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1 Introduction 
Search and rescue operations vary vastly in terrain, goals, and implementation. The            

operations may be completed by manned or unmanned aerial vehicles and are conducted             

across many different terrains and in search of a variety of objects. Regardless of the               

choice of aircraft, a number of high resolution cameras can be mounted on the vehicle for                

capturing video and images of the terrain. Due to the breadth and scope of these               

operations, the challenge of identifying an object of interest is usually quite significant;             

the object of interest, e.g. a person, typically occupies a small portion of the image or                

view due to the altitude from which the image is captured or from which the viewer                

observes the terrain. 

Outlier color detection methods are particularly useful for these applications due to            

the tendency of search and rescue targets to be a different color than the surrounding               

terrain, as displayed by the blue body in the woods below in Figure 1. Automated color                

anomaly detection algorithms can be implemented to assist in the detection of such             

targets. 

 
Figure 1: Image of ‘Woods’ with Anomaly 

2 Literature Review 

A large portion of the literature dedicated to anomaly detection are directed            

towards hyperspectral images. Hyperspectral imagery differs from the images used in           

search and rescue applications in that the use of hyperspectral sensors results in an image               



2                                                                                          Philip Yuan, Matthew Brawley 

composed of up to hundreds of spectral bands including the non-visible and visible [1].              

However, many of the underlying concepts of these algorithms developed for use in             

hyperspectral imaging can be applied to imagery with many fewer visible spectral bands,             

such as color images. 

A basic algorithm for anomalous color enhancement in aerial imagery was           

developed by Rasmussen, Thornton and Morse [2]. Their algorithm was centered on            

enhancing the image selectively by determining the frequency of hues in the image,             

determining the saliency of an object (i.e. some group of pixels that is of note compared                

to others), and then boosting the saturation of the pixels that are salient and infrequent               

hue-wise while reducing the saturation of the pixels that are not salient and frequent              

hue-wise. However, this method is not particularly robust nor automated and was            

designed to be more of a visual aid to an observer. 

Looking at a selected assortment of hyperspectral anomaly detectors, a widely           

used concept is to examine and compare the statistical properties of the spectral             

distributions between two classes of pixels: first, the local class of pixels around some              

center pixel under test (PUT) that has potential to be anomalous and second, an outer               

class of background pixels. Other detectors compare only the pixel under test to either the               

statistical properties of the entire image, or to an outer class of background pixels. 

A widely accepted method of hyperspectral anomaly detection is the Reed-Xiaoli           

(RX) algorithm [5], as well as the multiple variants of the algorithm. This normalization              

method statistically compares each pixel in the image in the form of the mean and               

covariance relationships between the spectral distributions of either the entire image or a             

local window surrounding the pixel, excluding a determined center of that window. An             

alternative set of detectors is the Dual-Window based Eigen Separation Transform           

(DWEST) [3] and the Dual Spatial Window Target Detector (DSWTD) [6][7] which not             

only uses a dual window to do locally-based comparisons, but also performs subspace             

projection on the pixels in order to enhance the statistical differences between the pixels              

of the two regions of the dual window. 

 



3                                                                                          Philip Yuan, Matthew Brawley 

3 Problem Statement 
Search and rescue operations could greatly benefit from the use of outlier color             

detection methods performed on still images captured from cameras mounted on aerial            

vehicles to automate the process of finding the object of interest. The object of interest is                

considered to be an unknown color, as well as the background, which is of a color                

different to that of the object. The object is also assumed to be small compared to the                 

search area. The purpose of our project is to implement anomaly detection algorithms             

and find the “best” algorithm to use, and what the best color spaces are to incorporate this                 

algorithm. Also, we determine whether some fusion of results between algorithms and            

color spaces help improve detection accuracy. 

 

4 Solutions 

4.1 RX Algorithm 

The RX algorithm is based on each pixel’s component values being drawn from a              

multivariate normal distribution [4]. The original algorithm is based on the global mean             

and global sample covariance matrix of the image. It is represented by the following              

formula: 

       (1) 

In the above equation Cg represents the global covariance matrix of the image and 

μg represents the global mean. The value calculated for each pixel represents its distance 

from the center of the multivariate normal distribution. 

    

Figure 2: Inner and Outer Window Example 

Variations of the RX algorithm have been developed since its conception. A            
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common alteration is to calculate variance across the entire image and to calculate a mean               

local to the pixel being evaluated, while another is to use this local mean as well as a                  

local covariance matrix. These local statistics would be computed through two windows            

around the pixel in order to separate and classify two distinct regions around the PUT: an                

inner window would include pixels closer to the target pixel, and an outer window would               

be a larger box around the target pixel. The outer window, however, would exclude the               

pixels in the inner window. This general procedure can be seen in Figure 2. The size of                 

these windows can highly impact the algorithm’s results. The statistics of the outer             

window are utilized in the RX variants’ calculations, so the inner window must be large               

enough to fit the probable maximum dimensions of the object being searched for; if the               

anomaly is present in the outer window, then the local statistics would reflect that.              

Essentially, if the PUT is an anomaly, and part of the anomaly is affecting the local                

statistics, the PUT would be considered more similar to the local area compared to if the                

anomaly was not contaminating the outer window and local statistics [1]. The outer             

window must be large enough to include enough background pixels to be able to compute               

an invertible covariance matrix for the second variation. Meanwhile, these windows must            

be small enough to be considered “local” to the pixel being evaluated. These RX variants               

result in a varying mean across the image, or a varying mean and covariance matrix.  

Alterations to the original RX detector result in two variants: 

       (2) 

       (3) 

The first equation represents the RX algorithm evaluated using a local mean (calculated 

using the outer window) and a global covariance matrix. The second equation represents 

the algorithm using fully local statistics: locally calculated means and covariance 

matrices utilizing the outer window. 

These RX algorithms return values at each pixel location, the distance from the             

center of the multivariate normal distribution. From this point a threshold must be             

determined which will be used to classify all values below the threshold as non-              

anomalies and those above the threshold as anomalies.  
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4.2 DWEST and DSWTD 

The next set of detectors assumes a linear mixing model for each pixel, that is,               

each pixel is a linear combination of spectra of the many materials it may be made up of                  

[4]. The general idea is to find a set of projection vectors to project the pixels of the two                   

regions of the dual window into a subspace that enhances the computation of the              

statistical differences between the two regions. First, the DWEST uses the inner and outer              

dual window classification method as in the RX detector. The covariance matrices for             

both the inner and outer window regions, Cin and Cout respectively, are computed and the               

difference Cdiff is found in the following equation: 

       (4) 

Eigendecomposition is done on the matrix Cdiff and the eigenvectors of only the positive              

eigenvalues of this difference covariance matrix are found. Given this set of i positive              

eigenvectors, Pi, the difference of the mean vectors of the inner and outer windows, 𝛍out -                

𝛍 in, is projected onto positive eigenvectors Pi as shown in equation 5 below. This value is                

then compared to some global threshold where the pixel is classified an outlier if it               

exceeds the threshold. 

       (5) 

Second, the DSWTD is a variant of the DWEST that uses orthogonal projection instead. 

The detector result is determined by computing a measure called the orthogonal 

projection divergence (OPD) as defined below which can be interpreted as the distance 

between two orthogonal projections.  This OPD measure for two windows is calculated 

from the means of the inner and outer window where si and sj in the definition is 𝛍 in and 

𝛍 out. 

         (6) 

        (7) 

       (8) 
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In essence, both the DWEST and DSWTD try to compute a measure of the difference of 

the means of the inner and outer regions with the DWEST finding eigenvalues and 

eigenvectors while the DSWTD calculates the OPD. 

 

4.3 Color 

The above five algorithms are each evaluated in five color spaces RGB, LAB, 

YCbCr, XYZ and HSV.  

 

4.4 Intersection of Results 

Upon determining the best detectors in the best color spaces, two methods are             

attempted to evaluate the intersection of the results, data fusion and decision fusion.             

Through data fusion, the most accurate outlier detection methods from above are            

identified, and the resultant matrices of the algorithms (pre-thresholding to determine           

outliers) are scaled by one another through element-wise multiplication, to determine if            

the scaling of results would improve detector accuracy. Decision fusion is used on the              

best detectors via logical AND and OR operators performed on the thresholded results of              

the best detectors to determine if either logical operation on the results would increase the               

number of true positives detected or decrease the number of false negatives. 

 

5 Implementation 
In order to evaluate the algorithms, images were required. There is no known data              

set of images, so three of the four test images needed anomalies to be synthetically               

introduced. The first image found is shown below in Figure 3 [9]. Artificial anomalies              

were placed in the image of the shore. 



7                                                                                          Philip Yuan, Matthew Brawley 

 

(a)      (b) 

Figure 3: 3992x2242 Image of ‘Shore’ with Anomalies (a) Full Image (b) Anomaly Zoom 
 

The second image evaluated was found online and does not contain any synthetically 

introduced anomaly; it is of a wooded area and contains a blue body anomaly. It is shown 

in Figure 4 [11]. 

 
(a)                 (b) 

Figure 4: 2562x1920 Image of ‘Woods’ with Anomaly (a) Full Image (b) Anomaly Zoom 
Figures 5 and 6 below show two images shared by another team researching outlier color 

detection for search and rescue. Figure 5 shows a desert with three artificial anomalies 

introduced, and Figure 6 shows a mountain with three artificial anomalies. 
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Figure 5: 1200x800 Image of ‘Desert’ with Three Anomalies 

 
Figure 6: 2500x1368 Image of ‘Mountain’ with Anomalies Specified 

Save for the original RX algorithm, the four other algorithms require inner and             

outer window usage to calculate statistics local to the pixel of interest. As was discussed               

previously, the sizing of these windows is very important for the success of these              
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algorithms. It was determined that an ideal window size can be used for this application               

as opposed to random sizes, due to the ability of a search and rescue team to calculate the                  

expected pixel size of a target, and to size the window appropriately. An expected pixel               

dimension can be calculated using the following formula [11]: 

   (9) 

Where “flength” is the focal length of the camera and “dist” is the distance from the                

object. Using knowledge of the camera used to capture the imagery and equipment such              

as an altitude meter, the expected pixel height of the object can be obtained and inner and                 

outer windows can be sized appropriately. 

MATLAB was chosen as the software platform to evaluate the anomaly detection            

algorithms. In order to successfully create the required windows in the sides and corners              

of the full image, a buffer of NaN values is placed around the read-in image matrix which                 

are disregarded by Matlab functions such as nanmean and nancov. This method allows             

the other pixels in the area to be considered as included in the windows. 

 

6 Experimental Results 

6.1 Observational Results 
Figure 7 below shows the results of the RX algorithm using a local mean in the 

RGB color space utilizing varying thresholds. 

 
 

 
(a)          (b) 
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(c)        (d) 

Figure 7: Results of the RGB Local Mean RX on ‘Shore’ Image with Varying Thresholds of (a) 1 (b) 10 (c) 

100 and (d) 1000 

It is apparent from this figure that the chosen threshold is extremely important in 

determining the pixels which are classified as anomalies. Of the thresholds shown above 

the one that produces the fewest false positives and still detects all three anomalies is (c) 

which displays the result with a threshold of 100. Each of the five algorithms in the five 

color spaces produce images such as this when thresholded, displaying the detected 

locations of anomalies. 

Another example is shown in Figure 8, below, of how an incorrect threshold 

could cause detection of the many bushes in the ‘desert’ image, and how a more accurate 

threshold would detect the color anomalies much more accurately. 

 
(a) (b) 

Figure 8: Results of the RGB Local Mean RX on ‘Desert’ Image with Thresholds of (a) 10  and (b) 80 

 

6.2 Receiver Operating Characteristic Curve Results 

To quantify our results, a receiver operating characteristic curve (ROC) is           
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modeled for each of the detectors and the area under this curve (AUROC) is calculated.               

The ROC curve highlights the tradeoff between the sensitivity and specificity where            

sensitivity is defined as the true positive rate (TPR) while specificity is defined as 1               

minus the false positive rate (1-FPR). The TPR is the proportion of pixels that are true                

anomalies that are successfully detected as true while the FPR is the proportion of pixels               

that are not anomalies but are successfully detected as such. The ROC curve itself is               

determined by using many thresholds and calculating the FPR and TPR results of using              

that threshold; the resultant point with FPR measured on the x-axis and TPR measured on               

the y-axis is just one of many calculated similarly on the ROC curve. Ultimately, the               

measure we are interested in is the area under this curve: the AUROC. The AUROC can                

be seen as a sort of measure for accuracy since it is defined in our case as the probability                   

that the detector gives a value higher to some randomly selected pixel that is a true                

anomaly than it gives to some randomly selected pixel that is not an anomaly. 

The ROC and AUROC results are measured in two ways: first we find the values               

at a per image basis to analyze the varying difficulty of determining anomalies in each               

image, and second we combine a number of the images to compute the values at a per                 

detector basis to determine the best-performing detector. 

Tables 1, 2, 3 and 4 below show the AUROC results of the algorithms in varying                

color spaces for each individual image. Figure 9 shows the same data in chart form. 

Table 1: ‘Shore’ Image AUROC Values Table 2: ‘Woods’ Image AUROC Values 

Table 3: ‘Desert’ Image Auroc Values Table 4: ‘Mountain’ Image Auroc Values 
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Figure 9: Detection Results for Individual Images 
 

As mentioned, these results are shown to display the varying difficulties of the             

images under test. AUROC values for the ‘Shore’ picture indicate the detector is             

incredibly accurate (in fact, near-perfect) when dealing with an artificially exaggerated           

scenario of solid, bright, and contrasting colors. The anomalies introduced are very            

apparent in the picture. Meanwhile, the other three images analyzed produce much more             

relevant and interesting results, as the images are more complex and the outliers are more               

difficult to encounter. Therefore, only the ‘Woods,’ ‘Desert’ and ‘Mountain’ images are            

included in the subsequent analysis of detector accuracy as they represent slightly more             

realistic scenarios. 

The ROC curves for each detector in each color space are plotted below. 
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Figure 10: ROC Curve for Global RX    Figure 11: ROC Curve for Local Mean RX 
 

 

 

 

 

 

 

 

Figure 12: ROC Curve for Local RX    Figure 13: ROC Curve for DWEST 

 

 

        Figure 14: ROC for DSWTD 

 

Below in Table 5 are the AUROC results for each detector in each color space,               

evaluated over the determined three images. The results are also displayed in Figure 15. 
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Table 5: Detector & Color Space AUROC Results 

 

Figure 15: Detector & Color Space AUROC Results 

It is quite apparent from the ROC curves that there is a significant difference              

between the three versions of the RX algorithm and the two subspace projection             

algorithms DWEST/DSWTD. This is reflected in the AUROC values specified in the            

table and shown in the chart in Figure 15. All variants of the RX algorithm in all color                  

spaces had an AUROC above 0.92, while the best subspace projection-based detector had             

an AUROC lower than 0.83. In addition, it was observed that the subspace             

projection-based detectors were consistently much slower than the RX algorithm variants           

because of the general increase in calculative intensity and the required           

eigendecomposition. 

The RX algorithm utilizing a global covariance matrix and a varying local mean             

provided consistently the best compromise for computational efficiency and quality          

results. The results are very comparable to those of the RX algorithm using local              
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covariance matrices, however utilizing a local covariance matrix resulted in a quite            

substantial increase in computation time. The original RX algorithm using global           

statistics also produced good results, and while using a local mean provides better results              

and a higher AUROC, this global method does provide an AUROC above 0.98 and is               

very quick to compute, so in situations where this slight tradeoff is acceptable and a faster                

computation time is desired, this global RX algorithm would be the best to use. 

There is a variation of results across color spaces tested. The HSV and XYZ color               

spaces provide consistently poor results. The XYZ color space provides alternate R, G             

and B primaries within the CIE XYZ chromaticity diagram, thus reducing the variance             

compared to the color space in which the anomaly was introduced, so worse results are               

unsurprising. The HSV color space operates using hue, saturation and value (brightness).            

Generally, an object of interest in a search and rescue operation is expected to be of a                 

different color than the background terrain, which is what the anomalies in the images              

tested reflected. This HSV color space reduced the main variation in color to hue, solely               

one of the three components of the color space, which caused poorer results than utilizing               

color spaces that focus more on color variation across the three descriptive components. 

Meanwhile, the variations of the RX algorithm performed at consistently high           

levels in the RGB, LAB and YCbCr color spaces. RGB and LAB highly consider the               

variety of color in their space and it was expected that the algorithms would best detect                

color in these spaces. The algorithms performing well in the YCbCr color space suggest              

that there was a significant variation in anomaly vectors and background vectors in             

luminance and chrominance. 

 

6.3 Fusion Results 

To evaluate the intersection of results, data fusion first was used to scale the              

distance calculated from the center of the multivariate normal distribution by an            

algorithm in one color space with the distance calculated by the algorithm in another              

color space. The results for fusing the global and local mean RX algorithms in RGB and                

LAB color spaces are shown below in Table 6 and Figure 16. 
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Table 6: Data Fusion of RGB and LAB Spaces 

 

Figure 16: Data Fusion of RGB and LAB Color Spaces 

All color space data fusions tested returned similar results to the above: the fusion              

of color spaces resulted in either a value between the original AUROC values in both               

color spaces, or it resulted in poorer results than the original color spaces. It was               

determined that the shorter distance from the center of the multivariate distribution            

calculated for the same pixel in one color space as another had a more negative effect on                 

the results than the larger distance calculated by one of the algorithms.  

Although the DWEST performed much worse than all variants of the RX            

algorithm, their fusion in the LAB color space was tested and the results are shown below                

in Table 7. 

 
Table 7: Data Fusion of Local Mean RX and DWEST 

Fusing the poor results of the DWEST algorithm with the local mean RX resulted in a                

large increase in the performance compared to solely the DWEST, however this did not              
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overcome the performance of using solely the RX algorithm. 

To perform decision fusion, the intersection of results post-ideal thresholding          

between algorithms was considered. Logical AND and OR operations were performed on            

the results of the RX algorithm using local mean in RGB color space and LAB color                

space across the three more realistic images. These results are compared against the             

individual color spaces below in Table 8 in the form of confusion matrices. 

(a) (b) 

(c) (d) 
Table 8: Confusion Matrices (a) RGB RX Local Mean (b) LAB RX Local Mean (C) Decision Fusion 

RGB&LAB RX Local Mean (d) Decision Fusion RGB|LAB RX Local Mean 

 

As the total number of predicted and true “no” values is magnitudes larger than              

the other components of these matrixes, accuracy is a poor measure of the results because               

it will be overly influenced by the correct predictions of true negatives. 

As logic would lead one to expect, the AND operation results in values shifted              

from the “predicted yes” column to the “predicted no” column. This shift caused a slight               

decrease in false positives, however also pushed true positive results to the “predicted no”              

column. The total true positives as a result of the AND operation was lesser than the                

individual results of the original algorithms and didn’t significantly reduce the false            

positive rate. 

The OR operation shifted results from predicted “nos” to predicted “yes’s”. This            

shift resulted in a higher number of true positives than either of the original algorithms,               
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but also resulted in a larger increase in the number of false positives. Overall, the results                

of the AND or OR decision fusion would not be worth the increase in computational               

requirement to evaluate the algorithms in multiple color spaces. 

 

7 Conclusions 
In conclusion, the applications of hyperspectral anomaly detectors to outlier color           

detection in search and rescue applications are quite evident and useful. The RX             

algorithm using local mean computed in RGB, LAB and YCbCr color spaces produced             

the best results consistently with consideration for computation speed. However, if fast            

computation is truly necessary, or computation tools are limited, the global RX algorithm             

in the same color spaces provides quality results as well. Fusion of data and decisions               

between algorithms/color spaces does not provide enough increase in results quality to            

justify the increase in computational requirement in evaluating the captured images in            

multiple color spaces or algorithms. 

Image quality tested is very important in getting accurate results of algorithm            

performance. The original “shore” image showed quality results for algorithms and color            

spaces that were later proved to be poor anomaly detectors in more difficult terrain and               

outlier situations. Evaluation of these algorithms on more difficult and realistic images is             

important for further development in this area. Also, varying the window sizes in             

algorithms using local statistics would be a further area of research, as the window sizes               

utilized here were somewhat ideal under the assumption that the expected size of the              

anomaly could be determined. If a search and rescue operation anticipated this to be a               

more difficult task, evaluating the results on varying window sizes could prove to be              

beneficial. Finally, a further possible improvement would be the implementation of a            

Markov Random Field on the results of the RX algorithm. This would potentially             

decrease the number of scattered false positives detected in the image, and increase the              

number of true positives in the area where the anomaly exists. 
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