, 54(X, V) — s(X",Y))).

ceC
The second approach can be performed in the following three steps:

1. solve (20) until € < €,

2. quantize and fuse si, si, to obtain sj and quantize initial disparity segmenta-
tion,

3. using s;,, 5], 5y, as initial vf ., v}, d" respectively, and using quantized s} and
st as initial segmentations, apply the developed HCF algorithm to the problem
(19).

We hope the second approach will give better quality of results because the segmenta-
tions are adjusted adaptively during the continuation on €, while in the first approach
the segmentation constraint will only function in the final step. The first approach
has the advantage of a lower computational complexity.

3.6 Performance measures

The ideal way to evaluate the performance of the proposed approach would be to sim-
ulate a complete object-based encoder, employ the same coding method to encode a
stereo sequence based on the estimation and segmentation results obtained from dif-
ferent approaches and compare bit rates given a measure of image quality. It requires
a complete implementation of an object-based encoder. Such an implementation is
beyond the scope of this thesis.

In the project, we will evaluate separately estimation and segmentation quality
instead. We hope to have better estimation which can be verified by examining the
quality of the prediction based on the estimation result.

As far as the quality of segmentation is concerned, it’s not easy to establish a
criterion to evaluate the quality of segmentation. Only for synthetic sequences, we
know exactly the disparity/motion segmentation. Experiments will be conducted
on synthetic sequences to verify whether the segmentation properly classifies real
disparity /motion objects.
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4 Initial results

In this section, we present results that we have obtained to date.

4.1 Rectification

As we know there are two types of stereo camera setups, toed-in and parallel cam-
eras. Parallel cameras have the following advantages: simple geometry, therefore
simple processing, less distortion, perfect perception possible. By contrast, toed-in
cameras suffer from more distortion. Their complicated geometric structure makes
stereo sequence processing more tedious. Unfortunately, the angle of convergence is
inevitable in a practical stereo camera system. A rectification technique permits to
adjust the convergence by projecting the images obtained by a toed-in camera onto
a virtual parallel stereo camera setup. In Section 2.2, we have mentioned that there
is no vertical disparity in a parallel camera system. We have developed a rectifi-
cation process (details are described in a technical report [57]) to adjust our stereo
sequences. Therefore, in our work we always assume that there is no vertical disparity.

4.2 Initial results

To date, we have studied the problems (14) and (17). We used a simple descent
algorithm to solve the optimization problem (15) for a given e.

First, we took the least-squares estimator for & and then replaced it by a Lorentzian
estimator. In the experiments, the penalty function G was fixed as e(6, x).

Several motion, estimation/segmentation experiments have been conducted on
fields 0 and 2 of the sequence “autoroute”. The experiments were performed for the
following cases:

e fixing v = 0, try different values for f3,
e fixing 4 = 0, try different values for v,
e use least-squares estimator,

e use Lorentzian estimator.

A large value of v emphasizes complexity term hence assures simpler contours. A large
[ penalizes different tags in uniform areas hence forces contours to adopt objects’ real
shape. The experiments show that

e using a robust estimator the results can be improved,

e a good quality quasi-segmentation can be obtained,
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Figure 5: Sequence “autoroute”: field 0 and field 2

e a high weight [ forces the segmentation to adapt to the luminance information,

e multiresolution optimization not only significantly reduces the computation
time but also improves the estimation; large vectors (6 pixels) are properly
estimated.

In the next step we should try to find a good combination of 3 and .

The original fields number 0 and 2 are shown in Figure 5. The results obtained
are reported in Figures 6, 7 and 8. In Figure 6, the results are obtained using the
least-squares estimator. Figure 6(a) corresponds to the case of # = 0 is while Figure
6(b) corresponds to the case v = 0.

The results obtained using the Lorentzian estimator are reported in Figure 7. Fig-
ure 7(a) corresponds to the case # = 0 while Figure 7(b) corresponds to the case v = 0.

We can see the quasi-segmentations s, and s, in Figure 8 represented as gray
level values. The white pixels correspond to positive values while the black pixels
correspond to negative values. Figure 8(a) is obtained from the horizontal component
while Figure 8(b) is obtained from the vertical component.
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