Detection and Classification of Artistic Styles in Photographed
Artwork using Deep Learning

Nanna Katrin Hannesdottir, Cole Hunter, Kevin Vogt-Lowell

BOSTON

UNIVERSITY

Boston University
Department of Electrical and Computer Engineering
8 Saint Mary’s Street

Boston, MA 02215
www.bu.edu/ece

May 6, 2022

Technical Report No. ECE-2022-3

' All authors equally contributed to this work.

http://www.bu.edu/ece

Summary

This is the Final Report for our project on art style classification in ENG EC 520: Digital Image
Processing and Communication. We will detail our comparison of two Deep Neural Networks
that are able to take in photos of artwork, and then output labels of the different styles present in
the image. Included in this report is a brief literature review, a description of the problem, our

proposed solutions, how we implemented them, and our experimental results.

Contents

1. Introduction

2. Literature Review
3. Problem Statement
4. Implementation

5. Experimental Results
6. Conclusion

7. References

13

14

List of Figures

Fig. 1 Isolated scaling vs. compound scaling

Fig. 2 Definition of scaling constants and coefficient

Fig. 3 Feature extraction using standard convolution

Fig. 4 Depth wise convolution splits the feature extraction into two stages

Fig. 5 Visual Transformer Architecture

Fig. 6 Examples of Images with respective labels from the WikiArt dataset
Fig. 7 Importing a pre-trained EfficientNetV2 model
Fig. 8 Softmax Activation

Fig. 9 Results of ViT hyperparameter tuning resulted in an optimal learning rate of 0.06 and an
optimal batch size of 128.

Fig. 10 Kullback-Leibler Divergence, and the Joint Probability Distribution of Points x; and X; in
Original Dimension(p) and corresponding points y; and y; in Reduced Dimension (q)

Fig. 11 t-SNE Scatter Plots of ViT Testing Data After PCA modification
Fig. 12 t-SNE Scatter Plots of EfficinetNetV2 Testing Data After PCA modification

Fig. 13 Confusion Matrices for ViT (left) and EfficientNetV2 (right)

List of Tables

Table 1 Validation Accuracy Results
Table 2 Testing Accuracy Results on Non-Augmented Test Set

Table 3 Testing Accuracy Results on Augmented Test Set

1 Introduction

The artistic style of a painting is a label rich with information, describing characteristic
visual attributes like texture, color, and object interaction in a piece, as well as information
regarding historical context. A stylistic label is composed of many artistic nuances and their
relations, which poses a complex image processing and classification problem with very
interesting applications. For example, what if there existed a tool that allowed individuals to
curate, understand, and verbalize their unique personal styles and preferences purely using visual
information? The inspiration for our project was an idea for a software application in which users
can take photos of art they find and like, and then immediately receive information detailing the
artistic styles/themes present in the picture via deep learning, making personal style curation
easier and more accessible to individuals regardless of background. With that end goal in mind,
we implemented, fine-tuned, and compared two deep neural networks for art style classification:
the EfficientNetV2, based on convolutional neural networks, and the Visual Transformer, based
on successful transformer architectures from natural language processing.

2 Literature Review

Prior to the introduction of convolutional neural networks (CNN), one of the most
important tasks in designing successful image classifiers was defining algorithms capable of
extracting relevant features from an image. However, successful algorithmic feature extraction
often depended on outside domain knowledge from subject-matter experts, making this method
difficult to implement efficiently. One of the primary advantages of CNNs is their ability to
effectively perform automatic feature extraction. Instead of using rigid predefined filters, CNNs
model filter coefficients as weights within the network, constantly updating them throughout the
learning process in order to minimize the loss.

For the specific problem of art style recognition in images, CNN-based solutions have
been widely studied. In “Recognizing Art Style Automatically with deep learning” by Lecoutre
et al. (2017), the research team pretrained ResNet and AlexNet, two popular CNN models at the
time, on object recognition using ImageNet and showed that, through fine-tuning, the networks
could obtain reasonably high performance for artistic style detection. Furthermore, Lecoutre
showed that the proportion of layers that were fine-tuned in their models had a significant effect
on model performance: training about 20% of the layers in either model appeared to maximize
successful style classification, with deeper fine-tuning deleteriously affecting shared high-level
information and shallower fine-tuning failing to specialize the model enough for artistic style
recognition. Since the publication of this paper, newer and more advanced models have been
continuously developed and deployed, but not on the task of artistic style classification.

3 Problem Statement

The problem of art style classification involves the design of a model or some sort of
mechanism that can distinguish the style of an artwork instantly from the image features
themselves without additional context. The ‘style’ of an artwork here means the characteristic
visual elements, techniques, methods, and themes that encapsulate the way the artwork looks to
an observer. These styles are often connected with historical periods or cultural movements,
some examples being Renaissance, Impressionism and Abstract Art. Artistic style manifests
itself in many different aspects of an image and spotting it is not an easy task even for humans,
unless they are specialized art curators. Unlike other image classification tasks such as object
recognition that can rely on more clearly identifiable features, artistic style has no definitive
identifiers. The task then becomes to find a solution that can capture multiple relationships
within the same image and distinguish between fine-grained differences, for what really is the
difference between Early-Renaissance and High-Renaissance? We believe that deep neural
networks are well-suited to this task, as they have been shown to be able to learn complex
relationships from data efficiently and with good results. As pointed out in our reference paper
[1], this effectiveness does come with a slight tradeoff regarding transparency, as it is hard to
pinpoint exactly how the models relate features to each other. An alternative approach, like
basing classification off pre-computed features of some sort, might give better clarity as to what
is going on ‘underneath the surface’. Still, we believe that the empirical power of deep learning
outweighs these limitations.

For our solution we created two modern implementations of the art style classification
neural network: one transformer-based implementation and one convolution neural network
implementation. Then, by comparing the results of each implementation, we can evaluate
whether one approach more effectively determines styles from images than the other.
Furthermore, we will inspect if these newer methods yield better results than our reference paper.
Both network types will be pre-trained on image classification to maximize performance gains
from transfer learning and to preserve high-level representations of image content, which can
also contribute to evaluations of a style label.

3.1 CNN Solution: EfficientNetV?2

Since the Lecoutre paper in 2017 on art style classification using ResNet and AlexNet,
significant development has occurred in the field of CNNs. In their 2019 paper “EfficientNet:
Rethinking Model Scaling for Convolutional Neural Networks”, authors Tan and Le introduced a
new type of CNN. EfficientNet has shown promise in object detection and immediately achieved
state of the art accuracy on common datasets such as ImageNet, CIFAR and Flowers. The aim of
the architecture is two-fold: to increase efficiency within the convolutional layers, as working
with image data can be very slow in deep neural networks, and to improve performance by
introducing a new way of ‘scaling up’ the network.

#channels
italn/ il L wider

IRTRH
i

deeper r E

— deeper

i
] 1 higher ,--higher
[resolution HxW] +_resolution H +.resolution

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

I
o mm

Figure 1. Isolated scaling vs. compound scaling [7]

Commonly, upscaling the dimensions of a CNN, meaning the depth (number of layers),
width (number of channels per layer) and image resolution (image size), is believed to improve
performance. Instead of simply scaling one ‘dimension’ at a time, for example by increasing the
number of layers similarly to that done in ResNets, the EfficientNet is designed using a
compound scaling algorithm where all 3 dimensions of the network are scaled jointly according
to a fixed ratio. A scaling coefficient ¢ is defined to represent the amount of extra resources
available and scaling constants a, 3, v to describe the optimal distribution between dimensions
(Fig. 2). First ¢ is fixed to 1 and a, 3, ¢ are found using a grid search. Then, a, 3, y are fixed and
the network is scaled up by increasing the value of ¢. The end result is an architecture which,
according to the paper, optimally combines the size of the dimensions.

depth: d = o?
width: w = g%
resolution: r = '7/¢
stoa-f242 2
a>1,82>21y2>1

Figure 2. Definition of scaling constants and coefficient [7]

The layers themselves in EfficientNet are made up of so-called MBConvBlocks that use
depthwise convolution instead of standard convolution. Instead of applying one kernel at a time
jointly over all dimensions of a m-D input such as a RGB image (Fig. 3), depthwise convolution
applies a

8

Figure 3. Feature extraction using standard convolution [9]

separate kernel to each channel in the input (Fig. 4) and then combines the channel feature maps
with a pointwise convolution. On creating multiple feature maps between layers this reduces the
computations needed greatly.

Figure 4. Depth wise convolution splits the feature extraction into two stages [9]

On a higher level, the MBConv blocks are ‘inverted bottleneck’ blocks: a sequence of
depthwise convolutional layers where the layers at the beginning and end have fewer channels
than the layers in the middle (narrow-wide-narrow). In the inverted structure combined with
depthwise convoltuion reduces parameter count and increases efficiency (hence, Efficient-Net).

In 2021, Tan and Le released a new and improved version of EfficientNet,
EfficientNetV2 with slight improvements to their architecture. They decrease the input image
sizes used in training, replace some of the depthwise convolution with standard convolution on
because “Depthwise convolutions have fewer parameters and FLOPs than regular convolutions,
but they often cannot fully utilize modern accelerators,” [4] and add some restrictions to the
dimension scaling to make it less uniform. In our solution, we use this newest EfficientNet
version and apply it to the domain of art style classification with transfer learning.

3.2 Transformer Solution: Vision Transformers

Transformers, originally introduced in 2017 by Vaswani et al. in “Attention is All You
Need”, have experienced tremendous success within natural language processing tasks and have
quickly become the de-facto architecture for the domain. However, despite their success, the
application of transformer-based architectures to computer vision tasks remained extremely
limited, until recently. In 2021, Dosovitskiy et al. shook the world of computer vision after
publishing “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” a
paper detailing a groundbreaking new transformer-based model for image recognition tasks: the
Visual Transformer (ViT). In their publication, Dosovitskiy’s team showed that their Vision
Transformer was capable of not only matching, but outperforming, the majority of
state-of-the-art CNN models available at the time.

From a high level, the ViT functions very similarly to the transformer-based models from
the world of NLP: a sequence of embedded data containing positional and classification

information is passed through a series of encoders, some form of attention is calculated between
the sequence elements, and the results of these calculations are passed to a fully-connected head
for classification. However, the major difference is that the image data passed to the model has to
be creatively transformed in order for the format to be compatible with the transformers and for
attention calculations to be computationally feasible. Dosovitskiy et al. addressed this issue by
transforming individual images into a sequence of 16x16 or 14x14 image patches. Each patch
within the sequence is linearly-projected/flattened into a vector and receives a positional
embedding to inform the transformer of its location in the true image relative to the other patches
for parameter determination. The sequence is fed into the transformer with a learnable class
embedding, and the transformer then functions exactly as in typical NLP tasks, calculating global
attention between the vectorized image patches and using the output to classify the input
according to the information provided in the class embedding.

Transformer Encoder

A
Lx o
o

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

Multi-Head
Attention

s gpe -) 0) @) 8)8) 8]

Linear Projection of Flattened Patches]

[class] embedding

SEE |
A s

Extra learnable [

D

Embedded
Patches

In our project, we wanted to take the capabilities of the ViT one step further and explore
its performance on the task of artistic style recognition after fine-tuning. Could the transformer’s
new method of processing images reveal a latent ability to outperform CNNs in the realm of
image style analysis?

Figure 5. Visual Transformer Architecture

4 Implementation

Our proposed solutions rely on importing models pre-trained for image classification and
fine-tuning them for style classification. In this section, we will go over how we implemented

each model. To allow for a fair comparison of results, we ensured that both models were
pre-trained on ImageNet21k, a large computer vision dataset of pictures and associated classes.

4.1 WikiArt Data

)
24 e

Figure 6. Examples of Images with respective labels from the WikiArt dataset

In order for our results to be comparable to the results produced in our primary reference
paper by Lecoutre et. al. [1], we wanted to make sure that we found and used the exact same
WikiArt dataset, which was originally gathered by Tan et. al. [2] in 2016. We managed to locate
the original GitHub repository created by Lecoutre et. al. for the paper and the associated dataset
used for the study, previously split into separate training, validation, and testing groups. The data
is open-sourced and available for download. In its entirety, the data consists of 82,133 different
images across 25 different classes representing art style. Curiously, this image count is 21 images
short of the image count reported in our reference paper, a difference that may be a result of files
having been removed from the dataset some time after publication of the paper. However, such a
small difference is unlikely to have a significant impact on our results.

We also decided to add augmented images to supplement the original dataset, eventually
ending up with 245,450 individual images, split evenly across each of the 25 art styles. This
decision was based on two factors. First, we wanted to balance the amount of images present in
each class. The original dataset was heavily skewed, with significantly more paintings coming
from impressionism and realism relative to every other art style. Second, given our
application-focused objective, we needed to make the model more resilient to the types of
imperfections that might be seen from user-submitted images. Such imperfections include, but
are not limited to, pixelation due to compression, images out of focus, motion blur, poor
cropping, rotation, changes in contrast, and noise related to imperfect sensors. A random
selection of these augmentations, as well as the standard horizontal and vertical flips could be
applied to selected images.

Initially, we created a new dataset which included all images from the original WikiArt,
plus an added number of augmented images so that each class had exactly the same number. The
issue with this approach was that it left the impressionist paintings entirely unmodified. After
performing initial tests, it was clear that the model was learning to classify every un-augmented
image as impressionist. To alleviate this tendency, we added in a variable amount of
augmentation to the impressionist images.

4.2 Vision Transformers Implementation

For our implementation of the Vision Transformer, we decided to conduct initial
experimentation using the two most performant models from “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale”: the ViT-L/16 and ViT-H/14. PyTorch versions of
these models pre-trained on ImageNet2 1k are available for import via the PyTorch Image Models
(timm) deep-learning library. The library also provides some functions for appropriately applying
basic image transformations needed prior to ingestion by the ViTs.

The primary difference between ViT-L/16 and ViT-H/14 is size of the transformer
component: ViT-L/16 (“ViT Large”) consists of 24 layers with 307M parameters and uses 16x16
image patches, whereas ViT-H/14 (“ViT Huge”) consists of 32 layers with 632M parameters and
uses 14x14 image patches. Our implementation began with quick performance comparisons of
the two models using a small subset of the WikiArt dataset, and we found that the ViT-H to be
more performant than the ViT-L/16. Dosovitskiy et al. [5] observed similar results in their
experiments and also noticed that the true performance advantage of the ViT-H is often revealed
with massive datasets. For these reasons, we chose to import the ViT-H model as our pretrained
ViT representative. All ViT functionality and testing is contained within a Jupyter notebook.

4.3 EfficientV2 Implementation

The EfficientV2 reference paper links to an open-source Github repository with available
versions of their EfficientNetV2 model pre-trained on ImageNet21k. Following the repository's
instructions, the model can be imported and loaded into a python-based script. We decided to use
Python Jupyter Notebooks on the BU SCC. The model is set up to be used with the Tensorflow
Machine Learning framework, which we used for our EfficientNet experiments. As a
consequence we worked with built-in methods and classes from Tensorflow to construct our
model and as building blocks for our training and testing process.

Numerous versions (or ‘checkpoints’) of the pretrained weights are available from
different stages of the EfficienNetV2 development pipeline. We chose ‘efficientnetv2-I', the
largest and most robust checkpoint. On importing the EfficientNet model, a model instance can
be created with only a few lines of code (Fig n).

: |import effnetv2_model

base_model = effnetv2_model.get_model('efficientnetv2-b@', include_top=False)

Figure 7. Importing a pre-trained EfficientNetV2 model

The ‘include top = False argument’ gets rid of the prediction layer from pre-training in
order to be replaced with a custom one. For classifying art styles, we made EfficientNet the first
sub-module in a tensorflow.keras.sequential model and directed its output to a linear layer with
output size 25 to match the classes of the WikiArt data. A softmax activation function was then
applied to the output to get the probabilities of each class, with the highest probability
corresponding to the predicted label.

esi
Zf:l e

Figure 8. Softmax activation

a(Z)i =

4.4 Code Resources

For convenience, we have summarized the main code resources here.
e EfficientV2 model: https://github.com/google/automl/tree/master/efficientnetv2
e Tensorflow:
o https://www.tensorflow.org/api_docs/python/tf/keras/Model
o https://www.tensorflow.org/api_docs/python/tf/keras/Sequential
e PyTorch Image Models (timm): https://github.com/rwightman/pytorch-image-models
e vit-explain: https://github.com/jacobgil/vit-explain

5 Experimental Results

From a high level, we organized our experimental approach for evaluating both models
into three phases. Our first phase was considered our benchmarking phase, in which we trained
and tested both models exclusively on non-augmented data. The purpose of this phase was
purely to establish baseline performances for both models. The primary focus of the second
phase was to try to isolate and study the effects of data augmentation on our models’ abilities to
learn artistic styles. For this phase, we trained both models on an augmented training dataset, but
still conducted testing on the non-augmented test datasets. For our final phase, we wanted to test
model performance on test sets containing a better representation of images that we might expect
users to upload in a real-world environment. To this end, we concluded with training and testing
both models on augmented training and test datasets.

A key part of our experimentation was conducting validation testing to allow us to
determine the conditions and parameters that would produce the most performant models for
testing. Validation testing for both models started with hyperparameter tuning, which consisted
of an exhaustive grid search over a defined set of learning rates and batch sizes. To minimize the

https://github.com/google/automl/tree/master/efficientnetv2
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential
https://github.com/rwightman/pytorch-image-models
https://github.com/jacobgil/vit-explain

time required to perform the grid search, we tested each parameter pairing by fine-tuning only
the head layers of each model and using the resulting models to generate the respective trial
accuracies. An example of the values tested for the ViT and the results of each trial can be seen

in Figure 9.
Batch Size

32 64 128 256 512
0.003 20.02 18.88 17.01 16.63 | 16.32
0.01 20.57 20.30 19.63 17.28 | 15.98

0.03 19.37 2277 23.31 20.36 | 16.54

Learning Rate

0.06 18.75 2419 2445 | 2354 | 19.08

Figure 9. Results of ViT hyperparameter tuning resulted in an optimal learning rate of 0.06 and an optimal batch size of 128.

After hyperparameter tuning, mechanisms for tracking validation loss after each training
epoch were implemented for the purposes of retaining the most performant models produced
during isolated training loops and triggering early stopping when necessary. After each epoch,
model performance on the validation dataset was evaluated and compared to the lowest value
recorded up to that point in the training. If the new validation loss was lower than the previous
lowest validation loss, the new version of the models was saved and retained as the best model
until either a better version appeared in a later epoch or the training ended. For early stopping,
we monitored the loss after each epoch and ended training if the loss increased for three epochs
in a row. This optimization saved us training time and allowed us to find our best validated
model more quickly by stopping the training process once the model began to overfit our training
data.

The final portion of our validation testing focused on determining the optimal number of
layers to fine-tune versus freeze in the models to maximize performance, as suggested by
Lecoutre et al. To do so, we varied the amount of layers that were frozen (parameters retained
their pretrained weights) versus fine-tuned (parameters were trained using the WikiArt data) in
our imported model, trained the given model, and evaluated its top-1, top-3, and top-5
performance on the validation dataset. Top-k accuracy is a metric where a prediction is marked
correct if any of the top-k probabilities in the model output belong to the correct label. Top-1 is
thus ‘traditional’ accuracy, but top-3 and top-5 give additional insights into how well the model
has learned. From these experiments, we found that the ViT achieved the best performance with
19/32 layers fine-tuned, whereas the performance of EfficientNetV2 peaked with 36/80 layers
fine-tuned. With the ViT, we were unable to determine an exact peak at which the layer freezing
maximized performance, as the accuracy continuously increased with increasing amounts of
unfrozen layers, but computational and memory issues due to the number of unfrozen parameters
made further experimentation untenable. Table 1 shows the results obtained by these models on

the validation set during the layer freezing tests, alongside the results from our reference paper
on the same validation set.

Validation Accuracy Results

Model Layers Unfrozen | Top-1 Accuracy | Top-3 Accuracy | Top-5 Accuracy
ResNet50 20/100 61.1% 86.3% 93.6%

(Paper)

EfficinetNetV2 | 36/80 66.94% 89.57% 95.31%

ViT 19/32 58.82% 86.27% 94.05%

Table 1. Validation Accuracy Results

Having determined the optimal conditions for the ViT and EfficientNetV2, we finally
tested the models on the non-augmented test set to compare the results with those achieved by
Lecoutre et. al. in our reference paper. Each of these models was trained on an augmented dataset
and tested on the same test dataset, allowing for an appropriate comparison of results. The results
can be seen in Table 2 and show that EfficientNetV2 successfully surpassed those obtained in our
reference paper, while the ViT came close but was ultimately unable to achieve better.

Testing Accuracy Results: Non-Augmented Test Set
Model Layers Unfrozen | Top-1 Accuracy | Top-3 Accuracy | Top-5 Accuracy
ResNet50 20/100 62.8% 86.0% 93.3%
(Paper)
EfficinetNetV2 36/80 66.7% 89.15% 95.13%
ViT 19/32 58.48% 86.34% 93.44%

Table 2. Testing Accuracy Results on Non-Augmented Test Set

To conclude our three phases, we tested our models on the augmented test set to gain a
more realistic understanding of how the models might be expected to perform on non-ideal,
user-uploaded photos. The results from these tests are summarized in Table 3.

Testing Accuracy Results: Augmented Test Set

Model Layers Unfrozen | Top-1 Accuracy | Top-3 Accuracy | Top-5 Accuracy
EfficinetNetV2 36/80 62.92% 86.54% 93.33%
ViT 19/32 54.97% 83.00% 90.4%

Table 3. Testing Accuracy Results on Augmented Test Set

To visualize the similarities that might be present between certain art styles, we employed
principal component analysis (PCA) followed by t-Distributed Stochastic Neighbor Embedding
(t-SNE). The goal was to try to reduce the extremely high-dimensional image data into a
lower-dimensional representation. t-SNE accomplishes this by minimizing the Kullback-Leibler
divergence between the points in the original space, and those present in the reduced space. In
the high dimensional space, this requires calculating the “similarity” between all points, which is
equivalent to the conditional probability of point x; being a “neighbor” of x;, if neighbors are
selected in proportion to the probability density under a Gaussian distribution centered at x;. In
this way, nearby points to x; have a conditional probability of being neighbors that is quite high.
After calculating each of these conditional probabilities, the data points are then randomly spread
throughout the reduced space (in our case, a 2-dimensional space). Finally, using stochastic
gradient descent, each point in the reduced space has its location updated based on minimizing
the difference between probability distributions in the high-dimensional space and the updated
2-dimensional space. For computational efficiency, and to aid in visualization, the distributions
in the 2D space are modeled using the t-distribution with a single degree of freedom. Since the
t-distribution is long tailed, this method prevents the points in the reduced space from stacking
on top of each other [8].

KL(P | Q) =3 pylog =

J
i# %ij
o~ 12 2
Pili = oD — %51 /20,) Pyl TRl
Ek;&i exp(—||x; — xx[2/207) Pij — “oN

9
B 1+ 1y, *Yj"2)71
Sk i L+ ye =yl

qij

Fig. 10 Kullback-Leibler Divergence, and the Joint Probability Distribution of Points X; and x; in Original
Dimension(p) and corresponding points y; and y; in Reduced Dimension (q)

As the training of our models progressed, we extracted the vector embeddings from the
final layer of both the ViT and EfficientNetV2 (which themselves are lower-dimensional
representations of the images), performed PCA to reduce the dimensionality to a suitable size for
t-SNE, and plotted the results for the top 4 classes by recall. Moving from left to right in figure
11, we can see the results for the ViT model with 1, 8, and 19 trainable layers, respectively. This

12

Nanna Katrin Hannesdottir. Cole Hunter, Kevin Vogt-Lowell

provided visual confirmation that the ViT model was learning to differentiate between various art

styles.

T-SNE for Top 4 Classes

5

Dimensi

T-SNE for Top 4 Classes

T-SNE for Top 4 Classes

‘i.
o8 5%
"s"& X4
S e
)

’

Fig. 11 t-SNE Scatter Plots of ViT Testing Data After PCA modification

The visual contrast between initial trained models and the final trained model was even
more stark when looking at the plots produced using the final layer of the EfficientNetV2. While
starting with a near identical plot to the ViT for a single retrained layer, our most performant
model, which had 36 retrained layers, showed clear delineation between classes, even when they
were quite similar (Early Renaissance vs Northern Renaissance). Based purely on these visuals,
one would expect that the EfficientNetV2 was the most performant model, and our results
confirmed that hypothesis.

T-SNE for Top 4 Classes

Dimension_2

E
3
3

Dimension_2

T-SNE for Top 4 Classes

. o
.

e p ¢

o

[A 2
N 2 Style ~

® Color Field Painting g
Early Renaissance 2

g
Northern Renaissance 2
Ukiyo-e 5

-10
o
-20

3

L]
.
)
:]

20 -10 0
Dimension_1

T-SNE for Top 4 Classes

le
Color Field Painting

Styl
.
L ; o LN Early Renaissance
G @ Northem Renaissance

Ukiyo-g

Fig. 12 t-SNE Scatter Plots of EfficinetNetV2 Testing Data After PCA modification

The confusion matrices for both models also do a good job of summarizing the general
trends we observed. First, the majority of misclassifications for both models came when trying to

predict art styles which are similar to impressionism, particularly post-impressionism and
realism. Unsurprisingly, both models were nearly perfect in predicting ukiyo-e art. Though
subjective, when compared to the other 24 art styles we examined, ukiyo-e is clearly the most

unique.

Predicted label
Predicted label

g
(Late Renaissance

Late Renaissance

m

m

jsm
alism

nnerism

ue
lc‘lFieId Paintin
Renaissance

Neocll1assi:ism .
Northern Renaissance
PPon Art

0!

ressio
ic Re:
st-Impressionism

Realism
iyo-e

P

Abstract Exrressionism
Im

M

Ma

Art Informe
Naive AﬁTPrimitivism)

Art Nouveau (Modern)

Naive Art (Primitivism)
Baro

Neoclassicism
Early Renaissance

Northern Renaissance
Expressionism
ng ,:I

Art Nouveau (Modern)

Abstract Expressionism
Baroque

Art Informel

Color Field Painting

Cubism
Post-Impressionism

Early Renaissance
Expressionism
Realism
Romanticism
Surrealism

Abstract Art
High Renaissance
Impressioni
Rococo
Romanticism
Surrealism
Symbolism
Ukiyo-e
Abstract Art
Colol
Cubism
Minimali
Rococo
Symbolism
ki

Abstract Art 800

Abstract Expres:
In
Art Nouveau (700
a
Color Field
ubi

Early Renaissance 600

Xpressionism

High Igenaigsa_nce
Impressionism 500

) Magic Realism

Mannerism (Late R?JI‘

Naive Art (Pril

leoclas
Northern Renaissance

Abstract Art

Abstract Expressionism

Art Informel

Art Nouveau (Modern)

Baroque

Color Field Painting

Cubism

Early Renaissance

Expressionism

High Renaissance

Impressionism

Magic Realism

Mannerism (Late Renaissance)
Minimali

True label

400

True label

in
Naive Art (Prim m)
Neoclassicism
Northern Renaissance
Pop Art
Post-Impressionism
Realism
Rococo
Romanticism
Surrealism

Pop Art 300
Post-Impressionism
Realism

Rococo 200

Romanticism
gurrgaiism
mbolism

V! Ukiyo-e 100

Symbolism
Ukiyo-e 0

Fig. 13 Confusion Matrices for ViT (left) and EfficientNetV2 (right)

Conclusion

Overall, both models were able to yield impressive results compared to the art
classification capabilities of the average person, but in the end EfficientNetV2 proved to be the
all-around better model for art style classification when compared to the Visual Transformer. Not
only did the EfficientNetV2 score better top-k accuracies across all tests, but it was also a much
quicker model to train (the ViT with 19/37 layers frozen took about twice as long as the slowest
EfficientNet model) and was more portable than the ViT-H.

We’ve also seen that the task of art style classification remains a challenging one,
particularly when more labels are considered. While the performance of either model was far
from inadequate, there exists definitive room for improvement in classification accuracy,
especially when considering the use of such models in a user-facing application. However, the
improvement on the results obtained by Lecoutre et al in 2017 sheds light on the promising
progress made towards the enhancement of CNNs over time, making the idea of an even more
effective artistic style classifier in the near future a very realistic one.

Regarding further improvements, it would have been interesting to explore how the
models may have performed on more modern artistic styles, as the WikiArt dataset primarily
contained what most would consider more “classical” styles. Yet, modern styles of painting and
newer art forms such as installation art and light art have become increasingly popular
nowadays, so any user-facing model to be used in artistic style curation should be able to account
for such artwork. Additionally, both models would benefit from further work on improving
classification accuracies when the photograph of the artwork contains minor obstructions or
noise surrounding the piece. In testing, we noticed that the ViT in particular would incorrectly
classify any photographs in which people crowded the area near the artwork as surrealism, with a

high level of confidence. Improvements to this type of behavior would be pivotal for successful
deployment in an application, as user photographs most often contain noise around the point of
interest.

References

[1] A. Lecoutre, B. Negrevergne, and F. Yger, “Recognizing Art Style Automatically with
deep learning”, Proceedings of Machine Learning Research, PMLR, 77: pp.327 - 342,
fthal-02004781f, 2017.

[2] W. Tan, C. Chan, H. Aguirre, and K. Tanaka, “Ceci n’est pas une pipe, A deep
convolutional network for fine-art paintings classification”, International Conference on Image
Processing (ICIP), pages 3703-3707, 2016.

[3] K. Salman, et al. “Transformers in Vision: A Survey.” ACM Computing Surveys, Jan.
2022, p. 3505244. arXiv.org, https://doi.org/10.1145/3505244.

[4] M. Tan and Q. Le “EfficientNetV2: Smaller Models and Faster Training”, Computer
Vision and Pattern Recognition, Apr. 2021, arXiv:2104.00298, 2021.

[5] A. Dosovitskiy, et al. “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale”, Computer Vision and Pattern Recognition, arXiv:2010.11929v2, 2021.

[6] Vaswani, Ashish, et al. “Attention Is All You Need.” ArXiv:1706.03762 [Cs], Dec. 2017.
arXiv.org, http://arxiv.org/abs/1706.03762.

[7] M. Tan and Q. Le “EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks”, Computer Vision and Pattern Recognition, Sep. 2020, arXiv:1905.11946, 2020.

[8] van der Maaten, Laurens. “Visualizing Data Using T-Sne” , The Journal of Machine
Learning Research, pages 2580 - 2605, 2008

[9] Wang, Chi-Feng “A Basic Introduction to Separable Convolutions”, Towards Data
Science, 2018. Available at:
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

