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1 Introduction 
 

Search and rescue operations require locating the person of interest in an outdoor environment 

such as the wilderness prior to extraction. Often times, unmanned aerial vehicles (UAV’s) with 

high resolution cameras are used to expedite the searching process, improve rate of detection, 

and reduce man-hours. However, when recording video from a high elevation, the object of 

interest represents a small portion of the image. This presents a major obstacle to the analyst who 

observes the footage by eye and failure rates are high. In 2011, the US Coast Guard alone failed 

to save over 170 lives [13]. To further expedite and increase the chance of detection, automated 

detection methods are used to assist the analyst in locating objects of interest in the footage. 

Man-made objects of interest such as articles of clothing or large blankets can be useful in 

locating a missing person. These objects tend to differ greatly in color from the surrounding 

terrain. By using an automated way of finding these anomalous colors, the missing persons can 

be located with greater speed and accuracy.  

 

2 Literature Review 

 

The literature for this specific problem is focused on object detection that leaves a characteristic 

signature in hyper-spectral imagery. These are images that have many spectral bands including 

bands outside of the visible spectrum. We are concerned with only the color leaving a 

characteristic signature as compared to the background.   

 

One approach to detecting unusually colored objects is through the use of color histograms. 

Rasmussen, Thornton, Morse[1]
 
 transform the images from the RGB color space into the Hue 

Saturation Value (HSV) color space and identify hues as common or uncommon by partitioning 

the space of hues into a histogram.   

 

More sophisticated approaches that do not pre-define a partition of hues consist of point-based 

and region-based segmentation methods. Point-based algorithms classify every pixel in the 

image as normal or anomalous based on a threshold test. Reed and Yu [2] propose a method to 
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classify a pixel by comparing its features to the background using a Mahalanobis Distance metric. 

The work by B. S. Morse, D. Thornton and M. A. Goodrich [3] implements the Reed and Yu 

Approach (RX detector) using a dual sliding window approach in a wilderness search and rescue 

setting. Several variants of the RX algorithm have been proposed that seek to optimize its 

performance under the assumption of prior information about the anomaly target or image [4][9]. 

 

Region-based segmentation methods group pixels based on criteria and are not limited to outlier 

detection methods in search and rescue settings. The K-means method works to segment the 

image into distinct clusters [5][10]. . The EM algorithm assumes a Gaussian mixture distribution 

model of membership for a pixel in multiple clusters rather than a deterministic assignment of a 

pixel to a single cluster [7][8]. Density based algorithms assume that normal data occur in 

regions of high density while outliers are points in regions of low density. The work by Breunig, 

Hans-Peter Kriegel et Al [6] goes one step further by assigning an outlier score to each cluster 

based on their inter-cluster distances known as the Local Outlier Factor. 

 

3 Solution  
 

We have assumed that we are given an input image taken by the UAV operating in an unknown 

highly textured natural environment. Therefore no prior knowledge is assumed in our algorithms 

about the content or color distribution of image.   

 

The anomalies are assumed to be extremely small relative to total image. They also are defined 

by an outlier color relative to background. In addition this anomalous object is assumed to be of 

a relatively uniform hue rather than a camouflage pattern. Also the anomalous pixels are 

assumed to be spatially correlated with neighboring pixels and are not single pixel anomalies.  

 

We will consider two approaches to handle these constraints. The first one is a pixel based 

classification approach and the second one is a region based segmentation approach with the goal 

of classifying an object. 
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3.1 Point-Based RX Detector  

 

In this approach, the assumption is made that a normal pixel is drawn from a Multivariate 

Gaussian distribution specified by         

We use an approach similar to [12] to develop a threshold test to classify each pixel under the 

following hypothesis. Null Hypothesis is that the pixel follows the normal distribution, while the 

alternate hypothesis is that the pixel follows a uniform distribution. 

Null Hypothesis H0:                

Alternative Hypothesis H1:                 

The log-likelihood function is used to maximize the probability of detecting an anomaly when an 

anomaly exists for a fixed rate of false alarm which is controlled by the threshold T. 

        
       

       
    

Expanding the above equation we get: 

                                                 

Assuming that x is an n-dimensional vector, the above equation can be written as: 

           (
 

 
)         (

 

 
)     | |  (

 

 
) (             )     

The constants and multiplicative factor can be grouped into a new threshold S to yield the 

Mahalanobis distance between the pixel and the background region with the form: 

                   

x: Target Feature Vector 

μ: Mean of Background Region 

Σ: Covariance Matrix of Background Region 

S: Threshold 

 

3.2 Region Based: K-Means Approach 

The K-Means algorithm partitions the N observations in our feature space into a set of k clusters 

by minimizing the function F, where the variables ci is the cluster centroid and xm is an 

observation in the selected feature space. There are k clusters with N observtions. 

   ∑  

 

   

∑         
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Since this is a non-linear minimization problem, an iterative algorithm is used to find the local 

minimum 
(11)

 .The first step is to randomly initialize a set of K cluster centroids out of the N 

observations. Then each observation    is assigned to the closest centroid based on the Euclidean 

Distance metric. Then an update of the centroids are performed given the new configuration. The 

process is given by formula, where c is the space pertaining to a specific cluster. 

This process is repeated until the cluster centroids no longer move.  

3.3 Outlier Centroid Detection 

Based on the K-Means segmentation, we proceed to classify each cluster as normal or anomalous 

based on a metric applied to the cluster centroids. The metric we use to do this is the number of 

neighboring centroids enclosed in a region defined by radius R for each centroid based on the 

Euclidean distance. If more than Nmax   neighbors is contained in this region, the centroid and its 

associated cluster points are classified as normal as this means that the centroid is in a dense 

region of the data. If less than Nmax neighbors are contained in this radius, the centroid and its 

associated cluster points are classified as anomalous as this means the centroid is in a sparse 

region of the data.  

      ∑           

     

  

The intuition behind the metric is illustrated via a synthetic example below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Outlier Centroid Detection 
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3.4 Markov Model 

 

To incorporate the knowledge that anomalous pixels are correlated, we apply a Markov Random 

Field E to the resulting label matrix from the previous step using the approach contained in [11]. 

If we assume that e, a specific realization of E, is known for all j ≠ k, the task is reduced to 

deciding a label for e[k]. Define e[k] = 0 as a normal pixel and e[k] = 1 as an anomalous pixel.  

Define     as the label field when e[k] = 0 and     be the label field when e[k] = 1. The 

Hypothesis test then at e[k] is: 

 

     |   

     |   
  

       

       
  

 

The probability      |     is the joint probability that the Random Field I assumes a 

realization i, given the label field realization      In [11] it is shown that this can be simplified to:  

 

           |   

           |   
  

       

       
  

 

with the assumption that the components are mutually spatially independent and that the ratio of 

the left-hand side probabilities only differ at k. Since E is a Markov Random Field, the 

Hammerson-Clifford theorem allows us to model the right-hand side as a Gibbs distribution, 

with temperature У and potential function V defined on {k , j}. We use a 3x3 neighborhood with 

2 element cliques and a potential function to credit neighbors which are the same and penalize 

those that are different. The Ising potential can be used as we only have two states, normal or 

anomalous: 

 

        {
              

              
} 

 

This can be incorporated into the equation to further simplify our expression to:  

 

        

        
     

   (   (
 

 
)              )    

 

N 

N 

N 
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     : Number of Anomalous Pixels  

     : Number of Normal Pixels  

У: Natural temperature parameter to control strength of MRF Model 

 : Parameter to control deviation of Gaussian Random Variable 

  : Gaussian Distribution 

  : Uniform Distribution 

 

 

3.5 Data Set 

 

Since we were not able to find an available search and rescue image dataset taken from a UAV, 

we constructed our own images to depict this scenario. We have used a set of images (800x800) 

in environments typical of search and rescue settings such as in the wilderness, ocean and woods. 

We then place several synthetic man-made objects with sizes that are typical sizes in the range of 

jackets to blankets and whose colors differ significantly from the background and whose 

luminance blends in naturally into the environment. In the Figure below, Image 1 is a forested 

mountain, Image 2 is an ocean and Image 3 is a wooded region. The three different synthetic 

objects are down-sampled to about 12x12 and placed at locations that are typical of search and 

rescue situations, i.e. not in the sky. We chose the three objects to have colors red, orange and 

purple as they visually differ significantly from the background. In Image 2, the jacket anomalies 

were cut in half as to simulate persons floating in water. Once we finished constructing the data 

set, we manually ground truth the anomalous pixels in a binary label matrix.  

 

Fig. 2: Sample Images 
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Fig 3: Image 3 Anomaly Zoom 

 

4 Implementation 
 

We transform the image from the RGB color space to the perceptually uniform LAB color space 

and discard the L component of this vector as the luminance content in the image varies 

significantly. The two approaches are implemented as follows:  

 

 

Fig. 4 Implementation Overview 

4.1 RX Detector Algorithm 
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The RX Detector classifies each pixel’s features in the image as normal or anomalous. To avoid 

corrupting the background region statistics with the anomalous values a guard window is placed 

around the test pixel. We have chosen a 30x30 inner window to capture the anomaly and a 60x60 

to capture an effective amount of the background distribution. The diagram below depicts the 

sliding window method. We implement the Mahalanobis threshold test between each test pixel 

and the background region to classify the pixel as normal or anomalous. This process is repeated 

for every pixel in the image. This algorithm as a complexity of O(N
4
) because for every pixel in 

a 2-D image it processes a smaller 2-D subsection of the original image. Therefore the 

complexity depends on four variables; the height and width of the original image and the height 

and width of the subsection outer window. 

 
 

Fig. 5 RX Detector Implementation  

4.2 K-Means Algorithm 

  

We divide the image into distinct windows each of size 100x100. We choose K=100 clusters to 

ensure that we capture the anomaly object in a cluster given a highly varying textured color 

environment. We set the number of neighbors for each centroid at 2. Therefore, a cluster centroid 

is considered an anomaly if it has 2 or fewer neighbors within the region defined by the threshold 

radius R, while it is classified as normal if it has more than 2 neighbors in the region. The R 

value is varied depending on the windowed image. This is done as each windowed sample may 

vary in environment from another windowed sample from the same original image. We apply the 

MRF on the resulting K-Means label image for three iterations with the natural Gibbs 

temperature set to 1.  
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5. Experimental Results 
 

5.1 Visual Performance 

 
RX Detector           Original 

 

Figure 6: RX Detection results from Image 3  

 

In Figure 6, it can be seen that the three colored anomalies were successfully detected. However, 

there are also a few false positive readings in the image.  
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K-Means           Original 

 

Figure 7: K-Means Detection results from Image 2 

 

 

Figure 8: K-Means with MRF Detection applied to Figure 7 

 

Sample detection results prior to and post MRF are shown above. We can see that with the 

addition of the MRF, the false positives scattered in the image become eliminated. Additionally, 

the pixels within the right most anomaly are filled because the MRF is designed to enforce object 

cohesion. 
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5.2 Quantitative Performance Comparison 

 

We compare the algorithm results objectively with the ground truthed images by plotting 

Receiver Operating Characteristic (ROC) curves on our data set to capture the trade-off between 

True Positive Rate and False Positive Rate. True Positive Rate is defined as the TPR = True 

Anomaly Pixels / Total Anomalous Pixels. False Positive Rate is defined as FPR = False 

Anomalous Pixels / Total Normal Pixels. For the RX Detector, lowering the Threshold(S) 

increases the TPR but increases the FPR. In the K-Means approach, increasing the 

Threshold(Radius of the Neighborhood), results in a higher TPR but with an increase in the FPR. 

The RX Detector achieves a full 100% detection at close to 5% while the KMeans Algorithm 

requires a 12% false positive rate to achieve the 100% detection accuracy. The Area under each 

of the curves (AUC) is calculated as an objective way of comparing the approaches in Table 1. 

Consistent with our visual observations of the ROC chart, the RX Detector performed better than 

K-Means in the AUC chart by 0.0369.  However with the addition of the MRF, the delta between 

RX Detector and K-Means becomes only 0.0229 as majority of the false positives are eliminated.   

 

 

Figure 9 ROC performance 
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Area Under Curve Comparison 

 

Method AUC 

RX Detector 0.9968 

K-MEANS with MRF 0.9738 

K-MEANS  0.9598 
Table 1 

 

6. Conclusion 
 

The ideal objective in any search and rescue setting should be to get a 100% true positive 

detection rate. This is because it is a more severe error to miss the detection of a lost person than 

to detect objects that are not anomalies. However, this may mean that analyst will manually sift 

through the false positives to cull the results. This approach can be extended to video frames that 

contain no detected anomalies as the speed at which the analyst views a video can be greatly 

reduced. Computationally, we noticed a significant improvement using the K-Means approach 

over the RX Detector. This is due to the fact that RX Detector calculates the covariance matrix of 

a different neighborhood region at each test pixel, whereas the K-Means approach computes 

Euclidean distances in non-overlapping windows through the image. This is especially a concern 

for analyzing time sensitive video sequences. Despite the high FPR using a K-Means approach, 

we believe it can provide more useful information beyond just outlier detection such as content-

aware information (location of sky, grass, water). To improve the accuracy of our K-Means 

approach, we could also adapt the number of clusters to local window statistics instead of 

choosing a fixed global number of clusters for each window. Also we have thought about 

reducing the clusters to a very small amount such as 2 or 3 in a window and testing each point 

similar to the RX Detector approach. The assumption here would be that the anomalous pixels 

would be spread apart among the different clusters and they can be determined by measuring the 

Mahalanobis distance to the background cluster distribution. Lastly we can use a filtered and 

down sampled image of the original. This will significantly decrease runtime and would be very 

practical for anomaly objects that are multiple pixels in size. This method will reduce 

computation time, under the assumption that the hue of the anomaly is highly uniform.  
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8 Appendix – MATLAB Code 
 

RX Detector 

function [Maha,Classify] = RXDetector(img,i_size,o_size) 

imrgb = im2double(img); 

cform = makecform('srgb2lab'); 

imlab = applycform(imrgb,cform); 

imlabxL = imlab(:,:,2:3); 

image = imlabxL; 

Threshold = 60; 

Horizontal = size(image,1); 

Vertical = size(image,2); 

boundary = floor(o_size/2); 

Maha = zeros(Horizontal,Vertical); 

guard_window = (o_size - i_size)/2 + 1; 

Classify = false(Horizontal, Vertical); 

 

for i=1:1:Horizontal 

    for j=1:1:Vertical 

            mean_vector = zeros(2,1); point = zeros(2,1); 

outer_block = image(max(i-boundary+1,1):min(i+boundary-1,Horizontal),max(j-

boundary+1,1):min(j+boundary-1,Vertical),:);             

outer_block(guard_window:guard_window+i_size-

1,guard_window:guard_window+i_size-1,:) = NaN;                   

mean_vector(1) = nanmean(nanmean(outer_block(:,:,1)));mean_vector(2) = 

nanmean(nanmean(outer_block(:,:,2)));  

            cov_matrix = nancov(outer_block(:,:,1),outer_block(:,:,2)); 

            det = 1/(cov_matrix(1)*cov_matrix(4)-cov_matrix(3)*cov_matrix(2)); 

            invcov_matrix = det.*[cov_matrix(4), -cov_matrix(3); -cov_matrix(2), cov_matrix(1)];             

            point(1) = image(i,j,1); point(2) = image(i,j,2);             

            Maha(i,j) = (point-mean_vector)'*(invcov_matrix)*(point-mean_vector);             
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    end 

end 

  

Classify = Maha>Threshold; 

 

figure(1) 

imshow(img); 

  

figure(2) 

surf(Maha) 

  

figure(3) 

imshow(Classify) 

  

end 

 

K-Means  

clear all; 

truth_1 = imread('X:\EC 520\Project\true_test_1_1.tiff'); 

num_clusters = 100; 

window_size = 100; 

 

Neighbors = 2;%Isolated 

R_Threshold = 3.25;%Radius of each centroid point 

%Density = Neighbors / (R_Threshold); 

 

imrgb = imread('X:\EC 520\Project\test1_1.tiff'); 

imrgb = im2double(imrgb); 

cform = makecform('srgb2lab'); 

  

imlab = applycform(imrgb,cform); 
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imlabxL = imlab(:,:,2:3); 

  

label_matrix = zeros(size(imrgb,1),size(imrgb,2));  

  

for i=1:window_size:size(imlabxL,1) 

    for j = 1:window_size:size(imlabxL,2) 

        imlabxLTemp = 

imlabxL(i:min(i+window_size,size(imlabxL,1)),j:min(j+window_size,size(imlabxL,2)),1:2); 

        nrows = size(imlabxLTemp,1); 

        ncols = size(imlabxLTemp,2); 

        flatImg = double(reshape(imlabxLTemp,nrows*ncols,2)); 

        [cluster_idx,cluster_center,sumd] = 

kmeans(flatImg,num_clusters,'EmptyAction','Singleton','Start','Uniform','Replicates',1);         

        pixel_labels = reshape(cluster_idx,nrows,ncols);         

        p_dist = squareform(pdist(cluster_center)); 

        p_dist(logical(eye(size(p_dist)))) = 0; 

        for y = 1:length(p_dist) 

            num_neighbors(y) = sum(p_dist(y,:)<R_Threshold); 

        end         

        outlier_cluster = find(num_neighbors<=Neighbors);         

        c = ismember(pixel_labels,outlier_cluster);         

        

label_matrix(i:min(i+window_size,size(imlabxL,1)),j:min(j+window_size,size(imlabxL,2)))=c;             

    end 

end 

%} 

 

figure(1) 

imshow(pixel_labels,[]), title('image labeled by cluster index'); 

figure(2) 

imshow(imrgb); 
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figure(3) 

imshow(label_matrix); title('Initial Labels') 

 

 

%Reapply MRF iteratively (3 times) 

final_label_matrix = MRF_MOD(label_matrix); 

final_label_matrix = MRF_MOD(final_label_matrix); 

final_label_matrix = MRF_MOD(final_label_matrix); 

 

figure(4) 

imshow((final_label_matrix)); title('MRF Labels') 

 

post_final_label_matrix = zeros(size(final_label_matrix,1), size(final_label_matrix,2)); 

 

for ii = 1:size(final_label_matrix,1) 

    for jj = 1:size(final_label_matrix,2) 

         if final_label_matrix(ii,jj)<1 

            post_final_label_matrix(ii,jj)=0; 

         elseif final_label_matrix(ii,jj)>=1 

            post_final_label_matrix(ii,jj)=1;        

        end 

    end 

end 

 

figure(5) 

imshow((post_final_label_matrix)); title('Binary MRF Labels'); 

 

 

MRF Model 

function [label] = MRF_MOD(label) 

T=1;num_neighbors = 8; Ising = 1; 
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support = ones(3);support(2,2) = 0 ; 

A = -num_neighbors*Ising + 2.*conv2(label,support,'same'); 

label = 0.00811.*exp(1/T.*A); 

end 

 

ROC  

function [ROC] = myroc(C_idx,truth) 

%ROC returns a percentage vector of [true_pos false_pos true_neg false_neg] 

  

C_idx = C_idx(1:end,1:end); 

  

  

A = size(C_idx,1); 

B = size(C_idx,2); 

true_pos = 0; 

false_pos = 0; 

true_neg = 0; 

false_neg = 0; 

  

for i = 1:A 

    for j = 1:B 

         

        if truth(i,j) == 1 

            if C_idx(i,j) > 0 

                true_pos = true_pos + 1; 

            elseif C_idx(i,j) == 0 

                false_neg = false_neg + 1; 

            end 

        elseif truth(i,j) ~= 1 

            if C_idx(i,j) > 0 

                false_pos = false_pos + 1; 

            elseif C_idx(i,j) == 0 

                true_neg = true_neg +1; 

            end 
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        end 

    end 

end 

  

%percentages 

totalgroundpos = sum(sum(truth)); 

totalgroundneg = A*B - totalgroundpos;  

true_pos_percent = 100*true_pos/(true_pos+false_neg); 

false_pos_percent = 100*false_pos/(false_pos+true_neg); 

  

ROC = [true_pos_percent false_pos_percent]; 

 

DWT  
 

dwtmode('per'); 

[LLA,LHA,HLA,HHA] = dwt2(imlab,'db4'); 

imlabw = LLA; 


