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1 Introduction

Search and rescue operations involve finding and extracting stranded persons in dis-
tress situations. A tool that is gaining prevalence in search and rescue is the use of
high perspective video captured from a camera mounted on aircraft (e.g. unmanned
aerial vehicles (UAV)). In order to expedite the search and rescue operation, cam-
eras require a large field of view to survey as much area as possible. As a result,
the size of missing persons or objects of interest becomes small relative to the field
of view, and high resolution cameras are necessary for person/terrain differentiation
to be possible. With these conditions in mind, relying on a human observer alone
becomes impractical. Displaying high resolution video without downscaling is often
technically infeasible, and even if it was possible, the inability of the human visual
system to concentrate on different spatial locations at the same time prevents reliable
object tracking in high resolution video. Consequently, some automated methods for
locating objects of interest should be implemented in order to assist the observer.

Automatic target detection could be used to approach this problem; however, the
objects of interest are not well-defined for most search and rescue operations. Directly
finding the person in distress would be ideal, but in some scenarios, scattered objects
such as a shirt or a blanket may provide some useful information. ATR systems
usually assume a pre-known model for the object of interest. Therefore, anomaly
detection would provide a more general approach to the issue. Anomalies are defined
as unusual patterns that do not fit with “normal” data, and in search and rescue, it
is appropriate to assume the color of the objects of interest differs substantially from
its immediate surroundings. This project aims to exploit this difference by applying
local anomaly detection techniques to detect objects of interest.

2 Literature Review

While there is much research in the field of anomaly detection for videos and hy-
perspectral images, only recently has there been a publication for the use of color
anomaly detection in a search and rescue setting. The field of video anomaly detec-
tion is usually concerned with behavioral anomalies; therefore, research of that field
often involves the use of temporal content as features [1]. Since this project is more
focused on non-temporal anomalies, we will mainly be concerned with the findings
from hyperspectral anomaly detection research.

Common techniques used for anomaly detection in hyperspectral imagery include
cluster-based techniques, Reed-Xiaoli (RX) detector and its variants [2], [3], [4], and
dual window eigen-separation transform (DWEST) algorithm [5]. A clustering tech-
nique called cluster-based anomaly detection (CBAD) assumes the distribution of
normal pixel vectors within clusters of an image can be modeled as Gaussian mixture
models (GMM) [6]. Anomalies in this case are vectors that deviate from the esti-
mated model by considerable amount. The RX detector is considered the benchmark
for anomaly detection in hyperspectral images [3]. The detector assumes feature vec-



Outlier Color Identification 2

tors in a processing window are Gaussian-distributed. It then estimates the mean and
variance of the distribution and calculates the Mahalanobis distance between features
of the center pixel and the mean feature vector. These distances are used to deter-
mine whether a pixel is anomalous or not. DWEST is an eigen-based technique that
utilizes two windows, an inner and outer window, to maximize the distances between
target and background to extract anomalies. Assumptions underlying DWEST are
that the statistics between background and the area of interest are sufficiently differ-
ent and that data distributions are Gaussian, for mathematical simplicity.

A recent publication by Morse et al adapted some of the previously discussed
hyperspectral image techniques to color anomaly detection for search and rescue [7].
They compare the performances of the following approaches: RX algorithm [2], vector
quantization (CBAD) [6], k-means clustering, and EM algorithm [8] on several aerial
RGB images. They found that the RX algorithm outperformed every other method,
given the proper parameter selection. Therefore, the RX algorithm will serve as a
reliable comparison to the methods that will be proposed for this project.

All of the anomaly detection methods mentioned thus far have focused only on
point anomalies [9]. However, anomalous pixels of an image typically have some spa-
tial correlation. Modeling images as Markov random fields (MRF) is a commonly
used approach to incorporate spatial correlation between pixels, and some recent pa-
pers have applied this approach in order to improve their detection results [10] [11].
We will also use MRFs to improve detection results.

3 Solution

In order to properly present the methods for anomaly detection, concepts and notation
that will be used in this report must be introduced.

The main assumption about the object of interest’s characteristics is that it has
a distinct color from its surroundings. As a result, our detection algorithm was
built to depend heavily on distances between the color features, and images should
be converted in a manner in which the algorithm could perceive it similar to how
a human observer would. The initial stage of the project involves transforming the
image from RGB to L*a*b* color space. It is not guaranteed that the outlier will have
a distinct brightness level from its surroundings. Moreover, it is seen that the variance
of luminance in highly textured portions of the image is significantly large. Based on
these observations, the L* component was excluded from our feature vector, since it
only adds to the distances between the normal points. Let ~I[x] be a random field and

its realization be an a* and b* component image represented by ~I[x] = [A[x], B[x]]T ,

where x = [x1, x2]
T represents spatial coordinates. ~I and ~I without spatial indices

denote the entire vector random field and its realization, respectively.
We propose a two-stage approach to color anomaly detection. In the first stage, the

pixels will be assumed to be spatially independent, which provides some simplification
of formulae. However, since objects of interest will always be comprised of more than a
single pixel, accounting for spatial dependence will have a positive effect on detection
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performance. In the second stage, we will incorporate the spatial correlation between
neighboring pixels and formulate the problem accordingly.

3.1 Binary Hypothesis Testing for Anomaly Detection

Color anomaly detection can be considered as a binary classification task. There are
assumed to be two classes: “normal” and “anomalous”, and binary hypothesis testing
can be used to classify each pixel to one of the two classes. When pixels are assumed
to be spatially independent, the hypothesis test can be written as:

P (~I[x] = ~I[x]|η)

P (~I[x] = ~I[x]|ξ)

η

≷
ξ
c · P (ξ)

P (η)
(3.1.1)

Symbols η and ξ denote the classes “normal” and “anomalous”, respectively. The
terms on the left side of equation (3.1.1) represent the probability of observing real-

ization ~I[x], given that the pixel at x belongs to an “anomalous” region or “normal”
region. The probabilities on the right side of equation (3.1.1) represent the a pri-
ori probability of belonging to the “anomalous” class or “normal” class. Due to the
unknown nature of the anomaly and the large gamut of possible colors that can be
realized by an “anomalous” pixel, it is logical to assume P (~I[x] = ~I[x]|ξ) to be con-
stant. In addition, when the a priori probability of a pixel being “anomalous” or
“normal” is assumed to be the same at all positions of the image, the equation (3.1.1)
simplifies to:

P (~I[x] = ~I[x]|η)
η

≷
ξ
α (3.1.2)

As a result, the classification, and hence, color anomaly detection, reduces to esti-
mating P (~I[x] = ~I[x]|η) and selecting an appropriate threshold.

3.2 Probability Distribution Estimation

We describe the use of kn-nearest neighbor (kNN) algorithm in order to estimate

P (~I[x] = ~I[x]|η). It is explained in [12] that the density of a scatter plot may be

used to estimate a distribution. The kNN density estimate of a feature vector ~I[x] is
given by:

pn(~I[x]) =
kn
nVn

(3.2.1)

where kn samples are the kn nearest neighbors of x, Vn is the volume of the smallest
sphere containing all those samples in the feature space, and n is the total number
of samples in the processing window for this case. It is stated that for kn → ∞ as
n → ∞ and kn

n
→ 0 as n → ∞ the estimate converges to the real distribution of

~I[x]. The problem of applying this approach is that a training set, where all data
are “normal”, does not exist. Therefore, additional constraints are needed to make
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this work with data mixed with both classes. We assume that the maximum number
of anomalous samples in a given processing window does not exceed N . Therefore,
by selecting kn > N − 1, the effect of anomalous data can be avoided, ensuring that
pn(~I[x]) will be a reliable estimate of P (~I[x] = ~I[x]|η).

In order to illustrate the intuition behind this method, we synthetically generated
an example with two classes: class 1 and class 2; which represent the “normal” and
“anomalous” class, respectively. Since “anomalous” points should be different from
“normal” points, class 1 and 2 were constructed to be distinct from each other in
feature space. Figure 1 shows a scatter plot of feature samples from both classes.
The number of feature samples is 5 for class 2, corresponding to N = 5, and 100
for class 1, which can be interpreted as feature points from a 10 × 10 processing
window. Each circle represents the smallest circle centered at a feature point of
interest that contains kn samples. Note that the radii of these circles are inversely
proportional to the probability distribution values of the feature points of interest.
For kn = 4(= N − 1), both circles have similar radii, i.e. the estimated probability
distribution is affected by the samples of class 2 and has a peak in the region of the
“anomalous” features. However, when kn = 5(> N − 1), the radius of the circle
around the pink (“anomalous”) point of interest increases dramatically. Therefore,
the estimated probability distribution will have low values in that region, resulting in
the estimate of pn(~I[x]) to be close to the estimate of P (~I[x] = ~I[x]|η).

Figure 1: Scatter plots of synthetically generated features from 2
classes. Class 1 and 2 are represented by blue and pink dots, respectively.
Solid dots represent feature points of interest.

3.3 Model with Spatial Correlation

In section 3.1, a binary hypothesis testing method is derived for color anomaly detec-
tion in the case of spatially independent pixels. For the second stage of our approach,
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reformulation of the binary hypothesis testing is required in order to take spatial
correlation between the pixels into account. Start by defining a label field E with fol-
lowing possible realizations: e[x] = 0 if a pixel at x is classified “normal”and e[x] = 1
if it is classified “anomalous”. This label field will be modeled as a MRF, which is
similar to the approach used in [11]. Assuming that the label field is known for every
pixel except for the pixel of interest, and eη is the label field with e[x] = 0 and eξ is
the label field with e[x] = 1, the hypothesis test stated in equation (3.1.1) may be
restated in the following way:

P (~I = ~I|eη)
P (~I = ~I|eξ)

η

≷
ξ
c · P (E = eξ)

P (E = eη)
(3.3.1)

If we assume that color components at each location are conditionally independent
given the label field, and the label field realizations e[y] are known for all y 6= x,
then equation (3.3.1) can be rewritten as (3.3.2). By eliminating common terms and

assuming P (~I[x] = ~I[x]|ξ) to be constant, the expression becomes (3.3.3).∏
y 6=xP (~I[y] = ~I[y]|e[y])∏
y 6=xP (~I[y] = ~I[y]|e[y])

· P (~I[x] = ~I[x]|η)

P (~I[x] = ~I[x]|ξ)

η

≷
ξ
c · P (E = eξ)

P (E = eη)
(3.3.2)

P (~I[x] = ~I[x]|η)
η

≷
ξ
γ · P (E = eξ)

P (E = eη)
(3.3.3)

The Hammersley-Clifford theorem states that a MRF can be represented as a Gibbs
random field. Since the label for each location x is assumed to be drawn from a MRF,
the P (E = e) terms in equation (3.3.1) can be written as:

P (E = e) =
1

Z
exp{− 1

T
Q(e)} (3.3.4)

which is a Gibbs distribution with temperature T , normalizing constant Z, and en-
ergy function Q(e). The energy function is defined as the summation of potential
function Vc over cliques c belonging to the set of all cliques C (Q(e) =

∑
c∈C Vc(e)).

We use 2-element cliques in a second-order neighborhood (8 immediate neighbors),
which is commonly used in image processing applications. One could increase the
neighborhood size or use cliques with more than 2 elements at the cost of computa-
tional complexity. The potential function was chosen in order to penalize the pixels
whose labels do not match to their neighbors’. The label field E is binary; therefore,
we decided to use the Ising potential stated in equation (3.3.5).

Vce(x,y) =

{
0 e[x] = e[y]
1 otherwise

(3.3.5)

Since eξ and eη differ only at location x, the potential function evaluated on all cliques
not containing the pixel at x are be the same, and the ratio of a priori probabilities
can be written as:
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P (E = eξ)

P (E = eη)
=

1

Z
exp{− 1

T

∑
y=xorz=x Vceξ(y, z)}

1

Z
exp{− 1

T

∑
y=xorz=x Vceη(y, z)}

(3.3.6)

After adding the Ising potential and cancelling the normalizing constants, the equa-
tion becomes:

P (E = eξ)

P (E = eη)
=
exp{ 1

T
G(ξ)}

exp{ 1

T
G(η)}

(3.3.7)

where G(ξ) is the number of “anomalous” pixels and G(η) is the number of “normal”
pixels in a neighborhood. Finally, substituting this term to equation (3.3.3) produces
the following:

P (~I[x] = ~I[x]|η)
η

≷
ξ
γ · exp{ 1

T
(G(ξ)−G(η)} (3.3.8)

Expression (3.3.8) represents the final decision rule used for classification.

3.4 RX Detector

Thus far, a promising method for color anomaly detection has been developed. In
this section, the RX detector, an established anomaly detector that will be used for
comparison, will be explained.

The formulation of the measure calculated by the RX detector follows the same
assumptions mentioned in section 3.1. Rather than estimating the probability distri-
bution, the method assumes that P (~I[x] = ~I[x]|η) is a multivariate Gaussian distri-
bution with mean vector µ and covariance matrix C. From this, equation (3.1.2) can
be simplified by taking the logarithm of the entire expression.

log{P (~I[x] = ~I[x]|η)} =

− m

2
log(2π)− 1

2
log |C| − 1

2
(~I[x]− µ)TC−1(~I[x]− µ)

η

≷
ξ

log(α) (3.4.1)

By grouping all the constants into a single threshold term, equation (3.4.1) becomes:

(~I[x]− µ)TC−1(~I[x]− µ)
ξ

≷
η
ϕ (3.4.2)

A rigorous derivation of this equation can be found in [13]. The term on the left side of
equation (3.4.2) can be interpreted as the Mahalanobis distance between realization
~I[x] and mean vector µ. The RX algorithm computes this term at every x. A
caveat with this approach is that the true values of second-order statistics µ and
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C are unknown; therefore, these parameters must be estimated from samples. The
estimates of the mean and covariance are denoted by µ̂ and Ĉ, respectively.

For local anomaly detection, a sliding window is used to compute µ̂ and Ĉ from
nearby pixels. The design of the window is shown in Figure 2. The estimated statistics
for a pixel of interest are calculated from pixels within the outer window excluding
those contained within the guard window. The guard window is incorporated in order
to avoid inclusion of pixels that belong to “anomalous” regions. Therefore, the size of
the guard window should exceed the area of “anomalous” pixels. Moreover, the outer
window must be large enough to produce estimates that represent the true mean and
covariance.

Figure 2: Sliding window used by the RX detector

4 Implementation

4.1 Data Set Construction

There is no publicly available dataset for search and rescue images; therefore, it was
necessary to construct a set of images that simulate a search and rescue scenario.
These images consist of a large scenic background with smaller foreground objects.

The background images were selected considering their spatial resolution and an-
gle: for a fixed pixel resolution, spatial resolution should be enough to represent a
human-sized object with an appropriate number of pixels; on the other hand, this
resolution should not be too great such that objects become large and detection by
a human observer is trivial. One thing to mention is that despite our selectivity in
which background images to use, there is still high variance in altitude/spatial reso-
lution and viewing angle in the data set. This is acceptable, since the resolution of
video and altitude of the vehicles vary for different search and rescue operations.

Inclusion of the foreground images is performed as follows: three jacket images



Outlier Color Identification 8

were cropped and placed at random location on the background image. The satura-
tion and brightness values of these cropped images were modified such that they blend
in with a more natural look. Since both anomaly detection methods are sensitive to
the size of the anomalies, cropped images were scaled down to a size of ≈ 10 × 10.
Ground truth images were constructed where all foreground objects are white and
background is black.

4.2 Classification

Our detection algorithm can be divided into two parts: probability distribution es-
timation and thresholding. First, the image is divided into 50 × 50 non-overlapping
blocks. For each block, the probability estimate described by equation (3.2.1) is cal-
culated for every pixel within the block. Since the maximum anomaly size is assumed
to be ≈ 10×10, using kn of 100 satisfies the criterion, kn > N−1 described in section
3.2.

Once probability distribution values are available for each pixel, equation (3.1.2)
is used for a fixed threshold to obtain the label result for the first stage of the method.
For the second stage of the method, equation (3.3.8) is implemented iteratively. The
label field is initialized with the resulting label image of the first stage, then, at each
step, the threshold term of each pixel is calculated. The next label image is found by
thresholding each pixel by their corresponding thresholds. We found that 6 iterations
were enough for convergence in our dataset.

For the RX detector, a sliding window with 51 × 51 outer window and 15 × 15
guard window was used.

All algorithms were implemented in MATLAB.

5 Results

Objective evaluation of detection performance was performed by calculating a receiver
operating curves (ROC) for each detector and using the area under ROC curve (AUC)
as a metric. The ROC curve is a plot of the statistical measures true positive rate
(TPR) versus false positive rate (FPR). The TPR is the proportion of anomalous
pixels classified as anomalous to the total number of anomalous pixels. The FPR is
the proportion of normal pixels classified as anomalous to the total number of normal
pixels.

Detector Area Under Curve
kNN without MRF 0.9865

RX 0.9727
kNN with MRF 0.9909

Table 1: Area Under Curve Comparison
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Figure 3: ROC curves for tested detection algorithms

Table 1 and Figure 3 show the results from our evaluation. Our detector obtains
a higher TPR than the RX detector for any fixed FPR. In addition, the AUC for our
detector with MRF is 0.0182 higher than the RX detector. Thresholds of 2 × 10−4

and 20-30 were found to be visually the best for our method and the RX detector,
respectively.

Figure 4 illustrates the benefit of incorporating the MRF modeling into our
method. The resulting label image without MRF modeling has many false posi-
tives. After the addition of MRF modeling, majority of these false positives were
removed while retaining the true positives. Although the performance improvement
was not identical for every image, we have not observed any images where addition of
MRF decreased the performance. This beneficial effect is also apparent in the ROC
curves, where there is an increase in the AUC of 44× 10−4

Some outputs of the detectors are given in Figures 5 and 6. It is apparent that
the false positive rate of the RX algorithm is higher on the average. The RX algo-
rithm tends to produce a large number of false positives with small areas. This stems
from the fact that it is a point anomaly detector. Since our method takes spatial
correlation into account, the resulting false alarms are more concentrated. Having
false positives concentrated is more favorable for automated target suggestion since
having too many scattered suggestions could prove to distract, rather than assist,
some human operator. In terms of speed, our algorithm is much faster due to its
implementation using non-overlapping blocks. The RX detector algorithm relies on
a sliding window approach, which requires computation at every pixel.
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Figure 4: Effect of MRF Modeling. (Top) Original image: “anoma-
lous” objects are denoted by red squares (Bottom) Output image with our
detector without (left) and with (right) MRF modeling

Figure 5: Detection Comparison I.(Top) Original image: “anoma-
lous” objects are denoted by red squares (Bottom) Output image with the
RX detector (left) and our detector (right)
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After comparing our detector on a synthetically generated dataset, we tested it on
an image taken from a real search and rescue operation. As can be seen in Figure 7,
the detector is able to find the object of interest, which could easly be misinterpreted
as a wave.

Figure 6: Detection Comparison II.(Top) Original image: “anoma-
lous” objects are denoted by red squares (Bottom) Output image with the
RX detector (left) and our detector (right)

Figure 7: Detection on a real search and rescue image. (Left)
Original image (Right) Output image with the our detector
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6 Conclusions and Future Work

We have proposed a new color anomaly detector in this report, and it has performed
well based on objective and subjective measures and time complexity compared to
the RX method. However, there is still room for improvements. First, the variance
of “normal” data had an effect on threshold selection and, hence, detection efficiency.
One could account for this by implementing an automated method for threshold ad-
justment. We also observed that the detection algorithm had difficulty detecting
white or black outliers. The most probable reason of this is the exclusion of the L∗
component from the feature vector. One could modify the methodology to account
for these extremas in luminance. In addition, we used non-overlapping blocks, which
leads to false positives when there is a sharp change in the background (like sea/land
border), since the block fails to capture enough samples from one part of the back-
ground. To account for this using overlapping blocks and keeping the anomalies that
occur on every block for overlapping regions may be considered.
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7 Appendix: MATLAB Code

1 %i n i t
2 clear a l l
3

4 %t h r e s h o l d s and parameters
5 thr nomrf =1∗10ˆ−4;
6 thr mr f =1∗10ˆ−4;
7 g temp = 1 ;
8

9 %v a r i a b l e s
10 l a b e l = c e l l ( 1 , 7 ) ;
11 %read image
12 imrgb=imread ( ’ sample 17 . t i f ’ ) ;
13 %remove a lpha channel i f e x i s t s
14 i f s ize ( imrgb , 3 )>3
15 imrgb=imrgb ( : , : , 1 : 3 ) ;
16 end
17 %conver t i t to Lab space
18 imLab=rgb2lab ( imrgb ) ;
19 %e s t i m a t e l i k e l i h o o d s ( c u r r e n t l y us ing a and b only )
20 fun=@knnpdf ;
21 B = blockproc ( imLab , [ 5 0 5 0 ] , fun , ’ Us ePa ra l l e l ’ , 1 , ’

PadPart ia lBlocks ’ , 1 , ’PadMethod ’ , ’ symmetric ’ ) ;
22 %l a b e l image anomalies=1
23 s i z e i m = s ize ( imrgb ) ;
24 im prob = B( 1 : s i z e i m (1) , 1 : s i z e i m (2) ) ;
25 l a b e l {1}=im prob<thr nomrf ;
26 %MRF model
27 n mask = ones (3 ) ;
28 n mask (2 , 2 ) = 0 ;
29 for i = 1 :6
30 anom normal cnt = −8 + 2 .∗conv2 ( double ( l a b e l { i }) , n mask , ’

same ’ ) ; %Qf− Qb
31 l a b e l { i+1}=im prob<thr mr f .∗exp(1/ g temp .∗ anom normal cnt

) ;
32 end
33 %

1 function imLab = rgb2lab ( imrgb )
2 cform = makecform ( ’ s rgb2 lab ’ ) ;
3 imLab = applycform ( imrgb , cform ) ;
4 end
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1 function P = knnpdf ( b lock )
2

3 s ize = block . b l o ckS i z e ;
4

5 %v a r i a b l e s
6 kn = 100 ;
7 n = s ize (1 ) ∗ s ize (2 ) ;
8 %
9 f e a t u r e s = zeros ( n , 3) ;
10 for i = 2 :3
11 temp = block . data ( : , : , i ) ;
12 f e a t u r e s ( : , i ) = double ( temp ( : ) ) ;
13 end
14 X = f e a t u r e s ;
15 Y = f e a t u r e s ;
16 [ IDX,D] = knnsearch (X,Y, ’K’ , kn ) ; %k=25 f o r t h i s case
17 P = kn . / ( n . ∗ ( pi . ∗ (D( : , kn )+1) . ˆ 2 ) ) ;
18 %P = reshape (D( : , 2 5 ) , s i z e (1) , s i z e (2) ) ;
19 P = reshape (P, s ize (1 ) , s ize (2 ) ) ;
20 end

1 function rx = rxde t e c tb l o ck ( block )
2

3 r = 7 ; %guard window/# of p o i n t s
away from the c e n t e r

4 cent = block . border +1; %c e n t e r o f b l o c k
5 data = double ( b lock . data ) ;
6 x = data ( cent (1 ) , cent (2 ) , : ) ; %f e a t u r e s o f c e n t e r p i x e l
7

8 % Remove c e n t e r reg ion /window
9 data ( cent (1 )−r : cent (1 )+r , cent (2 )−r : cent (2 )+r , : ) = NaN;
10 f = s ize ( data , 3 ) ;
11

12 % Find s t a t i s t i c s from reg ion out o f inner window
13 temp = data (˜ isnan ( data ) ) ;
14 f e a t u r e v a l = zeros (1 , length ( temp ) / f , f ) ;
15

16 % Save f e a t u r e s o f non−inner window p i x e l s
17 for i i = 1 : f
18 f e a t u r e v a l ( : , : , i i ) = temp(1+( length ( temp ) / f ) ∗( i i −1) : (

length ( temp ) / f )∗ i i ) ;
19 end
20

21 % C a l c u l a t e second−order s t a t i s t i c s
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22 mu = mean( f e a t u r e v a l ) ;
23 C = cov ( squeeze ( f e a t u r e v a l ) ) ;
24

25 % Find measurement
26 rx = ( squeeze (x−mu) ’/C)∗ squeeze (x−mu) ;
27 i f isnan ( rx )
28 rx = 0 ;
29 end

1 function l a b e l = MRFupd( im prob , l abe l , ht th , t o t a l i t e r ,
gibbs tmp )

2

3 n mask = ones (3 ) ;
4 n mask (2 , 2 ) = 0 ;
5 l a b e l = double ( l a b e l ) ;
6

7 for i = 1 : t o t a l i t e r
8 anom normal cnt = −8 + 2 .∗conv2 ( l abe l , n mask , ’ same ’ ) ; %

Qf− Qb
9 l a b e l=double ( im prob<ht th .∗exp(1/ gibbs tmp .∗

anom normal cnt ) ) ;
10 end
11

12 end

1 %i n i t
2 clear a l l
3 %t h r e s h o l d s and parameters
4 TH = [ 0 , 10ˆ−4:0.5∗10ˆ−4:100∗10ˆ−4 , Inf ] ;
5 mrf temp = 1 ;
6 num MRF iter = 6 ;
7 b l k s z = 50 ;
8

9 %read images and ground t r u t h s to workspace
10 namesGT = dir ( ’∗GT. t i f ’ ) ;
11 imagesrgb = c e l l ( length (namesGT) ,1 ) ;
12 imagesLab = c e l l ( length (namesGT) ,1 ) ;
13 imageGTs = c e l l ( length (namesGT) ,1 ) ;
14 imagePrs = c e l l ( length (namesGT) ,1 ) ;
15 for i = 1 : length (namesGT)
16 imageGT name = namesGT( i ) . name ;
17 image name = [ imageGT name ( 1 : end−6) , ’ . t i f ’ ] ;
18 t ry
19 imagesrgb{ i } = imread ( image name ) ;



Outlier Color Identification 17

20 catch
21 sprintf ( ’Some images do not e x i s t in the f o l d e r ’ )
22 return
23 end
24 %remove a lpha channel i f e x i s t s
25 im temp = imagesrgb{ i } ;
26 imagesrgb{ i } = im temp ( : , : , 1 : 3 ) ;
27 %conver t to Lab space
28 imagesLab{ i } = rgb2lab ( imagesrgb{ i }) ;
29 imageGTs{ i } = imread ( imageGT name ) ;
30 im temp = imageGTs{ i } ;
31 imageGTs{ i } = im temp ( : , : , 1 ) ;
32 end
33 for i = 1 : length ( imagesLab )
34

35 fun=@knnpdf ;
36 B = blockproc ( imagesLab{ i } , [ b l k s z b l k s z ] , fun , ’

Us ePa ra l l e l ’ , 1 , ’ PadPart ia lBlocks ’ , 1 , ’PadMethod ’ , ’
symmetric ’ ) ;

37 s i z e i m = s ize ( imagesLab{ i }) ;
38 imagePrs{ i } = B( 1 : s i z e i m (1) , 1 : s i z e i m (2) ) ;
39 end
40

41 %f o r every t h r e s h o l d c a l c u l a t e ROC p o i n t
42 ROC = zeros ( length (TH) ,2 ) ;
43 PR = zeros ( length (TH) ,2 ) ;
44 for j = 1 : length (TH)
45 [ROC( j , : ) ,PR( j , : ) ] = p e r f i t e r v 2 ( imagesLab , imageGTs ,

imagePrs , [TH( j ) , mrf temp , num MRF iter ] , ’ p i x e l w i s e ’ ) ;
46 %%%%%%%%%%%%%%%%ignore ROC i f s e t to c e n t r o i d

%%%%%%%%%%%%%%%%%%%%%
47 end
48 figure , plot (ROC( : , 2 ) ,ROC( : , 1 ) ) ;
49 area under ROC=trapz (ROC( : , 2 ) ,ROC( : , 1 ) ) ;

1 %i n i t
2 clear a l l
3 %t h r e s h o l d s and parameters
4 TH = [ 0 : 1 : 1 0 0 0 ] ;
5 o u t e r b l k s i z e = 25 ;
6

7 %read images and ground t r u t h s to workspace
8 namesGT = dir ( ’∗GT. t i f ’ ) ;
9 imagesrgb = c e l l ( length (namesGT) ,1 ) ;
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10 imagesLab = c e l l ( length (namesGT) ,1 ) ;
11 imageGTs = c e l l ( length (namesGT) ,1 ) ;
12 imagePrs = c e l l ( length (namesGT) ,1 ) ;
13 for i = 1 : length (namesGT)
14 imageGT name = namesGT( i ) . name ;
15 image name = [ imageGT name ( 1 : end−6) , ’ . t i f ’ ] ;
16 t ry
17 imagesrgb{ i } = imread ( image name ) ;
18 catch
19 sprintf ( ’Some images do not e x i s t in the f o l d e r ’ )
20 return
21 end
22 %remove a lpha channel i f e x i s t s
23 im temp = imagesrgb{ i } ;
24 imagesrgb{ i } = im temp ( : , : , 1 : 3 ) ;
25 %conver t to Lab space
26 imagesLab{ i } = rgb2lab ( imagesrgb{ i }) ;
27 imageGTs{ i } = imread ( imageGT name ) ;
28 im temp = imageGTs{ i } ;
29 imageGTs{ i } = im temp ( : , : , 1 ) ;
30 end
31 for i = 1 : length ( imagesLab )
32

33 fun=@rxdetectb lock ;
34 B = blockproc ( imagesLab{ i } , [ 1 1 ] , fun , ’ BorderS ize ’ , [

o u t e r b l k s i z e , o u t e r b l k s i z e ] , . . .
35 ’ PadPart ia lBlocks ’ , 1 , ’PadMethod ’ , ’ symmetric ’ , ’

TrimBorder ’ , f a l s e ) ;
36 s i z e i m = s ize ( imagesLab{ i }) ;
37 imagePrs{ i } = B( 1 : s i z e i m (1) , 1 : s i z e i m (2) ) ;
38 end
39 %f o r every t h r e s h o l d c a l c u l a t e ROC p o i n t
40 ROC = zeros ( length (TH) ,2 ) ;
41 PR = zeros ( length (TH) ,2 ) ;
42 for j = 1 : length (TH)
43 [ROC( j , : ) ,PR( j , : ) ] = pe r f i t e r RX ( imagesLab , imageGTs ,

imagePrs , [TH( j ) ] , ’ p i x e l w i s e ’ ) ;
44 %%%%%%%%%%%%%%%%ignore ROC i f s e t to c e n t r o i d

%%%%%%%%%%%%%%%%%%%%%
45 end
46 figure , plot (ROC( : , 2 ) ,ROC( : , 1 ) ) ;

1 function [ROC,PR] = p e r f i t e r v 2 ( imagesLab , imageGTs , imagePrs ,
parameters , type )
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2 %Inputs : imagesLab c e l l c o n t a i n i n g Lab images
3 % imageGTs c e l l c o n t a i n i n g corresponding ground t r u t h

r e s u l t s
4 % parameters : v e c t o r [ Hypothes i s t e s t t h r e s h o l d , Gibbs

temperature ,
5 % Total number o f MRF i t e r a t i o n s ,

b l o c k s i z e ]
6 %Output : Receiver o p e r a t i n g c h a r a c t e r i s t i c s [ s e n s i t i v i t y ,

s p e c i f i c i t y ]
7 PR = zeros ( 1 , 2 ) ;
8 ROC = zeros ( 1 , 2 ) ;
9 num of images =length ( imagesLab ) ;
10 ht th = parameters (1 ) ;
11 gibbs tmp = parameters (2 ) ;
12 t o t a l i t e r = parameters (3 ) ;
13

14 TP = zeros ( num of images , 1 ) ;
15 TN = zeros ( num of images , 1 ) ;
16 FP = zeros ( num of images , 1 ) ;
17 FN = zeros ( num of images , 1 ) ;
18

19 for i = 1 : num of images
20 %i n i t i a l l a b e l f i e l d
21 l a b e l i n i t=imagePrs{ i } < ht th ;
22 %MRF updates
23 l a b e l = MRFupd( imagePrs{ i } , l a b e l i n i t , ht th , t o t a l i t e r

, gibbs tmp ) ;
24 [TP( i ) TN( i ) FP( i ) FN( i ) ] = per f meas ( imageGTs{ i } , l abe l ,

type ) ;
25 end
26 PR(1) = sum(TP) / (sum(TP) + sum(FP) ) ;
27 PR(2) = sum(TP) / (sum(TP) + sum(FN) ) ;
28 ROC(1) = sum(TP) / (sum(TP) + sum(FN) ) ;
29 ROC(2) = 1 − (sum(TN) / (sum(TN) + sum(FP) ) ) ;
30 end

1 function [TP TN FP FN] = per f meas (GT,R, type )
2 %Inputs :
3 %GT: Ground t r u t h b inary image wi th 1 s corresponding to

c l a s s 1 and
4 %0 s corresponding to c l a s s 2
5 %R : Resu l t b inary image wi th 1 s corresponding to c l a s s 1 and
6 %0 s corresponding to c l a s s 2
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7 %Outputs True p o s i t i v e True Negat ive Fa lse P o s i t i v e Fa lse
Negat ive

8 min area =9; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 max area= 5000 ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10 GT = l o g i c a l (GT) ;
11 R = l o g i c a l (R) ;
12 switch type
13 case ’ p i x e l w i s e ’
14 GT = GT( : ) ;
15 R = R( : ) ;
16 TP = sum(GT & R) ;
17 TN = sum(˜ (GT | R) ) ;
18 FP = sum(˜GT & R) ;
19 FN = sum(GT & ˜R) ;
20 case ’ c en t r o id ’
21 TN = 1 ;
22 TP = 0 ;
23 FN = 0 ;
24 connR = bwconncomp(R) ;
25 statsR = reg ionprops ( connR , ’ Centroid ’ , ’ Area ’ ) ;
26 for i = 1 : length ( statsR )
27 i f ( statsR ( i ) . Area>min area && statsR ( i ) . Area<

max area )
28 addr = round( statsR ( i ) . Centroid ) ;
29 TP = TP + GT( addr (2 ) , addr (1 ) ) ;
30 end
31 end
32 FP = length ( statsR ) − TP;
33 connGT = bwconncomp(GT) ;
34 statsGT = reg ionprops (connGT , ’ Centroid ’ ) ;
35 for i = 1 : length ( statsGT )
36 addr = round( statsGT ( i ) . Centroid ) ;
37 FN = FN + (1−R( addr (2 ) , addr (1 ) ) ) ;
38 end
39

40 otherw i s e
41 sprintf ( ’ I n v a l i d func t i on type ’ )
42 end
43 end


