

Activity Recognition from Single-Pixel Cameras

Siddhant Sharma, Neladri Bose

Boston University

Department of Electrical and Computer Engineering

8 Saint Mary’s Street

Boston, MA 02215
www.bu.edu/ece

December 11, 2015

Technical report No. ECE-2015-07

http://www.bu.edu/ece

Summary

With activity recognition being a hot topic in the field of video processing, extensive

research has been carried out to recognize indoor activities using very low temporal and

spatial resolution cameras. Reliable recognition using low data would facilitate a new

platform for smart rooms that can record and track user activities without compromising

their privacy. In this project we aim to recognize four activities inside a room using a set

of six single-pixel cameras and to build a prototype for a smart-room environment. We use

a single-pixel camera testbed at the Smart Lighting Undergraduate Research Project

(SLURP) Lab along with MATLAB tools to develop an effective activity detection and

activity recognition algorithm for the system. Using real subjects to record activities in the

room, we train the software to learn individual camera patterns for each activity and use

these patterns to recognize actions in a real-time environment. We found that for a given

set of constraints, the system could recognize the trained actions with a reasonable overall

efficiency of 70.625% and a maximum of 96.25% for one of the activities. Since our aim

was to provide a system prototype, the conclusive results were based on simple signal

processing techniques and could serve as a basis for further improvements.

This project was completed within EC720 graduate course entitled “Digital Video

Processing” at Boston University in the fall of 2015.

Table of Contents

1. Introduction ...1

2. Activity Detection ..3

3. Activity Recognition..8

4. Experimental Results ..11

5. Appendix ..18

6. References ..23

List of Figures

Fig. 1 Picture of the test bed setup where circles identify the location of the

single-pixel RGB sensors in the room

1

Fig. 2 Block diagram of the room with ‘X’ marking the location of the user

performing the gesture

2

Fig. 3 Values p[k] captured by six cameras over 50 frames (k=1-50); (b)

Absolute value of frame difference of the six cameras as a function of

frame number k.

3

Fig. 4 (a) Sum of the absolute values of frame differences over all six cameras

for frame k; (b) Plot of αk vs frame k

4

Fig. 5 Pictorial representation of the effect of thresholds ά1 and ά2 on an

activity instance represented by Fig. 3

5

Fig. 6 Flowchart for activity detection algorithm 7

Fig. 7 Flowchart of activity recognition algorithm 10

Fig. 8 Ten signals captured when recording activity 1 11

Fig. 9 Ten signals captured when recording activity 2 12

Fig. 10 Ten signals captured when recording activity 3 13

Fig. 11 Ten signals captured when recording activity 4 14

List of Tables

Table 1 Estimated values of threshold ά1 and ά2 for different lighting

conditions

6

Table 2 Details of the names of activities and their class numbers along with

the range of j falling under a class

9

Table 3 Statistics of Activity estimation using leave-one-out cross validation

test

15

1 Siddhant Sharma, Neladri Bose

1 Introduction

 Single-pixel cameras are poised to revolutionize activity recognition in the near

future. As a single pixel does not deliver any detailed information about a scene, we can

use it to our advantage to create motion tracking algorithms that preserve a user’s privacy.

These motion detection and activity recognition methods can be of valuable use in various

applications like motion tracking, smart lighting for smart rooms, home automation, indoor

position tracking, detecting unused parking spots, etc. In this project, we develop a robust

single-user activity recognition algorithm, using a set of single-pixel cameras in an

experimental testbed. The testbed consists of six RGB TCS3414 sensors that are mounted

and positioned in a room as shown in Figs. 1-2. Since color information in the context of

motion is redundant, we only use the luminance values of pixels, rounded off to the nearest

integer as a true pixel value of the camera. The RGB to grayscale conversion is performed

according to equation (1).

The network connection in the room is such that the sensors are multiplexed to

transmit pixel values recorded over time to a Raspberry Pi which then transfers the data to

a desktop computer in the room through a secure network connection. Using “Putty” to

connect to Raspberry Pi, we obtain RGB pixel values on the desktop computer, where we

interpret these values using the Robot Raconteur toolbox in MATLAB.

(a) (b)

Figure 1: Picture of the testbed setup where red circles identify the location of the single-

pixel RGB sensors in the room

2 Siddhant Sharma, Neladri Bose

Figure 2: Block diagram of the room with ‘X’ marking the location of the user performing

the gesture

The luminance is computed as follows:

where 𝑝[𝑘] is the luminance value of frame k and 𝑝𝑅[𝑘], 𝑝𝐺[𝑘], 𝑝𝐵[𝑘] are pixels values of

frame k corresponding to red, green and blue primary colors, respectively.

For each TCS3414 color sensor, the luminance equivalent to a single RGB pixel from

the sensor can be said to contain the majority of brightness information in the room. Since

these luminance values are highly sensitive and range from 0 to 65000, we allocate 16 bits

per pixel for storage. Also, from the conclusive results on temporal resolution and impact

of camera count as mentioned in earlier work [1], we can assume that a well-positioned

setup of 6 cameras with a temporal frequency of 6 frames per second would yield a

reasonable Correct Classification Rate (CCR) when recognizing actions [1]. Thus, a frame

containing six pixels would need a storage space of 96 bits. In comparison with low

resolution cameras e.g., VGA with a resolution of 640 x 480, we achieve a compression

ratio of 25600:1 per frame. Thus, using single-pixel cameras to process activities can help

reduce the data storage, transmission bandwidth needed as well as the computational

complexity.

(1)

3 Siddhant Sharma, Neladri Bose

2 Activity Detection

A principal drawback of detecting motion in a 1-D single-pixel camera sequence in

comparison to high-resolution camera videos, is that the ground truth of motion cannot be

visualized by looking at the activity data samples. With problems in single-pixel sensors,

like signal fluctuations in changing lighting conditions and sensor noise, recognizing the

onset and offset of an activity is a difficult task. To explain this aspect, an instance of an

activity is plotted in Fig. 3a that indicates the pixel values captured by the six cameras for

a time duration of 50 frames (approximately 8 seconds) when a random user enters the

room and stands at position X, as indicated in Fig. 2.

 (a) (b)

Fig. 3 (a) Values p[k] captured by six cameras over 50 frames (k=1-50); (b) Absolute

value of frame difference of the six cameras as a function of frame number k.

4 Siddhant Sharma, Neladri Bose

From the six sequences in Fig. 3a it is hard to pinpoint the exact frame that corresponds to

the beginning and the end of motion. The fall in pixel values is only an indication that the

user was occluding a bright room with a dark textured clothing. Thus, instead of matching

a decision as to motion based on true pixel values, we check for a feature that tells us more

about motion than the nature of lighting. Since temporal change is a measure of motion,

analyzing the temporal derivative of the frames of the activity would give a better response.

Fig. 3b is a plot of the absolute value of the temporal derivative, or the absolute value of

frame differences for each camera. In comparison to Fig. 3a, Fig. 3b gives a better

understanding of motion onset and offset as detected by each camera.

However, the frame corresponding to a significant rise in gradient values is different for

every camera as the cameras differ in position and field of view. To reach a conclusive

result, in Fig. 4a we plot the sum of absolute values of frame differences over all six

cameras. Although fairly conclusive results about the beginning and end user activity can

be drawn from Fig. 4a, the sharp changes in gradients over the course of the activity

indicate that evaluating a decision as to motion over a single frame difference would be

more susceptible to camera noise and is thus more likely to cause false detections due to

measurement fluctuations. Thus, to obtain a smoother activity flow in Fig. 4b we plot αk

which is the summation of the sum of frame differences for each camera over 6 frames

calculated using a sliding window approach as described in equation (2):

(a) (b)

Fig. 4 (a) Sum of the absolute values of frame differences over all six cameras for

frame k; (b) Plot of αk vs frame k

5 Siddhant Sharma, Neladri Bose

where 𝑝𝑐𝑎𝑚[𝑡] is the luminance value of frame t for a given camera. Thus αk from

equation (2) can be used as a measure for determining motion in the room. Since a noisy

camera would introduce some fluctuation in pixel values even for static condition, a

threshold ά1 must be calculated to eliminate the interference of noise for decisions at the

Start and End of activity. ά1 can be calculated by estimating the static background

condition for the first 6 frames. The value(s) of threshold ά1 based on range of αk for the

first 6 frames are given in Table 1.

To further improve efficiency of the system, we introduce a threshold ά2 that is

helpful in categorizing residual motion. Residual motion may be defined as twitchy or

shaky involuntary movement that is not intended to trigger an activity. The threshold for

residual motion ά2 is given by ά2 = ά1 + β, where β is a measure of residual tolerance

Fig. 5: Pictorial representation of the effect of thresholds ά1 and ά2 on an activity instance

from Fig. 3

(2)

6 Siddhant Sharma, Neladri Bose

The interpretation of three possible states is as follows:

The camera sensor TCS3414 was found to show a nonlinear behavior for fluctuations

in different lighting conditions. The noise was more prominent in bright light than dim

light. The values of ά1, ά2 estimated over a range of α1 (k=1 for the first 6 frames) to

overcome the effects of the nonlinearity in cameras for different lighting conditions is given

in Table 1. Since the fluctuations were out of reasonable bounds in very bright light, we

advise to keep minimum lighting condition during activity detection.

Table 1: Estimated values of threshold ά1 and ά2 for different lighting conditions

Note: The range of values of α1 in the above background conditions was set by using the

minimum and maximum values of 10 observations of α1 during different times of the day.

ά1 was estimated by adding κ to the maximum value of α1. κ =15 for low and medium

lighting and κ =30 for bright lighting. β was estimated by selecting the least integer value

added to ά1, that triggered an activity. A more detailed approach can be made to set

standard values for thresholds.

7 Siddhant Sharma, Neladri Bose

Fig. 6 Flowchart for activity detection algorithm. For synchronizing activity

detection at runtime, a single-tone beep sound is played every time the system

detects the start and end of an activity.

8 Siddhant Sharma, Neladri Bose

3 Activity Recognition

The second section of our project deals with recognition of the detected activity. This

is done by obtaining the closest match of the activity sequence to a set of training samples.

A decision based on the combined decisions of the six cameras elicits a response to that

particular gesture. To simplify calculation we trained our program to respond to four

specific gestures: raising two hands in unison, sitting down on a chair, getting up from a

chair, and writing (a motion similar to writing 3 capital A’s). These gestures are also shown

in Table 3, performed at predefined location X, from Fig. 3 facing camera 2. The activity

recognition algorithm can be divided into four stages that are described next.

3.1 Interpolation

In order to get a decision for every camera, we individually analyze the 1-D time dependent

sequence of true pixels for every camera. As the time duration of each activity may vary,

we need to process the data over a standard frame length “L”. For this purpose, we

interpolate the detected true pixel activity sequence for every camera, independently to a

frame length L using cubic spline interpolation as follows.

The range of i varies from 1 to L. An arbitrary value of L = 40 frames was used.

3.2 Mean-Variance Equalization

To remove the effects of global luminance and variation in the texture of clothing

between users, we match the Mean-Variance Equalized (MVE) version of the interpolated

activity sequence actcam[i] for each camera with the corresponding MVE and interpolated

data from the training set. Equation (4) mathematically expresses the MVE process. Figs.

7-10 display the true-pixel value sequences as well as the interpolated and MVE processed

sequences for activities 1, 2, 3, 4 for all six cameras. By performing MVE, we not only

retain the pattern of the true pixel data, but also reduce the dynamic range of the sequences.

(3)

(4)

9 Siddhant Sharma, Neladri Bose

where 𝜇𝑐𝑎𝑚 is the mean and 𝜎𝑐𝑎𝑚
2 is the variance of 𝑎𝑐𝑡𝑐𝑎𝑚.

3.3 Nearest-Neighbor Classification

The next stage attempts to recognize an action for every camera by performing

Nearest-Neighbor (NN) classification over the training set. The nearest neighbor j is the

index of the training activity sequence that minimizes the distance metric distcam[j] for a

given camera. Equation (5) gives the formula for computing the distance:

where 𝑎𝑐𝑡̂𝑐𝑎𝑚
𝑗

is the ith sample of the jth training sequence after interpolation and MVE,

and the nearest neighbor is found as follows:

Our training data set consists of 8 users performing 10 trials of each of the 4 gestures, i.e.,

80 activity sequences per gesture, creating a set of 320 sequences for all four activities.

Activity name Activity/Class number Range of j

Raising two hands in unison Class 1 [1 80]

Sitting on a chair Class 2 [81 160]

Getting up from a chair Class 3 [161 240]

Writing Class 4 [241 320]

Table 2: Details of the names of activities and their class numbers along with the range of

j falling under a class

3.4 Fusion of Decisions

The last stage in the recognition process is the fusion of decisions from different

cameras. We compute the final decision from a set of 6 decisions (1 decision per camera)

by obtaining a unique majority. A unique majority is obtained when at least 3 of the 6

(5)

(6)

10 Siddhant Sharma, Neladri Bose

camera decisions favor an activity and the remaining decisions do not unanimously favor

another activity.

If the system is able to obtain a unique majority, it returns the value of the class

corresponding to the recognized gesture and informs the user by a voice feedback. For

example, the voice feedback associated with activity 1 is “You are raising your hands”. If

the system fails to obtain a decision by unique majority, the audio file “Activity not

recognized” is played back. For example, three cameras supporting activity 2 and the other

three supporting activity 4 does not form a unique majority and the system will fail to

recognize the activity.

Fig. 7 Flowchart of our activity recognition algorithm

11 Siddhant Sharma, Neladri Bose

4 Experimental results

Plots for activities 1, 2, 3, and 4 are as shown in Figures 8, 9, 10, and 11 respectively.

(a): Original Signal

(b): Signal after interpolation and mean-variance equalization

Fig. 8: Ten signals captured when recording activity 1

12 Siddhant Sharma, Neladri Bose

(a): Original Signal

(b): Signal after interpolation and mean-variance equalization

Fig. 9: Ten signals captured when recording activity 2

13 Siddhant Sharma, Neladri Bose

(a): Original Signal

(b): Signal after interpolation and mean-variance equalization

Fig. 10: Ten signals captured when recording activity 3

14 Siddhant Sharma, Neladri Bose

(a): Original Signal

(b): Signal after interpolation and mean-variance equalization

Fig. 11: Ten signals captured when recording activity 4

15 Siddhant Sharma, Neladri Bose

4.1 Discussion of Results

a) Evaluation of Activity Detection Algorithm

Since establishing ground truth for the exact frame indicating onset and offset was a

tedious task, we did not include statistics for the activity detection algorithm. However,

during a live demonstration of the project, the system delay for the activity start and activity

end was fair and user-acceptable. This delay can be further reduced by optimizing

calculations of motion detection and setting adaptive measures for threshold values ά1 and

ά2. Adding ά3 could further increase the robustness of the system.

b) Evaluation of Activity Recognition Algorithm

In order to derive fair and conclusive results for activity-recognition statistics, we

performed leave-one-out cross-validation (LOOCV) technique on samples from the dataset

used for training. All activity sequences from all users were tested for the predefined

ground truth once, based on training data from other users and the remaining 9 sequences

of the same user. The results of leave-one-out cross-validation are shown in Table 3.

Activity Success/CCR No recognition False Recognition

Writing 51.25% 8.75% 40%

Sitting down 96.25% 0% 3.75%

Getting up 87.5% 2.5% 10%

Hand Raise 47.5% 13.75% 38.75%

Total 70.625% 6.25% 23.125%

Table 3: Statistics of activity recognition using leave-one-out cross-validation test

Considering that the system was trained on only a small number of users, the statistics

of Correct Classification Rate derived from the leave-one-out cross-validation test were

quite satisfactory. An overall success rate of 70.625% indicates that the system is capable

of recognizing activities for a small dataset, and thus has scope for improvement. A high

false recognition rate could indicate that we could improve our decision metric by fusing

the decision metric and reaching a conclusive result instead of a fusion of decisions on

every camera. This factor is open to further research.

16 Siddhant Sharma, Neladri Bose

To further improve the success rate, we could use more than one feature to obtain the

distance metric and average a weighted sum of the distances to reach a decision on every

camera. A good addition to this feature would be the interpolated and mean-variance

equalized values of the temporal gradients of the activity. Another feature could be the

third and fourth order moments of the true pixel values of the activity. An optimization and

pattern recognition approach could lead to an equation for the fusion of the distance

measures.

c) Evaluation of the Choice of Activities

Looking at patterns in Figs. 8-11 it can be concluded that activity 2 and activity 3 that

correspond to sitting on a chair and standing up from the sitting position, respectively, form

a set of orthogonal activities. Thus, it is safe to assume that a higher percentage on their

success rate is due to their orthogonal characteristic. However, there are many possible

variations for performing activity 1 and activity 4, and hence their low success rate is

justified. For purposes of activity recognition irrespective of the user, activity 2 and activity

3 would prove to be a better set. Activity 1 and 4 would be of higher importance in an

application of user authentication or identification. For example, since no two users have

an identical signature, an action where the user signs his name in the air could serve as a

good activity to identify the user. Despite the plausibility of the idea, a large amount of

training would be required at the user’s end to ensure a sufficiently-high correct

classification rate.

4.3 System constraints and proposed improvements

Following is a list of constraints that we placed

1. Lighting conditions must not be too bright and must not change after the program

is running.

Improvement: Tuning the system to bright light and setting adaptive measure on ά1

and ά2 in static conditions could solve the problem.

2. Activity must be restricted to the user at location X

17 Siddhant Sharma, Neladri Bose

Improvement: Training the system over a single activity performed at different

locations in the room and using numerical weights on each camera as a feature to

recognize user location.

3. User must face camera 2 while performing an activity

Improvement: Training the system over the same activity performed at different

rotation angles at a specific position in the room and finding the optimum feature

to maximize correlation between data patterns obtained at different angles.

4. Activity must be continuous, i.e. the user must not pause during an activity.

Improvement: System can be designed to merge two or more activities in case of no

match or low confidence match.

5 Conclusions and Possible Improvements

 We designed and implemented an algorithm for detecting progressive and residual

motion in real time, with reasonable delay under different lighting conditions using six

single pixel cameras. To recognize an activity, we trained the system for four activities and

used Nearest-Neighbor classification on the interpolated and mean-variance equalized

values of true pixels at run time. By taking a majority vote on the decision at every camera

we were able to adequately recognize each of the activities with an overall correct

classification rate of 70.625% and a maximum of 96.25% for sitting down. These results

show that single-pixel cameras can provide a viable solution for accurate gesture

recognition, while maintaining user privacy. Thus, this experiment provides a foundation

for further improvements on the method of activity recognition using single-pixel cameras

that can exploit higher degrees of freedom through a more robust algorithm.

18 Siddhant Sharma, Neladri Bose

Appendix

Below is the Matlab source code developed for this project

Activity_tracker.m

%% Connection setup
%EC720
%Code developed by Siddhant Sharma & Neladri Bose
%This is the activity detection algorithm
%It estimates background for a couny of 12 and returns the lighting
%condition based on the average of the sum of gradients for 12 frames
%After 12 frames a user can enter the room and the system detects activity
%start and stop by a beep sound. The activity frames are recorded in ACT{}
%This can be used to get training data; comment line <>
% As a standard measure, Store the training frames as front sit stand and
% write (or choose your unique <activityname>)
% save file <username>_<activityname> i.e eg sam_front sam_write sam_sit
% Once you get all name_activity files , run Decision_CCR_metric

clc;clear all;
urls={'tcp://192.168.1.202:2335/{0}/ColorSensor'};
urllength=length(urls);
global connections
connections=cell(urllength,1);
for i=1:urllength
connections{i}=RobotRaconteur.Connect(urls{i});
end
disp('The connection is made');
%% Background Estimation
disp('Estimating Background till count of 12');
gradient_back=zeros(6,1);
for back=1:12; %taking the first 12 frames for background
for j=1:length(connections)

 readings=double(connections{j}.ReadSensors()); % Reads the data from the sensors, %produces
an 8(muxboards)x8(outputs)x6(reading values) array of values

end
back %counts upto 12 frames during runtime

 %6 sensors, R,G,B values for each
RGBs(1:3,1:3)=readings(1,1:3,1:3); %cameras 1,2,3
RGBs(4,1:3)=readings(1,5,1:3); %camera #4 is made camera #5
RGBs(5,1:3)=readings(1,4,1:3); %camera #5 is made camera #4
RGBs(6,1:3)=readings(1,6,1:3); %camera 6
 %converts to grayscale values
g_val(1:6) = 0.299*RGBs(1:6,1) + 0.578*RGBs(1:6,2) + 0.114*RGBs(1:6,3);
g_val = g_val'; %transposes matrix

 % stores values as integers
background_pixels(1:6,back) = double(int16(g_val(1:6)));

http://192.168.1.202:2335/%7B0%7D/ColorSensor'

19 Siddhant Sharma, Neladri Bose

 %gradiant calculation for every frame starting frame 2
 if (back >= 2)
 gradient_back = background_pixels(:,back)-background_pixels(:,back-1);
 end

 %sequentially storing gradiants in an array
 background(:,back)=background_pixels(1:6,back);
 %summing gradiants on all cameras
 g(back)=sum(abs(gradient_back));
 %summing the sum of gradiants on all frames
 G=sum(g);

 %last frame on test
 if back==12
 background_sum=floor(G/2); %average of sum of gradiant for 6 frames(1 second)
 %setting 3 threshold values for activity detection based on background
 if background_sum<23 %night
 disp('Low Lighting Condition');
 thresh3= background_sum+18;
 thresh2=thresh3+30;
 thresh1=thresh2+50;
 elseif background_sum<55 %normal cloudy
 disp('Medium Lighting Condition');
 thresh3= background_sum+60;
 thresh2=thresh3+80;
 thresh1=thresh2+40;
 elseif background_sum<150 %normal sunny 66 82 71 69 32 84 52 53 64 25 104 23 64 68
113 73 98 72 51 50 26 28 44 25 36 54 67 119 106
 disp('High Lighting Condition');
 thresh3= background_sum+100;
 thresh2=thresh3+120;
 thresh1=thresh2+80;
% elseif background_sum<800 %bright/sunny 213 136 672 592 569 340
404 794 162 307 328 440 417 437
% disp('Very high lighting condition');
% thresh3= background_sum+250;
% thresh2=thresh3+300;
% thresh1=thresh2+250;
 else
 disp('Ending program because its too noisy');
 end
 end
end
 clearvars g_val RGBs back G j; %clearing useless variables
%% Runtime
%Variables being initialized
i=1; %this acts as a switch for detecting each activity (i=0 at the end of an activity)
k=0; %stores the number of activities performed since the program was run
fps=6; % it should be 6.5 fps
cams=6;
ACT{1,10}={}; %stores activities in a cell

while (i==1)
i=0; k=k+1;
count = 1; %stores the frame count
window = 1; %keeps oscillating from 1 to 6, to get the gradiants over 1 sec
pixel_data= zeros(cams,fps); %stores camera pixels info

20 Siddhant Sharma, Neladri Bose

gradient_1=zeros(6,1); %gradiant per frame
 temp=0; %this increments after activity starts
 len=6; %this increments after activity progresses
g=zeros(1,len);
buffer=zeros(cams,len); %stores the pixel values in a buffer for
a_rolloff=0; %this switch gets active when activity progression falls thresh2
%(but greater than thresh3)
%roll_off_buffer=zeros(6,3); %stores frames after apple=1 limit=3 frames
while(i==0)
for j=1:length(connections)

 readings=double(connections{j}.ReadSensors());
% Reads the data from the sensors,
%produces an 8(muxboards)x8(outputs)x6(reading values) array of values

end
RGBs(1:3,1:3)=readings(1,1:3,1:3); %6 sensors, R,G,B values for each
RGBs(4,1:3)=readings(1,5,1:3);
RGBs(5,1:3)=readings(1,4,1:3);
RGBs(6,1:3)=readings(1,6,1:3);
%converts to grayscale values
g_val(1:6) = 0.299*RGBs(1:6,1) + 0.578*RGBs(1:6,2) + 0.114*RGBs(1:6,3);
g_val = g_val'; %transposes matrix
 % stores values as integers
pixel_data(1:cams,count) = double(int16(g_val(1:cams)));
 %gradiant calculation

 if (count >= 2)
 gradient_1 = pixel_data(:,count)-pixel_data(:,count-1);
 end
 if (window<=6)
 buffer(:,window)=pixel_data(1:cams,count);
 g(window)=sum(abs(gradient_1));
 G=sum(g);
 end

 if (G>=thresh1 && temp==0) % threshold to start activity
 disp('Activity started')
 beep;
 temp=count; %temp switch activited
 activity(:,1:6)=buffer;
 %start of activity first 6 pixels stored from buffer to activity
 end

 if (G>=thresh2 && G < thresh1 && temp==0)
 %act is between(tresh2,thresh1)
 disp('Activity about to be started')
 end

 if (G>=thresh3 && G < thresh2 && temp==0)
 %act is between (tresh3,thresh2)
 disp('Residual motion') %frames not stored
 end

 if (G<thresh3 && temp==0)
 %act is less than tresh3 and activity is not progressing
 %i=i+1;
 disp(' No motion :Background') %frames not stored
 end

21 Siddhant Sharma, Neladri Bose

 if (G<thresh3 && temp~=0) %very unusual case :
 %act is less than tresh3 and activity is progressing
 %i=i+1;
 disp('static during activity') %frames not stored
 end

 if (G>=thresh2 && a_rolloff==0 && temp~=0)
 %act is greater than tresh2
 len=len+1; %len incremented to store more frames in activity
 activity(:,len)=pixel_data(:,count); %frames stored
 disp('Activity in progress')

 elseif (G>thresh3 && G<thresh2 && temp~=0)
%jitter during rolloff (do not get back to activity switch enabled)
 %roll_off_buffer(1:6,apple+1)=pixel_data(:,count);
 a_rolloff=a_rolloff+1;
 disp('You are ending your activity')
 end

 if (G>=thresh2 && a_rolloff~=0 && temp~=0) %very unusual case :
%when act falls below thresh2 and further jumps to greater than thresh2
 disp('You should not be moving now')
 end
 %very unusual case when rolloff does not exceed 2

 if ((G<=thresh3 && temp~=0) || (a_rolloff>=3 && temp~=0))
 %conditions of ending activity can be modified here
 %Acitvity must end after 3 frames of being below thresh2
 disp('Activity Ended')
 beep;
 %roll_off=(count-temp)-(len+1); %gives rolloff time
 ACT{1,k}=activity;
 activity_estimation_final(activity) %calling the estimation block
 clearvars activity;
 %call KNN function
 i=i+1;
 end

 count = count+1; % update count of frame
window=window+1; %update gradiant window
 if window==7
 window=1; %let window oscillate from 1 to 6
 end
end
end

22 Siddhant Sharma, Neladri Bose

Activity_estimation.m

%EC720
%Code developed by Siddhant Sharma & Neladri Bose
function activity_estimation(activity)
%This function is used when one user input is given as samples

%interp and MVE
load('siddhant.mat')
[ANR,fs]=audioread('ANR.mp3');
[sit,fs]=audioread('sit.mp3');
[stand,fs]=audioread('stand.mp3');
[front,fs]=audioread('front.mp3');
[write,fs]=audioread('write.mp3');
activity_interp=zeros(6,40);
activity__interp_MVE=zeros(6,40);
for i=1:6
 activity_interp(i,1:40)=interp1(1:size(activity(i,:),2),activity(i,:),
linspace(1,size(activity(i,:),2),40),'pchip');
 activity__interp_MVE(i,1:40)=(activity_interp(i,:) - mean(activity_interp(i,:))) ./ var(activity_interp(i,:));
end

 group = [ones(10,1); 2*ones(10,1); 3*ones(10,1); 4*ones(10,1)];
 class=zeros(6,1);
 class(1)=knnclassify(activity__interp_MVE(1,:),TRAINING_MVE_cam1,group,1,'cityblock');
 class(2)=knnclassify(activity__interp_MVE(2,:),TRAINING_MVE_cam2,group,1,'cityblock');
 class(3)=knnclassify(activity__interp_MVE(3,:),TRAINING_MVE_cam3,group,1,'cityblock');
 class(4)=knnclassify(activity__interp_MVE(4,:),TRAINING_MVE_cam4,group,1,'cityblock');
 class(5)=knnclassify(activity__interp_MVE(5,:),TRAINING_MVE_cam5,group,1,'cityblock');
 class(6)=knnclassify(activity__interp_MVE(6,:),TRAINING_MVE_cam6,group,1,'cityblock');
 c(1)=size(find(class==1),1);
 c(2)=size(find(class==2),1);
 c(3)=size(find(class==3),1);
 c(4)=size(find(class==4),1);
 %camera_support=max(c);
 which_act=find(c==max(c));
 if(size(which_act,2)>1)
 sound(ANR,fs);
 elseif which_act==1
 sound(front,fs);
 elseif which_act==2
 sound(sit,fs);
 elseif which_act==3
 sound(stand,fs);
 else
 sound(write,fs);
 end
end

23 Siddhant Sharma, Neladri Bose

References

[1] Dai, Ji; Wu, Jonathan; Saghafi, Behrouz; Konrad, Janusz; Ishwar, Prakash, “Towards

Privacy-Preserving Activity Recognition Using Extremely Low Temporal and Spatial

Resolution Cameras,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Workshop on Analysis and Modeling of Faces and Gestures (AMFG), pp. 68-76,

June 2015.

[2] Dai, Ji; Saghafi, Behrouz; Wu, Jonathan; Konrad, Janusz; Ishwar, Prakash, “Towards

Privacy-Preserving Recognition of Human Activities.”, in Proc. IEEE Int. Conf. Image

Processing, pp. 4238-4242, Sept. 2015.

