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Summary 

 

With activity recognition being a hot topic in the field of video processing, extensive 

research has been carried out to recognize indoor activities using very low temporal and 

spatial resolution cameras. Reliable recognition using low data would facilitate a new 

platform for smart rooms that can record and track user activities without compromising 

their privacy. In this project we aim to recognize four activities inside a room using a set 

of six single-pixel cameras and to build a prototype for a smart-room environment. We use 

a single-pixel camera testbed at the Smart Lighting Undergraduate Research Project 

(SLURP) Lab along with MATLAB tools to develop an effective activity detection and 

activity recognition algorithm for the system. Using real subjects to record activities in the 

room, we train the software to learn individual camera patterns for each activity and use 

these patterns to recognize actions in a real-time environment. We found that for a given 

set of constraints, the system could recognize the trained actions with a reasonable overall 

efficiency of 70.625% and a maximum of 96.25% for one of the activities. Since our aim 

was to provide a system prototype, the conclusive results were based on simple signal 

processing techniques and could serve as a basis for further improvements. 

 

This project was completed within EC720 graduate course entitled “Digital Video 

Processing” at Boston University in the fall of 2015. 
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1 Introduction 
 

 Single-pixel cameras are poised to revolutionize activity recognition in the near 

future. As a single pixel does not deliver any detailed information about a scene, we can 

use it to our advantage to create motion tracking algorithms that preserve a user’s privacy. 

These motion detection and activity recognition methods can be of valuable use in various 

applications like motion tracking, smart lighting for smart rooms, home automation, indoor 

position tracking, detecting unused parking spots, etc. In this project, we develop a robust 

single-user activity recognition algorithm, using a set of single-pixel cameras in an 

experimental testbed. The testbed consists of six RGB TCS3414 sensors that are mounted 

and positioned in a room as shown in Figs. 1-2. Since color information in the context of 

motion is redundant, we only use the luminance values of pixels, rounded off to the nearest 

integer as a true pixel value of the camera. The RGB to grayscale conversion is performed 

according to equation (1). 

The network connection in the room is such that the sensors are multiplexed to 

transmit pixel values recorded over time to a Raspberry Pi which then transfers the data to 

a desktop computer in the room through a secure network connection. Using “Putty” to 

connect to Raspberry Pi, we obtain RGB pixel values on the desktop computer, where we 

interpret these values using the Robot Raconteur toolbox in MATLAB. 

 

 

(a)                     (b) 

Figure 1: Picture of the testbed setup where red circles identify the location of the single-

pixel RGB sensors in the room 
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Figure 2: Block diagram of the room with ‘X’ marking the location of the user performing 

the gesture 

The luminance is computed as follows: 

           

where 𝑝[𝑘] is the luminance value of frame k and 𝑝𝑅[𝑘], 𝑝𝐺[𝑘], 𝑝𝐵[𝑘] are pixels values of 

frame k corresponding to red, green and blue primary colors, respectively. 

For each TCS3414 color sensor, the luminance equivalent to a single RGB pixel from 

the sensor can be said to contain the majority of brightness information in the room. Since 

these luminance values are highly sensitive and range from 0 to 65000, we allocate 16 bits 

per pixel for storage. Also, from the conclusive results on temporal resolution and impact 

of camera count as mentioned in earlier work [1], we can assume that a well-positioned 

setup of 6 cameras with a temporal frequency of 6 frames per second would yield a 

reasonable Correct Classification Rate (CCR) when recognizing actions [1]. Thus, a frame 

containing six pixels would need a storage space of 96 bits. In comparison with low 

resolution cameras e.g., VGA with a resolution of 640 x 480, we achieve a compression 

ratio of 25600:1 per frame. Thus, using single-pixel cameras to process activities can help 

reduce the data storage, transmission bandwidth needed as well as the computational 

complexity. 

(1) 
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2 Activity Detection 

A principal drawback of detecting motion in a 1-D single-pixel camera sequence in 

comparison to high-resolution camera videos, is that the ground truth of motion cannot be 

visualized by looking at the activity data samples. With problems in single-pixel sensors, 

like signal fluctuations in changing lighting conditions and sensor noise, recognizing the 

onset and offset of an activity is a difficult task. To explain this aspect, an instance of an 

activity is plotted in Fig. 3a that indicates the pixel values captured by the six cameras for 

a time duration of 50 frames (approximately 8 seconds) when a random user enters the 

room and stands at position X, as indicated in Fig. 2. 

 
          (a)          (b) 

Fig.  3  (a)  Values p[k] captured by six cameras over 50 frames (k=1-50); (b) Absolute 

value of frame difference of the six cameras as a function of frame number k. 
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From the six sequences in Fig. 3a it is hard to pinpoint the exact frame that corresponds to 

the beginning and the end of motion. The fall in pixel values is only an indication that the 

user was occluding a bright room with a dark textured clothing. Thus, instead of matching 

a decision as to motion based on true pixel values, we check for a feature that tells us more 

about motion than the nature of lighting. Since temporal change is a measure of motion, 

analyzing the temporal derivative of the frames of the activity would give a better response. 

Fig. 3b is a plot of the absolute value of the temporal derivative, or the absolute value of 

frame differences for each camera. In comparison to Fig. 3a, Fig. 3b gives a better 

understanding of motion onset and offset as detected by each camera.  

However, the frame corresponding to a significant rise in gradient values is different for 

every camera as the cameras differ in position and field of view. To reach a conclusive 

result, in Fig. 4a we plot the sum of absolute values of frame differences over all six 

cameras. Although fairly conclusive results about the beginning and end user activity can 

be drawn from Fig. 4a, the sharp changes in gradients over the course of the activity 

indicate that evaluating a decision as to motion over a single frame difference would be 

more susceptible to camera noise and is thus more likely to cause false detections due to 

measurement fluctuations. Thus, to obtain a smoother activity flow in Fig. 4b we plot αk 

which is the summation of the sum of frame differences for each camera over 6 frames 

calculated using a sliding window approach as described in equation (2): 

 

(a)              (b) 

Fig.  4  (a) Sum of the absolute values of frame differences over all six cameras for 

frame k; (b) Plot of αk vs frame k 
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where 𝑝𝑐𝑎𝑚[𝑡]  is the luminance value of frame t for a given camera. Thus αk from 

equation (2) can be used as a measure for determining motion in the room. Since a noisy 

camera would introduce some fluctuation in pixel values even for static condition, a 

threshold ά1 must be calculated to eliminate the interference of noise for decisions at the 

Start and End of activity. ά1 can be calculated by estimating the static background 

condition for the first 6 frames. The value(s) of threshold ά1 based on range of αk for the 

first 6 frames are given in Table 1. 

To further improve efficiency of the system, we introduce a threshold ά2 that is 

helpful in categorizing residual motion. Residual motion may be defined as twitchy or 

shaky involuntary movement that is not intended to trigger an activity. The threshold for 

residual motion ά2 is given by ά2 = ά1 + β, where β is a measure of residual tolerance  

 

 

Fig. 5: Pictorial representation of the effect of thresholds ά1 and ά2 on an activity instance 

from Fig. 3 

(2) 



6  Siddhant Sharma, Neladri Bose  

The interpretation of three possible states is as follows: 

 

The camera sensor TCS3414 was found to show a nonlinear behavior for fluctuations 

in different lighting conditions. The noise was more prominent in bright light than dim 

light. The values of ά1, ά2 estimated over a range of α1 (k=1 for the first 6 frames) to 

overcome the effects of the nonlinearity in cameras for different lighting conditions is given 

in Table 1. Since the fluctuations were out of reasonable bounds in very bright light, we 

advise to keep minimum lighting condition during activity detection. 

 

 

Table 1: Estimated values of threshold ά1 and ά2 for different lighting conditions 

 

Note: The range of values of α1 in the above background conditions was set by using the 

minimum and maximum values of 10 observations of α1 during different times of the day. 

ά1 was estimated by adding κ to the maximum value of α1. κ =15 for low and medium 

lighting and κ =30 for bright lighting. β was estimated by selecting the least integer value 

added to ά1, that triggered an activity. A more detailed approach can be made to set 

standard values for thresholds. 
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Fig. 6  Flowchart for activity detection algorithm. For synchronizing activity 

detection at runtime, a single-tone beep sound is played every time the system 

detects the start and end of an activity. 
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3 Activity Recognition 

The second section of our project deals with recognition of the detected activity. This 

is done by obtaining the closest match of the activity sequence to a set of training samples. 

A decision based on the combined decisions of the six cameras elicits a response to that 

particular gesture. To simplify calculation we trained our program to respond to four 

specific gestures: raising two hands in unison, sitting down on a chair, getting up from a 

chair, and writing (a motion similar to writing 3 capital A’s). These gestures are also shown 

in Table 3, performed at predefined location X, from Fig. 3 facing camera 2. The activity 

recognition algorithm can be divided into four stages that are described next.  

 

3.1 Interpolation 

In order to get a decision for every camera, we individually analyze the 1-D time dependent 

sequence of true pixels for every camera. As the time duration of each activity may vary, 

we need to process the data over a standard frame length “L”. For this purpose, we 

interpolate the detected true pixel activity sequence for every camera, independently to a 

frame length L using cubic spline interpolation as follows.  

             

The range of i varies from 1 to L. An arbitrary value of L = 40 frames was used. 

 

3.2 Mean-Variance Equalization 

To remove the effects of global luminance and variation in the texture of clothing 

between users, we match the Mean-Variance Equalized (MVE) version of the interpolated 

activity sequence actcam[i] for each camera with the corresponding MVE and interpolated 

data from the training set. Equation (4) mathematically expresses the MVE process. Figs. 

7-10 display the true-pixel value sequences as well as the interpolated and MVE processed 

sequences for activities 1, 2, 3, 4 for all six cameras. By performing MVE, we not only 

retain the pattern of the true pixel data, but also reduce the dynamic range of the sequences. 

 

(3) 

(4) 
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where 𝜇𝑐𝑎𝑚 is the mean and 𝜎𝑐𝑎𝑚
2  is the variance of 𝑎𝑐𝑡𝑐𝑎𝑚. 

 

3.3 Nearest-Neighbor Classification 

The next stage attempts to recognize an action for every camera by performing 

Nearest-Neighbor (NN) classification over the training set. The nearest neighbor j is the 

index of the training activity sequence that minimizes the distance metric distcam[j] for a 

given camera. Equation (5) gives the formula for computing the distance: 

  

where 𝑎𝑐𝑡̂𝑐𝑎𝑚
𝑗

is the ith sample of the jth training sequence after interpolation and MVE, 

and the nearest neighbor is found as follows: 

 

Our training data set consists of 8 users performing 10 trials of each of the 4 gestures, i.e., 

80 activity sequences per gesture, creating a set of 320 sequences for all four activities. 

 

Activity name Activity/Class number Range of j 

Raising two hands in unison Class 1 [1 80] 

Sitting on a chair Class 2 [81 160] 

Getting up from a chair Class 3 [161 240] 

Writing Class 4 [241 320] 

 

Table 2: Details of the names of activities and their class numbers along with the range of 

j falling under a class 

 

3.4 Fusion of Decisions 

The last stage in the recognition process is the fusion of decisions from different 

cameras. We compute the final decision from a set of 6 decisions (1 decision per camera) 

by obtaining a unique majority. A unique majority is obtained when at least 3 of the 6 

(5) 

(6) 
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camera decisions favor an activity and the remaining decisions do not unanimously favor 

another activity.  

If the system is able to obtain a unique majority, it returns the value of the class 

corresponding to the recognized gesture and informs the user by a voice feedback. For 

example, the voice feedback associated with activity 1 is “You are raising your hands”. If 

the system fails to obtain a decision by unique majority, the audio file “Activity not 

recognized” is played back. For example, three cameras supporting activity 2 and the other 

three supporting activity 4 does not form a unique majority and the system will fail to 

recognize the activity. 

 

 

 

Fig. 7  Flowchart of our activity recognition algorithm 
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4 Experimental results 

Plots for activities 1, 2, 3, and 4 are as shown in Figures 8, 9, 10, and 11 respectively.  

 

 

(a): Original Signal 

 

(b): Signal after interpolation and mean-variance equalization 

Fig. 8: Ten signals captured when recording activity 1 
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(a): Original Signal 

 

(b): Signal after interpolation and mean-variance equalization 

Fig. 9: Ten signals captured when recording activity 2 
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(a): Original Signal 

 

(b): Signal after interpolation and mean-variance equalization 

Fig. 10: Ten signals captured when recording activity 3 
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(a): Original Signal 

 

(b): Signal after interpolation and mean-variance equalization 

Fig. 11: Ten signals captured when recording activity 4 
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4.1 Discussion of Results 

a) Evaluation of Activity Detection Algorithm 

Since establishing ground truth for the exact frame indicating onset and offset was a 

tedious task, we did not include statistics for the activity detection algorithm. However, 

during a live demonstration of the project, the system delay for the activity start and activity 

end was fair and user-acceptable. This delay can be further reduced by optimizing 

calculations of motion detection and setting adaptive measures for threshold values ά1 and 

ά2. Adding ά3 could further increase the robustness of the system. 

 

b) Evaluation of Activity Recognition Algorithm 

In order to derive fair and conclusive results for activity-recognition statistics, we 

performed leave-one-out cross-validation (LOOCV) technique on samples from the dataset 

used for training. All activity sequences from all users were tested for the predefined 

ground truth once, based on training data from other users and the remaining 9 sequences 

of the same user. The results of leave-one-out cross-validation are shown in Table 3. 

 

Activity Success/CCR No recognition False Recognition 

Writing 51.25% 8.75% 40% 

Sitting down 96.25% 0% 3.75% 

Getting up 87.5% 2.5% 10% 

Hand Raise 47.5% 13.75% 38.75% 

Total 70.625% 6.25% 23.125% 

Table 3: Statistics of activity recognition using leave-one-out cross-validation test 

  

Considering that the system was trained on only a small number of users, the statistics 

of Correct Classification Rate derived from the leave-one-out cross-validation test were 

quite satisfactory. An overall success rate of 70.625% indicates that the system is capable 

of recognizing activities for a small dataset, and thus has scope for improvement. A high 

false recognition rate could indicate that we could improve our decision metric by fusing 

the decision metric and reaching a conclusive result instead of a fusion of decisions on 

every camera. This factor is open to further research.  
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To further improve the success rate, we could use more than one feature to obtain the 

distance metric and average a weighted sum of the distances to reach a decision on every 

camera. A good addition to this feature would be the interpolated and mean-variance 

equalized values of the temporal gradients of the activity. Another feature could be the 

third and fourth order moments of the true pixel values of the activity. An optimization and 

pattern recognition approach could lead to an equation for the fusion of the distance 

measures. 

      

c) Evaluation of the Choice of Activities 

Looking at patterns in Figs. 8-11 it can be concluded that activity 2 and activity 3 that 

correspond to sitting on a chair and standing up from the sitting position, respectively, form 

a set of orthogonal activities. Thus, it is safe to assume that a higher percentage on their 

success rate is due to their orthogonal characteristic. However, there are many possible 

variations for performing activity 1 and activity 4, and hence their low success rate is 

justified. For purposes of activity recognition irrespective of the user, activity 2 and activity 

3 would prove to be a better set. Activity 1 and 4 would be of higher importance in an 

application of user authentication or identification. For example, since no two users have 

an identical signature, an action where the user signs his name in the air could serve as a 

good activity to identify the user. Despite the plausibility of the idea, a large amount of 

training would be required at the user’s end to ensure a sufficiently-high correct 

classification rate.   

 

4.3 System constraints and proposed improvements 

 

Following is a list of constraints that we placed 

1. Lighting conditions must not be too bright and must not change after the program 

is running. 

Improvement: Tuning the system to bright light and setting adaptive measure on ά1 

and ά2 in static conditions could solve the problem. 

 

2. Activity must be restricted to the user at location X 
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Improvement: Training the system over a single activity performed at different 

locations in the room and using numerical weights on each camera as a feature to 

recognize user location. 

 

3. User must face camera 2 while performing an activity 

Improvement: Training the system over the same activity performed at different 

rotation angles at a specific position in the room and finding the optimum feature 

to maximize correlation between data patterns obtained at different angles.  

 

4. Activity must be continuous, i.e. the user must not pause during an activity. 

Improvement: System can be designed to merge two or more activities in case of no 

match or low confidence match. 

 

5 Conclusions and Possible Improvements 

          

     We designed and implemented an algorithm for detecting progressive and residual 

motion in real time, with reasonable delay under different lighting conditions using six 

single pixel cameras. To recognize an activity, we trained the system for four activities and 

used Nearest-Neighbor classification on the interpolated and mean-variance equalized 

values of true pixels at run time. By taking a majority vote on the decision at every camera 

we were able to adequately recognize each of the activities with an overall correct 

classification rate of 70.625% and a maximum of 96.25% for sitting down. These results 

show that single-pixel cameras can provide a viable solution for accurate gesture 

recognition, while maintaining user privacy. Thus, this experiment provides a foundation 

for further improvements on the method of activity recognition using single-pixel cameras 

that can exploit higher degrees of freedom through a more robust algorithm.   
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Appendix 

Below is the Matlab source code developed for this project 

Activity_tracker.m 

%% Connection setup 
%EC720 
%Code developed by Siddhant Sharma & Neladri Bose 
%This is the activity detection algorithm 
%It estimates background for a couny of 12 and returns the lighting 
%condition based on the average of the sum of gradients for 12 frames 
%After 12 frames a user can enter the room and the system detects activity 
%start and stop by a beep sound. The activity frames are recorded in ACT{} 
%This can be used to get training data; comment line <> 
% As a standard measure, Store the training frames as front sit stand and 
% write (or choose your unique <activityname>) 
% save file <username>_<activityname> i.e eg sam_front sam_write sam_sit 
% Once you get all name_activity files , run Decision_CCR_metric 
 
 
 
 
clc;clear all; 
urls={'tcp://192.168.1.202:2335/{0}/ColorSensor'};   
urllength=length(urls); 
global connections 
connections=cell(urllength,1); 
for i=1:urllength 
connections{i}=RobotRaconteur.Connect(urls{i}); 
end 
disp('The connection is made'); 
%% Background Estimation 
disp('Estimating Background till count of 12'); 
gradient_back=zeros(6,1); 
for back=1:12; %taking the first 12 frames for background 
for j=1:length(connections) 
      
     readings=double(connections{j}.ReadSensors()); % Reads the data from the sensors, %produces 
an 8(muxboards)x8(outputs)x6(reading values) array of values 
      
end 
back %counts upto 12 frames during runtime 
     
    %6 sensors, R,G,B values for each 
RGBs(1:3,1:3)=readings(1,1:3,1:3);  %cameras 1,2,3  
RGBs(4,1:3)=readings(1,5,1:3); %camera #4 is made camera #5 
RGBs(5,1:3)=readings(1,4,1:3); %camera #5 is made camera #4 
RGBs(6,1:3)=readings(1,6,1:3);  %camera 6 
    %converts to grayscale values 
g_val(1:6) = 0.299*RGBs(1:6,1) + 0.578*RGBs(1:6,2) + 0.114*RGBs(1:6,3); 
g_val = g_val';           %transposes matrix 
    
     
    % stores values as integers 
background_pixels(1:6,back) = double(int16(g_val(1:6))); 
     

http://192.168.1.202:2335/%7B0%7D/ColorSensor'
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    %gradiant calculation for every frame starting frame 2 
    if (back >= 2) 
        gradient_back = background_pixels(:,back)-background_pixels(:,back-1); 
    end 
    
        %sequentially storing gradiants in an array 
        background(:,back)=background_pixels(1:6,back); 
        %summing gradiants on all cameras  
        g(back)=sum(abs(gradient_back)); 
        %summing the sum of gradiants on all frames 
        G=sum(g); 
    
         
        %last frame on test 
    if back==12 
        background_sum=floor(G/2); %average of sum of gradiant for 6 frames(1 second) 
     %setting 3 threshold values for activity detection based on background 
        if background_sum<23       %night 
            disp('Low Lighting Condition'); 
            thresh3= background_sum+18; 
            thresh2=thresh3+30; 
            thresh1=thresh2+50; 
        elseif background_sum<55   %normal cloudy 
             disp('Medium Lighting Condition'); 
            thresh3= background_sum+60; 
            thresh2=thresh3+80; 
            thresh1=thresh2+40; 
        elseif background_sum<150  %normal sunny 66 82  71  69 32 84 52 53 64 25 104 23 64 68 
113 73 98 72 51 50 26 28 44 25 36 54 67 119 106 
             disp('High Lighting Condition'); 
            thresh3= background_sum+100; 
            thresh2=thresh3+120; 
            thresh1=thresh2+80; 
%         elseif  background_sum<800                      %bright/sunny 213 136 672 592 569 340 
404 794 162 307 328 440 417 437 
%             disp('Very high lighting condition'); 
%             thresh3= background_sum+250; 
%             thresh2=thresh3+300; 
%             thresh1=thresh2+250; 
        else 
            disp('Ending program because its too noisy'); 
        end 
    end 
end 
    clearvars g_val RGBs back G j; %clearing useless variables 
%% Runtime 
%Variables being initialized 
i=1; %this acts as a switch for detecting each activity (i=0 at the end of an activity) 
k=0; %stores the number of activities performed since the program was run 
fps=6; % it should be 6.5 fps 
cams=6; 
ACT{1,10}={}; %stores activities in a cell 
 
while (i==1) 
i=0; k=k+1; 
count = 1; %stores the frame count  
window = 1; %keeps oscillating from 1 to 6, to get the gradiants over 1 sec  
pixel_data= zeros(cams,fps); %stores camera pixels info 
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gradient_1=zeros(6,1); %gradiant per frame  
 temp=0; %this increments after activity starts 
 len=6;  %this increments after activity progresses 
g=zeros(1,len); 
buffer=zeros(cams,len); %stores the pixel values in a buffer for  
a_rolloff=0; %this switch gets active when activity progression falls thresh2  
%(but greater than thresh3) 
%roll_off_buffer=zeros(6,3); %stores frames after apple=1 limit=3 frames 
while(i==0) 
for j=1:length(connections) 
      
     readings=double(connections{j}.ReadSensors());  
% Reads the data from the sensors,  
%produces an 8(muxboards)x8(outputs)x6(reading values) array of values 
      
end 
RGBs(1:3,1:3)=readings(1,1:3,1:3);  %6 sensors, R,G,B values for each 
RGBs(4,1:3)=readings(1,5,1:3); 
RGBs(5,1:3)=readings(1,4,1:3); 
RGBs(6,1:3)=readings(1,6,1:3); 
%converts to grayscale values 
g_val(1:6) = 0.299*RGBs(1:6,1) + 0.578*RGBs(1:6,2) + 0.114*RGBs(1:6,3); 
g_val = g_val'; %transposes matrix 
    % stores values as integers 
pixel_data(1:cams,count) = double(int16(g_val(1:cams))); 
    %gradiant calculation 
     
    if (count >= 2) 
        gradient_1 = pixel_data(:,count)-pixel_data(:,count-1); 
    end 
    if (window<=6) 
        buffer(:,window)=pixel_data(1:cams,count); 
        g(window)=sum(abs(gradient_1)); 
        G=sum(g); 
    end 
   
    if (G>=thresh1 && temp==0)  % threshold to start activity 
        disp('Activity started') 
        beep; 
        temp=count; %temp switch activited 
        activity(:,1:6)=buffer;  
        %start of activity first 6 pixels stored from buffer to activity 
    end 
     
    if (G>=thresh2 && G < thresh1 && temp==0) 
        %act is between(tresh2,thresh1) 
        disp('Activity about to be started') 
    end 
     
    if (G>=thresh3 && G < thresh2 && temp==0)  
        %act is between (tresh3,thresh2) 
        disp('Residual motion') %frames not stored 
    end 
     
    if (G<thresh3 && temp==0)  
        %act is less than tresh3 and activity is not progressing 
        %i=i+1; 
        disp(' No motion :Background') %frames not stored 
    end 
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    if (G<thresh3 && temp~=0)  %very unusual case :  
  %act is less than tresh3 and activity is progressing 
        %i=i+1; 
        disp('static during activity') %frames not stored 
    end 
     
    if (G>=thresh2 && a_rolloff==0 && temp~=0) 
        %act is greater than tresh2  
        len=len+1; %len incremented to store more frames in activity 
        activity(:,len)=pixel_data(:,count);  %frames stored 
        disp('Activity in progress') 
         
    elseif (G>thresh3 && G<thresh2 && temp~=0)     
%jitter during rolloff (do not get back to activity switch enabled) 
        %roll_off_buffer(1:6,apple+1)=pixel_data(:,count); 
        a_rolloff=a_rolloff+1; 
        disp('You are ending your activity') 
    end 
     
    if (G>=thresh2 && a_rolloff~=0 && temp~=0) %very unusual case :  
%when act falls below thresh2 and further jumps to greater than thresh2 
        disp('You should not be moving now') 
    end 
    %very unusual case when rolloff does not exceed 2 
     
    if ((G<=thresh3 && temp~=0) || (a_rolloff>=3 && temp~=0))  
    %conditions of ending activity can be modified here 
    %Acitvity must end after 3 frames of being below thresh2 
        disp('Activity Ended') 
        beep; 
        %roll_off=(count-temp)-(len+1); %gives rolloff time 
        ACT{1,k}=activity; 
        activity_estimation_final(activity) %calling the estimation block 
        clearvars activity; 
        %call KNN function 
        i=i+1; 
    end 
 
    count = count+1; % update count of frame 
window=window+1; %update gradiant window 
    if window==7 
        window=1; %let window oscillate from 1 to 6 
    end 
end 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 



22  Siddhant Sharma, Neladri Bose  

Activity_estimation.m 

%EC720 
%Code developed by Siddhant Sharma & Neladri Bose 
function  activity_estimation(activity)  
%This function is used when one user input is given as samples 
 
%interp and MVE 
load('siddhant.mat') 
[ANR,fs]=audioread('ANR.mp3');      
[sit,fs]=audioread('sit.mp3');     
[stand,fs]=audioread('stand.mp3');     
[front,fs]=audioread('front.mp3');     
[write,fs]=audioread('write.mp3');     
activity_interp=zeros(6,40); 
activity__interp_MVE=zeros(6,40); 
for i=1:6 
    activity_interp(i,1:40)=interp1(1:size(activity(i,:),2),activity(i,:), 
linspace(1,size(activity(i,:),2),40),'pchip'); 
    activity__interp_MVE(i,1:40)=(activity_interp(i,:) - mean(activity_interp(i,:))) ./ var(activity_interp(i,:)); 
end 
 
     group = [ones(10,1); 2*ones(10,1); 3*ones(10,1); 4*ones(10,1)]; 
     class=zeros(6,1); 
     class(1)=knnclassify(activity__interp_MVE(1,:),TRAINING_MVE_cam1,group,1,'cityblock'); 
     class(2)=knnclassify(activity__interp_MVE(2,:),TRAINING_MVE_cam2,group,1,'cityblock'); 
     class(3)=knnclassify(activity__interp_MVE(3,:),TRAINING_MVE_cam3,group,1,'cityblock'); 
     class(4)=knnclassify(activity__interp_MVE(4,:),TRAINING_MVE_cam4,group,1,'cityblock'); 
     class(5)=knnclassify(activity__interp_MVE(5,:),TRAINING_MVE_cam5,group,1,'cityblock'); 
     class(6)=knnclassify(activity__interp_MVE(6,:),TRAINING_MVE_cam6,group,1,'cityblock'); 
     c(1)=size(find(class==1),1); 
     c(2)=size(find(class==2),1); 
     c(3)=size(find(class==3),1); 
     c(4)=size(find(class==4),1); 
     %camera_support=max(c); 
     which_act=find(c==max(c)); 
     if(size(which_act,2)>1) 
         sound(ANR,fs); 
     elseif which_act==1 
         sound(front,fs); 
     elseif which_act==2 
         sound(sit,fs); 
     elseif which_act==3 
         sound(stand,fs); 
     else  
         sound(write,fs); 
     end 
end 
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