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1 Introduction 
 
 Communication through hand gestures, whether it be done explicitly or implicitly, 
is a fundamental component of communication. Different hand gestures translate to 
information used to communicate with each other. For those that are hearing impaired or 
mute, hand gestures are used heavily in sign language to transmit information. In this 
project, we developed a method to correctly classify the nine hand gestures of American Sign 
Language representing the digits one through nine, as shown in the following figure. Using the 
depth detection feature of the Kinect Camera v2, we use image processing techniques to 
distinguish between each of the nine digits. This capability can be used in numerous 
applications, including laboratories, malls, and airports. The system is able to recognize 
hand gestures indicating numbers which could help a person enter numbers into a computer 
without physically touching the computer.  
 

 
Figure 1 American Sign Language of numbers 1 through 9 

 
In this project, we implemented two algorithms for classifying the nine hand gestures and 
compared the results. 
 

2 Literature Review  
 Object recognition and classification is typically accomplished using one of the 
approaches described in the following sections. These approaches can generally be divided 
into two categories: end-to-end methods, and feature extractors. End-to-end methods 
include a method for classification as part of the algorithm. Feature extractors require a 
classifier that uses the extracted features to determine the class of a test input. Many 
classifiers require a dictionary of reference features to compare against. 
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2.1 Feature Extractors 
 
2.1.1 Convexity Approach  

The convexity detection consists of several steps: filtering the depth image, 
extracting hand contours, approximating the hand contour with a polygon, detecting 
concave and convex points of the approximation polygon, and finally, filtering convex and 
concave points to distinguish different gestures. The final goal of this approach is to find 
the convex points from the contour. The convexity approach extracts features of an image, 
which contains only the hand contour, one at a time.  

To begin, we preprocess the depth image using a filter to get rid of noise near the 
hand. The hand contour is defined by the connection of edges. Next, we compute a convex 
hull for the hand using all the convex vertices in the hand contour. Then we compute the 
difference between gesture convex hull and contour which is the convex defect. Simply, it 
is the task of obtaining the point farthest away from each convex vertex. Different gestures 
are distinguished from one another by the relative position of fingertips. 

 
2.1.2 Covariance Matrix 

Covariance matrices describe the relationship between different components of a 
random variable. Covariance matrices can be used in applications to measure similarity 
between different aspects of an image. 

To use covariance matrices to classify hand gestures, we first must generate a 
database of covariance matrices for each gesture that we hope to identify. These covariance 
matrices are computed from feature vectors describing each of the hand gestures. [3]  

After assembling the database of covariance matrices, to classify a test image, we 
first must extract the same information from the test image to generate a feature vector 
containing the same data used in the database. Some features included in the feature vector 
may require additional preprocessing of the image. 

The final step is to classify an input image. This can be done in several ways. One 
way to accomplish this is to use a nearest neighbor classifier which computes a distance 
between the covariance matrix of the input (test) image, and the covariance matrices of the 
database. There are numerous distance metrics that can be used for the classification 
calculation. The covariance matrix in the database that is closest to the input image based 
on the chosen distance metric is then used as the label for the hand gesture in the test input 
image when using nearest neighbor classification. Other classifiers, such as k-Nearest 
Neighbors, SVM, or decision trees could also be used in conjunction with the covariance 
matrix feature extractor. 
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2.2 Dynamic Time Warping 

Dynamic time warping is an algorithm that finds an optimal alignment between two 
time-varying sequences under certain restrictions. The warping path finds the minimum 
distance to align the sequences. To find the best alignment between the two signals, the 
algorithm finds the path through a grid which minimizes the total distance between them. 
To create a mapping between the two signals, a path is created. The path starts at (0,0) and 
ends at (M,N) where M and N are the lengths of the two signals, as shown below. 

 

 
Figure 2 Dynamic Time Warping from Kadethankar and Joshi (2017) 

 
In most cases, dynamic time warping is used to align time-varying signals. In 

particular, dynamic time warping is often used in speech recognition systems. However, in 
this project, which deals with static images, we must use a different feature vector to 
represent the images. 

 

2.3 End-to-End Methods 
 
2.3.1 Implicit Shape Model 

The implicit shape model is a probabilistic framework that combines both image 
segmentation and recognition [4]. 

The first step using this model, is to generate a database of small segments of 
interest in images representative of the possible classifications of the test images. Input  
test, images are also decomposed into small segments of interest and compared against the 
database. 

The image segments of the input test image are compared against image segments 
in the database corresponding to the same area of the image. The algorithm determines 



8 
 

which area of the original image a segment came from based on a probabilistic model 
generated from the original database. 

The final classification of an image is determined through a vote. Each segment of 
the test image is classified as belonging to one of the hand gestures, and the class with the 
most votes is determined to be the gesture of the original image. 

Because this method works on smaller portions of an image rather than the whole 
image, it can be more accurate using fewer samples than other probabilistic methods. 
 
2.3.2 Circle Method 

To use the circle method for hand gesture recognition, as described in [2], one first 
must detect the hand in the image. Using thresholding, or another form of image 
segmentation, the image is transformed into a binary image such that the hand is displayed 
as white (pixel value equal to 1), and everything else is displayed as black (pixel value 
equal to zero). 

The next step is to detect the center of the hand, and draw a circle centered at this 
point. The edge of this circle intersects the fingers and wrist of the hand. 
By detecting the values of the image at all pixels in the image along the circle, “spikes” 
can be observed at locations where the circle is intersecting a finger or wrist of the hand. 

In the experiments conducted by Malima [2], the algorithm detected the number of 
fingers that were being held up, but therefore was limited to distinguishing between hand 
gestures displaying between one and five fingers. This method is summarized in the 
following figure. 

 

 
Figure 3 Summary of circle method 

 
 
2.3.3 Deep Learning 

Deep learning, neural networks, and convolutional neural networks remain some of 
the most successful methods used in image recognition tasks today. These methods attempt 
to mimic how the human brain works and detect patterns present in labeled training images. 
The network applies these learned patterns to test images.  
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While these methods can be extremely effective, they require a large amount of labeled 
data. For this reason, we will not be studying deep learning or neural network methods in 
this project. 

 
3  Implementation and Results 
 
3.1 Data Collection 
 Using a support package for Kinect, both color image, and depth image data were 
loaded directly into MATLAB. The data was collected from several different people to 
ensure that the implemented methods are robust to small changes in hand configuration, 
hand size, and distance from camera. The data contained 10 images for each of the nine 
gestures and they were collected from 4 different people. In total, 40 images were collected 
for each of the nine gestures that will be distinguished between.  
 

 
 

Figure 4 Example of original image and depth image 

 
3.2 Preparing Data 

Both methods implemented for classifying the hand gestures required a binary 
image as input data. To create a binary image of the hand, the depth of the hand was 
detected from the depth image. This process assumes that the hand is always the closest 
object in the depth image. By sorting all depths in the image, the mean of the first 20 values 
is taken as an initial threshold, 𝑇𝑇𝑖𝑖. All depths in the image larger than 𝑇𝑇𝑖𝑖 + 10 are set to 
zero. The value 10 (millimeters) represents an approximate depth of the hand. All 
remaining depths are assumed to be part of the hand and pixels at these locations are set to 
1, creating a binary image. 
  

https://www.mathworks.com/matlabcentral/fileexchange/40445-image-acquisition-toolbox-support-package-for-kinect-for-windows-sensor
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In some images, this process leaves some noise that affects the boundary 

identification, and therefore the classification process. To address this noise, white 
segments consisting of fewer than 50 pixels are set to 0 using the bwareaopen function in 
MATLAB. 

 

      
Figure 5 Summary of getting the boundary 

       
In most cases, this process produced a binary image of the hand that clearly showed the 

hand gesture. In other cases, the resulting binary image contained issues that would affect 
the classification. Some of these issues included: 

- Sleeve captured as part of the binary image 
- Fingers too close together resulting in one large finger in the binary image 
- Due to hand placement, the wrist was at the same depth as the rest of the hand, 

making the overall boundary of the hand significantly different than other samples 
-  

             
Figure 6 Examples of good (green) and bad (red) samples 
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3.3 Circle Method 
Using functions from the Image Processing Toolbox in MATLAB we find the 

center point of the hand, and the points along the boundary of the hand. This information 
is used to draw a circle centered at the center point of the hand. Through experimentation 
we determined that using a circle with a radius that was 75% of the distance from the center 
of the hand to the farthest point in the hand provided the optimal results. 

 

    
Figure 7 Steps to implement circle method 

 
By retrieving the pixel values of the image at points along the circle, we get a signal 

like the following plot. Using the findpeaks function, we count the number of peaks in the 
signal, which represents the number of times the circle crossed the hand. To account for 
the wrist, we subtract one from this number to get the final classification of the hand 
gesture. 

 
Figure 8 Plot of pixel values as a function of angle values. The plot shows a wide spike indicating where the circle 

crosses the wrist and four spikes indicating where the circle crossed the fingers. 

 
3.3.1 Circle Method Challenges 

The circle method as described handles cases where the number of peaks in the 
final signal directly corresponds to the number of fingers, but it does not account for 
situations where the number of fingers held up in the image do not correspond to the hand 
gesture, such as the case of hand gestures 6-9, which all contain three fingers held up in 
different patterns. 



12 
 

 
To account for this, two methods were introduced. 
3.3.1.1 Analyze the spacing of the peaks 

To distinguish between the hand gestures 3, 6, 7, 8, and 9, we implemented a 
method for analyzing the spacing between the peaks in the signal. There are subtle 
differences between these signals the data was not consistent enough for this approach to 
be successful. In addition, simply stretching out the fingers on the hand would result in a 
misclassification. 
 

  

  
Figure 9 Comparison of plots from hand gestures 6-9. 

 
3.3.1.2 Analyze the image using concentric circles 

Because the thumb and pinky fingers are shorter than other fingers, we attempted 
to use a series of concentric circles to distinguish between gestures that contained these 
fingers. 
 
This method was marginally successful at identifying gesture 3 (thumb and first two 
fingers) and 6 (three fingers) for a small set of data all from a single person. However, it 
was not at all effective once the hands of other people were introduced into the data. This 
was due to differences in proportion between the sizes of different fingers on their hands. 
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In addition, this method was never able to distinguish between gestures 7, 8, and 9, which 
all contain the pinky and two fingers. 
 
 
3.3.2 Circle Method Results 

The overall performance of the circle method was best when simply using the 
number of peaks. The accuracy of the circle method for each of the hand gestures is shown 
in the following table. We tested forty depth images for each of the nine gestures, for a 
total of 360 trials. As shown in the table, the algorithm was generally successful for 
gestures 1-5. As expected, gestures 6-9 were always classified as gesture 3, and therefore 
never correct. 
Cases where the algorithm misclassified gestures 1-5 were all a result of the thresholding 
issues discussed in the previous section. 
 

Hand gesture Accuracy rate 
1 ✓ - 100% 
2 ✓ - 85% 
3 ✓ - 82.5% 
4 ✓ - 95% 
5 ✓ - 95% 
6 ✗ - 0% 
7 ✗ - 0% 
8 ✗ - 0% 
9 ✗ - 0% 

Table 1 Results of circle method based on forty trials 

 
3.4 Dynamic Time Warping 

The dynamic time warping algorithm takes two time-varying signals as inputs. It 
attempts to align the two input signals by warping them and finally returns a distance 
between the warped signals. 
 

[distance, warpedSignal_1, warpedSignal_2] = dtw(signal_1, signal_2) 

 
To apply the dynamic time warping algorithm to the binary image data, a 1-dimensional 
signal had to be extracted from the image. We began by using the x and y coordinates of 
the boundary of the hand as an input signal. As in the circle method, the boundary 
coordinates were found using built-in functions from the Image Processing Toolbox in 
MATLAB.  We then construct a complex number from each pair of coordinates. 
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Sample signals of hand gestures are shown in the following figures. 
 
 

Binary images X-coordinates of boundary 
of hand 

Y-coordinates of boundary 
of hand 

 

  

 

  

 

  
Figure 10 Comparison of X and Y signals of gestures 1, 1, and 5 

 
The second column represents the x-coordinates of the boundary of the hand. The 

third column shows the y-coordinates. You can see in these plots that the shape of the 
signals from the two images depicting gesture 1 are very similar. There is a clear difference 
in the signals from gesture 5. 
 

The following figures show sample output of the dynamic time warping algorithm. 
The plots on the top row show the original signals. The second row shows the signals after 
applying dynamic time warping. The plots on the left compare the two images depicting 
hand gesture 1. The plots on the right compare gestures 1 and 5. The squared distance 
between gesture 1 and 1 is approximately 500 after warping, while the squared distance 
between gesture 1 and 5 is approximately 9000.  These distances can be used to indicate 
which of the signals come from the same hand gesture. 
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Figure 11 DTW of sample signals: Original signals shown on top and the aligned signals at the bottom. Left plots show 
gestures 1 (blue) and 1 (red). Right plots show gestures 1 (blue) and 5 (red).  

 
The following table illustrates sample distances between two signals using one 

sample for each gesture. With this sample data, distances between warped signals of the 
same gesture are always smaller than the distances between warped signals of two different 
gestures. 
 

 
Table 2 MSE of two signals showing that the same gestures have the minimum distance 

 
We allocated 28 reference samples for each hand gesture (7/10 from each of the 

four people we collected data from) to generate a dictionary against which we would 
compare test images. 

For each test image we find its feature vector, and then apply the dynamic time 
warping function (dtw from the Signal Processing Toolbox in MATLAB) on this feature 
vector and each feature vector contained in the dictionary, resulting in a distance between 
the two warped signals. To classify the test image, we take the mode of the classes of the 
8 closest feature vectors after warping.  

Three different distance metrics were tested: Euclidean, absolute, and squared 
distance. These distance metrics are described by the following equations. In each of the 
following equations, let the vector V represent a signal obtained from a test image, and let 
the vector W represent a signal from the dictionary. V and W are both K-dimensional signals 
composed of a number of samples. For example, 𝑉𝑉𝑘𝑘[𝑚𝑚] is the value of k-th dimension (𝑘𝑘 =
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1, … ,𝐾𝐾) of sample number m of signal V. Then,  𝑑𝑑𝑚𝑚,𝑛𝑛(𝑉𝑉,𝑊𝑊) represents the distance 
between the mth sample of V and the nth sample of W.  The vectors represented by V and W 
are described in sections 3.4.1.1 through 3.4.1.5. 

 
 

𝑑𝑑𝑚𝑚,𝑛𝑛(𝑉𝑉,𝑊𝑊) =  ��(𝑉𝑉𝑘𝑘[𝑚𝑚] −𝑊𝑊𝑘𝑘[𝑛𝑛])2
𝐾𝐾

𝑘𝑘=1

 

Equation 1. Euclidean distance metric 
 
 

𝑑𝑑𝑚𝑚,𝑛𝑛(𝑉𝑉,𝑊𝑊) =  �|𝑉𝑉𝑘𝑘[𝑚𝑚] −  𝑊𝑊𝑘𝑘[𝑛𝑛]|
𝐾𝐾

𝑘𝑘=1

=  ��(𝑉𝑉𝑘𝑘[𝑚𝑚] −𝑊𝑊𝑘𝑘[𝑛𝑛])2
𝐾𝐾

𝑘𝑘=1

 

 
Equation 2. Absolute distance metric 

 
 

𝑑𝑑𝑚𝑚,𝑛𝑛(𝑉𝑉,𝑊𝑊) =  �(𝑉𝑉𝑘𝑘[𝑚𝑚] −  𝑊𝑊𝑘𝑘[𝑛𝑛])2
𝐾𝐾

𝑘𝑘=1

 

 
Equation 3. Squared distance metric 

 
 
3.4.1 Dynamic Time Warping Results 

Four different types of feature vectors were used with the dynamic time warping 
algorithm. The method for collecting these feature vectors and their performance are 
described in the following sections. 
 
3.4.1.1 Complex signal made of boundary coordinates   

Taking the coordinates of the boundary of the hand in the binary image, we create 
a series of complex numbers with the real part containing the x-coordinate, and the 
imaginary part containing the y-coordinate. The following confusion matrices show each 
distance metric, Euclidean distance (top), absolute distance (middle), and squared distance 
(bottom). Overall there was not a large difference in the performance of the different 
distance metrics. The accuracy of each of the distance metrics was 72.22%. 
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Predicted Label 
  

 1 2 3 4 5 6 7 8 9 
1 12 - - - - - - - - 
2 - 10 - - 1 - - - 1 
3 - - 8 - 1 - - - 3 
4 - - - 11 - - 1 - - 
5 - - - - 12 - - - - 
6 - - - 2 - 5 5 - - 
7 - 1 - 1 - 1 8 1 - 
8 - - 3 - - 1 2 6 - 
9 - - 3 - - - - 3 6 

Table 3 Confusion matrix for classification using Euclidean distance on complex signal made of boundary coordinates 

Predicted Label 
 

 1 2 3 4 5 6 7 8 9 
1 12 - - - - - - - - 
2 - 10 - - 1 - - - 1 
3 - - 8 - 1 - - - 3 
4 - - - 12 - - - - - 
5 - - - 1 11 - - - - 
6 - - - 2 - 5 5 - - 
7 - 1 - 1 - 1 8 1 - 
8 - - 3 - - 1 2 6 - 
9 - - 3 - - - - 3 6 

Predicted Label 
 

 1 2 3 4 5 6 7 8 9 
1 12 - - - - - - - - 
2 - 10 - - 1 - - - 1 
3 - - 8 - 1 - - - 3 
4 - - - 11 - - 1 - - 
5 - - - - 12 - - - - 
6 - - - 2 - 5 5 - - 
7 - - - 1 - 1 8 1 1 
8 - - - - - - 2 6 4 
9 - - 3 - - - - 3 6 

Table 5 Confusion matrix for classification using squared distance on complex signal made of boundary coordinates 

 
3.4.1.2 Fourier descriptor of boundary coordinates 

The next feature vector we experimented with was obtained by taking the discrete 
Fourier transform of the complex signals used in the previous section, also known as 
Fourier descriptors. Using this feature vector, the accuracy of the Euclidean and absolute 
distance metrics was slightly improved. The accuracy of Euclidean distance metric 
increased to 76.85%. The accuracy of the absolute distance metric increased to 77.77%. 
The accuracy of the squared distance metric stayed the same as the previous result: 72.22%.  

Table 4 Confusion matrix for classification using absolute distance on complex signal made of boundary coordinates 

Tr
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The improved accuracy may be due to small variations in the signals being suppressed from 
the transform.  

 
Predicted Label 

 
 1 2 3 4 5 6 7 8 9 

1 12 - - - - - - - - 
2 - 10 - - - 2 - - - 
3 - - 12 - - - - - - 
4 - - - 12 - - - - - 
5 - - 1 3 8 - - - - 
6 - 1 - 3 - 6 2 - - 
7 - - - - - 3 9 - - 
8 - - 3 - - - - 8 1 
9 - - 1 - - 4 1 - 6 

Table 6 Confusion matrix for classification using Euclidean distance on Fourier descriptor of boundary coordinates 
Predicted Label 

 
 1 2 3 4 5 6 7 8 9 

1 12 - - - - - - - - 
2 - 10 - - - 2 - - - 
3 - - 12 - - - - - - 
4 - - - 12 - - - - - 
5 - - 1 3 8 - - - - 
6 - 1 - 2 - 7 2 - - 
7 - - - - - 3 9 - - 
8 - - 3 - - - - 8 1 
9 - - 1 - - 4 1 - 6 

Table 7 Confusion matrix for classification using absolute distance on Fourier descriptor of boundary coordinates 
Predicted Label 

 
 1 2 3 4 5 6 7 8 9 

1 12 - - - - - - - - 
2 - 7 - - - 3 2 - - 
3 - - 12 - - - - - - 
4 - - - 12 - - - - - 
5 - - 1 3 8 - - - - 
6 - - - 3 - 4 5 - - 
7 - - - - - 3 9 - - 
8 - - - 1 - 2 - 8 1 
9 - - 1 - - 4 1 - 6 

Table 8 Confusion matrix for classification using squared distance on Fourier descriptor of boundary coordinates 
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3.4.1.3 Distance from center point of hand to boundary points 
We then used the distance from the center of the hand to the boundary coordinates 

as a feature vector. The accuracy of each of the distance metrics significantly improved to 
88.89%. 
 
An example of this signal showing hand gesture three is shown in the following plot. 
 
 

 
Figure 12 Plot showing relative distance from center point of hand to boundary points. 

 
Predicted Label 

 

 1 2 3 4 5 6 7 8 9 
1 12 - - - - - - - - 
2 - 10 - - - 1 - - 1 
3 - - 12 - - - - - - 
4 - - - 12 - - - - - 
5 - - - - 12 - - - - 
6 - - - - 1 9 2 - - 
7 - - - - - - 12 - - 
8 - - - - - - - 8 4 
9 - - 1 - - 1 1 - 9 

Table 9 Confusion matrix for classification using Euclidean distance on signal of distance from center point of hand to 
boundary points 

Tr
ue

 L
ab

el
 



20 
 

Predicted Label 
 

 1 2 3 4 5 6 7 8 9 
1 12 - - - - - - - - 
2 - 10 - - - 1 - - 1 
3 - - 12 - - - - - - 
4 - - - 12 - - - - - 
5 - - - - 12 - - - - 
6 - - - - 1 9 2 - - 
7 - - - - - - 12 - - 
8 - - - - - - - 8 4 
9 - - 1 - - 1 1 - 9 

Table 10 Confusion matrix for classification using absolute distance on signal of distance from center point of hand to 
boundary points 

Predicted Label 
 

 1 2 3 4 5 6 7 8 9 
1 12 - - - - - - - - 
2 - 10 - - - 1 - - 1 
3 - - 12 - - - - - - 
4 - - - 12 - - - - - 
5 - - - - 12 - - - - 
6 - - - - 1 9 2 - - 
7 - - - - - - 12 - - 
8 - - - - - - - 8 4 
9 - - 1 - - 1 1 - 9 

Table 11 Confusion matrix for classification using squared distance on signal of distance from center point of hand to 
boundary points 

 

3.4.1.4 Signal from circle method 
A fourth feature vector was obtained by taking the signal produced by the circle 

method. As you can see from the confusion matrix, this feature vector suffered a similar 
issue as the circle method, and often misclassified 6, 7, 8, and 9 as gesture 3. Only the 
absolute distance confusion matrix is provided since the performance of the Euclidean and 
squared distance were the same. The accuracy of this was 32.3% 

 
Predicted Label 

 
 1 2 3 4 5 6 7 8 9 

1 6 3 3 - - - - - - 
2 - 10 1 1 - - - - - 
3 - 7 5 - - - - - - 
4 - - 1 8 3 - - - - 
5 - - - 4 8 - - - - 
6 - - 12 - - 0 - - - 
7 - 3 7 - 2 - 0 - - 
8 - 2 8 2 - - - 0 - 
9 - 1 11 - - - - - 0 

Table 12 Confusion matrix for classification using absolute distance on signal obtained from Circle Method 
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3.4.1.5 Combination of signals obtained from circle method 

Finally, we used a combination of signals obtained from circles of different sizes. 
We created a complex number, as in the first feature vector, but this time using the signals 
from a circle with a radius equal to 90% of the distance from the center of the circle to the 
farthest point in the hand, and the signal from a circle at 65% of this distance. 
 
The results from this feature vector were much better than the single signal at 75%, as 
implemented in the previous section. The overall accuracy of this method using the 
absolute distance metric was 79.63% 
 
A sample of this signal is shown in the following plot. The blue signal represents the signal 
from 90% distance, which was used as the real part of the feature vector signal. The orange 
signal represents the signal from 65% distance, which was used as the imaginary part of 
the feature vector.  
 

 
Figure 13 Real and imaginary parts of feature vector. Blue represents the signal at 90% distance (real), orange 
represents the signal at 65% distance (imaginary). 

 
 
 
 
 
 
 
 



22 
 

Predicted Label 
 

 1 2 3 4 5 6 7 8 9 
1 11 - 1 - - - - - - 
2 - 11 1 - - - - - - 
3 2 - 10 - - - - - - 
4 - - - 8 2 - - 1 1 
5 - - - - 10 - - - 2 
6 - - - - - 11 1 - - 
7 - - - - - - 8 - 4 
8 - - - - - - 3 8 1 
9 - - - - - - 2 - 10 

Table 13 Confusion matrix for classification using absolute distance on combination of signals obtained from Circle 
Method 

4 Conclusions and Future Enhancements 
We saw a significant improvement in the results of the dynamic time warping 

algorithm when we increased the size of the training data from 30% of the total data, to 
70%.  70% of the data corresponds to 28 samples of each hand gesture, for a total of 252 
images. We expect that continuing to increase the number of samples included in the 
dictionary would further improve our results. 
 Another issue we faced was that the binary images produced by the thresholding 
algorithm at times would contain issues that distort our results. We expect that improving 
the thresholding algorithm would improve the results of both methods of classification. 
One possible improvement to the thresholding algorithm would be to use a Markov model 
to identify the hand in the image. 

A final improvement that could be made is to apply these methods to video data so 
the classification could occur in real-time. 
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