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Summary 
  

The aim of this project is to present a method to identify objects within an image. 

The method is based on using a covariance matrix to describe the content of an image. It 

is a new approach that is based on non linear and non Euclidean quantities. This method 

will demonstrate the power of the covariance matrix as a region descriptor. 

 Another important part of this project is using integral images for fast covariance 

computation. It is similar to using a look-up table to store values that are frequently 

calculated and therefore reduce the computational complexity. The concept of integral 

images can be applied to many other calculations, not just covariance matrix 

computation. It can also be used in mean value computation. However, this report only 

describes how to use it in fast covariance computation. 

 The application of the covariance matrix approach is to detect cars and humans in 

an image, in fact, ideally, in video sequences. The report mentions the important aspects 

that have to be taken into consideration when choosing the feature vector and when 

scanning the image region by region. 

 Last but not least, the report discusses improvements and limitations of this 

approach. 
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1. Introduction 
 An important area of image processing research today is computer vision. It is a 

widely spread topic that has several applications, such as object and texture identification, 

motion detection and face recognition.  

 In this project, the aim is to identify objects in the foreground of an image, 

particularly on a beach. The main objects that I will focus on detecting are humans and 

cars.  

 In general, objects in an image have several properties or features. Properties of 

objects are shape, size, color, luminance (or reflectivity) and texture. Different objects 

have different properties, and inversely, different properties mold different objects.  In 

image processing, these properties can be described by various factors; we call them 

features. An object, with specific properties, can be described by spatial features like 

primary colors, luminance and first order and second order luminance gradients. 

One approach to identify an object is to calculate the color distribution of the object 

within an image, i.e make a histogram to describe the colors of that object. However, this 

approach would entail many problems, because of luminance variation from one image to 

another, and the histogram values will change from one picture to the other. For example, 

consider an image of a light blue car that has a particular color distribution in an image 

shot while the car has a certain luminance. Under different luminance conditions, the 

color saturation will change, resulting in different histogram values. Furthermore, under 

different resolutions, the picture of the same object will have a different window size and 

thus also a different histogram. Therefore, this approach is not efficient in this 

application.  

 The approach discussed in this paper is based on using the covariance matrix as a 

descriptor of a region in the image. This approach has computational advantages as well 

as higher accuracy. Calculating the covariance of a region yields a ‘d by d’ matrix, where 

d is the number of features used. The number of elements in the feature vector is usually 

between 4 to 9. This makes the range of covariance matrix size vary from 16 to 81 

elements. Compared to the histogram approach mentioned above, the covariance 

approach provides a small d by d matrix to describe an M by N region, which 

significantly reduces the computational complexity.  



 
 

2. Covariance matrix as an Image descriptor 
 Suppose we have an M by N color image with three values per pixel, i.e. Red, 

Green and Blue. In this case, every pixel will have a three dimensional feature vector. If 

we add to every pixel another dimension that carries additional information, we would 

have a four dimensional feature vector for every pixel, and so on… . Now consider 

adding two dimensions to our three dimensional RGB image, such that we have a five 

dimensional feature vector for every pixel. For example, if the feature vector ƒ is 

composed of the features R, G, B, vertical luminance gradient and horizontal luminance 

gradient, then the feature vector for every pixel is 

     
 

 The covariance matrix will be calculated as follows 

 
 

 Where µ is the mean feature vector for a region in the image with n pixels. 

 In this case, the covariance matrix will look like this:- 

 
 Where I is the grayscale luminance. 

 



 
 

2.1 Comparing two covariance matrices 
 From the previous page we know how two compute the covariance matrix of an 

image or a region within the image. In this part, we will show how to compare two 

covariance matrices and decide whether they describe the same object or not. 

 A covariance matrix has a nonlinear relation with its corresponding feature image. 

In general, variances have a square relationship with their corresponding observation. 

Similarly, covariance matrices have a square relationship with their corresponding feature 

image. Therefore, we cannot just subtract two covariance matrices from each other to 

check for their similarity. Minimum distance rule is valid for Euclidean quantities, but not 

for quantities like covariance matrices, which exist in Riemannian space. 

 The metric for comparison between two covariance matrices is 

 
 Where λi(C1,C2) are generalized Eigenvalues for the matrices C1 & C2. The metric 

is a scalar value, which indicates the dissimilarity between the two images with 

covariance matrices C1 & C2. In other words, the smaller this number is, the greater the 

similarity between the two images. If C1 = C2, then the result of the metric will be ρ=0. 

 

2.2 Efficient scanning using Integral Images 
 Now we know how to compute a covariance matrix of an image and how to 

compare two covariance matrices to check for the similarity of two images. However, we 

have to be able to locate the object we want to identify within the image, in order to 

compute the covariance for it, and then compare it to another reference covariance 

matrix. For example, the covariance matrix describing the image in Figure 1 is different 

from that describing Figure 2, although the car in Figure 2 is in Figure 1. Therefore, we 

need to scan through region by region in Figure 1 and compare every region with a 

reference covariance matrix, which is the covariance matrix describing Figure 2 in this 

case. 



 
 

 
Figure 1: demonstration. 

 

 
Figure 2: demonstration. 

  

If we divide the image into small rectangular regions and compute the covariance 

matrix for every region, it will be an inefficient scanning algorithm. We would have to go 

through a nested for loop to compute the covariance matrix for every pixel in the 

rectangular region and then sum them up and divide by the number of pixels. Doing that 

for every rectangular area in the image would take too much time. 

A better way to do this is to use integral images. To get the integral image, we first 

compute the covariance matrix for every pixel in the image. This will give us a four 

dimensional block (Let the four dimensional block be named CI); for every pixel in the 

M by N image we have a d by d matrix describing it. The next step is to sum up all the 

covariance matrices up to a point (x,y) in the four dimensional block. The point (x,y) on 

the integral image is the summation of all covariance matrices up to that point in CI. For 

example, the covariance matrix at point (2,2) in the integral image is the sum of the 

covariance matrices at the points (1,1), (1,2), (2,1) and (2,2) in CI. Moreover, the 

covariance matrix at point (M,N) in the integral image is the sum of all covariance 

matrices in CI.  

To illustrate the significance of integral images, consider figure 3. The point (x’, 

y’) is described by a covariance matrix that is the sum of all covariance matrices of pixels 

in the yellow region. Similarly, the point (x’’, y’’)  is described by a covariance matrix 



 
 

that is the sum of all covariance matrices of pixels in the green, yellow, blue and red 

regions. So in order to calculate the covariance matrix describing the yellow region, we 

would have to divide the matrix at point (x’, y’) by the number of pixels in the yellow 

region. Also, to calculate the covariance matrix describing all the colored regions, we 

divide the matrix in at point (x’’, y’’) by the number of pixels in the colored regions.  

 

 
Figure 3: Integral Image. 

 
Now suppose we want to compute the covariance of the green region alone. The 

point (x’’, y’’), as mentioned before, includes the sum of all the regions’ covariance 

matrices. Thus, we have to subtract the points (x’’, y’) and (x’, y’’) from (x’’, y’’) to 

remove the summed values of the blue and red regions from the matrix in the point     

(x’’, y’’). However, by subtracting the points (x’’, y’) and (x’, y’’) from (x’’, y’’) we 

would be removing the sum of the yellow region twice, so we need to compensate for 

that by adding the point (x’, y’).  

 



 
 

The equation for calculating the covariance matrix of the green region is 

 

covmatrix =[INTIM(x’’,y’’) - INTIM(x’,y’’) - INTIM(x’’,y’) + INTIM(x’,y’)]/(# of pixels) 

  

 Where INTIM is the integral image and covmatrix is the covariance matrix of the 

green region. 

 As a result, using integral images we can calculate the covariance of a region by 

two subtractions, one addition and one division. Computationally, this is much more 

efficient than taking every region and calculating the covariance matrix for it using the 

covariance equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3. Identifying objects 
To identify objects, we need to choose a feature vector that carry essential 

information about the target objects. For example, to identify oranges in an image, we 

need to choose a feature vector that includes Red, Green, Blue, gradients and Laplacians. 

Including Red, Green and blue is important because oranges have a unique color. 

Gradients and Laplacians are important to indicate the round shape of the orange. 

Besides choosing the right feature vector, having a rich database that has 

covariance matrices of the object’s different orientations increases the accuracy 

significantly. This is even more important when target objects are non-rigid objects that 

can appear deformed in an image. 

Scanning through the image is also a factor that can be optimized. For example, in 

the case of identifying objects on the beach, we should not compute covariance matrices 

for the upper regions of the picture, which most likely is the sky. So we should only 

check regions in the image that are in the area of interest. 

 

3.1 Identifying Motor vehicles 
  To identify Motor vehicles, the feature vector was chosen as follows 
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where I is the grayscale luminance of the image. 

Color features are not used here because cars are not distinguished by colors. The 

same shaped car can appear in two different colors. On the other hand, vertical and 

horizontal gradients and Laplacians are good descriptors of cars because they carry 

important information to distinguish cars from other objects.  

We wish to identify cars, and distinguish SUVs from Sedans. Therefore, there 

should be two different databases, one for Sedans and the other for SUVs. The Sedan cars 

and the SUVs that were used in the database are shown in Figures 4 & 5, respectively. We 

store the covariance matrices of these cars in a database for cars. 

 



 
 

 
Figure 4: Sedan cars in database. 

 
 
 
 

 
Figure 5: SUVs in database. 

 
 
The algorithm starts by computing the grayscale luminance of the image and 

hence the gradients and Laplacians of the image. The next step is to calculate the integral 

image. Then we start scanning the image region by region. However, we only scan 

regions of interest, i.e. we scan the street because we are looking for cars and that is 

where they are. For every region we scan through we compute its covariance matrix 

using the calculated integral image. Then we compare it to the cars in the database. First 

we compare it to the SUVs; if the number from the comparison metric is smaller than a 

certain threshold, we store this number in an array dedicated for the SUVs comparison 

numbers. We also store the corresponding coordinates of the rectangular region. When we 

have scanned all the regions in the image, we take the minimum comparison number in 

the SUV array and we decide that this is the region where the SUV is most likely located. 

It is also recommended to scan the whole image more than once with changing sizes of 

the rectangular region, in order to account for the different sizes of the cars that can 

appear. We do the same steps for Sedans. The MATLAB algorithm for this is in the 

Appendix. 

 



 
 

3.2 Identifying Humans 
 Similar to the case of identifying cars, we use the same feature vector to identify 

humans:- 
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 Again, we did not use colors as features because colors do not distinguish 

humans. Humans have different skin colors and can appear in clothes with different 

colors. Therefore, we also use gradients and Laplacians because they carry important 

information that can distinguish humans. 

 Like the case of cars in 3.1, we have a database for humans. The database stores 

the covariance matrices of reference images that we use in comparison. Figure 6 shows 

the pictures used in the database. 

 

 
Figure 6: Human database. 

  

 When identifying one single human, the algorithm is exactly the same as the one 

used to identify cars. However, we can also identify multiple humans by taking the least 

comparison number for different rectangle sizes. The code for that is in the Appendix. 

 

 

 

 

 

 

 



 
 

4. Experimental Results 

4.1 Experimental Results for Motor vehicles 
 For testing the algorithm on cars, snapshots of Commonwealth Avenue were used. 

The results were good for a small database like the one used (see Figure 7) 

 

 
Figure 7: Successful Detection: Red Box for Sedan, Black Box for SUV. 

 

However, there were also errors in detection. Sometimes, SUVs were identified as 

Sedans and vice versa. Other times, the stripes on the street were identified as cars. These 

errors occur because we use gradients as features, and the stripes in the streets can create 

shapes that can have a covariance matrix similar to one of the stored covariance matrices. 

If we have a bigger database, these kinds of errors would rarely happen. Some examples 

of the errors are shown in figure 8. 

 

 

 

 



 
 

 

 

 
Figure 8: Errors in detection: Red Box for Sedan, Black Box for SUV. 

 

 

 

4.2 Experimental Results for Humans 
 The images that were used in testing the algorithm on humans were pictures of 

humans at the beach. Therefore, it was easier to identify humans because there are no 

surrounding details like the case of cars on the street. The background was sand and sky, 

so the gradients did not carry misleading information.  

 Two algorithms were used in testing images with humans. The first was a single 

object detection algorithm. The code for it can be found in the Appendix and the results 

are shown in Figure 9. 

 

 

 

 



 
 

 
Figure 9: single detection. 

  

The second algorithm used was aimed at detecting multiple humans in the image. 

It had some successful results and some errors as well. Figure 10 shows a successful 

triple detection. 

 
Figure 10: Multiple detection (three targets). 

 

 



 
 

 When using a 5 target detection algorithm, some targets are detected more than 

once. Multiple target detection is about changing the rectangular region size and scanning 

the image more than once with the different rectangle sizes. It happens that for two 

rectangle sizes, the same region is the most likely region to be the target. If we have a 

bigger database with more orientations inside, this error (figure 11) would happen rarely. 

 

 
Figure 11: Multiple detection (five targets) with error. 

 
 Another error occurs when testing images like figure 12. In this case, the shape 

behind the man walking in the water created a curvy shape that distorted the detection. 

This can be avoided if we have a bigger database. 

 
Figure 12: Five target detection, multiple errors. 



 
 

 5. Conclusions and possible improvements 
 The method is very efficient, although we used only a small database. However, 

we need to do some improvements and set some guidelines before we can implement a 

real time system that uses this algorithm. The following steps should be done: 

 

1. Build a bigger Database for every desired target object. The database should 

contain at least 50 entries for each object, i.e. 50 covariance matrices for each 

Sedans, SUVs and humans. 

2. Every Camera should have its own database that is specifically designed for it. If 

the camera is likely to capture images of cars from the side, then the database 

should include covariance matrices that describe side views of cars. 

3. Combine this method with motion detection for video sequences. This will help to 

locate vehicles within the image efficiently. Also, it would locate vehicle faster 

and decrease the processing time of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix  
1. MATLAB code for detection of Sedan and SUV:- 

 
clear 
clc 
  
%loading the database for Cars:- 
load database 
  
%__________________________________________________________ 
%main code 
stepsize=2;                     %stepsize in scanning the image 
barb=(double(imread('commav31','tif')))/255; 
% barb=barb(200:224,300:352,:); 
s=size(barb); 
i=rgb2gray(barb); 
dery=i(2:s(1),:)-i(1:s(1)-1,:);     %//first order vertical gradient 
derx=i(:,2:s(2))-i(:,1:s(2)-1);     %//first order horizontal gradient 
x(:,:,1)=[zeros(1,s(2)); dery];  %//setting the first row to zeros to 
adjust matrix size 
x(:,:,2)=[zeros(s(1),1) derx];   %//setting the first column to zeros 
to adjust matrix size 
dery2=x(2:s(1),:,1)-x(1:s(1)-1,:,1);  %//second order vertical gradient 
derx2=x(:,2:s(2),2)-x(:,1:s(2)-1,2);   %//second order horizontal 
gradient 
x(:,:,3)=[zeros(1,s(2)); dery2]; 
x(:,:,4)=[zeros(s(1),1) derx2]; 
mew=sum(sum(x))/(s(1)*s(2)); 
minim=1; 
for u=1:s(1); 
    for v=1:s(2); 
        c1=(x(u,v,:)-mew); 
        covariance(u,v,:,:)=[c1(1); c1(2); c1(3); c1(4)]*[c1(1) c1(2) 
c1(3) c1(4)]; 
    end 
end 
%computing integral image____________________________ 
integralim(1,1,:,:)=covariance(1,1,:,:); 
for u=2:s(1); 
    integralim(u,1,:,:)=sum(covariance(1:u,1,:,:)); 
end 
for u=2:s(2); 
    integralim(1,u,:,:)=sum(covariance(1,1:u,:,:)); 
end 
for u=2:s(1); 
    for v=2:s(2) 
        integralim(u,v,:,:)=covariance(u,v,:,:)+integralim(u,v-
1,:,:)+integralim(u-1,v,:,:)-integralim(u-1,v-1,:,:); 
    end 
end 
%finished computing integral image____________________________ 
for kk=1:4; 
count=1; 
count2=1; 



 
 

rowsize(kk)=15+5*kk; 
colsize(kk)=30+10*kk; 
for u=70:stepsize:155-rowsize(kk); 
    for v=1:stepsize:s(2)-colsize(kk); 
        
c=integralim(u,v,:,:)+integralim(u+rowsize(kk),v+colsize(kk),:,:)-
integralim(u,v+colsize(kk),:,:)-integralim(u+rowsize(kk),v,:,:); 
        covmatr(:,:)=c(:,:,1:4,1:4)/(rowsize(kk)*colsize(kk));         
%calculating the covariance of a region 
        rho(1)=sqrt(sum((log(eig(covmatr,covmatr1))).^2));             
%comparing with database 
        rho(2)=sqrt(sum((log(eig(covmatr,covmatr2))).^2));             
%| 
        rho(3)=sqrt(sum((log(eig(covmatr,covmatr3))).^2));             
%| 
        rho(4)=sqrt(sum((log(eig(covmatr,covmatr4))).^2));             
%| 
        rho(5)=sqrt(sum((log(eig(covmatr,covmatr5))).^2));             
%| 
        rho(6)=sqrt(sum((log(eig(covmatr,covmatr6))).^2));             
%| 
        rho(7)=sqrt(sum((log(eig(covmatr,covmatr7))).^2));             
%| 
        rho(8)=sqrt(sum((log(eig(covmatr,covmatr8))).^2));             
%| 
        rho(9)=sqrt(sum((log(eig(covmatr,covmatr9))).^2));             
%| 
        rho(10)=sqrt(sum((log(eig(covmatr,covmatr10))).^2));           
%| 
        rho(11)=sqrt(sum((log(eig(covmatr,covmatr11))).^2));           
%| 
        minv=min(rho); 
        if(minv<=minim) 
            covnum(count)=find(rho==min(rho)); 
            rho2(count)=minv; 
            m(count)=u; 
            n(count)=v; 
            count=count+1; 
        end 
        rho1(1)=sqrt(sum((log(eig(covmatr,covmatrs1))).^2));            
%sedan 
        rho1(2)=sqrt(sum((log(eig(covmatr,covmatrs2))).^2));            
%sedan 
        rho1(3)=sqrt(sum((log(eig(covmatr,covmatrs3))).^2));            
%sedan 
        rho1(4)=sqrt(sum((log(eig(covmatr,covmatrs4))).^2));            
%sedan 
        rho1(5)=sqrt(sum((log(eig(covmatr,covmatrs5))).^2));            
%sedan 
        rho1(6)=sqrt(sum((log(eig(covmatr,covmatrs6))).^2));            
%sedan 
        rho1(7)=sqrt(sum((log(eig(covmatr,covmatrs7))).^2));            
%sedan 
        minv2=min(rho1); 
        if(minv2<=minim)                                                 
%sedan 
            covnum12(count2)=find(rho1==min(rho1)); 



 
 

            rho12(count2)=minv2; 
            m12(count2)=u; 
            n12(count2)=v; 
            count2=count2+1; 
        end 
    end 
end 
if(count>1) 
rhores(kk)=min(rho2); 
coords1=find(rho2==min(rho2)); 
mm1(kk)=m(coords1); 
nn1(kk)=n(coords1); 
end 
clear rho2 
if(count2>1)                                %sedan 
rhores1(kk)=min(rho12); 
coords11=find(rho12==min(rho12)); 
mm12(kk)=m12(coords11); 
nn12(kk)=n12(coords11); 
end 
clear rho12 
end 
if(count>1) 
coords=find(rhores==min(rhores)); 
mm=mm1(coords); 
nn=nn1(coords); 
barb(mm:mm+rowsize(coords),nn,:)=0;                     %labeling SUV 
in black box 
barb(mm:mm+rowsize(coords),nn+colsize(coords),:)=0; 
barb(mm,nn:nn+colsize(coords),:)=0; 
barb(mm+rowsize(coords),nn:nn+colsize(coords),:)=0; 
end 
if(count2>1) 
coords2=find(rhores1==min(rhores1));                %sedan RED 
mm2=mm12(coords2); 
nn2=nn12(coords2); 
barb(mm2:mm2+rowsize(coords2),nn2,1)=255;               %labeling sedan 
in red box 
barb(mm2:mm2+rowsize(coords2),nn2,2:3)=0; 
barb(mm2:mm2+rowsize(coords2),nn2+colsize(coords2),1)=255; 
barb(mm2:mm2+rowsize(coords2),nn2+colsize(coords2),2:3)=0; 
barb(mm2,nn2:nn2+colsize(coords2),1)=255; 
barb(mm2,nn2:nn2+colsize(coords2),2:3)=0; 
barb(mm2+rowsize(coords2),nn2:nn2+colsize(coords2),1)=255; 
barb(mm2+rowsize(coords2),nn2:nn2+colsize(coords2),2:3)=0; 
end 
imshow(barb) 
 

 
 

 

 



 
 

2. MATLAB Code for single detection of Humans:- 
clear 
clc 
  
%Database:- 
  
load databaseh 
  
  
%______________________________________________________________________
____ 
  
%main code 
magnification=1; 
stepsize=2; 
barb=(double(imread('beach2','tif')))/255; 
% barb=barb(200:224,300:352,:); 
s=size(barb); 
i=rgb2gray(barb); 
dery=i(2:s(1),:)-i(1:s(1)-1,:);     %//first order vertical gradient 
derx=i(:,2:s(2))-i(:,1:s(2)-1);     %//first order horizontal gradient 
x(:,:,1)=[zeros(1,s(2)); dery];  %//setting the first row to zeros to 
adjust matrix size 
x(:,:,2)=[zeros(s(1),1) derx];   %//setting the first column to zeros 
to adjust matrix size 
dery2=x(2:s(1),:,1)-x(1:s(1)-1,:,1);  %//second order vertical gradient 
derx2=x(:,2:s(2),2)-x(:,1:s(2)-1,2);   %//second order horizontal 
gradient 
x(:,:,3)=[zeros(1,s(2)); dery2]; 
x(:,:,4)=[zeros(s(1),1) derx2]; 
mew=sum(sum(x))/(s(1)*s(2)); 
minim=1; 
for u=1:s(1); 
    for v=1:s(2); 
        c1=(x(u,v,:)-mew); 
        covariance(u,v,:,:)=[c1(1); c1(2); c1(3); c1(4)]*[c1(1) c1(2) 
c1(3) c1(4)]; 
    end 
end 
%computing integral image________________ 
integralim(1,1,:,:)=covariance(1,1,:,:); 
for u=2:s(1); 
    integralim(u,1,:,:)=sum(covariance(1:u,1,:,:)); 
end 
for u=2:s(2); 
    integralim(1,u,:,:)=sum(covariance(1,1:u,:,:)); 
end 
for u=2:s(1); 
    for v=2:s(2) 
        integralim(u,v,:,:)=covariance(u,v,:,:)+integralim(u,v-
1,:,:)+integralim(u-1,v,:,:)-integralim(u-1,v-1,:,:); 
    end 
end 
%finished computing integral image____________________________ 
for kk=1:5; 
count=1; 



 
 

rowsize(kk)=magnification*(5+5*(kk-1)); 
colsize(kk)=magnification*(4+2*(kk-1)); 
for u=1:stepsize:s(1)-rowsize(kk); 
    for v=1:stepsize:s(2)-colsize(kk); 
        
c=integralim(u,v,:,:)+integralim(u+rowsize(kk),v+colsize(kk),:,:)-
integralim(u,v+colsize(kk),:,:)-integralim(u+rowsize(kk),v,:,:); 
        covmatr(:,:)=c(:,:,1:4,1:4)/(rowsize(kk)*colsize(kk));              
%calculating the covariance of a region 
        rho(1)=sqrt(sum((log(eig(covmatr,covmatrh1))).^2));                 
%comparing with database 
        rho(2)=sqrt(sum((log(eig(covmatr,covmatrh2))).^2));                 
%| 
        rho(3)=sqrt(sum((log(eig(covmatr,covmatrh3))).^2));                 
%| 
        rho(4)=sqrt(sum((log(eig(covmatr,covmatrh4))).^2));                 
%| 
        rho(5)=sqrt(sum((log(eig(covmatr,covmatrh5))).^2));                 
%| 
        rho(6)=sqrt(sum((log(eig(covmatr,covmatrh6))).^2));                 
%| 
        rho(7)=sqrt(sum((log(eig(covmatr,covmatrh7))).^2));                 
%| 
        rho(8)=sqrt(sum((log(eig(covmatr,covmatrh8))).^2));                 
%| 
        rho(9)=sqrt(sum((log(eig(covmatr,covmatrh9))).^2));                 
%| 
        rho(10)=sqrt(sum((log(eig(covmatr,covmatrh10))).^2));               
%| 
        minv=min(rho); 
        if(minv<=minim) 
            covnum(count)=find(rho==min(rho)); 
            rho2(count)=minv; 
            m(count)=u; 
            n(count)=v; 
            count=count+1; 
        end 
    end 
end 
if(count>1) 
rhores(kk)=min(rho2); 
coords1=find(rho2==min(rho2)); 
mm1(kk)=m(coords1); 
nn1(kk)=n(coords1); 
end 
clear rho2 
end 
coords=find(rhores==min(rhores)); 
mm=mm1(coords); 
nn=nn1(coords); 
barb(mm:mm+rowsize(coords),nn,:)=0;                         %labeling 
human in black 
barb(mm:mm+rowsize(coords),nn+colsize(coords),:)=0; 
barb(mm,nn:nn+colsize(coords),:)=0; 
barb(mm+rowsize(coords),nn:nn+colsize(coords),:)=0; 
  
imshow(barb) 



 
 

 

3. MATLAB Code for Multiple detection of Humans:- 
clear 
clc 
  
%Database:- 
  
load databaseh 
  
%______________________________________________________________________
____ 
  
%main code 
stepsize=2; 
magnification=2; 
barb=(double(imread('beach1','tif')))/255; 
s=size(barb); 
i=rgb2gray(barb); 
dery=i(2:s(1),:)-i(1:s(1)-1,:);     %//first order vertical gradient 
derx=i(:,2:s(2))-i(:,1:s(2)-1);     %//first order horizontal gradient 
x(:,:,1)=[zeros(1,s(2)); dery];  %//setting the first row to zeros to 
adjust matrix size 
x(:,:,2)=[zeros(s(1),1) derx];   %//setting the first column to zeros 
to adjust matrix size 
dery2=x(2:s(1),:,1)-x(1:s(1)-1,:,1);  %//second order vertical gradient 
derx2=x(:,2:s(2),2)-x(:,1:s(2)-1,2);   %//second order horizontal 
gradient 
x(:,:,3)=[zeros(1,s(2)); dery2]; 
x(:,:,4)=[zeros(s(1),1) derx2]; 
mew=sum(sum(x))/(s(1)*s(2)); 
minim=0.55;             %threshold value 
for u=1:s(1); 
    for v=1:s(2); 
        c1=(x(u,v,:)-mew); 
        covariance(u,v,:,:)=[c1(1); c1(2); c1(3); c1(4)]*[c1(1) c1(2) 
c1(3) c1(4)]; 
    end 
end 
%computing integral image____________________________ 
integralim(1,1,:,:)=covariance(1,1,:,:); 
for u=2:s(1); 
    integralim(u,1,:,:)=sum(covariance(1:u,1,:,:)); 
end 
for u=2:s(2); 
    integralim(1,u,:,:)=sum(covariance(1,1:u,:,:)); 
end 
for u=2:s(1); 
    for v=2:s(2) 
        integralim(u,v,:,:)=covariance(u,v,:,:)+integralim(u,v-
1,:,:)+integralim(u-1,v,:,:)-integralim(u-1,v-1,:,:); 
    end 
end 
%finished computing integral image_________________________________ 
for kk=1:5; 
count=1; 



 
 

rowsize(kk)=magnification*(20+10*(kk-1)); 
colsize(kk)=magnification*(10+5*(kk-1)); 
for u=1:stepsize:s(1)-rowsize(kk); 
    for v=1:stepsize:s(2)-colsize(kk); 
        
c=integralim(u,v,:,:)+integralim(u+rowsize(kk),v+colsize(kk),:,:)-
integralim(u,v+colsize(kk),:,:)-integralim(u+rowsize(kk),v,:,:);   
        covmatr(:,:)=c(:,:,1:4,1:4)/(rowsize(kk)*colsize(kk));          
%calculating the covariance of a region 
        rho(1)=sqrt(sum((log(eig(covmatr,covmatrh1))).^2));             
%comparing with database 
        rho(2)=sqrt(sum((log(eig(covmatr,covmatrh2))).^2));             
%| 
        rho(3)=sqrt(sum((log(eig(covmatr,covmatrh3))).^2));             
%| 
        rho(4)=sqrt(sum((log(eig(covmatr,covmatrh4))).^2));             
%| 
        rho(5)=sqrt(sum((log(eig(covmatr,covmatrh5))).^2));             
%| 
        rho(6)=sqrt(sum((log(eig(covmatr,covmatrh6))).^2));             
%| 
        rho(7)=sqrt(sum((log(eig(covmatr,covmatrh7))).^2));             
%| 
        rho(8)=sqrt(sum((log(eig(covmatr,covmatrh8))).^2));             
%| 
        rho(9)=sqrt(sum((log(eig(covmatr,covmatrh9))).^2));             
%| 
        rho(10)=sqrt(sum((log(eig(covmatr,covmatrh10))).^2));           
%| 
        minv=min(rho); 
        if(minv<=minim) 
            covnum(count)=find(rho==min(rho)); 
            rho2(count)=minv; 
            m(count)=u; 
            n(count)=v; 
            count=count+1; 
        end 
    end 
end 
if(count>1) 
rhores(kk)=min(rho2); 
coords1=find(rho2==min(rho2)); 
mm1(kk)=m(coords1); 
nn1(kk)=n(coords1); 
end 
clear rho2 
end 
coords=find(rhores==min(rhores)); 
mm=mm1(coords); 
nn=nn1(coords); 
barb(mm1(1):mm1(1)+rowsize(1),nn1(1),:)=0;                  %labeling 
target 1 with a black box 
barb(mm1(1):mm1(1)+rowsize(1),nn1(1)+colsize(1),:)=0; 
barb(mm1(1),nn1(1):nn1(1)+colsize(1),:)=0; 
barb(mm1(1)+rowsize(1),nn1(1):nn1(1)+colsize(1),:)=0; 
  



 
 

barb(mm1(2):mm1(2)+rowsize(2),nn1(2),:)=0;                  %labeling 
target 2 with a black box 
barb(mm1(2):mm1(2)+rowsize(2),nn1(2)+colsize(2),:)=0; 
barb(mm1(2),nn1(2):nn1(2)+colsize(2),:)=0; 
barb(mm1(2)+rowsize(2),nn1(2):nn1(2)+colsize(2),:)=0; 
  
barb(mm1(3):mm1(3)+rowsize(3),nn1(3),:)=0;                  %labeling 
target 3 with a black box 
barb(mm1(3):mm1(3)+rowsize(3),nn1(3)+colsize(3),:)=0; 
barb(mm1(3),nn1(3):nn1(3)+colsize(3),:)=0; 
barb(mm1(3)+rowsize(3),nn1(3):nn1(3)+colsize(3),:)=0; 
  
barb(mm1(4):mm1(4)+rowsize(4),nn1(4),:)=0;                  %labeling 
target 4 with a black box 
barb(mm1(4):mm1(4)+rowsize(4),nn1(4)+colsize(4),:)=0; 
barb(mm1(4),nn1(4):nn1(4)+colsize(4),:)=0; 
barb(mm1(4)+rowsize(4),nn1(4):nn1(4)+colsize(4),:)=0; 
  
barb(mm1(5):mm1(5)+rowsize(5),nn1(5),:)=0;                  %labeling 
target 5 with a black box 
barb(mm1(5):mm1(5)+rowsize(5),nn1(5)+colsize(5),:)=0; 
barb(mm1(5),nn1(5):nn1(5)+colsize(5),:)=0; 
barb(mm1(5)+rowsize(5),nn1(5):nn1(5)+colsize(5),:)=0; 
figure 
imshow(barb) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

4. MATLAB code for calculating the covariance matrix of an image read from 
directory 

 
clear  
clc  
barb=(double(imread('test5','tif')))/255;  
s=size(barb);  
i=rgb2gray(barb);  
dery=i(2:s(1),:)-i(1:s(1)-1,:);         %//first order vertical gradient  
derx=i(:,2:s(2))-i(:,1:s(2)-1);         %//first order horizontal gradient  
x(:,:,1)=[zeros(1,s(2)); dery];  %//setting the first row to zeros to  
adjust matrix size  
x(:,:,2)=[zeros(s(1),1) derx];   %//setting the first column to zeros  
to adjust matrix size  
dery2=x(2:s(1),:,1)-x(1:s(1)-1,:,1);  %//second order vertical  
gradient  
derx2=x(:,2:s(2),2)-x(:,1:s(2)-1,2);   %//second order horizontal  
gradient  
x(:,:,3)=[zeros(1,s(2)); dery2];  
x(:,:,4)=[zeros(s(1),1) derx2];  
x=x+0.5;  
count=1;  
mew=sum(sum(x))/(s(1)*s(2));  
for u=1:s(1);  
    for v=1:s(2);  
        c1=(x(u,v,:)-mew);  
        covariance(u,v,:,:)=[c1(1); c1(2); c1(3); c1(4)]*[c1(1) c1(2)  
c1(3) c1(4)];  
    end  
end  
covmatrs(:,:)=sum(sum(covariance))/(s(1)*s(2));  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

5. MATLAB code for car database 
 
clear 
clc 
 
%SUV4  
covmatr1 =[0.0106    0.0004    0.0108    0.0001  
    0.0004    0.0031    0.0001    0.0028  
    0.0108    0.0001    0.0175    0.0001  
    0.0001    0.0028    0.0001    0.0048]; 

%SUV3  
covmatr2 = [0.0082    0.0004    0.0073    0.0002  
    0.0004    0.0031    0.0002    0.0027  
    0.0073    0.0002    0.0105    0.0003  
    0.0002    0.0027    0.0003    0.0047]; 

%SUV5  
covmatr3 = [0.0070    0.0002    0.0069         0  
    0.0002    0.0018         0    0.0014  
    0.0069         0    0.0125    0.0001  
         0    0.0014    0.0001    0.0029]; 

%SUV7  
covmatr4 = [0.0054   -0.0001    0.0040   -0.0001  
   -0.0001    0.0018   -0.0001    0.0014  
    0.0040   -0.0001    0.0053         0  
   -0.0001    0.0014         0    0.0019]; 

%SUV11  
covmatr5 = [0.0045    0.0007    0.0039   -0.0001  
    0.0007    0.0019    0.0003    0.0016  
    0.0039    0.0003    0.0077    0.0002  
   -0.0001    0.0016    0.0002    0.0031]; 

%test1  
covmatr6 = [0.0701    0.0045    0.1027   -0.0029  
    0.0045    0.0068    0.0076    0.0035  
    0.1027    0.0076    0.2053   -0.0019  
   -0.0029    0.0035   -0.0019    0.0069]; 

%test2  
covmatr7 = [0.0124    0.0015    0.0155   -0.0008  
    0.0015    0.0031    0.0017    0.0013  
    0.0155    0.0017    0.0310   -0.0005  
   -0.0008    0.0013   -0.0005    0.0026]; 



 
 

%test6  
covmatr8 = [0.0333    0.0027    0.0437   -0.0001  
    0.0027    0.0084    0.0021    0.0080  
    0.0437    0.0021    0.0874   -0.0006  
   -0.0001    0.0080   -0.0006    0.0159]; 

%test7  
covmatr9 = [0.0116    0.0005    0.0106   -0.0007  
    0.0005    0.0033   -0.0001    0.0017  
    0.0106   -0.0001    0.0210   -0.0001  
   -0.0007    0.0017   -0.0001    0.0033];  

%test10  
covmatr10 = [0.0107    0.0016    0.0080    0.0002  
    0.0016    0.0024    0.0015    0.0010  
    0.0080    0.0015    0.0160    0.0010  
    0.0002    0.0010    0.0010    0.0020]; 

covmatr11 = [0.0039    0.0003    0.0039         0  
    0.0003    0.0016         0    0.0016  
    0.0039         0    0.0078         0  
         0    0.0016         0    0.0033 ]; 

%sedan1  
covmatrs1 = [0.0212    0.0019    0.0202   -0.0003  
    0.0019    0.0069    0.0009    0.0053  
    0.0202    0.0009    0.0402    0.0002  
   -0.0003    0.0053    0.0002    0.0106 ]; 

%sedan2  
covmatrs2 = [0.0188   -0.0001    0.0177         0  
   -0.0001    0.0059   -0.0002    0.0054  
    0.0177   -0.0002    0.0189    0.0001  
         0    0.0054    0.0001    0.0108 ]; 

%sedan3  
covmatrs3 = [0.0090    0.0002    0.0091   -0.0002  
    0.0002    0.0010   -0.0001    0.0003  
    0.0091   -0.0001    0.0180   -0.0001  
   -0.0002    0.0003   -0.0001    0.0007 ]; 

 

%sedan4  
covmatrs4 = [0.0117    0.0008    0.0084   -0.0002  
    0.0008    0.0042    0.0001    0.0030  
    0.0084    0.0001    0.0169    0.0001  
   -0.0002    0.0030    0.0001    0.0060 ]; 



 
 

%sedan5  
covmatrs5 =[0.0121         0    0.0107   -0.0004  
         0    0.0032   -0.0002    0.0024  
    0.0107   -0.0002    0.0161   -0.0002  
   -0.0004    0.0024   -0.0002    0.0029]; 

%sedan6  
covmatrs6 = [0.0145    0.0010    0.0124         0  
    0.0010    0.0029    0.0005    0.0019  
    0.0124    0.0005    0.0174    0.0004  
         0    0.0019    0.0004    0.0037 ]; 

%sedan7  
covmatrs7 =[0.0088    0.0005    0.0086   -0.0001  
    0.0005    0.0024    0.0003    0.0018  
    0.0086    0.0003    0.0172    0.0001  
   -0.0001    0.0018    0.0001    0.0021]; 

 
 
save database 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

6. MATLAB code for human database 
 
%human1  
covmatrh1 = [0.0098    0.0050    0.0102    0.0052  
    0.0050    0.0177    0.0025    0.0199  
    0.0102    0.0025    0.0204    0.0040  
    0.0052    0.0199    0.0040    0.0398 ]; 

%human2  
covmatrh2 = [0.0042    0.0004    0.0040   -0.0003  
    0.0004    0.0058   -0.0003    0.0049  
    0.0040   -0.0003    0.0079   -0.0003  
   -0.0003    0.0049   -0.0003    0.0097 ]; 

%human3  
covmatrh3 = [0.0048    0.0001    0.0033   -0.0003  
    0.0001    0.0042   -0.0003    0.0026  
    0.0033   -0.0003    0.0065   -0.0001  
   -0.0003    0.0026   -0.0001    0.0052];  

%human4  
covmatrh4 = [0.0016    0.0002    0.0015     0  
    0.0002    0.0079    0    0.0075  
    0.0015         0    0.0029         0  
         0    0.0075         0    0.0114 ]; 

%human6  
covmatrh6 = [0.0025    0.0006    0.0019    0.0002  
    0.0006    0.0028         0    0.0024  
    0.0019         0    0.0038    0.0001  
    0.0002    0.0024    0.0001    0.0047 ]; 

%human7  
covmatrh7 = [0.0033    0.0006    0.0025   -0.0001  
    0.0006    0.0052    0.0001    0.0034  
    0.0025    0.0001    0.0050    0.0002  
   -0.0001    0.0034    0.0002    0.0067 ]; 

%human8  
covmatrh8 = [0.0049    0.0017    0.0053    0.0014  
    0.0017    0.0079    0.0007    0.0090  
    0.0053    0.0007    0.0105    0.0008  
    0.0014    0.0090    0.0008    0.0180 ]; 

 

 

 



 
 

%human9  
covmatrh9 = [0.0092    0.0030    0.0113    0.0021  
    0.0030    0.0128    0.0018    0.0145  
    0.0113    0.0018    0.0226    0.0015  
    0.0021    0.0145    0.0015    0.0291 ]; 

%human10  
covmatrh10 = [0.0146    0.0010    0.0122    0.0003  
    0.0010    0.0189   -0.0006    0.0146  
    0.0122   -0.0006    0.0180    0.0002  
    0.0003    0.0146    0.0002    0.0274 ]; 
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