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Summary 
 

 

This work was part of the course EC520. The objective of this project is to develop 

an algorithm for the detection and enumeration of crabs on beach. The basic 

method is background modeling and background subtraction. Based on several 

previous frames, the background of current frame can be estimated using median 

model or non-parametric model. Morphological operation is applied to foreground 

images and the number of crabs can be obtained. The method is tested on an 

actual video of crabs on beach. Comparison of different algorithms is made.
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1 Introduction 
 

The remarkable shrinking of network video cameras in both size and cost has led 

to a serious effort of using networks of such cameras for wildlife monitoring. A 

NSF-funded project is building such a video camera network and using it for 

active monitoring of Atlantic shore wildlife. Based on the video data of crabs 

moving on the beach, our task is to develop a method to detect the presence of 

crabs and then count their number. 

 

 

2 Literature Review 
 
2.1  General idea for moving objects detection 
 
1. Background 

Background subtraction is a commonly used class of techniques for detecting all 

foreground objects in a scene for application such as surveillance. It involves 

comparing an observed image with an estimate of the image contained no objects 

of interest, which is the so called “background”. A simple technique of “comparing” 

is to subtract the observed image from the background, and then threshold the 

result to generate the objects of interest. 

 

2. Non-static background 

As a matter of fact, the background might not be fixed but adapts to: 

1). Scene’s illumination changes, e.g., gradual change from morning to evening or 

sudden change due to clouds; 

2). Motion changes because of camera oscillation or high-frequencies 

background objects (such as tree branches and sea waves) movement, which 

cause the pixel intensity values to vary significantly; 

3). Changes in background geometry 

4). Etc. 
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2.2. Widely used techniques for estimating the scene’s static background 
 
1. Basic methods 

 

1) Frame difference: 

difference image = 1i iframe frame+ −  

Then threshold the difference image to detect the foreground objects: 

| difference image | > threshold 

In this straightforward method, the background is just the previous frame and the 

result is very sensitive the threshold. It only works well in a particular condition. 

 

2) Average or median of the previous N frames: 

Usually, during N consecutive frames, a fixed pixel is background most of the time, 

and is foreground only when the objects of interest move across. So the 

background can be estimated by average of the N intensity values of the pixel, or 

median of that: 

 background image=
1

1 N

i
i

NINT frame
N =

 
 
 
∑   NINT: Nearest integer 

or 

background image = median {N frames} 

 

3) Running average or running median: 

1 * (1 )*i i ibackground frame backgroundα α+ = + −  
where ibackground  is the background image obtained by average model or 

median model. Each pixel’s location is based on the pixel’s recent history. The 

recent frames have higher weight, e.g., α =0.05, typically. 

 

4) Running average or running median with selectivity: 

1

* (1 )*i i
i

i

frame background
background

background
α α

+

+ −
= 
    

( )
( )

i

i

if frame is background
if frame is foreground  
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The feedback from the classification of a pixel as foreground or background 

prevents the background model to be polluted by pixels logically considered as 

foreground. 

 

2. Density estimation methods 

 

1) Single Gaussian: 

If we monitor the intensity value of a pixel over time in a completely static scene 

(i.e., without background motion), then the pixel intensity can be reasonably 

modeled by Gaussian probability density function (pdf.): N( µ ; 2σ ), given the 

image noise over time can be modeled by N(0; 2σ ). That also explains why we 

can use average image of N frames as background. 

 

2) Running Gaussian average 

Update the mean value (µ ) and variance ( 2σ ) of Gaussian pdf. of a fixed pixel: 

1 * (1 )*i i iframeµ α α µ+ = + −  
2 2 2

1 *( ) (1 )*i i i iframeσ α µ α σ+ = − + −  
where iframe  is the intensity value of this pixel in the thi  frame. 

 

3) Mixture of Gaussians 

Estimate the pdf. of the intensity value of a pixel as: 

2

1
( ) ( ; )( )

K

i i i
i

P u N uω µ σ
=

=∑
 

Pre-define K=3~5. All the iµ , 2
iσ  are updated at every new frame. The mixture of 

Gaussians actually models both the foreground and the background. All 

distributions are ranked according to their /i iω σ  and the first ones chosen as 

“background”. 
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4) Kernel density estimators 

It is a generalization of the mixture of Gaussian model. We will discuss it in detail 

in section 3. 

 

3. Suppression of false detection 

False detection of foreground might be resulted from random noise, non-static 

background or camera oscillation. There are 3 commonly used methods: 

1) Low-pass filter or median filter: They can remove random noise, but often fail 

when some moving background objects are detected as foreground. 

2) Morphological operation: Erosion, Closing and etc. to remove random noise 

and pixels on the boundaries of objects in the images. 

3) Another way which is based on Kernel density model (or Mixture of Gaussians 

model), so we will discuss it in depth in Section 3. 

 

 
 
3 Problem Statement 
 
Our task is to implement a method to detect and count crabs, in order to find the 

trend how the number of crabs changes over time. 

 

In monitoring application, if we want to count the crabs in the (N+1)th frame, its 

background is estimated based on previous N frames. If we want to count the 

crabs in the (N+k) th frame (k is a small integer, e.g., k=5), we need to update the 

background of the (N+1)th frame. 

 

However, in this project, we focus on developing a method to detect and count 

crabs in one frame, instead of counting crabs in all the frames of this video. So, 

we didn’t implement the algorithm for updating background. 
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3.1   Challenges in Detection 
 
The detection of crabs is based on their movement, not on their shape, size, color, 

etc. If a crab is at rest, it cannot be detected. These are many difficulties occurred 

in such detection: 

1. Crabs which are difficult to separate 

1) The video of crabs on the beach doesn't have high enough spatial resolution, 

while the crabs are very small compared to the scene size, and easy to be 

covered by noise. Thus, this problem is more difficult than detection of relatively 

large objects such as cars. 

2) There are nearly one hundred crabs on the beach and some of them crowd in a 

small area, even overlap between each other. Moreover, those crabs are not of 

the same size and have similar color to the sand. 

 

2. Non-static Background 

The most serious problem is water ripple which is non-static background. It will be 

detected as foreground since the detection is based on movement. So it will 

cause a lot of false detection and can't be significantly removed by simple 

methods such as low-pass filtering. As a result, the crabs in the water are very 

difficult to detect. In addition, water area has similar color and luminance to sand, 

so it’s not very straightforward to separate water from the scene. 

 

3. Camera oscillation also introduces noise in foreground image.  

 

 

3.2   Basic Assumptions 
 
As discussed above, it’s not easy to detect and count all the crabs. In order to 

simplify the problem, we make the following assumptions: 

1. The crabs that don’t move during the frames will be used to build background 

and are not counted in. Our task is only to detect the moving crabs. 
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2. Crabs that crowd in a small area or overlapped each other, will be considered 

as one crab. 

3. There is no camera oscillation. 

 
 
3.3  Method Description 
 
3.3.1  Background Modeling 
 
For this project, the background is not static because of water ripple. So, some 

methods such as average model and single Gaussian model are not good 

estimation. Median model is acceptable but not good enough. Kernel density 

estimator is a better model, because it takes statistic properties of the image 

sequence into consideration. 

 

1. The structure of probability density function 

Let 1 2{ , ,..., }Nu u u  be a recent set of samples of intensity values for a pixel. Given 

this sample set, the pdf. of this pixel can be non-parametrically estimated using 

the kernel estimator K( ) as: 

1

1( ) ( )
N

i
i

P u K u u
N =

= −∑  

Often, we choose our kernel estimator function K( ) to be Gaussian: N(0; 2σ ), 

where σ  represents the kernel function bandwidth, i.e., the standard deviation. 

Then the density can be estimated as: 
2

2
22

1 1

( )1 1 1( ) (0; )( ) exp[ ]
22

N N
i

i
i i

u uP u N u u
N N

σ
σπσ= =

−
= − = −∑ ∑  

 

Note: 

For a fixed pixel, only based on its intensity value in the thk frame (assuming it's 

ku ), the probability density that its intensity value is u is 2( ; )( )kN u uσ . So if we 

observe N recent frames, (where N is a relatively large number, e.g. 50), based 

on the N intensity values of this pixel, we can estimate the pdf. of its intensity 
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value as the summation of the N Gaussian pdf. as above. This summation finally 

approximately equals to the summation of M Gaussian pdf., (where M is a 

relatively small number, e.g. 3), each of which models one object in the scene, 

such as sand, water, crabs, etc.  

 
2. Normalization of pdf. 

According to the definition of pdf., its integral over the field of definition must equal 

to 1, so normalization of the obtained pdf. is necessary. However, the obtained 

“pdf.” is actually discrete and is defined on [0,255], because the possible intensity 

value of a pixel is between 0 and 255. For simplicity, we just normalize it by 

multiplying 1/N. In fact, this won't affect the accuracy of the result, which is 

discussed below. 

 

3. Use the pdf. to decide if this position is background in a new frame 

 

Based on N frames, we find the pdf. for every pixel's intensity value. In an 

application of surveillance, for any pixel in the scene, it is background most of the 

time and foreground only when an event “happens” at this position, e.g., a crab 

moves across. So the value with higher probability density implies that it is 

probably background. 

 

Using the obtained pdf. for a pixel, we examine the same position in an observed 

frame. Assuming the intensity value of this pixel is tu , if ( )tP u <TH, i.e., tu  has a 

relatively lower probability density, this pixel is considered as foreground. 

Otherwise, it's considered as background. TH is a global threshold over the whole 

image. With smaller TH, more pixels are considered as background, so we have 

less false positives but might lose some true detection. So we can adjust TH to 

achieve a desired percentage of false positives. 
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Because that we compare the pdf. with TH, but don’t use it to compute probability, 

the normalization of pdf. is not necessary in this sense. As a result, how we 

implement the normalization won’t affect the accuracy of result. 

 

4. Estimating 2σ  in the pdf. of a particular pixel 

We use the same 2σ  for each Gaussian pdf. in the summation, where σ  

reflects the small deviation of the pixel’s intensity value resulted from blurring in 

the scene (i.e., local variance), but not from displacement of different objects. 

Actually, the significant variance due to objects moving has been taken into 

consideration. That’s why we use the summation of N Gaussian instead of a 

single Gaussian. 

This local variance of each pixel changes over time. σ  can be estimated as: 

0.68 2
mσ =  

where N-1
i+1 i i=1m=median{ u -u } , i+1 i(u -u )  is each consecutive pair among N frames. 

 

As assumed, the intensity value of a pixel can be modeled by N(µ ; 2σ ), if no 

background objects move across it. Thus, the difference of intensity values of this 

pixel between two consecutive frames can be modeled by N(0;2 2σ ), i.e., 
2

i+1 i(u -u )~N(0;2 )σ . 

 
 
3.3.2  Suppression of False Detection 
 
The main idea of suppression of false detection is to find out which of those pixels 

detected as foreground are in fact background. If part of the background (e.g., a 

tree branch) moves to occupy a new pixel (e.g., [i,j]), but in the model, that pixel 

was not considered as this part of background (i.e.,  ( [ , ])ijP u i j TH< , where ijP (●) 

is the pdf. of the pixel [i,j]), then it will be detected as foreground. However, this 

moved part of background has a high probability that at its original pixel (e.g., 

[k,l]), it was considered to be background ( ( [ , ])klP u i j TH> ,where klP (●) is the pdf. 
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of the pixel [k,l]). Assuming that only small movement occurs during consecutive 

frames (i.e., [i,j] is very close to [k,l]), the pixel which is detected as foreground 

(i.e., [i,j]) has a high probability that it would be considered as background, if we 

use its neighbors' pdf.: 

 

The detected foreground pixel [i,j] is background if: 

1[ , ]
( [ , ]) max { ( [ , ])}

ij
N klk l N

P u i j P u i j TH
∈

= >  

Note: 

( [ , ])klP u i j  gives the probability density that the intensity value of pixel [i,j] at its 

possible original position [k,l] equals to .u[i,j]. Larger ( [ , ])klP u i j  implies higher 

probability that pixel [i,j] at its possible original position [k,l] is considered as 

background. Thus, to decide if pixel [i,j] at its possible original position [k,l] is 

actually considered as background, we only need to compare the maximum 

probability with 1TH . 

 

By thresholding ( [ , ])NP u i j , we can eliminate many false detections due to small 

motions in the background. Unfortunately, we also eliminate some true 

detections, because some true detected pixels might accidentally have similar 

intensity value to some nearby pixel which are considered as background. This 

happens more often on gray level images. 

 

To avoid losing such true detections, we add the constraint that the whole 

detected foreground object must have moved from a nearby location, and not only 

some of its pixels. The implementation of this idea has quite high computational 

complexity, and we will try it to improve the result later on. 

 
 
 
 
 



10  Wei Liu & Ke Chen 

3.3.3  Real-time Processing 
 
The application of surveillance requires real time processing. Once an event is 

detected (e.g., crabs moving), corresponding action is taken (e.g., counting the 

number of crabs). However, the computational complexity on video sequence is 

always high. Thus, optimization of algorithm is quite necessary, and we will 

discuss it in detail in section 4. 

 
 
3.3.4  Enumeration of the Crabs 
 
With the processed foreground image (binary image, background pixels are black 

and foreground pixels are white), we count the crabs by using morphological 

operation. 

1. Label the connected areas in region D . Assume that: 

1 1 0 1 1 0
1 1 0 1 0 1
1 1 0 0 0 1
1 1 0 0 1 0

 
 
 =
 
 
 

D  

As commonly used definition of neighborhood in image, there are two kinds of 

neighborhood: 4-neighborhood and 8-neighborhood. We decide if two pixels are 

connected or not by checking if they are neighbors. Examples as below: 

4-neighbor label: 

1 1 0 2 2 0
1 1 0 2 0 4
1 1 0 0 0 4
1 1 0 0 3 0

 
 
 =
 
 
 

L  

 

8-neighbor label: 

1 1 0 2 2 0
1 1 0 2 0 2
1 1 0 0 0 2
1 1 0 0 2 0

 
 
 =
 
 
 

L  

Thus, there are 4 “crabs” in region D  if we use 4-neighbor label, and 2 “crabs” in 

region D  if we use 8-neighbor label. 
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2. Threshold the labeled image 

After labeling, we threshold the number of pixels in the same connected area. If it 

not smaller than some threshold, this area is considered as an object, i.e., a crab; 

otherwise, this area is considered as noise and its label is removed, i.e., forced to 

zero. Then we re-label this region, and the largest label number is the number of 

crabs in the region. 

 

 

 

4 Implementation  
 
4.1   Detection 
 
Detect the moving crabs, including estimating background, subtracting 

background from observed image, suppressing false detection. 

We implement it in two ways: median model and Kernel estimation, where the 

latter one gives better result and the former one is for comparison. 

 
1. Median Model:  

Algorithm 

• Build up background model M based on pervious N frames: 

 1) Take N previous frames 

  2) For coordinates at [i, j], 

         a. Look for median m[i,j] in set 1 2{ [ , ], [ , ],..., [ , ]}nu i j u i j u i j  

         b. Define m[i, j] as value of the background model ,i jM  

• Detect crabs:  

Given the frame tf , let Nt denotes the number of detected crabs in tf : 

1) Subtract the background M from the observed frame tf  and take absolute 

value to the difference image 
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2) Convert the grayscale image to a binary image by thresholding: difference 

greater than threshold will be valued 1 as foreground; otherwise, valued 0 as 

background. 

3) Reduce noise using median filter 

 

2. Mixture of Gaussian Model:  

Algorithm 

• Build a Lookup table S( 256 256 256× × matrix) 

XData, valued from 0 to 255, represents all possible intensity values of a pixel; 

ZData, also valued from 0 to 255, represents all possible integer values for 

standard deviation; 

YData is sampled probability on Gaussian density function. 

 

For a pixel at coordinates [i,j] with value u and standard deviation σ , the 

probability for intensity value of this pixel to be v is given by ( , , )S u v σ , namely: 
2

2
1 ( )
2

2

1( , , )
2

u v

S u v e σσ
πσ

−
−

=
 

• Build kernel density estimator ,i jE  

1). Take N consecutive frames 

2). For coordinates at [i,j] 

  a. Compute 1[ , ] | [ , ] [ , ] | 1, 2,..., 1t t tu i j u i j u i j t n+∆ = − = −  

  b. m=median{ [ , ]}u i j∆  and define standard deviation ,i jσ  as: , 0.68 2i j
mσ =  

  c. Look up in table S for intensity probability distribution { ( ) | [0,255]}P U v v= ∈  

using [ , ]tu i j  and ,i jσ , and summate over t 

  d. Normalize the summation and record into Estimator ,i jE  

• Object Detection Step 

1) Take frame tf  

2) For coordinates at [i, j] with value [ , ]tu i j  
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  a. Look for ( [ , ])tP U u i j= in estimator ,i jE  

  b. Compare to threshold mT , let . 1i jD =  if ( [ , ])t mP U u i j T= < , or . 0i jD =  

if ( [ , ])c mP U u i j T= ≥ , where D  is the detected foreground image. 

3) Reduce noise using median filter and morphological operations. 

 

3. Improvement 

The look-up table can be improved further more to get faster and more accurate 

computation. Also, we can stop the summation when we already 

have:
2

22
1

( )1 exp[ ]
22

k
i

m
i

u u T N
σπσ=

−
− >∑ , for k N≤ . However, due to limited time, we 

haven’t finished the implementation of these two improvements and leave these 

as some future work. 

 
 
4.2   Enumeration of the Crabs 

 

Algorithm 

1) Apply 4-neighbor label ( or 8-neighbor label) in the processed image; 

Let L denote the largest label used in the image, which equals to the number of 

detected objects. Initialize the total number of detected crabs Nt=0: 

 For 1,2,...l L= : 

2) Find and count elements in D labeled l ; 

3) Threshold( cT ) the total number of pixels in a connected area obtained in 

step (1) by labeling, assuming this number is ln : 

If l cn T≥ , define object labeled l  as crab, and increase Nt by 1; 

If l cn T< , remove this object by forcing the value of those pixels in this object 

to 0, i.e., background; 

4) Re-label, and then the largest label is the total number of crabs. 
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5 Experimental results 
 

5.1   Result of Median Model 
Original image to be observed: #351 frame from video crab1.avi 

 

 
 

Fig. 1. Observed image 

 
1. How the three parameters affect the results: 

-- N: the number of frames used to build up background 

-- GT : the threshold used to converting gray level image to binary image 

-- Size and shape of median filter mask 

 
 

    
 
         (a) N=50                    (b) Detected foreground using (a) 
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(c) N=100                     (d) Detected foreground using (c) 

 

   
(e) N=300                     (f) Detected foreground using (e) 

 

Fig. 2. Effect of changing N: 

the obtained median models and detected foreground. 

 
It’s more likely to find medians that are sufficiently representative of the 

background with a larger N (number of frames based on which median model was 

built), and thus build a better estimation to detect the foreground. 

 

However, we can see that the detected crabs are only their claws, because the 

body of crab and the beach has quite similar color and thus, in similar gray level. 

In addition, the detected crabs and the water ripple noise are in similar gray level, 

which makes it very difficult to remove noise without losing crabs. So, median 

model is not a very good model for this application. 
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 (a) Fig 2(f)            (b) Thresholding (a), GT = 0.1  

 

   
 

(c) Thresholding (a), GT = 0.2    (d) Thresholding (a), GT = 0.4  

Fig. 3. Effect of changing graylevel threshold GT  

 
There is a tradeoff between crab detection and noise cancellation. Smaller TG 

would reserve more information about crabs, but leave noises in the image; larger 

TG would better suppress noises, but lose more information about crabs at the 

same time. 
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           (a) Fig. 1                          (b) Fig. 3(b) 

 

     
     

 (c) Vertical mask [3 1]     (d) Vertical mask [5 1] 

 

    
 

 (e) Vertical mask [7 1]     (f) Square mask [3 3] 

 

Fig. 4. Noise cancellation using different median filter masks 
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Results would largely depend on the shape and size of the masks: vertical mask 

turns to be more effective in getting rid of noises generated by water ripples, 

which are mainly horizontal. 

 

2. Enumerate the number of crabs and how the two parameters affect the results: 

-- 4-neighbor label or 8-neighbor label 

-- cT : threshold the number of pixels in a labeled connected area 

 

   
 

(a) Label 4-neighbor on fig4(b), 8cT =   (b) Label 4-neighbor on fig4(b), 20cT =  

 

   
 
 
 

(c) Label 8-neighbor on fig4(b), 8cT =   (d) Label 8-neighbor on fig4(b), 20cT =  

 

Fig. 5. Crab detection using different neighborhood definition and cT  
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Comparing (a) & (b), or (c) & (d), we can see that noises, appeared as small white 

dots in the detected foreground, can be removed since they include small number 

of pixels. 

 

4-neighbor labeling and 8-neighbor labeling make not much difference to the 

result. In fact, with the same cT , 8-neighbor labeling can leads to more false 

positive and less miss detection. Compare (a) & (b) or (c) & (d), we can see that 

smaller cT  leads to more false positive and less miss detection. In other words, 

it’s a tradeoff. 

 

We just show how the two parameters affect the results. We can obtain much 

better results by other methods, so we won’t give the exact number here. 

 
 
5.2   Results of Kernel estimator 
1. Obtained pdf. Of difference pixels 

1) The pixel which remains beach, i.e., almost the static background, over some 

frames:  

       
 
 (a) Beach area without crabs         (b) Histogram of peak probability 
  crossing from frame #301~500;  
  [1,160], [71,170]x y∈ ∈  
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         (c) pdf. of pixel [50,76]           (d) pdf. of pixel [1,96] 

              (always sand)              

 
   

      (e) pdf. of pixel [20,139]          (f) pdf. of pixel [60,105] 

 
Fig. 6. Estimator for static background without crabs moving across 

 
Locations of peak in each diagram are not the same due to the fact that beach is 

variegated. A strictly static background pixel could generate estimator that looks 

like (c) with peak up to 0.15. 

 
 
 
 
2) The pixel which is beach for most of time, but some time it’s occupied by a 

crab: 
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(a) A crab passing the beach. 

 

 
 

(b) Histogram of peak probability 

 
      

     (c) pdf. of pixel [181,275]             (d) pdf. of pixel [181,257] 

     (always sand)                         (sometimes crab) 
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      (e) pdf. of pixel [181,213]               (f) pdf. of pixel [181,217] 

 

 
        

      (g) pdf. of pixel [181,243]             (h) pdf. of pixel [181,237]  

                                            (always crab’s claw) 

 
Fig. 7. Estimator for background with moving crab. 

 
Estimator for pixels in the trace of crab are demonstrated in (d)~(g). As a 

comparison, we also show in (c) the estimator of a pixel which is not in the trace of 

crab. We can see that it’s similar to those figures in Fig. 6. 

 

(h) is a special case: a fixed white pixel which is in the crab’s claw. 

 
 

3). The pixel which remains water area, i.e. dynamic background, over some 

frames 
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(a) Water area without crabs         (b) Histogram of peak probability 
  crossing from frame #301~500;  
  [1,160], [351,450]x y∈ ∈  
                   

 
    

    (c) pdf. of pixel [80,389]               (d) pdf. of pixel [80,391] 

 

 
     

    (e) pdf. of pixel [80,373]               (f) pdf. of pixel [80,375] 
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     (g) pdf. of pixel [80,413]               (h) pdf. of pixel [80,415] 

 
Fig. 8. Estimator for dynamic background (e.g. water). 

 
The pdf. are flatter than those of fixed background, and have much smaller peak 

probability, as shown in (b). The reason is that the luminance of water area varies 

more than the luminance of beach. The pixels with the same j coordinate are likely 

to share similar distribution and peak probability, as shown in (c)&(d), (e)&(f) and 

(g)&(h), because water ripple is mainly horizontal. 

 

Based on those pdf. of typical pixels, we can decide our threshold mT  to be: 

below the probability density of typical sand and typical water, but above that of 

typical crabs. 

 

2. Foreground detection 

 

Comparison between the two detected foreground images, one is for the 10th 

frame with a lot of crabs, even overlapped, the other is the 500th frame with less 

crabs, each crab separated. 
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 (a) # 10 frame from video crab1.avi       (b) Foreground of (a), 0.002mT =  
 

      
 
(c) # 500 frame from video crab1.avi      (d) Foreground of (c), 0.002mT =  
 

Fig. 9. Detected foreground, with background based on #301~400 frames 

 

The water ripple in (a) doesn’t appear in (b), which means we have a good 

estimation of the background, in spite that the computation is non-causal – 

observed image is the 10th frame, but background is computed based on the 

301th ~400th frames. For the 500th frame, the noise caused by water ripple is 

also removed, but not as significantly as for the 10th frame. Thus, out counter can 

follow the change of the number of the crabs. 

 

The “white line” appeared on (d) is caused by flux. From the video, we can 

observe that the water area suddenly extended at about the 500th frame, i.e., 

some “beach” pixels during the previous frames become “water area”. The model 
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based on the 301th ~400th frames didn’t expect this change in the background. 

As a result, there is a “while line” in the detected foreground image. 

 

 

3. Suppression of false detection 

Applying median filter and then morphological operation, imclose, to the detected 

foreground of the 780th frame (with 41 crabs, counted manually), we have: 

 
Fig. 10. The false detection and miss detection of the 

image, processed by median filter and closing operation 

 
     Medfilt [11 

11] [11 9] [11 7] [11 5] [9 7] [9 5] [9 3] [9 1] [7 7] [7 5] 

False Positive 3 4 4 5 5 10 13 30 12 17 

Missing 
Detection 8 7 5 4 5 4 2 0 3 3 

Number of 
Crabs 36 38 40 42 41 47 52 71 50 55 

Difference 
with actual 

number (41) 
-5 -3 -1 +1 0 +6 +11 +30 +9 +14 

 
Table 1. #780 frame, result comparison for difference median filter masks 
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 False Positive Missing 
Detection 

Enumeration 
 

Difference 
(actual number is 

41) 
 Median After 

Closing Median After 
Closing Median After 

Closing 
Median After 

Closing
[11 5] 5 4 4 4 42 41 +1 0 
[9 1] 30 2 0 1 70 40 +30 -1 
[9 3] 13 3 2 2 52 42 +11 +1 
[9 7] 5 0 5 5 41 36 +0 -5 
[7 5] 17 3 3 3 55 41 +14 0 
[7 7] 12 2 3 3 50 40 +9 -1 

 
Table 2. Imclose, using structuring element disk(6 4) 

 
From Fig. 10, we can see how the parameters of median filter and morphological 

operation may affect the results. 

 

As we adjust the parameters, the false detection and miss detection change 

dependently. It’s a trade-off. The optimal parameters are those lead to minimum 

false detection and minimum miss detection at the same time, i.e., false detection 

3, miss detection 2, with median filter mask [9,3] and closing operation using 

structuring element disk(6,6). Since in Table 1, Table 2 and Fig. 10. we have 

shown the result of several experiments with different parameters, here we omit 

most of the corresponding figures. Instead we give the figures of the best result in 

Fig. 11. 

 

We have also tried the third method to suppress the false detection, but it doesn’t 

lead to better result than median filter and morphological operation. So we omit 

those results too. 
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    (a) Original: #780 frame            (b) Foreground of (a), 0.0008mT =  
 

      
 
(c) Median filtered (b), filter mask [9,3]   (d) Closing with element disk[6 6] of (c) 
 

      
 
(e) Red: false detection; blue: missing detection  (f) Manually counted crabs 
 

Fig. 11. Post-processed foreground images 
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6 Conclusions 
          

We have implemented a method (Kernel density estimator, with Normal 

distribution as Kernel function) to detect the presence of the crabs and then count 

their number. Based on this method, and some post-processing such as median 

filtering, morphological operations, we can remove most of the noise caused by 

water ripple. The number of crabs computed by the program is close to the real 

number. Since we have made some ideal assumptions for our work, such as no 

camera oscillation, which are probably difficult to be satisfied, error is inevitable, 

but it’s small and acceptable. 
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7  Appendix 
%%%%%%%%%Background subtraction using Median Background%%%% 
% median background building based on previous 500 frames 
% X500.mat contains the previous 500 Frames 
load X500.mat 
med500=median(X500, 3); 
 
mov=aviread('crab1.avi',501); 
I=rgb2gray(mov.cdata); 
II=abs(uint8(I)-med500); 
 
bw=im2bw(II, 0.1); %graylevel thresholding 0.1 
L=bwlabel(bw, 4); %4-neighbor labeling 
max_num=max(max(L)); %number of detected objects 
goal=zeros(480,720);  
t=0; 
for i=1:max_num 
    Z=find(L==i); 
    if length(Z)>20 %thresholding the minumum number of connected elements 
in an object 
        t=t+1; 
        goal(Z)=t; 
    end 
end 
%t contains the final detected number of crabs 
 
%%%%%%%%%%%%%%%Building look-up table%%%%%%%%%%%% 
S=zeros(256, 256, 256); 
  
for k=1:256 % changing variance 
    S(k, k, 1)=1; 
end 
    
for s=2:256 
    for i=1:256 % chaning mean 
        S(i, :, s)=pdf('Normal', 1:256, i-1, s-1); 
    end 
end 
 
%%%%%%%%%%Building Mixture of Gaussian Model%%%%%%%%% 
% X.mat contains previous 100 frames used in building the model  
% NewG.mat is the built model using mixture of Gaussian Method 
Fnum=100; 
NewG=zeros(480*720, 256); 
 
for i=1:Fnum-1 



31  Wei Liu & Ke Chen 

    B(:, :, i)=abs(X(:, :,i)-X(:, :,i+1)); 
end 
 
ss=round(median(B, 3)/(0.68*sqrt(2))); % ss for each pixel 
 
for i=1:480 
    for j=1:720 
        for k=1:Fnum 
            NewG(720*(i-1)+j, :)=NewG(720*(i-1)+j, :)+S(X(i, j, k)+1, :, ss(i, 
j)+1); 
        end 
    end 
end 
  
NewG=NewG/Fnum; 
 
%%%%%%%%%%Foreground Detection%%%%%%%%%%%%%%%%%% 
load NewG.mat 
thre=0.0008; 
mov=aviread('tifb.avi',780); 
I=double(rgb2gray(mov.cdata)); 
 
for i=1:480 
    for j=1:720 
        if NewG(720*(i-1)+j, I(i, j)+1)>thre 
            T(i,j)=0; % background 
        else 
            T(i,j)=255; % foreground 
        end 
    end 
end 
 
A=medfilt2(T, [9 1]); 
figure, imshow(A, []); 
bw=im2bw(A); 
L=bwlabel(bw, 4); 
maxnum=max(max(L)); 
 
goal=zeros(480, 720); 
t=0; 
 
for i=1:maxnum 
    Z=find(L==i); 
    if length(Z)>10 
        t=t+1; 
        goal(Z)=t; 
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    end 
end 
 
figure(1), imshow(goal); 
 
SE1=strel('disk', 6, 4); 
im1=imclose(A, SE1); 
L1=bwlabel(im1, 4); 
maxnum1=max(max(L1)); 
goal1=zeros(480, 720); 
t1=0; 
for i=1:maxnum1 
    Z=find(L1==i); 
    if length(Z)>10 
        t1=t1+1; 
        goal1(Z)=t1; 
    end 
end 
  
figure(2), imshow(goal1); 
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