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1 Introduction

The main purpose of this project is to develop a comprehensive system that combines
an overhead fisheye camera with deep learning algorithms in order to estimate the
number of people inside an indoor scene [1]. Crowd estimation from single image
or video stream arises in various applications including crowd control, public safety
and reducing energy consumption of buildings [2]. Particularly, we are interested in
accurate estimation of crowd in indoor scenes such as office rooms and coference halls
so that it can adaptively adjust facilities such as lighting, heating and cooling [3][4].

2 Literature review

2.1 People Counting

The most extensively studied approach to people counting are feature based methods.
Feature based methods involve certain steps: first subtract background (this involves
recording a blank frame of the scene), second extract feature map with hand-crafted
features (edge detection, SIFT, HOG [5], etc), finally perform a regression step to
estimate the number of people [6][3]. Other approaches have also been developed
for specific applications. In people counting from video stream, KLT tracker and
clustering are used to detect and track moving people in a sequence of frames [7].
However, such methods do not work well when the scene contains multiple still people.

2.2 Convolutional Neural Network

Recently deep learning has been very popular and proved efficient in multiple vision
tasks including: image classification, target detection and tracking, image reconstruc-
tion, image segmentation, etc [8][9]. Zhang [10] proposed the first CNN architecture
to solve people counting. Other CNN architectures have been developed later to
further improve accuracy and robustness [11]. There are mainly three types of ap-
proaches: directly estimating number of people, estimating density map of the scene
and accurately labelling coordinates of individual people. In this project, we pursue
an image-to-image architecture [8] that predict a density map of the scene. Another
linear step (summation) is followed to further estimate the exact number of people
in the image.

3 Implementation

In this section, we will divide the entire system into two parts: imaging part and
algorithm part. On the imaging side, we will elaborate how we calibrate and correct
lens distortion in fisheye camera. On the algorithm side, we will focus on the CNN
based approach. We will discuss the detailed design of the network, preparation of
dataset and training process.
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3.1 RGB + Infrared Fisheye Imaging System

The conventional surveillance cameras which employ normal lenses can image the
indoor/outdoor environments with minor lens distortion which is an aberration due
to spherical shape of the lens. In an ideal system, the pinhole camera provides zero
distortion. However, the field of view of the conventional lenses or pin-holes are
limited to certain degrees, i.e., Field-of-View (FOV) < 60° [12]. On the other hand,
the fisheye cameras provide wide-angle FOV (> 120°) with the expense of high lens
distortion which requires image correction depending on the lens design parameters.
The main challenge of correcting lens distortion is the varying magnification from
image center to edges. The model based fisheye correction algorithms and methods
will be applied to reduce the high-lens distortion in the fisheye cameras [13]. Also,
it is important to note that the overhead fisheye cameras less prone to occlusion
compare to the conventional cameras, that eliminates the necessity for multiple low-
FOV cameras at different corners of a room.

The images will be acquired in both the infrared and optical spectra at different
day times to account for different illumination levels. In IR regime, we expect that
the acquisitions at low-light scheme will be superior to RGB regime. Thus, the
IR capability of the overhead camera is advantageous in the low-light indoor areas.
The IR images from the VRCAM can be easily obtained through the on/off switch
on web interface of the camera settings. For the sake of convenience, we opt for
the RGB/indoor setting in the preliminary results. We will further investigate the
integration of IR capability of the VRCAM into our detection method.

3.1.1 Fisheye-lens Calibration and Correction

This section explains the calibration of the VRCAM and the correction of the dis-
torted images using the Matlab vision toolbox [14]. The toolbox implements the
generalized omni-directional camera calibration method introduced by Scaramuzza
et. al. for [15]. The paper demonstrated the automatic and robust calibration which
does not require any priori information on the camera model, thus, can be applicable
to many fish-eye camera in the market. Once the calibration is implemented, the
fish-eye camera images can be easily corrected. In a nutshell, the pipeline of the
proposed calibration method is the following:

e Calibration image acquisition using a known planar checkerboard pattern

e Checkerboard feature extractions, i.e., corners, in terms of sensor plane coordi-
nates (u ,v")

e Least square minimization problem of system linear equation for extrinsic pa-
rameters

e Extrinsic parameter substitution to solve for intrinsic parameters

e [teratively detection of the object center



Figure 1: Calibration data set obtained with VRCAM

e Maximum likelihood estimate of extrinsic and intrinsic parameters

The image coordinates (u”,v”) at the sensor plane is related to the object coordinates
(u',v") with the affine transformation matrices as following;

1 /

u u
V| =RV |+ T (1)
w// w/

where R and T denote rotation and translation matrices, A denotes depth factor, and
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Figure 2: (Upper-left)Extrinsic parameters visualization extracted from calibration
set, (Upper-center) mean reprojection error per image in calibration error, (Upper-
right) Generated and projected corners on checkerboard , (Middle-left) distorted im-
age taken by VRCAM, (Middle-center) undistorted image using same option, (Lower-
left) distorted image taken by VRCAM,(Lower-center) undistorted image using same
option, (Lower-Right) undistorted image using scale factor 0.4,

w’ denotes the non-linear function in a polynomial form as following



(3

the function f is a Taylor expansion that depicts the lens distortion. The first deriva-
tive of the f is zero which implies a; = 0. The extrinsic parameters are the matrices
R and T, and intrinsic parameters are the coefficients of the polynomial function f.
To solve extrinsic and intrinsic parameters separately, the cross product of the linear-
equation 1 with left-hand side of the equation is calculated. The cross products results
in two linear-equation, first as a function of intrinsic parameters and the second the
extrinsic parameters [15]. First, the linear-equation for the extrinsic parameters is
solved by minimazing least-square problem. Then, the calculated extrinsic param-
eters is substituted into the first linear-equation. Then, the equation is solved for
intrinsic parameters. This linear problem is overdetermined, so that, the number of
N can be minimized to reduce the computational cost. The minimization of N is
determined by calculating the reprojection error which is the distance between the
projected and the correct object points. Also, algorithm implements iterative calibra-
tion method to eliminate the image center mismatch with the sensor. Moreover, since
the previous methods only minimize the geometric distance which does not account
for noise, the non-linear maximum likehood estimate is implemented. The results in
[15] shows that the reprojection error is less compare to the linear minimization.

We implement the camera calibration by following the Matlab toolbox example
for GoPro cameras. First, we take a series of calibration images at different position
relative to the camera (Fig. 1). The checkerboard image with known dimensions is
used during the calibration. Then, we generate the checkerboard points using Matlab
function generateCheckerboardPoints. The extrinsic and intrinsic calibration param-
eters are estimated using the function estimateFisheyeParameters. The reprojection
and generated corners and the generated error of the calibration are in Fig. 2. The
function undistordfisheye corrects the distorted fish-eye camera. Theundistordfisheye
has options to generate corrected image such as scale factor stretch edge of the image
points to fit into same image size, and the full view which leave the edge of the image
points as it is. As seen from the 2, the undistortion stretches a lot the edges of the
images. This stems from the high distortion of the VRCAM, thus, scale factor options
gives more meaningful.

3.2 CNN Model Design and Training

In this part, we will elaborate the architecture of our convolutional neural network,
preparation and pre-processing of dataset, and training phase.

3.2.1 Image-to-image CNN architecture

We choose U-Net type of encoder-decoder architecture to perform image-to-image
estimation of density map. There are two main concerns of using U-Net: previous
feature layers can be easily accessed via skip connection; the depth of network is
tunable. The multi-scale pyramid architecture with skip connection can fully utilize
different feature levels. U-Net architecture can easily be modified with advanced
building blocks (DenseBlock) and its depth can also been easily tuned. In this project,
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we use a 5-layer U-Net with DenseBlock. In this project, two models are trained: one

takes RGB image as input and the other takes in grayscale image. We want to find
out how color information improves counting accuracy.

Fig. 3 illustrates the architecture of our CNN model. Blue blocks are input &
24+32+1024  24+32x1072

48+64+304 48+64%512 I|

96+128+176 96%128%256

= ﬁim

Input/output layer

192+256%112 192+256%128

Conv + DenseBlock + Pooling
Conv + DenseBlock + Upsampling

Skip connection (Concatenate)

Data flow 384%x512+*1

384+512+1(3)

Figure 3: Our CNN architecture is a 5-layer U-Net modified with DenseBlock. Each
red block consists of a convolution layer, a DenseBlock and a 2 x 2 max-pooling
layer. Each magenta block consists of a convolution layer, a DenseBlock and a 2 x 2
upsampling layer. Yellow arrows stand for skip connection meaning we concatenate
two layers together.

output layer with spatial dimension of 384 x 512. Red blocks consist of a convolution
layer (64 kernels, kernel size 3x 3, ReLLU activation), a DenseBlock (3 layers, each layer
has 16 filters) and a max-pooling layer (pooling size 2 x 2) [9]. 4 illustrates the inner
structure of a DenseBlock. Similarly magenta blocks consist of a convolution layer,
a dense block and an upsampling layer. Yellow arrows are skip connection between
layers which have the same spatial dimensions. Grey arrows simply illustrates data
flow. Pooling layer and upsampling layer squeeze and expand spatial dimension by
a factor of two respectively. Notice the architecture has a pyramid-like structure so
that spatial dimensional is compressed at the beginning and later interpolated for
better feature learning. The idea of using skip connection is that in order to detect
people, both high-level features (eyes, nose, etc.) and low-level features (edges, etc.)



must be used. Skip connection concatenates feature maps from different levels.
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Figure 4: Tllustration of a Conv+DenseBlock+Pooling block. Each DenseBlock con-
tains three inter-connected convolution layers.

3.2.2 Data preparation

The neural network is trained on a public people counting dataset from ShanghaiTech
University [2]. The dataset contains more than 700 outdoor crowd images, along with
manually labelled coordinates of individual persons. To perform an image-to-image
training, we need to first generate synthetic density maps from the coordinates. Here
we use Gaussian kernels to emulate the density map. The density map for each
image is synthesized by the summation of Gaussian kernels with varying size centred
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at individual locations.

N Tz — )2 — 712

where N is the total number of people in the image, I%, l; are the image coordinates
of i person in the image, parameter a controls how kernel size changes vertically.
The reason we use Gaussian kernels with varying sizes stems from the observation
that images are taken with a perspective angle so that people in the front will appear
larger in size while people in the background will be smaller. To account for this
magnification change, we make the kernel size adaptive to vertical location. We also
make an assumption here that all images are taken with the same perspective angle
therefore « is a constant which simplifies the model.

Fig. 5 shows 6 samples from the training dataset. The ground truth density map
is synthesized using the above procedure.

Input image Synthesized ground truth

Synthesized ground truth

Synthesized ground truth

Synthesized ground truth

Synthesized ground truth

Input image Synthesized ground truth

‘ ;

Figure 5: Sample image pairs from the training dataset.

3.2.3 Model implementation and training

In this section, we will discuss the implementation and training phase. The model is
implemented in Keras with Tensorflow as the backend. We use binary cross-entropy



as the loss function in training, which is defined as:

losspnrp = — Z ytrue(iaj)log(ypred(iaj)) (4)
(]

The reason we used cross-entropy as loss function instead of other spatial loss
functions like mean-squared-error or mean-absolute-error is that we found for sparse
output (like density maps), the network intends to predict all zeros when using spa-
tial loss functions. Spatial loss functions evaluate the network by how accurate the
prediction is compared to ground truth. Because most of the pixels are zeros in the
ground truth density map, zero-prediction achieves high accuracy. However, when
using cross-entropy zero output has a much larger penalty in the loss function and
provides larger gradient for training.

We used ADAM optimizer [16] to minimize the above loss function. The training
dataset contains 400 image pairs from the dataset (the other image pairs are used
to test the network after training). We initialized the learning rate to be 10™* and
trained the network for 200 epochs with mini-batch size of 3. The model was fine-
tuned with learning rate 107% for another 300 epochs. The whole training process
took 14 hours on a single Nvidia Tesla P100 GPU. Fig. 6 shows training and testing
loss of our models. It is observed that both RGB and grayscale model converges to
the same amount of training error. The RGB model performs little bit better than
the grayscale model on test dataset.

Training and testing loss

Blue: test
Red: train

Solid line: RGB
Dashed line: GRAY

Figure 6: Training and testing loss of two models(RGB model and grayscale model)
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3.3 Crowd Count

After the CNN predicts a density map of the image, we further predict the exact
crowd count by a weighted summation.

N = ZD%‘ZZ ) x W(y) (5)

W (y) is weight function depending on vertical coordinates. Previously we synthe-
size density maps by Gaussian kernels with varying sizes. Therefore, each Gaussian
kernel will contribute differently to the summation. Weight function here is used to
normalize the summation of each Gaussian kernel. W (y) is precomputed as:

1
Wiy) - - ©)
Z' j exp(_ (Gmizn++(2¥y)2 )

4 Experimental results

In this section, we show the results of our CNN with different kinds of test images.
We test the network on test dataset from ShanghaiTech University [2], crowd images
from Google, corrected images from fisheye camera.

4.1 Results on test dataset

Fig. 7 shows the results on test dataset: input image, the predicted density map
and the ground truth density map(synthesized using the same method in previous
section). The crowd count is on the title of each sub-plot.

Since we have the ground truth of test dataset, we further compute the relative
error of the predicted output and its confusion matrix. Relative error rate is defined
as:

N —N

) (7)

The relative error on test dataset €, = 9.27%. Fig. 8 shows the confusion matrices
of two models. Ideally, all samples should be on the main diagonal. Here we observed
deviation which means the proposed approach cannot perfectly predict the crowd
count.

€rel = mean(

4.2 Results on crowd images from Google

We also tested the network crowd images downloaded from Google. Fig. 9 shows the
predicted density maps and its crowd count in title. For better visualization, density
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Input RGB image Estimated count:66.32 Ground truth, true count:79

Estimated count:75.86

Estimated count:45.08 Ground truth, true count:48

Estimated count:46.53

Figure 7: Results on test dataset.Left: input image (RGB and grayscale), middle:
predicted density map, right: ground truth

map is overlapped with the input image in order to see how accurate the neural net-
work can detect people.

4.3 Results on corrected fisheye image

When we test the neural network with corrected images from fisheye camera, the
neural network failed to predict locations of people (Fig. 10). There are two main
reasons: first the perspective of fisheye camera is very different from the perspective
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Confusion matrix of model RGB Confusion matrix of model gray
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Figure 8: Confusion matrices of model RGB and model grayscale. It’s observed that
the predicted crowd count is always less than the true count.

in the training dataset; second compared to the dataset, the crowd are more sparse
in corrected fisheye image.

4.4 Re-train CNN on rotated images

As mentioned above, we observe that our neural network fails to detect people in
fisheye images due to perspective angle change. Some faces appear horizontal after
correcting distortion. To account of the perspective change, we augment the train-
ing dataset by rotating both input images and density maps. With the augmented
dataset, we re-trained the network and tested on images in which faces are not ver-
tically oriented. Fig. 11 shows the predicted density maps from: first column (RGB
model trained on non-rotated dataset), second column (grayscale model trained on
non-rotated dataset), third colum (RGB model trained on rotated dataset), fourth
column (grayscale model trained on rotated dataset). The results demonstrate that
with augmented dataset, the neural network does a better job at detecting people
whose faces are not vertically oriented.

5 Conclusions

e The training dataset for CNN has small field-of-view and minor lens distortion
compared to fisheye camera. Although the image correction method mentioned
earlier is working well in the center of the lens, it fails far away from the lens
center due to the high-distortion. This will results in false-positives/negatives
at the exteriors of the FOV. We might crop the undistorted images in the center
to eliminate the highly-distorted edges.

e The training data set is mostly taken at far from the humans. We are expecting
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to detect the people on their desk, however, the detection of standing people
close to camera center is still challenging (the network failed to detect person
that is too close to the camera). To overcome this problem we could combine
the feature-based method with CNN.

The CNN data set labels are the coordinates of the heads in the images. The
ground-truth is obtained by convolution of head coordinates with a Gaussian
disk. However, this approach assumes the same magnification for all head lo-
cations which is not physically true. The further away from camera causes the
further demagnification of the object. Thus, we will implement the shift-variant
gaussian filter along the vertical axis.

We still do not know the low-light scene performance of the proposed method.
The IR capability of the camera might be sufficient to get enough light, however,
it provides grayscale-like single channel image as opposed the three-channel
(RGB) CNN data set. We will map the CNN data set to grayscale image to
mimic the IR images.
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Input RGB image predicted, estimated count: 30.92

Overlap with input image

predicted, estimated count: 20.93 Overlap with input image

predicted, estimated count: 18.89 Overlap with input image

predicted, estimated count: 9.96 Overlap with input image

predicted, estimated count: 26.8 Overlap with input image

predicted, estimated count: 29.52 Overlap with input image

Figure 9: Results tested on crowd images from Google. The crowd count of predicted
density map is titled. The right column is for better visualization.
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Input RGB image

predicted, estimated count: 3.89

Overlap with input image

predicted, estimated count: 3.55 Overlap with input image

predicted, estimated count: 3.57 Overlap with input image

predicted, estimated count: 3.01

Overlap with input image

Figure 10: Results tested on corrected fisheye image. Due to the change of perspec-
tive, the neural network failed to detect people location.
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Input grayscale image
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Figure 11: From left to right: RGB model trained on non-rotated dataset, grayscale
model trained on non-rotated dataset, RGB model trained on rotated dataset;
grayscale model trained on rotated dataset.

Overlap with input image




