

Clutter Detection in Indoor Scenes Using Structure 3-D Sensor

Zhiji Liu

Boston University

Department of Electrical and Computer Engineering

8 Saint Mary’s Street

Boston, MA 02215
www.bu.edu/ece

May 15, 2015

Technical Report No. ECE-2015-04

http://www.bu.edu/ece

Summary

Hoarding is a psychological disorder that manifests itself as a compulsive need to collect

and keep unnecessary and useless items in living quarters. It may have a very negative

impact on people’s quality of life. Bacteria, insects and even rodents can live in such an

environment and spread disease. Furthermore, a room full of useless items can prevent

people from moving freely and leading normal life. Healthcare professionals and

researchers who study hoarding usually visit a patient’s room and take pictures to compare

them with an image database in order to judge the degree of hoarding []. However, such a

comparison is subjective and often unreliable.

The goal of this MS project is to develop computational algorithms to automatically assess

the degree of hoarding. We believe this is the first effort to develop such an automatic,

objective, real-time hoarding assessment tool ever. One possible approach is to compute

the percentage of the image that clutter occupies and decide the hoarding severity based on

this percentage. Thus, the main focus of this particular project is the detection of clutter in

indoor images. The fundamental assumption we make is that real-life clutter corresponds

to high density of edges in a captured image.

First, we develop a 2-D method that computes average magnitude of luminance gradient

over small image blocks. Thresholding this magnitude leads to the detection of clutter

(average magnitude below a thresholds is deemed as non-clutter). Since this method results

in many false positives especially in flat but textured areas (e.g., busy wallpaper), we also

use a 3-D sensor to capture depth of the room. The second method we develop uses local

planarity estimation over small blocks (thresholding of the variance of the magnitude of

derivatives). Although combined with the 2-D method it improves the final decisions, the

method is at times unreliable due to the use of little data. Finally, we develop a global

planarity estimation method based on plane fitting using RANSAC algorithm. Any depth

areas that do not fit planar structure are deemed as outliers or clutter. By fusing the results

of the 2-D method with those of the global plane fitting, we further improve the results

although the method occasionally results in catastrophic failures due to random

initialization.

.

Table of Contents

1 Introduction ... 1

2 Assumptions and Project Statement .. 1

3 Thresholding the Magnitude of Luminance Gradient ... 4

3.1 Implementation... 4

3.2 Results .. 5

4 Thresholding the Variance of Depth ... 6

4.1 Structure Sensor ... 6

4.2 Approach .. 10

4.3 Implementation... 11

4.4 Results .. 12

5 Plane fitting to the depth map .. 14

5.1 Implementation... 15

5.2 Results .. 17

6 Conclusions ... 21

7 References ... 22

1 Zhiji Liu

1 Introduction

 Hoarding, which is known as the behavior of keeping unnecessary and useless items

in living quarters, has a negative effect on people’s quality of life [1-3]. Bacteria, insects

and even rodents can live in such an environment and spread disease. Furthermore, a room

full of useless items can prevent people from moving freely and leading normal life.

Researchers who study hoarding usually visit a patient’s room and take pictures. Then, they

compare these images with an image database to judge the degree of hoarding [4-7].

However, such a comparison is subjective and often unreliable. The goal of this MS project

is to implement an algorithm that can immediately and automatically assess the degree of

hoarding, for example by computing the percentage of the image that clutter occupies. Thus,

the main focus of this work is the detection of clutter in indoor images.

We note that hoarded items in a room usually correspond to high-frequency areas in the

captured image (e.g., lots of edges at random orientations – see Figure 1). This suggests

that some form of gradient thresholding may be useful in detecting clutter areas. However,

some areas void of clutter, like wallpaper-covered walls, paintings, posters may also exhibit

fine detail. Thus, using only gradient computation could result in excessive false alarms.

Clearly, the capture of 2-D brightness and color only is not sufficient in this case. Therefore,

we propose to explore using a 3-D sensor that, in addition to brightness and color, also

captures depth information. The knowledge of depth (structure) is expected to prove useful

in disambiguating textured, but flat, patterns (wallpaper) from clutter that exhibits non-flat

structure. Therefore, our final goal is to combine the traditional 2-D technique with 3-D

information to accurately detect areas of clutter.

2 Assumptions and Project Statement

 As in any image processing algorithm, we make several assumptions on the input

images in order to make the problem more constrained and thus feasible. The assumptions

we make regarding images are as follows:

2 Zhiji Liu

1. The image of a room should contain at least two walls: two side walls, or one

side wall and either floor or ceiling (see figure below).

2. In order to estimate wall/ceiling/floor orientation, a significant area of the

wall/ceiling/floor must be visible (void of clutter).

3. The camera should be aligned horizontally with the room. This simplifies wall

orientation estimation and makes the algorithm more robust.

Figure 1 Two examples of a hoarder’s room: (a) image satisfying assumption 1 (two side walls and

ceiling are visible); (b) image violating this assumption.

(a) (b)

 (a) (b)

Figure 2 Two examples of a hoarder’s room: (a) image with sufficiently visible two side walls; (b) image

with insufficient wall area visible.

3 Zhiji Liu

4. The camera should be pointed at the farthest corner of the room so that the

intersection area of, for example, two side walls is more or less central in the

field of view of the camera. This increases the robustness of wall orientation

estimation.

We characterize the indoor objects into three classes based on their surface texture and

surface shape:

Type I: Low-texture objects with planar surface, e.g., walls, boxes (considered to

be clutter), furniture, etc.)

Type II: High-texture objects with planar surface such as wallpapers, paintings, etc.

Type III: High-texture objects with non-planar surface, i.e., clutter.

 (a) (b)

Figure 3 Example of: (a) proper alignment of a camera with room floor, and (b) improper alignment.

 (a) (b)

Figure 4 (a) Image of a room with a corner between two walls being the furthest points of the scene

from the camera, and (b) the corresponding depth map (dark blue indicates large depth).

4 Zhiji Liu

The goal is to estimate what proportion of a captured image (field of view of the camera)

does the clutter occupy, where wallpaper, paintings, bookshelves are not considered clutter.

3 Thresholding the Magnitude of Luminance Gradient

We assume that all input images have been scaled to the dimension of 640 pixels

horizontally and 480 pixels vertically. We start by dividing the whole image into 20 by 20

non overlapping blocks, with an n-th block denoted by n . Inside each block n , we

compute the horizontal derivative as follows:),1(),(),(jijijid nn

H

n  and

similarly the vertical derivative as:)1,(),(),( jijijid nn

V

n
. Then, we compute

gradient magnitude for each pixel in block n :
22)),(()),((),(jidjidjid V

n

H

nn  .

The overall magnitude of the gradient for the entire block is computed by summing up all

the magnitudes of the gradient for each pixel:

𝑑𝑛 = ∑ 𝑑𝑛(𝑖, 𝑗)
(𝑖,𝑗)𝜖 Λ𝑛

In our case (640 by 480 image) we finally obtain a 32 by 24 matrix of gradient magnitudes

that we threshold as follows:

 1 nd










to make a clutter versus non-clutter decision for each block, where denotes a potential

clutter block and denotes a potential non-clutter block.

3.1 Implementation

Below are detailed steps of our implementation:

5 Zhiji Liu

1. Resize image I to 640 by 480 pixels, and convert to grayscale

2. Divide the image into 20 by 20 blocks, with block number n denoted n

3. Inside each block, compute the horizontal and vertical derivative matrix:

),(jid H

n
 and),(jidV

n
 as explained above.

4. Compute gradient magnitude in each block: 22)),(()),((),(jidjidjid V

n

H

nn 

5. Sum up magnitude of the gradient in each block:

𝑑𝑛 = ∑ 𝑑𝑛(𝑖, 𝑗)
(𝑖,𝑗)𝜖 Λ𝑛

6. Set up a threshold value for the gradient magnitude, and make the binary decision:

0

1

1 nd





7. The binary decision results in a binary labeling matrix 1 containing elements

of either 1 (clutter) or 0 (non-clutter)

3.2 Results

Figure 5 below shows our algorithm’s output. Note numerous cardboard boxes with

uniformly colored walls in the pile. This results in missed detections. At the same time, the

door frame shows clear edges between the white wall and wood on the frame. These edges

are detected and the corresponding blocks are falsely classified as clutter.

(a) (b) (c)

Figure 5 (a) Input image (640 by 480); (b) Total gradient magnitude for each bock, the brighter the block the larger the

total gradient magnitude dn in the block: (c) Final estimate of cluttered areas: red crosses denote clutter, blue circles

denote no clutter.

6 Zhiji Liu

Since surface texture determines the final clutter versus non-clutter decision, indoor flat

objects with texture such as paintings will affect the detection accuracy. Figure 6 shows

an example of very inaccurate detection. Since the image contains a fine-texture carpet, it

is detected as clutter.

We can see that in Figure 6.c the high-texture carpet is considered to be clutter by our

method. On the other hand, we can see in the bottom-left part of Figure 5.c that the boxes

are detected as non-clutter due to their uniform coloring. As a result, in order to overcome

the effect of surface texture, we need to use additional information, such as depth of the

scene.

4 Thresholding the Variance of Depth

4.1 Structure Sensor

The Structure Sensor [8] is a tool that allows to capture dense geometry of objects using

an infrared beam. The sensor provides distance information to objects in a scene, which in

our case cab useful for distinguishing clutter from non-clutter. Figure 7 below shows the

physical shape of the Structure Sensor that needs to be attached to iPad Air and connected

via USB, and an output depth map.

blocky image for room 3
2D segmentation

(a) (b) (c)

Figure 6 (a) Input image (640 by 480); (b) Total gradient magnitude for each bock, the brighter the block the

larger the total gradient magnitude dn in the block: (c) Final estimate of cluttered areas: red crosses denote

clutter, blue circles denote no clutter.

7 Zhiji Liu

However, the information provided by the Structure Sensor is indirect. It provides the

distance information in an RGB image format. We have to convert the RGB image into a

distance matrix (depth map). In fact, the Structure sensor first detects the distance and then

converts the distance into an RGB image as the output in order to provide a vivid (but not

very useful) display to users. Here is the main procedure of conversion from distance to

RGB depth image used by Structure Sensor:

1. Measure the distance between room objects and the camera based on travel time

of an infrared beam; the measured distance is non-linearly related to the true

distance.

2. Use a look-up table to make the non-linear input values (distance) vary more

linearly with true depth.

3. Convert the almost-linear distance into a 16-bit pattern; depict the first 8 bits as an

upper byte, and the last 8 bits as a lower byte.

4. Choose the base colors as follows: White (closest), Red, Orange, Yellow, Green,

 Cyan, Blue, Black (farthest) based on the upper byte.

5. Use the lower byte to scale between the base colors.

Below is part of the original source code of Structure Sensor written in C++ to illustrate

the above discussion. The code uses the upper byte and lower byte to convert distance

information into RGB color. The output coloredDepthBuffer stands for the corresponding

RGB color of a pixel.

(a) (b) (c)

Figure 7 (a) Structure Sensor that needs to be attached to iPad Air and connected via USB; (b) depth as an RGB image

captured by the sensor; (c) converted depth map.

8 Zhiji Liu

“ switch (upperByte)

 {

 case 0:

 _coloredDepthBuffer[4*i+0] = 255;

 _coloredDepthBuffer[4*i+1] = 255-lowerByte;

 _coloredDepthBuffer[4*i+2] = 255-lowerByte;

 _coloredDepthBuffer[4*i+3] = 255;

 break;

 case 1:

 _coloredDepthBuffer[4*i+0] = 255;

 _coloredDepthBuffer[4*i+1] = lowerByte;

 _coloredDepthBuffer[4*i+2] = 0;

 break;

 case 2:

 _coloredDepthBuffer[4*i+0] = 255-lowerByte;

 _coloredDepthBuffer[4*i+1] = 255;

 _coloredDepthBuffer[4*i+2] = 0;

 break;

 case 3:

 _coloredDepthBuffer[4*i+0] = 0;

 _coloredDepthBuffer[4*i+1] = 255;

 _coloredDepthBuffer[4*i+2] = lowerByte;

 break;

 case 4:

 _coloredDepthBuffer[4*i+0] = 0;

 _coloredDepthBuffer[4*i+1] = 255-lowerByte;

 _coloredDepthBuffer[4*i+2] = 255;

 break;

 case 5:

 _coloredDepthBuffer[4*i+0] = 0;

 _coloredDepthBuffer[4*i+1] = 0;

9 Zhiji Liu

 _coloredDepthBuffer[4*i+2] = 255-lowerByte;

 break;

 default:

 _coloredDepthBuffer[4*i+0] = 0;

 _coloredDepthBuffer[4*i+1] = 0;

 _coloredDepthBuffer[4*i+2] = 0;

 break;

 } ”

In order to obtain distance (depth) from the RGB images provided by Structure Sensor, we

need to reverse the above operation. Figure 8 below shows the result of this reverse

operation.

However, there are some drawbacks to the use of the Structure Sensor at the current stage:

the depth information provided is not fully complete. We can see from the lower part of

Figure 7 that there are some invalid black dots in the RGB image encoding depth, which is

caused by the absorption of infrared light by the environment. Also, the depth map is not

exactly linear compared to the true distance. This non-linearity might cause inaccuracies

in plane orientation estimation which will be introduced soon.

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120900

1000

1100

1200

depth after outlier deleting and medium filtering

(a) (b)

Figure 8 Depth (distance) map of a room obtained from RGB image that encodes depth produced by Structure Sensor:

(a) as grayscale (the brighter the pixel, the larger the distance/depth); (b) the same depth shown as a surface plot from

MATLAB.

10 Zhiji Liu

4.2 Approach

Usually, the depth surface in a cluttered area has an irregular shape. On the other

hand, this surface in a non-cluttered area is expected to exhibit regular shape (e.g.,

planar). For example, the depth matrix of a wall area is either steadily increasing in

horizontal direction or in vertical direction. We can use this characteristic to try to

eliminate some of the false alarms caused by the previous method of thresholding the

magnitude of luminance gradient.

We first extract depth information from the Structure Sensor by converting the 640 by

480 by RGB image from the sensor into a 2-D 640 by 480 depth matrix D. This matrix

contains the relative depth of the scene. We divide the depth matrix into 20 by 20 blocks

n as before. Inside each block, we compute horizontal and vertical derivative of the

block element and take the absolute value as follows:

),1(),(),(jijijid nn

H

n  and)1,(),(),( jijijid nn

V

n .

We reshape the horizontal and vertical matrices of these derivatives into vectors of size of

1 by 400:

)(),(kdjid H

n

r e s h a p eH

n   and)(),(kdjid V

n

reshapeV

n  

For each vector, we compute the variance as follows:

4 0 0

))((

v a r

2 

 k
d

H

n

H

n

H
n

kd 

 and
400

))((

var

2 

 k
d

V

n

V

n

V
n

kd 

where  denotes the corresponding mean.

As a result, we obtain a 32 by 24 matrix of variances of magnitudes of depth derivatives.

11 Zhiji Liu

We then set up a threshold value 2 for these variance matrices. If the variance of a

block is lower than the threshold, then the corresponding frame is considered to depict a

smooth surface area, which is either object of type I or type II (see Section 2).

Similarly as in the 2-D method, we make the binary decision as follows:

 varor var V

n

H

n2










and finally obtain a label matrix 2 . Since we are using this method to eliminate

potential false alarms, we should keep all non-clutter areas detected by the 2-D method

unchanged. Therefore, we combine the results of the two methods by simply performing

a dot-matrix dot multiplication of 1 and 2 (AND operator).

4.3 Implementation

Below are detailed steps of our implementation:

1. Convert the RGB depth image into depth map D

2. Divide depth map into 20 by 20 blocks n

3. In each block compute the horizontal and vertical derivatives and take the absolute

value:),1(),(),(jijijid nn

H

n  and)1,(),(),( jijijid nn

V

n .

4. In each block compute the variance of the absolute derivatives:

400

))((

var

2 

 k
d

H

n

H

n

H
n

kd 

 and
400

))((

var

2 

 k
d

V

n

V

n

V
n

kd 

5. Set up a threshold value 2 for the variance. If the variance of the frame is below

the threshold 2 , the frame is determined to be a non-clutter area:

12 Zhiji Liu

 varor var V

n

H

n2










After thresholding, the resulting label matrix 2 has a binary value of 1 for clutter

or 0 for non-clutter.

6. Combine the 2-D (luminance-based) and the 3-D (depth-based) methods, by dot-

matrix multiplication.

4.4 Results

The above method is expected to help eliminate false alarms when combined with

the 2-D method. Figure 9 shows the results for 2-D method that uses luminance only

(Figure 9.b), 3-D method that uses depth only (Figure 9.d), and a fused result by means of

“AND” operation (Figure 9.f). As can be seen, many false positives produced by the 2-D

method around the window frame, on bed cover and on the wall to the left of the clothing

hanging on a rack have been eliminated. This was to be expected since these areas are

void of clutter. However, some of the false positives remain (e.g., two red crosses on the

horizontal section of the window frame, a number of them at the edge of the bed cover as

well as on the wall next to the clothes rack). These errors are partially due to the fact that

room surfaces absorb infrared light which then results in invalid depth measurements

(black dots in the depth map shown in Figure 9.c – seemingly the clothes rack supports

are covered by material that absorbs infrared light). Since few measurements are

available in the blocks that overlap these areas, the depth variance calculations are less

reliable and lead to some of the errors. As for the horizontal window frame and the edge

of bed cover, the false positives occur at discontinuities in the depth surface (window

parapet against the wall beneath and the end of bed cover against the floor below). These

discontinuities result in an increased depth variance in the corresponding block and

indicate a non-smooth surface (which is correct). Although one could increase threshold

2 , this would help in these particular cases but would lead to more misses of clutter (for

clutter whose depth structure has only mildly irregular surface).

13 Zhiji Liu

2D segmentation

using only local variance

using local variance

(a) (b)

(c) (d)

(e) (f)

Figure 9 (a) View of a room with low clutter; (b) clutter decisions using the 2-D luminance-based method; (c) depth map

from Structure Sensor; (d) clutter decisions using the 3-D depth-based method; (e) depth maps shown as a surface; (f)

clutter decisions after fusing results from 2-D and 3-D methods using “AND” operation.

14 Zhiji Liu

5 Plane fitting to the depth map

As can be seen from the results in the previous section, even the fusion of decisions

made by the 2-D luminance-based method and the 3-D depth-variance-based method is

not able to eliminate all false positives due to objects of type II (highly-textured planar

surface). Since objects of type II are typically paintings, wallpaper, bed covers, etc. one

would expect their surfaces to be planar. In the previous method (Section 4), the

discovery of object’s planarity was attempted by computing local depth variance over a

small block (20 by 20 pixels), but this method proved to be erroneous at times. Since of

concern are larger planar areas like walls, ceiling, floor, we propose to fit up to 3 planar

surface to the depth map with an expectation that a planar fit to a larger area will be more

robust than a depth variance measurement within a small depth block. Since type III

objects can be easily detected using the 2-D method, the only remaining objects are of

type I, some of which may be considered to be clutter (e.g., large boxes), but we leave

this to future work.

We perform plane fitting (estimation of plane orientation) as follows. First, we find the

area in the depth map corresponding to the intersection of two side walls (corner of a

room) that is assumed visible in the field of view of the Structure Sensor. We start by

finding the largest and smallest values in the depth map, maxd and mind , respectively.

Then, we find all depth values that are larger than 90% of the depth range (room’s corner

is assumed to be the farthest room area from the sensor):

IAdk  if)(*1.0 minmaxmax ddddk  ,

where IA denotes the intersection area. We then use median filtering to eliminate any

isolated depth values in the set IA; the remaining points are assumed to be the intersection

area of two side walls.

In the second step, we randomly pick a depth value from the wall intersection area:

IAdi  , and find 48 neighboring depth values in a 7 by 7 neighborhood of id . We use

15 Zhiji Liu

id and its 48 neighbors, denoted as iniD , as the starting point for a local RANSAC algorithm

to find the first planar fit (blue-colored points in Figure 10.b denoted as iniP). This fit is

obtained by minimizing the sum of distances from the depth points to the plane (Euclidean

distance along the direction orthogonal to the plane). After detecting the first plane, we

remove all the points belonging to the first plane and apply the same steps to the remaining

points under a constraint that the angle between the already-detected plane and the new

plane is as close to 90 degrees as possible. We repeat this procedure for the third plane.

After fitting three planes (blue, green, and magenta in Figure 10), we declare the remaining

points, which do not belong to any of these planes, as outliers (red colored points). These

are likely clutter areas since they do not fit any of the planar surfaces. The knowledge of

planar surfaces is expected to help with the elimination of false positives due to type II

objects.

5.1 Implementation

Below are detailed steps of our implementation:

1. Find the intersection area of two side walls by identifying all locations in the depth map

whose depth exceeds 90% of the depth range:)(*1.0 minmaxmax ddddk  .

2. Refine the found locations by eliminating isolated points via 3-by-3 median filtering.

Figure 10 (a) View of a room from Structure Sensor; (b) The result of plane fitting to the depth map obtained by

Structure Sensor in room depicted in (a). The blue, green, and magenta correspond to pixels belonging to a plane

(wall or floor) whereas the red corresponds to outlying pixels that did not fit any plane.

(a) (b)

16 Zhiji Liu

3. Pick a random point in the intersection area and then pick another point 20 pixels away

horizontally from the first point, and use the latter point as the starting point. Find 48

nearest neighbors of the starting point in a 7-by-7 neighborhood.

4. Estimate the location of the plane using the starting point and its 48 neighbors (49 points

in total): the plane passes through the centroid of these 49 points.

5. Estimate the orientation of the plane by minimizing the sum of orthogonal distances of

these 49 points to the plane. This step is carried out by constructing a 3 by 3 covariance

matrix of these 49 points and performing eigendecomposition of this matrix.

6. Set up a threshold value t (e.g., t = 9): any point whose orthogonal distance to the plane

is smaller than t is considered to be the point belonging to this plane:
inij Pd  if

tPddist inij ),(

7. Set up a threshold value N (e.g., N = 1800) : plane iniP is considered as a potential plane

if there are at least N points belonging to the plane (after thresholding is step 6). If the

number of points belonging to iniP is less than N, repeat starting from step 3 until the

number of points exceeds N.

8. Refit a new plane newP using all points that are within the distance t from iniP using the

method from step 5.

9. Repeat steps 6-8 ten times. The best-fitting plane is the one with the smallest average

orthogonal distance from depth points to the plane. Denote the set of these points by 1

10. Repeat steps 3-9 ten times to obtain ten sets of points: 1 , …, 10 , and compute their

union: 1021 ...  tot .

11. Compute the average orthogonal distance from points in tot to the ten planes

calculated in step 10. The best plane is the plane with the smallest average orthogonal

distance:

 
 t o tjd

jPopt PddistorthogonalP


),(_minarg:

12. Remove all the points that fit the first plane, and fit the second plane using the

remaining points. Repeat for the third plane. An extra constraint is added to the second

and third plane: the second plane is limited to be as close as possible to being

perpendicular to the first plane. Similarly, the third plane is constrained to be as

perpendicular as possible to the first and second plane.

17 Zhiji Liu

5.2 Results

Figures on the following pages show the results of the plane fitting method, from the

simplest scenario to more challenging ones. The points associated with blue, green, and

magenta are the points belonging to three planes. The points associated with red are the

outliers that do not belong to any plane.

As can be seen in Figure 11 the plane fitting approach works quite well. The walls and

ceiling in the empty room are accurately estimated. Similarly, the two walls in the furnished

room are quite well estimated while the floor (green) is not as accurate due to the presence

of the bed and a cube-shaped table in the corner. In both cases, as expected, very little

clutter is detected (the lamp in Figure 1Figure 11.d, otherwise false positives). In the case

of slightly-cluttered room (Figure 11.f), the walls are accurately estimated however the fit

to the floor surface is very poor. This should not be surprising since there are several

horizontal planar surfaces (bed, table, floor) so the algorithm has difficulty with making a

decision.

Figure 12 and Figure 13 show two different runs of the plane fitting algorithm on the same

depth maps. While the results in Figure 12 are quite successful, those in Figure 13 are not.

Figure 12.b, shows clutter labels obtained by the 2-D method (thresholding of the

luminance gradient magnitude). Clearly, there are many false positives on the bed cover,

some on window frame and some on the wall around the clothes rack. Figure 12.d shows

results for the plane fitting method which produces no false positives on the bed. As can

be seen in Figure 12.e, the intersection of the two results (fusion by means of “AND”

operator) results in clutter detections in the correct area (bundle of clothing on the bed) and

a few detections at the boundaries of clothes rack and the clothing. The latter detections

can be considered as false positives if one considers the clothing rack as non-clutter.

18 Zhiji Liu

(a) (b)

(c) (d)

(e) (f)

Figure 11 (a) Empty room scenario and (b) corresponding plane estimates; (c) furnished room scenario and (d)

corresponding plane estimates; (e) slightly cluttered room scenario and (f) corresponding plane estimates.

19 Zhiji Liu

(a) (b)

(c) (d)

(e) (f)

Figure 12 (a) Depth map from Structure Sensor as a surface plot; (b) clutter labels from the 2-D method

(thresholding of luminance gradient magnitude; (c) three fitted planes as a surface plot; (d) clutter labels from the

plane fitting method (outliers are considered to constitute clutter); (e) plane detection results; (f) fusion of results from

(b) and (d) by means of “AND” operator.

20 Zhiji Liu

(a) (b)

(d) (c)

(e) (f)
Figure 13 (a) Depth map from Structure Sensor as a surface plot; (b) clutter labels from the 2-D method

(thresholding of luminance gradient magnitude; (c) three fitted planes as a surface plot; (d) clutter labels from the

plane fitting method (outliers are considered to constitute clutter); (e) plane detection results; (f) fusion of results from

(b) and (d) by means of “AND” operator.

21 Zhiji Liu

As for the results in Figure 13, they are not successful. The planes of the walls and the bed

were not correctly detected, and therefore most of the bed surface is deemed as clutter in

Figure 13.d and consequently some of these false positives remain in the fused label field

in Figure 13.f. Similarly, the wall with the window was not detected and thus the false

positives around the window frame remain in the fused result in Figure 13.f. The failure of

the plane fitting method in this case is due to the random initialization.

6 Conclusions

In this project, we attempted to detect areas of clutter in a room based on a captured

luminance image and depth map. We assumed that clutter corresponds to a high incidence

of luminance edges and we proposed a 2-D method that thresholds the average magnitude

of luminance gradient in 20-by-20 blocks. The method performed reasonably well but

resulted in excessively many outliers, especially in textured but planar areas (e.g.,

wallpaper). In order to deal with such outliers one needs to distinguish areas with dense

edges but underlying planar 3-D surface (e.g., wallpaper) versus similarly detailed areas

that have a complex underlying 3-D structure (clutter). To this end we have employed

Structure Sensor that captures depth map in its field of view, and developed one local

(block-based) and one global planarity detection method. The local method that simply

thresholds the variance of the magnitude of horizontal and vertical depth derivatives within

20-by-20 blocks, when combined with the 2-D method, improves the accuracy of clutter

detection but is not very robust as it uses data within a small block only. The global method

that fits 3 mutually orthogonal planes to the captured depth maps in order to establish

planarity of the walls and floor/ceiling, when combined with the 2-D method, works better

than the local method. However, it is prone to catastrophic failures due to random

initialization of the plane fitting algorithm. For higher-complexity room images (more

clutter and furniture), the plane fitting algorithm is likely to fail when detecting planes thus

very likely severely affecting final results. Clearly, a different approach is needed to assure

robust performance in such a scenario.

22 Zhiji Liu

7 References

[1] Frost, R. O., Steketee, G., & Grisham, J. (2004). Measurement of compulsive

hoarding: Saving inventory-revised. Behaviour Research and Therapy, 42, 1163–

1182.

[2] Lervolino, A.C., Perroud, N., Fullana, M.A., et al. (2009). Prevalence and

heritability of compulsive hoarding: A twin study. American Journal of

Psychiatry, 166, 1156–1161

[3] Frost, R.O., Tolin, D.F., & Maltby, N. (2010). Insight-related challenges in the

treatment of hoarding. Cognitive and Behavioral Practice, 17, 404–413.

[4] Frost, R., Steketee, G., Tolin, D., & Renaud, D. (2008). Development and

validation of the Clutter Image Rating. Journal of Psychopathology and

Behavioral Assessment, 30, 193–203.

[5] Tolin, D., Frost, R., & Steketee, G. (2010). A brief interview for assessing

compulsive hoarding: The Hoarding Rating Scale. Psychiatry Research, 178,

147–152.

[6] Tolin, D. F., Frost, R.O., Steketee, G., Fitch, K.E. (2008). Family burden of

compulsive hoarding: results of an internet survey. Behaviour Research and

Therapy, 46(3), 334-344.

[7] Samborski, A.M. (2014). Clutter Image Rating Application. Poster presentation at

2014 UROP Symposium, Boston University (Advisor: Prof. J. Muroff).

[8] http://structure.io

http://structure.io/

