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1 Introduction

Search and rescue operations vary vastly in terrain, goals, and implementation. The
operations may be completed by manned or unmanned aerial vehicles and are conducted
across many different terrains and in search of a variety of objects. Regardless of the
choice of aircraft, a number of high resolution cameras can be mounted on the vehicle for
capturing video and images of the terrain. Due to the breadth and scope of these
operations, the challenge of identifying an object of interest is usually quite significant;
the object of interest, e.g. a person, typically occupies a small portion of the image or
view due to the altitude from which the image is captured or from which the viewer
observes the terrain.

Outlier color detection methods are particularly useful for these applications due to
the tendency of search and rescue targets to be a different color than the surrounding
terrain, as displayed by the blue body in the woods below in Figure 1. Automated color
anomaly detection algorithms can be implemented to assist in the detection of such

targets.

Figure 1: Image of ‘Woods’ with Anomaly

2  Literature Review

A large portion of the literature dedicated to anomaly detection are directed
towards hyperspectral images. Hyperspectral imagery differs from the images used in

search and rescue applications in that the use of hyperspectral sensors results in an image
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composed of up to hundreds of spectral bands including the non-visible and visible [1].
However, many of the underlying concepts of these algorithms developed for use in
hyperspectral imaging can be applied to imagery with many fewer visible spectral bands,
such as color images.

A basic algorithm for anomalous color enhancement in aerial imagery was
developed by Rasmussen, Thornton and Morse [2]. Their algorithm was centered on
enhancing the image selectively by determining the frequency of hues in the image,
determining the saliency of an object (i.e. some group of pixels that is of note compared
to others), and then boosting the saturation of the pixels that are salient and infrequent
hue-wise while reducing the saturation of the pixels that are not salient and frequent
hue-wise. However, this method is not particularly robust nor automated and was
designed to be more of a visual aid to an observer.

Looking at a selected assortment of hyperspectral anomaly detectors, a widely
used concept is to examine and compare the statistical properties of the spectral
distributions between two classes of pixels: first, the local class of pixels around some
center pixel under test (PUT) that has potential to be anomalous and second, an outer
class of background pixels. Other detectors compare only the pixel under test to either the
statistical properties of the entire image, or to an outer class of background pixels.

A widely accepted method of hyperspectral anomaly detection is the Reed-Xiaoli
(RX) algorithm [5], as well as the multiple variants of the algorithm. This normalization
method statistically compares each pixel in the image in the form of the mean and
covariance relationships between the spectral distributions of either the entire image or a
local window surrounding the pixel, excluding a determined center of that window. An
alternative set of detectors is the Dual-Window based Eigen Separation Transform
(DWEST) [3] and the Dual Spatial Window Target Detector (DSWTD) [6][7] which not
only uses a dual window to do locally-based comparisons, but also performs subspace
projection on the pixels in order to enhance the statistical differences between the pixels

of the two regions of the dual window.
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3 Problem Statement

Search and rescue operations could greatly benefit from the use of outlier color
detection methods performed on still images captured from cameras mounted on aerial
vehicles to automate the process of finding the object of interest. The object of interest is
considered to be an unknown color, as well as the background, which is of a color
different to that of the object. The object is also assumed to be small compared to the
search area. The purpose of our project is to implement anomaly detection algorithms
and find the “best” algorithm to use, and what the best color spaces are to incorporate this
algorithm. Also, we determine whether some fusion of results between algorithms and

color spaces help improve detection accuracy.

4 Solutions

4.1 RX Algorithm

The RX algorithm is based on each pixel’s component values being drawn from a
multivariate normal distribution [4]. The original algorithm is based on the global mean
and global sample covariance matrix of the image. It is represented by the following

formula:
Saxir) =(r —p )TCHr —p)
AT \ q’ q q (1)
In the above equation C, represents the global covariance matrix of the image and

u, represents the global mean. The value calculated for each pixel represents its distance

from the center of the multivariate normal distribution.

Anomaly

Pixel Under Test

Quter
Window

Figure 2: Inner and Outer Window Example

Variations of the RX algorithm have been developed since its conception. A
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common alteration is to calculate variance across the entire image and to calculate a mean
local to the pixel being evaluated, while another is to use this local mean as well as a
local covariance matrix. These local statistics would be computed through two windows
around the pixel in order to separate and classify two distinct regions around the PUT: an
inner window would include pixels closer to the target pixel, and an outer window would
be a larger box around the target pixel. The outer window, however, would exclude the
pixels in the inner window. This general procedure can be seen in Figure 2. The size of
these windows can highly impact the algorithm’s results. The statistics of the outer
window are utilized in the RX variants’ calculations, so the inner window must be large
enough to fit the probable maximum dimensions of the object being searched for; if the
anomaly is present in the outer window, then the local statistics would reflect that.
Essentially, if the PUT is an anomaly, and part of the anomaly is affecting the local
statistics, the PUT would be considered more similar to the local area compared to if the
anomaly was not contaminating the outer window and local statistics [1]. The outer
window must be large enough to include enough background pixels to be able to compute
an invertible covariance matrix for the second variation. Meanwhile, these windows must
be small enough to be considered “local” to the pixel being evaluated. These RX variants
result in a varying mean across the image, or a varying mean and covariance matrix.

Alterations to the original RX detector result in two variants:
- 7 y ¥ ' T _1 ¥ '
ORX ot (7] = (T — By Cg 7 = By ) (2)

ORxXa () = (1 — p, ) T Ol (1 — 1) 3)

The first equation represents the RX algorithm evaluated using a local mean (calculated
using the outer window) and a global covariance matrix. The second equation represents
the algorithm using fully local statistics: locally calculated means and covariance
matrices utilizing the outer window.

These RX algorithms return values at each pixel location, the distance from the
center of the multivariate normal distribution. From this point a threshold must be
determined which will be used to classify all values below the threshold as non-

anomalies and those above the threshold as anomalies.
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4.2 DWEST and DSWTD

The next set of detectors assumes a linear mixing model for each pixel, that is,
each pixel is a linear combination of spectra of the many materials it may be made up of
[4]. The general idea is to find a set of projection vectors to project the pixels of the two
regions of the dual window into a subspace that enhances the computation of the
statistical differences between the two regions. First, the DWEST uses the inner and outer
dual window classification method as in the RX detector. The covariance matrices for

both the inner and outer window regions, C, and C_, respectively, are computed and the

out

difference C; is found in the following equation:

C,[E'_ff =C' —Co (4)
Eigendecomposition is done on the matrix C,,; and the eigenvectors of only the positive
eigenvalues of this difference covariance matrix are found. Given this set of i positive
eigenvectors, P,, the difference of the mean vectors of the inner and outer windows, m_, -
w. , is projected onto positive eigenvectors P, as shown in equation 5 below. This value is
then compared to some global threshold where the pixel is classified an outlier if it

exceeds the threshold.

dpwesT(r) = ‘Z P (o — 13y

' )
Second, the DSWTD is a variant of the DWEST that uses orthogonal projection instead.
The detector result is determined by computing a measure called the orthogonal
projection divergence (OPD) as defined below which can be interpreted as the distance
between two orthogonal projections. This OPD measure for two windows is calculated
from the means of the inner and outer window where s, and s;in the definition is w;, and
Wy

dpswrp(r) = OPD (i, fout) (6)

] ]

OFPDs;. .*{J':] = I:.*-;E]-"_P.,;HE' — pr.:ﬁj]

(7)
P-=1T— .‘-'|:.‘\'T.‘~.':|_1.‘~.'T (8)

]
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In essence, both the DWEST and DSWTD try to compute a measure of the difference of
the means of the inner and outer regions with the DWEST finding eigenvalues and

eigenvectors while the DSWTD calculates the OPD.

4.3 Color

The above five algorithms are each evaluated in five color spaces RGB, LAB,

YCbCr, XYZ and HSV.

4.4 Intersection of Results

Upon determining the best detectors in the best color spaces, two methods are
attempted to evaluate the intersection of the results, data fusion and decision fusion.
Through data fusion, the most accurate outlier detection methods from above are
identified, and the resultant matrices of the algorithms (pre-thresholding to determine
outliers) are scaled by one another through element-wise multiplication, to determine if
the scaling of results would improve detector accuracy. Decision fusion is used on the
best detectors via logical AND and OR operators performed on the thresholded results of
the best detectors to determine if either logical operation on the results would increase the

number of true positives detected or decrease the number of false negatives.

S  Implementation

In order to evaluate the algorithms, images were required. There is no known data
set of images, so three of the four test images needed anomalies to be synthetically
introduced. The first image found is shown below in Figure 3 [9]. Artificial anomalies

were placed in the image of the shore.
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(@) (b)
Figure 3: 3992x2242 Image of ‘Shore’ with Anomalies (a) Full Image (b) Anomaly Zoom

The second image evaluated was found online and does not contain any synthetically
introduced anomaly; it is of a wooded area and contains a blue body anomaly. It is shown

in Figure 4 [11].

(a) (b)
Figure 4: 2562x1920 Image of ‘Woods’ with Anomaly (a) Full Image (b) Anomaly Zoom

Figures 5 and 6 below show two images shared by another team researching outlier color
detection for search and rescue. Figure 5 shows a desert with three artificial anomalies

introduced, and Figure 6 shows a mountain with three artificial anomalies.
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Figure 6: 2500x1368 Image of ‘Mountain’ with Anomalies Specified

Save for the original RX algorithm, the four other algorithms require inner and
outer window usage to calculate statistics local to the pixel of interest. As was discussed

previously, the sizing of these windows is very important for the success of these



9 Philip Yuan, Matthew Brawley

algorithms. It was determined that an ideal window size can be used for this application
as opposed to random sizes, due to the ability of a search and rescue team to calculate the
expected pixel size of a target, and to size the window appropriately. An expected pixel
dimension can be calculated using the following formula [11]:

flength(mm) x height,;(mm) x height;,  (pirels)

height g (pirels) = — . - . -
A Tebj M ' dist(mm) x height epsor (m0110) )

Where “flength” is the focal length of the camera and “dist” is the distance from the
object. Using knowledge of the camera used to capture the imagery and equipment such
as an altitude meter, the expected pixel height of the object can be obtained and inner and
outer windows can be sized appropriately.

MATLAB was chosen as the software platform to evaluate the anomaly detection
algorithms. In order to successfully create the required windows in the sides and corners
of the full image, a buffer of NaN values is placed around the read-in image matrix which
are disregarded by Matlab functions such as nanmean and nancov. This method allows

the other pixels in the area to be considered as included in the windows.

6  Experimental Results

6.1 Observational Results

Figure 7 below shows the results of the RX algorithm using a local mean in the

RGB color space utilizing varying thresholds.

(b)
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() (d)
Figure 7: Results of the RGB Local Mean RX on ‘Shore’ Image with Varying Thresholds of (a) 1 (b) 10 (c)
100 and (d) 1000

It is apparent from this figure that the chosen threshold is extremely important in
determining the pixels which are classified as anomalies. Of the thresholds shown above
the one that produces the fewest false positives and still detects all three anomalies is (c)
which displays the result with a threshold of 100. Each of the five algorithms in the five
color spaces produce images such as this when thresholded, displaying the detected
locations of anomalies.

Another example is shown in Figure 8, below, of how an incorrect threshold
could cause detection of the many bushes in the ‘desert’ image, and how a more accurate

threshold would detect the color anomalies much more accurately.

(a) (b)
Figure 8: Results of the RGB Local Mean RX on ‘Desert’ Image with Thresholds of (a) 10 and (b) 80

6.2 Receiver Operating Characteristic Curve Results

To quantify our results, a receiver operating characteristic curve (ROC) is



11 Philip Yuan, Matthew Brawley

modeled for each of the detectors and the area under this curve (AUROC) is calculated.
The ROC curve highlights the tradeoff between the sensitivity and specificity where
sensitivity is defined as the true positive rate (TPR) while specificity is defined as 1
minus the false positive rate (1-FPR). The TPR is the proportion of pixels that are true
anomalies that are successfully detected as true while the FPR is the proportion of pixels
that are not anomalies but are successfully detected as such. The ROC curve itself is
determined by using many thresholds and calculating the FPR and TPR results of using
that threshold; the resultant point with FPR measured on the x-axis and TPR measured on
the y-axis is just one of many calculated similarly on the ROC curve. Ultimately, the
measure we are interested in is the area under this curve: the AUROC. The AUROC can
be seen as a sort of measure for accuracy since it is defined in our case as the probability
that the detector gives a value higher to some randomly selected pixel that is a true
anomaly than it gives to some randomly selected pixel that is not an anomaly.

The ROC and AUROC results are measured in two ways: first we find the values
at a per image basis to analyze the varying difficulty of determining anomalies in each
image, and second we combine a number of the images to compute the values at a per
detector basis to determine the best-performing detector.

Tables 1, 2, 3 and 4 below show the AUROC results of the algorithms in varying

color spaces for each individual image. Figure 9 shows the same data in chart form.

"Shore" AUROC Results "Woods" AUROC Results
Color Space Color Space
RGB LAB YCbCr |HSV XYZ RGB LAB YCbCr |HSV XYZ
RX: Global g Global C| 1.0000| 1.0000| 1.0000| 0.9460| 0.9999 RX: Global y Global C| 0.9902| 0.9872| 0.9902| 0.9486| 0.9444

RX: Local y Global C | 1.0000| 1.0000| 1.0000| 0.9942| 1.0000 RX: Local 4 Global C | 0.9988| 0.9951| 0.9988| 0.9843| 0.973%

RX: Local y Local C 0.9999| 0.9999| 0.9999| 0.9998| 0.9998 RX: Local y Local C 0.9997| 0.9996| 0.9997| 0.9939| 0.9869

Detector
Detector

DWEST 1.0000] 0.9999| 0.9999| 0.9985| 0.9984 DWEST 0.6869| 0.7695] 0.7199] 0.6652| 0.4898
DSWTD 0.9999] 09999 0.9956] 0.9981] 0.9998 DSWTD 0.7698| 0.6666] 0.3963] 0.4406] 0.7591
Table 1: ‘Shore’ Image AUROC Values Table 2: ‘Woods’ Image AUROC Values
"Desert" AUROC Results "Mountain” AUROC Results
Color Space Color Space
RGB [LAB  [vCbCr [HSV  [Xvz RGB [LAB  [vChCr |HSV  [XYz

RX: Global y Global C| 0.9778| 0.9777| 0.9778| 0.9606| 0.9183 RX: Global U Global C| 0.9836| 0.9825| 0.9836| 0.9474| 0.9473

RX: Local y Global C | 0.9869| 0.9864| 0.9869| 0.9707| 0.9487 RX: Local J Global C | 0.9938| 0.9936| 0.9938| 0.9750| 0.9814

RX: Local p Local C 0.9661| 0.9865 0.9861| 0.9645| 0.9423 RX: Local y Local C 0.9885) 0.9890| 0.9885| 0.9846| 0.9669

Detector
Detector

DWEST 0.7857| 0.8898| 0.8062| 0.86489| 0.6895 DWEST 0.8254| 0.9088| 0.8577| 0.9299| 0.7799

DSWTD 0.9674| 0.9733| 0.7327| 0.7294| 0.7992 DSWTD 0.9777| 0.9871| 0.8173] 0.7030| 0.8824

Table 3: ‘Desert’ Image Auroc Values Table 4: ‘Mountain’ Image Auroc Values
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"Shore” AUROQC Results
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Figure 9: Detection Results for Individual Images
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As mentioned, these results are shown to display the varying difficulties of the

images under test. AUROC values for the ‘Shore’ picture indicate the detector is

incredibly accurate (in fact, near-perfect) when dealing with an artificially exaggerated

scenario of solid, bright, and contrasting colors. The anomalies introduced are very

apparent in the picture. Meanwhile, the other three images analyzed produce much more

relevant and interesting results, as the images are more complex and the outliers are more

difficult to encounter. Therefore, only the ‘Woods,” ‘Desert” and ‘Mountain’ images are

included in the subsequent analysis of detector accuracy as they represent slightly more

realistic scenarios.

The ROC curves for each detector in each color space are plotted below.
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RX Global Mean and Global Covariance
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Figure 10: ROC Curve for Global RX Figure 11: ROC Curve for Local Mean RX
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Figure 12: ROC Curve for Local RX
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Figure 13: ROC Curve for DWEST
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Figure 14: ROC for DSWTD

Below in Table 5 are the AUROC results for each detector in each color space,

evaluated over the determined three images. The results are also displayed in Figure 15.
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Detector & Color Space AUROC Values
Colorspace

RGE LAB YChCr |HSV XYZ

- RX: Global p Global C| 0.9865| 0.9844| 0.9865| 0.9493| 0.93%91
S |RX: Local y Global C | 0.9953| 0.9935 0.9953| 0.9773| 0.9740
E RX: Local 4 Local C 0.8942| 0.9944| 0.9942| 0.9836]| 0.9741
a |[DWEST 0.7565| 0.8258| 0.7835| 0.7913] 0.6290

DSWTD 0.8119| 0.7605| 0.5949| 0.5790| 0.7778

Table 5: Detector & Color Space AUROC Results
Detector & Color Space AUROC Values
1.0000

Il RGB

H L2B
I YCbCr
0.8750 - B HsV
. vz
0.7500 - -
0.6250 | I
0.5000 I

RX: Global RX: Local RX: Local DWEST DSWTD
JdGlobal C  pGlobalC  plocal C

AUROC

Detector
Figure 15: Detector & Color Space AUROC Results

It is quite apparent from the ROC curves that there is a significant difference
between the three versions of the RX algorithm and the two subspace projection
algorithms DWEST/DSWTD. This is reflected in the AUROC values specified in the
table and shown in the chart in Figure 15. All variants of the RX algorithm in all color
spaces had an AUROC above 0.92, while the best subspace projection-based detector had
an AUROC lower than 0.83. In addition, it was observed that the subspace
projection-based detectors were consistently much slower than the RX algorithm variants
because of the general increase in calculative intensity and the required
eigendecomposition.

The RX algorithm utilizing a global covariance matrix and a varying local mean
provided consistently the best compromise for computational efficiency and quality

results. The results are very comparable to those of the RX algorithm using local
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covariance matrices, however utilizing a local covariance matrix resulted in a quite
substantial increase in computation time. The original RX algorithm using global
statistics also produced good results, and while using a local mean provides better results
and a higher AUROC, this global method does provide an AUROC above 0.98 and is
very quick to compute, so in situations where this slight tradeoff is acceptable and a faster
computation time is desired, this global RX algorithm would be the best to use.

There is a variation of results across color spaces tested. The HSV and XYZ color
spaces provide consistently poor results. The XYZ color space provides alternate R, G
and B primaries within the CIE XYZ chromaticity diagram, thus reducing the variance
compared to the color space in which the anomaly was introduced, so worse results are
unsurprising. The HSV color space operates using hue, saturation and value (brightness).
Generally, an object of interest in a search and rescue operation is expected to be of a
different color than the background terrain, which is what the anomalies in the images
tested reflected. This HSV color space reduced the main variation in color to hue, solely
one of the three components of the color space, which caused poorer results than utilizing
color spaces that focus more on color variation across the three descriptive components.

Meanwhile, the variations of the RX algorithm performed at consistently high
levels in the RGB, LAB and YCbCr color spaces. RGB and LAB highly consider the
variety of color in their space and it was expected that the algorithms would best detect
color in these spaces. The algorithms performing well in the YCbCr color space suggest
that there was a significant variation in anomaly vectors and background vectors in

luminance and chrominance.

6.3 Fusion Results

To evaluate the intersection of results, data fusion first was used to scale the
distance calculated from the center of the multivariate normal distribution by an
algorithm in one color space with the distance calculated by the algorithm in another
color space. The results for fusing the global and local mean RX algorithms in RGB and

LAB color spaces are shown below in Table 6 and Figure 16.
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RGB-LAB Data Fusion ROC Values

Color Space
RGB |[LAB RGB-LAB Fused
S
‘g RX: Global p Global C |0.9865| 0.9844 0.9857
a |RX: Local M Global C [0.9953| 0.9935 0.9951
Table 6: Data Fusion of RGB and LAB Spaces

d I RX: Global
u Global C
0.99 B R Local

W Global C

098

AUROC

097

0.9

=3}

0.95
RGB-LAB Fused

RGE LAE

Color Space

Figure 16: Data Fusion of RGB and LAB Color Spaces

All color space data fusions tested returned similar results to the above: the fusion
of color spaces resulted in either a value between the original AUROC values in both
color spaces, or it resulted in poorer results than the original color spaces. It was
determined that the shorter distance from the center of the multivariate distribution
calculated for the same pixel in one color space as another had a more negative effect on
the results than the larger distance calculated by one of the algorithms.

Although the DWEST performed much worse than all variants of the RX
algorithm, their fusion in the LAB color space was tested and the results are shown below

in Table 7.

Detector AUROC Values
Detector / Fused-Detector

DWEST RX Local 4 |Dwest-RX

0.8258 0.9935| 0.9875

Table 7: Data Fusion of Local Mean RX and DWEST
Fusing the poor results of the DWEST algorithm with the local mean RX resulted in a

large increase in the performance compared to solely the DWEST, however this did not
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overcome the performance of using solely the RX algorithm.

To perform decision fusion, the intersection of results post-ideal thresholding
between algorithms was considered. Logical AND and OR operations were performed on
the results of the RX algorithm using local mean in RGB color space and LAB color
space across the three more realistic images. These results are compared against the

individual color spaces below in Table § in the form of confusion matrices.

RGE RX Local LAB RX Local g
Pred No |Pred Yes Pred No |Pred Yes
True No 9297131 157 |True No 9297171 117
True Yes 896 856|( |True Yes 974 778
(a) (b)
RGB & LAB RX Local g RGE | LAB RX Local p
Pred No |Pred Yes Pred No |Pred Yes
True No 9297183 105| |True No 9297119 169
True Yes 994 758] |True Yes 876 876
(c) (d)

Table 8: Confusion Matrices (a) RGB RX Local Mean (b) LAB RX Local Mean (C) Decision Fusion
RGB&LAB RX Local Mean (d) Decision Fusion RGB|LAB RX Local Mean

As the total number of predicted and true “no” values is magnitudes larger than
the other components of these matrixes, accuracy is a poor measure of the results because
it will be overly influenced by the correct predictions of true negatives.

As logic would lead one to expect, the AND operation results in values shifted
from the “predicted yes” column to the “predicted no” column. This shift caused a slight
decrease in false positives, however also pushed true positive results to the “predicted no”
column. The total true positives as a result of the AND operation was lesser than the
individual results of the original algorithms and didn’t significantly reduce the false
positive rate.

The OR operation shifted results from predicted “nos” to predicted “yes’s”. This

shift resulted in a higher number of true positives than either of the original algorithms,
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but also resulted in a larger increase in the number of false positives. Overall, the results
of the AND or OR decision fusion would not be worth the increase in computational

requirement to evaluate the algorithms in multiple color spaces.

7 Conclusions

In conclusion, the applications of hyperspectral anomaly detectors to outlier color
detection in search and rescue applications are quite evident and useful. The RX
algorithm using local mean computed in RGB, LAB and YCbCr color spaces produced
the best results consistently with consideration for computation speed. However, if fast
computation is truly necessary, or computation tools are limited, the global RX algorithm
in the same color spaces provides quality results as well. Fusion of data and decisions
between algorithms/color spaces does not provide enough increase in results quality to
justify the increase in computational requirement in evaluating the captured images in
multiple color spaces or algorithms.

Image quality tested is very important in getting accurate results of algorithm
performance. The original “shore” image showed quality results for algorithms and color
spaces that were later proved to be poor anomaly detectors in more difficult terrain and
outlier situations. Evaluation of these algorithms on more difficult and realistic images is
important for further development in this area. Also, varying the window sizes in
algorithms using local statistics would be a further area of research, as the window sizes
utilized here were somewhat ideal under the assumption that the expected size of the
anomaly could be determined. If a search and rescue operation anticipated this to be a
more difficult task, evaluating the results on varying window sizes could prove to be
beneficial. Finally, a further possible improvement would be the implementation of a
Markov Random Field on the results of the RX algorithm. This would potentially
decrease the number of scattered false positives detected in the image, and increase the

number of true positives in the area where the anomaly exists.
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