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Summary 
 

The objective of this project is to extend the current ribbon carving algorithm for video 

condensation to handle streaming video. Based on image seam carving, video ribbon 

carving is a novel approach developed at Boston University. This method allows us to 

shorten the length of surveillance video while permitting graceful activity loss. We adopt 

a sliding-window approach to process very long video sequences, in principle 

infinite-length ones. We have successfully tested the developed algorithm on several 

video sequences captured in an urban environment, including pedestrians, bikers, and 

motor vehicles. 
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1 Introduction 
 

Surveillance cameras have been densely deployed in populous areas and are 

producing extremely huge video data. However, viewing the entire video to find activity 

is inefficient as most segments are not important. Therefore, methods are needed to 

manage data overload. 

Several different approaches have been proposed to condense video. Uniform 

frame-dropping, or fast forwarding, can achieve high condensation ratio, yet activity is 

quite distorted. Non-uniform frame-dropping keeps all activity frames thus prevents 

distortion. Nevertheless, its performance is rather limited. 

Ribbon carving we use here is a novel approach to condense video. Due to the 

limitation of memory, however, processing an extremely long video is prohibited. In this 

project, we use sliding-window to condense streaming video. We also apply different 

background subtraction methods as our costs and use different stopping criteria to 

examine the performance. 

The report is organized as follows. In Section 2, prior works of image seam carving 

and video ribbon carving are explained as background materials. In Section 3, we 

illustrate how we apply ribbon carving to streaming video. In Section 4, we show some 

experimental results and analyze the data obtained. Finally, in Section 5 we come to the 

conclusion and propose some further works. 

  

 

 

2 Preliminaries 
  

The concept of 3-D video ribbon carving was inspired by 2-D image seam carving 

described in [1]. We will first describe the idea of image seam carving, and then extend 

this to video ribbon carving. 
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2.1 Image seam carving 
 

The idea of image re-sizing by seam carving is removing pixels that are less relevant 

while preserving pixels that contain important objects. The question here is how we 

define the cost of removing each pixel. Apparently, objects in an image often imply that 

there will be relatively significant change in color at edges. Therefore, one general 

approach is to utilize the magnitude of derivative as out cost function: 
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where I is the luminance of the image. This means that when we have higher changes of 

luminance compared to the neighbor of a pixel, we have higher cost at the pixel. After we 

compute the cost of each pixel, we have a cost array whose size is the same as the image. 

Then we can define the cost of a seam as the summation of cost at the corresponding 

locations of the seam. 

Next, we decide to remove which pixels by utilizing the cost array. In order to 

maintain the rectangular shape of an image, a straightforward way is to delete the pixels 

which have the minimum value of cost array in each row or each column, depending on 

reducing the column or row in an image respectively. However, this may destroy the 

image content by producing a zigzag effect (Fig. 2(e)) as the removed pixels are not 

connected. Therefore, the locations of the pixels to be removed have to be restricted as a 

connected seam. Formally, a vertical seam in an H × W image is a set of pixels (x(y), y), y 

= 1,…,H, s.t. ∀y, | x(y) − x(y − 1) | ≤ ϕ, where 1 ≤ x(y) ≤ W. The flex parameter ϕ here is 

a non-negative integer, which controls the maximum deviation from connectivity (Fig. 1). 

If ϕ = 0 then the seam coincides with a vertical line. Similarly, a horizontal seam is a set 

of pixels (x, y(x)), x = 1,…,W, s.t. ∀x, | y(x) − y(x − 1) | ≤ ϕ, where 1 ≤ y(x) ≤ H. 

 

(a)                                 (b)                              (c) 
Fig. 1.  Examples of vertical seams with different flex parameters: (a) ϕ = 0, (b) ϕ = 1, (c) ϕ = 2 
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The problem now becomes how we find the seam with the minimum cost. We use 

dynamic programming (appendix 6.1), which guarantees that the seam with minimum 

cost will be discovered. To find the vertical seam with minimum cost, first we traverse 

the cost array from the second row to the last row and compute the cumulative minimum 

cost M: 

 )),1(),...,1,1(),,1(min(),(),( φφφ +−+−−−−+= jiMjiMjiMjiCjiM . 

At the end of this process, the location of the minimum value of the last row in M will be 

the end of the vertical seam with minimum cost. Then we can trace back from this pixel 

to find the path of the optimal seam. The procedure for finding a horizontal seam is 

similar. After a seam is removed, we re-compute the costs and then find the least-cost 

seam again. We perform these steps recursively until some stopping criterion is met. 

 

 
 

(a)           (b) 

 

   
(c)                       (d)                   (e) 

Fig. 2.  Re-sizing a picture from rectangular size to square size: (a) original image, (b) corresponding costs 

computed using equation (1), (c) original image with seams of ϕ = 1, (d) re-sized image using seam carving, 

and (e) re-sized image by removing least-cost pixels in each row. 
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When re-sizing an image, we have to decide the order of removing a vertical seam 

and a horizontal seam. If we would like to change the size of a given image from H × W 

to H × W' or from H × W to H' × W, the choices of removing vertical seams or horizontal 

seams are obvious; if we retarget an image from H × W to H' × W', however, one 

approach to achieve the global minimum cost is to build a transport map indicating the 

cost of the optimal sequence of vertical and horizontal seam removal operations as well 

as a 1-bit map indicating which of the two options was chosen [1]. Nevertheless, this is 

time-consuming and impractical for further use of video condensation. Thus the 

alternative approach we utilize is to use greedy algorithm, which makes the locally 

optimal choice at each stage. 

 

2.2 Video ribbon carving 
 

In video condensation, we would like to reduce the length of video while preserving 

the activities that appear in video. Thus we extend the idea of a seam to a ribbon; the 

approach of video condensation becomes removing the ribbon with minimum cost. 

Suppose that we have a segment of video with N frames, where the size of each 

frame is W pixels wide and H pixels tall. We define a ribbon as a connected surface that 

for each (x, y) position, where x = 1,…,W, y = 1,…,H, there is exactly one corresponding 

pixel in time domain. In particular, a ribbon is a set of pixels (x, y, t(x, y)), where t(x, y) is 

a function with range 1,…,N, and | t(x, y) − t(x', y') | ≤ ϕ for all (x, y) and (x', y') for which 

| x − x' | ≤ 1 and | y − y' | ≤ 1. The flex parameter ϕ is again a non-negative integer, which 

controls the maximum deviation from connectivity. If ϕ = 0 then the ribbon coincides 

with a frame. 

Next we further define two types of ribbon: a vertical ribbon and a horizontal ribbon 

(Fig. 3). A vertical ribbon is a set of pixels (x, y, t(y)) in which t(y) do not depend on x. 

As a result, the vertical ribbon becomes a curve line when we view it from side. Similarly, 

a horizontal ribbon is a set of pixels (x, y, t(x)) in which t(x) do not depend on y. As a 

result, the horizontal ribbon becomes a curve line when we view it from top. This 

formalization is useful to transform the 3-D problem into 2-D problem. 
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(a)                              (b) 

 
Fig. 3.  Illustration of (a) vertical ribbon, and (b) horizontal ribbon in video cubes. 

 

To delete a ribbon from a video segment, we need to find the ribbon with minimum 

cost. We define the cost of a ribbon as the summation of cost at the individual pixels that 

constitute the ribbon, that is, 

∑
∈

=
Rtyx

tyxCRC
),,(

),,()( , 

where R denotes a ribbon. Therefore, from a given video, we can find both least-cost 

vertical and horizontal ribbons. Then we compare the minimum cost and remove the 

ribbon which has smaller cost. We recursively carve out the ribbon with minimum cost 

until some stopping criterion is met (sec. 3.2). Note that here we do not need to 

re-compute the cost after every ribbon deletion because the cost of motion-related activity 

will be preserved in the condensed video [2]. After condensation, we have N' (≤ N) 

frames, where the size of each frame remains the same. 

 

3 Condensation for streaming video 
 

 Ribbon carving allows us to condense a segment of video at a time. However, when 

we need to condense a video with very long sequence, there are two main reasons why 

we cannot read all video frames simultaneously to process: 

1) Computation time of finding a least-cost ribbon will be extremely long, 

2) Due to limitation of memory, reading in whole sequence of video is prohibited. 

Therefore, we utilize sliding-window to solve these problems. 

 Our whole algorithm is discussed in this section, including background subtraction, 

stopping criteria, and sliding-window approach. 
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3.1 Background subtraction 
 

In order to preserve the motion of objects, the costs should indicate motion-related 

activity reliably. Here we use background subtraction to obtain binary costs, where 0 

denoting background and 1 denoting foreground. 

 

3.1.1 Simple background subtraction 
 

One simple method is comparing the current frame and the background model. If the 

absolute value of difference is greater than some threshold θ, we assume that there is 

motion at the pixel and thus the cost is assigned to 1; otherwise the cost is assigned to 0: 
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where I is a video frame with subscript r, g, and b meaning red, green, and blue values, 

respectively. The background model B is recursively updated at each frame. For 

initialization, we pick n frames from the first (1 + nm) frames of video to compute the 

background using temporal median filter: 

=)0,,( yxBr median{ })1,,(),...,21,,(),1,,( nmyxImyxImyxI rrr +++ . 

In our experiments we use n = 20 and m = 10. The same operation is applied to green and 

blue color of background. For the following frames, the background is equivalent to the 

linear combination of previous background and the current frame: 

   ),,()1,,()1(),,( tyxItyxBtyxB αα +−−= , 

where α is a small value between zero and one. The whole process can be done from the 

first frame to the last frame. At the end, we have a 3-D binary cost array. 
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(a)                   (b) 

Fig. 4.  Activity-based binary labels (due to object motion): (a) video frame, and 

(b) activity frame (by Simple background subtraction with θ = 30, α = 0.001) 

 

3.1.2 Adaptive background subtraction 
 

In our experiments, we utilize the algorithm developed in [3] with foreground model 

disabled and Markov random field enabled. Since the notations used in the results of this 

report are the same, we refer the reader to this paper. 

 

3.2 Stopping criteria 

 

 After the cost is computed, we can now start to find the least-cost ribbon. We 

recursively carve out the ribbon until some stopping criterion is met. In image re-sizing, 

we can specify the new size of image and then do seam-carving recursively until we have 

the image in specified size. In video ribbon carving, however, specifying new length 

(number of frames) is not appropriate because some video segments may have more 

activities while others have less. Therefore, instead of specifying new length, we 

recursively remove least-cost ribbons until there are no more ribbons with cost less than ε. 

Here ε is a user-defined small value compared to the total number of pixels in a ribbon 

(or equivalently in a frame). 

 The selection of ε is related to the following factors: 

 False positives: The color of background may not be stable all the time. For 

example, change of sunlight, water surface or video noise may cause some false 
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positives. A non-zero ε allows the least-cost ribbon pass through some false 

positives. 

 False negatives: There may be some misses in moving objects after imperfect 

background subtraction. Therefore, setting a high value of ε may lead a 

least-cost ribbon to pass through these objects. 

 The size of moving objects: If the moving objects which we are interested in are 

small, ε should be restricted in lower value (say at least ten times lower than the 

number of pixels covered by objects), or the moving objects will be carved out 

by ribbons thus some visible distortions will happen on the objects. Otherwise, 

if the moving objects which we are interested in are large, ε can be released to a 

higher value. In addition, if there are some unimportant moving objects that are 

relatively small (small birds, distant objects, etc.) compared to the frame size, 

slightly increasing ε will let ribbons carve out the small objects and hence 

increase condensation ratio. 

If ε increases, the condensation ratio will also increase as we allow ribbons with 

higher cost to be removed. However, some visible distortions of moving objects start to 

appear when ε is greater than some value. When we increase ε further, distortions of 

moving objects become more serious (Fig. 11). 

 

3.3 Sliding-window approach 
 

3.3.1 Maximum extension of a ribbon 
 

Due to the fact that a ribbon is made up of connected pixels, the number of frames 

that a ribbon can cover is limited. This depends on width W, height H, and flex parameter 

ϕ. For a vertical ribbon, the maximum extension is (ϕH − ϕ + 1) frames; for a horizontal 

ribbon, the maximum extension is (ϕW − ϕ + 1) frames (Fig. 5). Therefore, a ribbon with 

flex parameter ϕ cannot span more than Mϕ ≡ (max(ϕH − ϕ + 1, ϕW − ϕ + 1)) = (ϕmax(H, 

W) − ϕ + 1) frames. 
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(a)                                           (b) 

W

H

W

H

ϕH − ϕ + 1 ϕW − ϕ + 1 

Fig. 5.  Maximum extension of (a) a vertical ribbon, and (b) a horizontal ribbon along time axis 

 

3.3.2 Processing streaming video 
 

To apply ribbon carving algorithm to streaming video efficiently and overcome the 

limitation of memory, we adopt a sliding-window approach. The basic idea is that we use 

a sliding-window buffer to process a segment of video at a time before it can save some 

frames if appropriate and read in new frames to process. This way we do not need to 

process the whole video at a time. 

The observation described in Section 3.3.1 is useful to implement sliding-window 

ribbon carving. Suppose that we have a sliding-window buffer filled with N frames. After 

ribbon carving, we have N' frames. Then we compare N' with Mϕ. If N' > Mϕ, then we 

save the first N' − Mϕ frames, push the remaining Mϕ frames to the front of the buffer, and 

read in new frames from the video to fill up the buffer. The reason why we can save the 

first N' − Mϕ frames is that no ribbon from the new frames beyond N' can reach this set of 

frames. Ribbons passing through the first N' − Mϕ frames will all have cost greater than ε. 

Thus saving these frames will not affect the result of finding the least-cost ribbon. If N' ≤ 

Mϕ, then no frames can be saved. Hence in this case we simply read in new frames from 

the video to fill up the buffer. After the buffer is filled with N frames, we again do ribbon 

carving until the stopping criterion is met. The above procedure is implemented until the 

end of video. 

Since greater ϕ may potentially introduce event anachronism [2], we start with ϕ = 0 

and increase it by one each time until ϕmax. The overall procedure can be described as 

follows: 
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1) Given a video, compute the costs. 

2) Do ribbon carving for ϕ = 0. After this step we have a condensed video. 

3) Increase ϕ by one. Use sliding-window to do ribbon carving until end of video. 

4) If ϕ < ϕmax, go to step 3. Otherwise if ϕ = ϕmax, then we stop. 

The flowchart of the overall procedure is illustrated in Fig. 6. While implementing, some 

details should be noticed: 

 Video and cost array should be carved at the same time since we find least-cost 

ribbon in cost and deal with the video at the corresponding position. When we 

carve out a ribbon from video, the ribbon of the same position should be carved 

out in the corresponding cost array as well. When using sliding-window, we 

should assign the same size of buffer to both video and cost array. 

 When we do ribbon carving for ϕ = 0, we simply check the cost of each frame 

and save the frames with cost greater than ε. We do this frame by frame thus no 

sliding window procedure is needed. 

 Theoretically, the buffer length N can be any number greater than Mϕ. Here we 

choose N = 2Mϕ for implementation efficiency. 

 In the ribbon carving algorithm, we compare minimum cost of vertical ribbon 

Cv and minimum cost of horizontal ribbon Ch and then remove the ribbon with 

lower cost. However, Cv may be equal to Ch. Feasible ways can be choosing 

between them randomly or by default. In our implementation we choose 

between them randomly. 

 When we come to the end of video, we may not be able to fill the buffer with N 

frames. Therefore the input of ribbon carving algorithm may not necessarily be 

N frames only for this case. 
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Fig. 6.  Flowchart of ribbon carving video condensation using sliding-window procedure 
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4 Experimental results 

The video condensation algorithm developed in this project has been tested on four 

video sequences captured on Boston University campus. The parameters and 

condensation ratios are listed in Table 1. Two different background subtraction 

algorithms described in Sec. 3.1 are used. 

 

Sequence 
(30 frames per 

second) 

Parkway 
(W = 160, H = 200, 

ε/WH = 0.1%) 

Plaza 
(W = 270 , H = 162, 

ε/WH = 0) 

Sidewalk 
(W = 240 , H = 208, 

ε/WH = 0) 

Highway 
(W = 320 , H = 80, 

ε/WH = 0) 

Background 

subtraction 

algorithm 

“Simple” 
(θ, α) = (30, 0.001)

“Adaptive” 
(N, θ, 1/γ, σ2) = 

(100, 0.3, 10, 3) 

“Adaptive” 
(N, θ, 1/γ, σ2) = 

(50, 1, 10, 20) 

“Adaptive” 
(N, θ, 1/γ, σ2) = 

(50, 0.3, 10, 3) 

Length (number of frames) & 

Cumulative condensation ratio (length of original video / length of condensed video) 

Original video 7,000 1:1 9,800 1:1 7,950 1:1 24,000 1:1 

Condensed video 

(ϕ = 0) 
6,402 1.09:1 5,163 1.90:1 3,570 2.23:1 7,819 3.07:1

Condensed video 

(ϕ = 1) 
4,172 1.68:1 3,788 2.59:1 2,888 2.75:1 2,843 8.44:1

Condensed video 

(ϕ = 2) 
3,746 1.87:1 3,426 2.86:1 2,888 2.75:1 2,805 8.56:1

Condensed video 

(ϕ = 3) 
3,671 1.91:1 3,312 2.96:1 2,888 2.75:1 2,792 8.60:1

 

Table 1.  Condensation ratios for the four different video sequences 

 

 

Table 1 shows the length of the condensed videos without visible distortion after 

completion of different flex parameters. First, we can see that the high condensation 

ratios happen in the Highway video after ϕ = 0. This is because the objects are moving in 

the same direction and the speeds of them are similar. This allows us to find many 

ribbons with low cost in gaps of moving objects. Second, the reduced frames tend to 



13  Huan-Yu Wu 

decrease when ϕ increases and become marginal when ϕ goes from two to three. One 

exception is in Parkway video: the reduced frames for ϕ = 1 are more than those for ϕ = 0. 

This is because the frames that do not contain moving objects are very few, hence ribbon 

carving for ϕ = 0 can only remove very few frames. Therefore, we can expect that after ϕ 

= 3 the condensation ratio will not improve much. However, if a video segment contains 

moving objects that have the following properties: a) moving very fast (say more than 

four pixels/frame), b) moving unidirectionally, and c) densely distributed in frames, we 

can expect that the condensation ratio will further improve much after ϕ = 3 (Fig. 7). 

 

 

 x 

 
t 

Fig. 7.  Illustration of video condensation involving fast moving objects. Object tunnels (blue) and a 

possible ribbon (red) here show that only ribbons with high flex parameter can further condense the video 

segment. Note that the x axis can also change to y axis. 

 

 

 

Sequence Parkway Plaza Sidewalk Highway 

Vertical ribbons (ϕ = 1) 1,031 484 60 572 

Horizontal ribbons (ϕ = 1) 1,199 891 622 4,404 

Vertical ribbons (ϕ = 2) 1,213 653 60 575 

Horizontal ribbons (ϕ = 2) 1,443 1,084 622 4,439 

Vertical ribbons (ϕ = 3) 1,245 666 60 578 

Horizontal ribbons (ϕ = 3) 1,486 1,185 622 4,449 
 

Table 2.  Cumulative number of carved-out ribbons in the four sequences of Table 1. 

 

 

In Table 2 we count the two different ribbons carved out in these four sequences. In 

Sidewalk and Highway videos, objects predominantly have horizontal motion thus the 
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carved-out horizontal ribbons are much more than vertical ribbons. In Parkway and Plaza 

videos, numbers of vertical and horizontal ribbons are much balanced since objects tend 

to move diagonally. In Plaza video, however, some objects have simply horizontal 

motion while no objects have simply vertical motion, thus horizontal ribbons somewhat 

carve out more. Fig. 12 further shows the number of vertical and horizontal ribbons in 

Parkway video regarding different stopping criteria ε. 

 

 
 

     
(a)                           (b)                            (c) 

   
(d)                          (e) 

Fig. 8.  Sample frames from Plaza video. (a) Original frame #7302, (b) Original frame #7417, (c) Original 

frame #7871, (d) Original frame #8655, (e) Condensed frame #2890. 

 

 

Plaza is an interesting video, showing pedestrians coming from different positions of 

video and moving in different directions. Result shows that our algorithm works well 

since the video is condensed while all important activities are preserved. Fig. 8 shows 

that distance between pedestrians becomes closer. The pedestrian wearing white shoes 

and the two people in front are moving in the same direction. Their distance can be 

shortened by removing horizontal ribbons and vertical ribbons (Fig. 9). 
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x

t

 

   

y 

Fig. 9.  Object tunnels (blue) and least-cost ribbons of ϕ = 1 (red) obtained from the Plaza sequence: 

perspective view (bottom right), top view (top) and side view (left). Horizontal ribbons are perceived in top 

view while vertical ribbons are perceived in side view. This figure shows that video with objects moving in 

the same direction, if not horizontal or vertical, can be condensed by removing horizontal and vertical 

ribbons. 

 

 

Fig. 11 shows that how stopping criterion ε affects the performance in Parkway 

video. When ε increases, the number of carved-out ribbons also increases hence the 

condensation ratio becomes higher. For ε = 0, few ribbons with cost = 0 can be found 

since moderate false positives are allowed here in Simple background subtraction. When 

ε increases a little, the number of carved-out ribbon can significantly increase. We find 

the highest condensation ratio with no visible distortion when ε/(WH) = 0.1%. However, 

some visible distortions start to occur from ε/(WH) = 0.15%. Distortions become more 

and more noticeable and when ε/(WH) comes to 1% the moving objects are severely 

distorted. 

t t

y

x
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(a)       (b)     (c)          (d) 

Fig. 10.  Sample frames from Parkway video. (a) Original frame #182, (b) Original frame #255, (c) 

Original frame #344, (d) Condensed frame #124. 

 

 

 

 
Fig. 11.  Number of carved-out ribbons in Parkway video using different values of stopping criterion ε. 

 

 

 

 

Fig. 12 further shows which type of ribbons are removed in this case. We can see 

that before visible distortion occurs, horizontal ribbons tend to carve out more while 

vertical ribbons tend to be removed more after visible distortion occurs. Fig. 13 shows the 

summation of costs projected to side and top of the cube. In our algorithm, we use these 

two matrices to find the horizontal and vertical least-cost ribbon respectively. Thus the 
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number of ribbons we can remove depends on how many ribbons with cost < ε we can 

find in the two matrices. First, we can see that in top view (Fig. 13 (a)) the cars do not 

move across the whole x axis. Some cars only move in a segment along x axis. This 

provides free paths in some upper and lower parts of this matrix for the least-cost ribbon. 

Thus, when ε is set to low values, more ribbons can be found in this matrix. Second, the 

values in tunnels are lower in side view (Fig. 13 (b)) than that in top view. Therefore, 

when ε is set to high values, ribbons start to pass through the tunnels in the side view 

matrix and then some visible distortions occur as a consequence. 

 

 

 
Fig. 12.  Number of carved-out vertical and horizontal ribbons counted from ϕ = 1 in Parkway video using 

different values of stopping criterion ε. 
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(a) 

 

   
(b) 

Fig. 13.  Projection of costs from the first 800 frames of Parkway video viewed from (a) top and (b) side 

of the cube. Higher values indicate tunnel of moving objects. The ribbons have to go from the first row to 

the last row in both matrices. Note that the cars move not only vertically but also horizontally at the same 

time. 

 

 

 Fig. 14 shows little event anachronism on some sample frames from the original 

video and condensed videos. The car in the right lane is originally behind the car in the 

left lane. However, in condensed video the car in the right lane comes to the front of the 

car in the left lane when ϕ comes to two. This is because there is still some space that 

horizontal ribbons can fit in between these two moving objects after ϕ = 1 ribbon carving 

is done. Although little event anachronism occurs here, no visible distortions of objects 

are introduced. 
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horizontal 
gap 

(a)                 (b)                 (c) 
Fig. 14.  Illustration of little event anachronism in Parkway video (ε/(WH) = 0.1%): (a) Original frame 

#6898, (b) Condensed (ϕ = 1) frame #4113, (c) Condensed (ϕ = 2) frame #3710. 

 

 

Since the condensation ratio depends not only on how objects move in video but 

also on the performance of background subtraction, here we discuss the parameters 

selection in both used algorithm. The Simple background subtraction compares the 

current frame and the background, so reducing θ will have less false negatives while 

introducing more false positives. The learning parameter α controls the learning rate of 

background. When objects move slowly, lower value is desired as this will not 

contaminate the background. Otherwise, higher value is feasible because it will learn 

background quickly thus preventing false positives caused by change of sunlight. Note 

that when using this background subtraction algorithm, some scattered false positives are 

unavoidable thus usually we allow ε to be nonzero when doing ribbon carving. 

The Adaptive background subtraction has more parameters to deal with. Usually 

using N = 50 to compute background model is enough. When there are moving objects 

staying in the same position for a period of time, using higher value can prevent 

background from being contaminated by the objects. Both the threshold θ and the 

variance σ2 of the Gaussian kernel control number of false positives. Higher θ and/or 

lower σ2 lead to more false positives. The penalty 1/γ in Markov random field (MRF) 

varies the threshold. Higher value of 1/γ can strengthen the influence of MRF model. This 

algorithm utilizes MRF thus preventing scattered false positives, hence usually we use ε 

= 0 as our stopping criterion. 
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5 Conclusion and future work 
          

Sliding-window ribbon carving has been implemented successfully for video 

condensation. We have demonstrated that the algorithm can condense a streaming video 

with static background while preserving major activities. Condensation ratios of 1.91:1 to 

8.60:1 are achieved in our experiments. 

So far the algorithm has been developed in MATLAB and the computation time will 

be an issue when dealing with an extremely long sequence. Therefore, it would be 

interesting to implement this algorithm in C/C++ or even on multi-core CPUs or GPUs so 

that real-time application can be realized. In addition, exploring different types of ribbon 

(e.g., directional) may further increase condensation ratio as the shape of ribbon becomes 

more flexible. These are potential directions for future research. 
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6 Appendix 

6.1 Dynamic programming 

 

Example: Cost array e 

 

 

Steps (top-down): 

1. Copy the first row from the cost matrix e to matrix M: 

 

 

2. For the second row, compute the cumulative minimum cost M for all possible 

connected seams for each entry (i, j) and record the direction: 

M(i,j) = e(i,j) + min(M(i-1,j-1), M(i-1,j), M(i-1,j+1)) 
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3. Similar procedure to step 2 until the entries in the last row are computed. 

 

 

4. Choose the minimum value of the last row and backtrack from this entry along the 

recorded direction. 

 

 

 

6.2 MATLAB code 

Below is listed Matlab source code developed for this project. 

%sliding window script 
%input file:'whole_video.avi' 
%output files (number depends on flexmax): 
%       'whole_cost.avi', 
%       'flex0_video.avi','flex0_cost.avi', 
%       'flex1_video.avi','flex1_cost.avi', 
%       'flex2_video.avi','flex2_cost.avi', 
%       'flex3_video.avi','flex3_cost.avi',(...) 
  
%Huan-Yu Wu 
% 
  
eps=0;                          %stopping criterion 
flexmax=3; 
colormap=zeros(2,3);            %set up colormap for output cost file 
colormap(2,:)=ones(1,3); 
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Xinfo=aviinfo('whole_video.avi'); 
H=Xinfo.Height  ;
W=Xinfo.Width; 
  
  
%compute Costs first 
%input file: whole_video.avi (with RGB values) 
%output file: whole_cost.avi 
tic 
N=50; 
C_avi=avifile('whole_cost.avi','colormap',colormap,'compression','None'
,'fps',30); 

%compute the cost array here 
%set the first N frames to all ones 
for frame=1:N 
    C_avi=addframe(C_avi,uint8(true(H,W))); 
end 
[C_avi it]=BkgSub_avioutput('whole_video.avi',C_avi,Xinfo.NumFrames, 
N,0.3,10,3,1);      %(seq,output,T,N,th,pen,var,ratio) 

C_avi=close(C_avi); 
toc 
  
  
%flex==0 
%input file: whole_video.avi, whole_cost.avi 
%output file: flex0_video.avi, flex0_cost.avi 
h=waitbar(0,'Computing flex=0...'); 
tic 
X_avi=avifile('flex0_video.avi','compression','None','fps',30); 
C_avi=avifile('flex0_cost.avi','colormap',colormap,'compression','None'
,'fps',30); 

for frame=1:Xinfo.NumFrames 
    waitbar(frame/Xinfo.NumFrames) 
    X=aviread('whole_video.avi',frame); 
    X=X.cdata; 
    C=aviread('whole_cost.avi',frame); 
    C=C.cdata; 
    %check the cost of each frame 
    if sum(sum(C))>eps 
        X_avi=addframe(X_avi,X); 
        C_avi=addframe(C_avi,C); 
    end 
end 
X_avi=close(X_avi); 
C_avi=close(C_avi); 
toc 
close(h); 
  
%flex>=1 
%input file: flex0_video.avi, flex0_cost.avi 
%output file: flex1_video.avi, flex1_cost.avi, etc. 
  
%the following four vectors are for statistics only 
vertRibbonCount=zeros(flexmax,1); 
horRibbonCount=zeros(flexmax,1); 
way1Count=zeros(flexmax,1); 
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way2Count=zeros(flexmax,1); 
  
for flex=1:flexmax 
    h=waitbar(0,['Computing flex=',num2str(flex),'...']); 
    tic 
    X_avi=avifile(['flex',num2str(flex),'_video.avi'],'compression', 

'None','fps',30); 
    C_avi=avifile(['flex',num2str(flex),'_cost.avi'],'colormap',colormap, 

'compression','None','fps',30); 
    %initialization 
    Mphi=flex*max(W,H)-flex+1; 
    N=fix(2*Mphi); 
    startframe=1;       %start reading from this frame 
    endframe=N;         %stop reading until this frame 
    bufferlength=0;     %the current length of the buffer 
    Xinfo=aviinfo(['flex',num2str(flex-1),'_video.avi']); 
     
    while startframe<=Xinfo.NumFrames 
        waitbar(startframe/Xinfo.NumFrames) 
        if endframe<Xinfo.NumFrames 
            tempX=aviread(['flex',num2str(flex-1),'_video.avi'], 

startframe:endframe); 
            X(:,:,:,bufferlength+1:N)=cat(4,tempX.cdata); 
            clear tempX 
            tempC=aviread(['flex',num2str(flex-1),'_cost.avi'], 

startframe:endframe); 
            C(:,:,bufferlength+1:N)=cat(3,tempC.cdata); 
            clear tempC 
            [X C vertRibbonCount(flex) horRibbonCount(flex)]= 

ribboncarvemain(X,C,flex,eps,vertRibbonCount(flex), 
horRibbonCount(flex));        %do ribbon carving 

             
            Np=size(X,4)  ;
            if Np > Mphi 
                Npp=Np-Mphi; 
                %save the first Npp frames 
                for frame=1:Npp 
                    X_avi=addframe(X_avi,X(:,:,:,frame)); 
                    C_avi=addframe(C_avi,C(:,:,frame)); 
                end 
                %push the remaining output to the front 
                X(:,:,:,1:Mphi)=X(:,:,:,Npp+1:Np); 
                C(:,:,1:Mphi)=C(:,:,Npp+1:Np); 
                bufferlength=Mphi; 
                %set up the next reading frames 
                startframe=endframe+1; 
                endframe=startframe+N-Mphi-1; 
                way1Count(flex)=way1Count(flex)+1; 
            else 
                %no frame is saved 
                bufferlength=Np; 
                startframe=endframe+1; 
                endframe=startframe+N-Np-1; 
                way2Count(flex)=way2Count(flex)+1; 
            end 
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        else 
            %processing the last video chunck 
            tempX=aviread(['flex',num2str(flex-1),'_video.avi'],  

startframe:Xinfo.NumFrames); 
            X(:,:,:,bufferlength+1:bufferlength+Xinfo.NumFrames- 

startframe+1)=cat(4,tempX.cdata); 
            clear tempX 
            X=X(:,:,:,1:bufferlength+Xinfo.NumFrames-startframe+1); 
            tempC=aviread(['flex',num2str(flex-1),'_cost.avi'], 

startframe:Xinfo.NumFrames); 
            C(:,:,bufferlength+1:bufferlength+Xinfo.NumFrames- 

startframe+1)=cat(3,tempC.cdata); 
            clear tempC 
            C=C(:,:,1:bufferlength+Xinfo.NumFrames-startframe+1); 
            [X C vertRibbonCount(flex) horRibbonCount(flex)]= 

ribboncarvemain(X,C,flex,eps,vertRibbonCount(flex), 
horRibbonCount(flex)); 

             
            Np=size(X,4); 
            %save the entire buffer 
            for frame=1:Np 
                X_avi=addframe(X_avi,X(:,:,:,frame)); 
                C_avi=addframe(C_avi,C(:,:,frame)); 
            end 
            clear X C 
            break 
        end 
    end 
    %the avi files of video and cost are eventually produced here 
    X_avi=close(X_avi); 
    C_avi=close(C_avi); 
    toc 
    close(h); 
end 
 
 
function [X C vertRibbonCount horRibbonCount]=ribboncarvemain(X,C,flex,eps, 
vertRibbonCount,horRibbonCount) 

%The main function for ribbon carving 
% 
%input: 
%X: input video (4-D array  )
%C: input cost (3-D array) 
%flex: flex parameter 
%eps: stopping criterion 
% 
%output: 
%X: output video (4-D array  )
%C: output cost (3-D array) 
% 
%the number of carved-out vertical ribbons in this function will be 
%vertRibbonCount(output) - vertRibbonCount(input). 
%the number of carved-out horizontal ribbons in this function will be 
%horRibbonCount(output) - horRibbonCount(input). 
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[H W rgb N]=size(X); 
 
My=cummincost(C,flex,'vert');    %compute the cumulative minimum cost 
Cv=min(My(H,:,1));               %the cost of removing a vertical ribbon   
Mx=cummincost(C,flex,'hor'); 
Ch=min(Mx(W,:,1));                 %the cost of removing a horizontal ribbon 
Ch 
Cv 
while Ch<=eps || Cv<=eps 
    %remove a vertical ribbon 
    if Cv < Ch 
        [X C]=carve(X,C,My,'vert'); 
        vertRibbonCount=vertRibbonCount+1; 
     
    %remove a horizontal ribbon 
    elseif Ch < Cv 
        [X C]=carve(X,C,Mx,'hor'); 
        horRibbonCount=horRibbonCount+1; 
             
    %when the cost of removing a vertical and horizontal ribbon are equal 
    else 
        if rand < .5 
            [X C]=carve(X,C,My,'vert'); 
            vertRibbonCount=vertRibbonCount+1; 
        else 
            [X C]=carve(X,C,Mx,'hor'); 
            orRibbonCount=horRibbonCount+1; h
        end 
    end 
    My=cummincost(C,flex,'vert');  %compute the cumulative minimum cost 
    Cv=min(My(H,:,1));               %the cost of removing a vertical ribbon 
    Mx=cummincost(C,flex,'hor'); 
    Ch=min(Mx(W,:,1));               %the cost of removing a horizontal ribbon 
    Ch 
    Cv 
end 
 
 
function M=cummincost(C,flex,direction) 
%compute the cumulative minimum cost for all possible connected ribbons 
%(using dynamic programming) 
% 
%input: 
%C: cost array 
%flex: flex parameter (non-negative integer) 
%direction: 'vert': remove vertical ribbon 
%           'hor': remove horizontal ribbon 
% 
%output: 
%M(:,:,1): cumulative minimum cost (2-D array) 
%M(:,:,2): direction of backtracking (2-D array) 
  
[H W N]=size(C); 
  
switch direction 
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    case 'vert' 
        M=zeros([H,N,2],'single'); 
        %sum up the cost along the 2nd dimension, and then rearrange it to  

%2-D array 
        sumC=permute(sum(C,2),[1 3 2]); 
        M(1,:,1)=sumC(1,:); 
        for i=2:H 
            for j=flex+1:N-flex 
                [a b]=min(M(i-1,j-flex:j+flex,1)); 
                M(i,j,1)=sumC(i,j)+a; 
                M(i,j,2)=b-flex-1; 
            end 
             
            %boundary condition 
            for j=1:flex 
                [a b]=min(M(i-1,1:j+flex,1)); 
                M(i,j,1)=sumC(i,j)+a; 
                M(i,j,2)=b-j; 
            end 
             
            %boundary condition 
            for j=N-flex+1:N 
                [a b]=min(M(i-1,j-flex:N,1)); 
                M(i,j,1)=sumC(i,j)+a; 
                M(i,j,2)=b-flex-1; 
            end 
        end 
         
    case 'hor' 
        M=zeros([W,N,2],'single'); 
        %sum up the cost along the 1st dimension, and then rearrange it to 

%2-D array 
        sumC=permute(sum(C,1),[2 3 1]); 
        M(1,:,1)=sumC(1,:); 
        for i=2:W 
            for j=flex+1:N-flex 
                [a b]=min(M(i-1,j-flex:j+flex,1)); 
                M(i,j,1)=sumC(i,j)+a; 
                M(i,j,2)=b-flex-1; 
            end 
  
            %boundary condition 
            for j=1:flex 
                [a b]=min(M(i-1,1:j+flex,1)); 
                M(i,j,1)=sumC(i,j)+a; 
                M(i,j,2)=b-j; 
            end 
  
            %boundary condition 
            for j=N-flex+1:N 
                [a b]=min(M(i-1,j-flex:N,1)); 
                M(i,j,1)=sumC(i,j)+a; 
                M(i,j,2)=b-flex-1; 
            end 
        end 
end 
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function [X C]=carve(X,C,M,direction) 
%remove one ribbon using dynamic programming 
% 
%input: 
%X: input video (4-D array) 
%C: input cost (3-D array) 
%M: cumulative minimum cost 
%direction: 'vert': remove vertical ribbon 
%           'hor': remove horizontal ribbon 
% 
%output: 
%X: output video (4-D array) 
%C: output cost (3-D array) 
  
H=size(X,1); 
W=size(X,2); 
N=size(X,4); 
switch direction 
    case 'vert' 
        [a p]=min(M(H,:,1)); 
        X(H,:,:,p:N-1)=X(H,:,:,p+1:N); 
        C(H,:,p:N-1)=C(H,:,p+1:N); 
        for i=H-1:-1:1 
            p=p+M(i+1,p,2); 
            X(i,:,:,p:N-1)=X(i,:,:,p+1:N); 
            C(i,:,p:N-1)=C(i,:,p+1:N); 
        end 
 
    case 'hor' 
        [a p]=min(M(W,:,1)); 
        X(:,W,:,p:N-1)=X(:,W,:,p+1:N); 
        C(:,W,p:N-1)=C(:,W,p+1:N); 
        for i=W-1:-1:1 
            p=p+M(i+1,p,2); 
            X(:,i,:,p:N-1)=X(:,i,:,p+1:N); 
            C(:,i,p:N-1)=C(:,i,p+1:N); 
        end 
         
end 
clear M a p direction H W N 
X(:,:,:,end)=[]; 
C(:,:,end)=[]; 
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