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Summary 

Hoarding is a psychological disorder that manifests itself as a compulsive need to collect 

and keep unnecessary and useless items in living quarters. It may have a very negative 

impact on people’s quality of life. Bacteria, insects and even rodents can live in such an 

environment and spread disease. Furthermore, a room full of useless items can prevent 

people from moving freely and leading normal life. Healthcare professionals and 

researchers who study hoarding usually visit a patient’s room and take pictures to compare 

them with an image database in order to judge the degree of hoarding []. However, such a 

comparison is subjective and often unreliable. 

 

The goal of this MS project is to develop computational algorithms to automatically assess 

the degree of hoarding. We believe this is the first effort to develop such an automatic, 

objective, real-time hoarding assessment tool ever. One possible approach is to compute 

the percentage of the image that clutter occupies and decide the hoarding severity based on 

this percentage. Thus, the main focus of this particular project is the detection of clutter in 

indoor images. The fundamental assumption we make is that real-life clutter corresponds 

to high density of edges in a captured image. 

 

First, we develop a 2-D method that computes average magnitude of luminance gradient 

over small image blocks. Thresholding this magnitude leads to the detection of clutter 

(average magnitude below a thresholds is deemed as non-clutter). Since this method results 

in many false positives especially in flat but textured areas (e.g., busy wallpaper), we also 

use a 3-D sensor to capture depth of the room. The second method we develop uses local 

planarity estimation over small blocks (thresholding of the variance of the magnitude of 

derivatives). Although combined with the 2-D method it improves the final decisions, the 

method is at times unreliable due to the use of little data. Finally, we develop a global 

planarity estimation method based on plane fitting using RANSAC algorithm. Any depth 

areas that do not fit planar structure are deemed as outliers or clutter. By fusing the results 

of the 2-D method with those of the global plane fitting, we further improve the results 

although the method occasionally results in catastrophic failures due to random 

initialization. 



. 
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1 Introduction 
 

 Hoarding, which is known as the behavior of keeping unnecessary and useless items 

in living quarters, has a negative effect on people’s quality of life [1-3]. Bacteria, insects 

and even rodents can live in such an environment and spread disease. Furthermore, a room 

full of useless items can prevent people from moving freely and leading normal life. 

Researchers who study hoarding usually visit a patient’s room and take pictures. Then, they 

compare these images with an image database to judge the degree of hoarding [4-7]. 

However, such a comparison is subjective and often unreliable. The goal of this MS project 

is to implement an algorithm that can immediately and automatically assess the degree of 

hoarding, for example by computing the percentage of the image that clutter occupies. Thus, 

the main focus of this work is the detection of clutter in indoor images. 

  

We note that hoarded items in a room usually correspond to high-frequency areas in the 

captured image (e.g., lots of edges at random orientations – see Figure 1). This suggests 

that some form of gradient thresholding may be useful in detecting clutter areas. However, 

some areas void of clutter, like wallpaper-covered walls, paintings, posters may also exhibit 

fine detail. Thus, using only gradient computation could result in excessive false alarms. 

Clearly, the capture of 2-D brightness and color only is not sufficient in this case. Therefore, 

we propose to explore using a 3-D sensor that, in addition to brightness and color, also 

captures depth information. The knowledge of depth (structure) is expected to prove useful 

in disambiguating textured, but flat, patterns (wallpaper) from clutter that exhibits non-flat 

structure. Therefore, our final goal is to combine the traditional 2-D technique with 3-D 

information to accurately detect areas of clutter. 

 

2 Assumptions and Project Statement  
 

 As in any image processing algorithm, we make several assumptions on the input 

images in order to make the problem more constrained and thus feasible. The assumptions 

we make regarding images are as follows: 
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1. The image of a room should contain at least two walls: two side walls, or one 

side wall and either floor or ceiling (see figure below). 

 

 

 

 

 

 

 

 

 

 

 

2. In order to estimate wall/ceiling/floor orientation, a significant area of the 

wall/ceiling/floor must be visible (void of clutter). 

 

3. The camera should be aligned horizontally with the room. This simplifies wall 

orientation estimation and makes the algorithm more robust. 

 

 

   
 

Figure 1  Two examples of a hoarder’s room: (a) image satisfying assumption 1 (two side walls and 

ceiling are visible); (b) image violating this assumption. 

(a) (b) 

   
 (a) (b) 

Figure 2   Two examples of a hoarder’s room: (a) image with sufficiently visible two side walls; (b) image 

with insufficient wall area visible. 
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4. The camera should be pointed at the farthest corner of the room so that the 

intersection area of, for example, two side walls is more or less central in the 

field of view of the camera. This increases the robustness of wall orientation 

estimation. 

 

We characterize the indoor objects into three classes based on their surface texture and 

surface shape: 

Type I: Low-texture objects with planar surface, e.g., walls, boxes (considered to 

be clutter), furniture, etc.)  

Type II: High-texture objects with planar surface such as wallpapers, paintings, etc. 

Type III: High-texture objects with non-planar surface, i.e., clutter. 

   
 (a) (b) 

Figure 3    Example of: (a) proper alignment of a camera with room floor, and (b) improper alignment. 

       
 (a) (b) 

Figure 4    (a) Image of a room with a corner between two walls being the furthest points of the scene 

from the camera, and (b) the corresponding depth map (dark blue indicates large depth). 
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The goal is to estimate what proportion of a captured image (field of view of the camera) 

does the clutter occupy, where wallpaper, paintings, bookshelves are not considered clutter. 

 

3 Thresholding the Magnitude of Luminance Gradient 
 

We assume that all input images have been scaled to the dimension of 640 pixels 

horizontally and 480 pixels vertically. We start by dividing the whole image into 20 by 20 

non overlapping blocks, with an n-th block denoted by n . Inside each block n , we 

compute the horizontal derivative as follows: ),1(),(),( jijijid nn

H

n   and 

similarly the vertical derivative as: )1,(),(),(  jijijid nn

V

n
. Then, we compute 

gradient magnitude for each pixel in block n : 
22 )),(()),((),( jidjidjid V

n

H

nn  . 

The overall magnitude of the gradient for the entire block is computed by summing up all 

the magnitudes of the gradient for each pixel: 

 

𝑑𝑛 =  ∑ 𝑑𝑛(𝑖, 𝑗)
(𝑖,𝑗)𝜖 Λ𝑛

 

 

In our case (640 by 480 image) we finally obtain a 32 by 24 matrix of gradient magnitudes 

that we threshold as follows: 

 

  1 nd








  

 

to make a clutter versus non-clutter decision for each block, where  denotes a potential 

clutter block and denotes a potential non-clutter block.  

 

3.1 Implementation  
 

Below are detailed steps of our implementation: 
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1. Resize image I to 640 by 480 pixels, and convert to grayscale 

2. Divide the image into 20 by 20 blocks, with block number n denoted n  

3. Inside each block, compute the horizontal and vertical derivative matrix: 

),( jid H

n
 and ),( jidV

n
 as explained above. 

4. Compute gradient magnitude in each block: 22 )),(()),((),( jidjidjid V

n

H

nn   

5. Sum up magnitude of the gradient in each block: 

𝑑𝑛 =  ∑ 𝑑𝑛(𝑖, 𝑗)
(𝑖,𝑗)𝜖 Λ𝑛

 

6. Set up a threshold value for the gradient magnitude, and make the binary decision: 

                              

0

1

1 nd



  

7. The binary decision results in a binary labeling matrix 1  containing elements 

of either 1 (clutter) or 0 (non-clutter) 

 

3.2 Results 
 

Figure 5 below shows our algorithm’s output. Note numerous cardboard boxes with 

uniformly colored walls in the pile. This results in missed detections. At the same time, the 

door frame shows clear edges between the white wall and wood on the frame. These edges 

are detected and the corresponding blocks are falsely classified as clutter. 

 

   

(a) (b) (c) 

Figure 5  (a) Input image (640 by 480); (b) Total gradient magnitude for each bock, the brighter the block the larger the 

total gradient magnitude dn in the block: (c) Final estimate of cluttered areas: red crosses denote clutter, blue circles 

denote no clutter. 
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Since surface texture determines the final clutter versus non-clutter decision, indoor flat 

objects with texture such as paintings will affect the detection accuracy. Figure 6 shows 

an example of very inaccurate detection. Since the image contains a fine-texture carpet, it 

is detected as clutter. 

 

 

  

 

 

 

 

 

 

We can see that in Figure 6.c the high-texture carpet is considered to be clutter by our 

method. On the other hand, we can see in the bottom-left part of Figure 5.c that the boxes 

are detected as non-clutter due to their uniform coloring. As a result, in order to overcome 

the effect of surface texture, we need to use additional information, such as depth of the 

scene. 

 

4 Thresholding the Variance of Depth 
 

4.1 Structure Sensor 
 

The Structure Sensor [8] is a tool that allows to capture dense geometry of objects using 

an infrared beam. The sensor provides distance information to objects in a scene, which in 

our case cab useful for distinguishing clutter from non-clutter. Figure 7 below shows the 

physical shape of the Structure Sensor that needs to be attached to iPad Air and connected 

via USB, and an output depth map. 

 

 

         

blocky image for room 3
2D segmentation

(a) (b) (c) 

Figure 6   (a) Input image (640 by 480); (b) Total gradient magnitude for each bock, the brighter the block the 

larger the total gradient magnitude dn in the block: (c) Final estimate of cluttered areas: red crosses denote 

clutter, blue circles denote no clutter. 
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However, the information provided by the Structure Sensor is indirect. It provides the 

distance information in an RGB image format. We have to convert the RGB image into a 

distance matrix (depth map). In fact, the Structure sensor first detects the distance and then 

converts the distance into an RGB image as the output in order to provide a vivid (but not 

very useful) display to users. Here is the main procedure of conversion from distance to 

RGB depth image used by Structure Sensor: 

1. Measure the distance between room objects and the camera based on travel  time 

of an infrared beam; the measured distance is non-linearly related to the true 

distance. 

2. Use a look-up table to make the non-linear input values (distance) vary more 

linearly with true depth. 

3. Convert the almost-linear distance into a 16-bit pattern; depict the first 8 bits as an 

upper byte, and the last 8 bits as a lower byte. 

4. Choose the base colors as follows: White (closest), Red, Orange, Yellow, Green, 

 Cyan, Blue, Black (farthest) based on the upper byte. 

5. Use the lower byte to scale between the base colors. 

 

Below is part of the original source code of Structure Sensor written in C++ to illustrate 

the above discussion. The code uses the upper byte and lower byte to convert distance 

information into RGB color.  The output coloredDepthBuffer stands for the corresponding 

RGB color of a pixel. 

 

 

       

(a) (b) (c) 

Figure 7  (a) Structure Sensor that needs to be attached to iPad Air and connected via USB; (b) depth as an RGB image 

captured by the sensor; (c) converted depth map. 
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“ switch (upperByte) 

        { 

            case 0: 

                _coloredDepthBuffer[4*i+0] = 255; 

                _coloredDepthBuffer[4*i+1] = 255-lowerByte; 

                _coloredDepthBuffer[4*i+2] = 255-lowerByte; 

                _coloredDepthBuffer[4*i+3] = 255; 

                break; 

            case 1: 

                _coloredDepthBuffer[4*i+0] = 255; 

                _coloredDepthBuffer[4*i+1] = lowerByte; 

                _coloredDepthBuffer[4*i+2] = 0; 

                break; 

            case 2: 

                _coloredDepthBuffer[4*i+0] = 255-lowerByte; 

                _coloredDepthBuffer[4*i+1] = 255; 

                _coloredDepthBuffer[4*i+2] = 0; 

                break; 

            case 3: 

                _coloredDepthBuffer[4*i+0] = 0; 

                _coloredDepthBuffer[4*i+1] = 255; 

                _coloredDepthBuffer[4*i+2] = lowerByte; 

                break; 

            case 4: 

                _coloredDepthBuffer[4*i+0] = 0; 

                _coloredDepthBuffer[4*i+1] = 255-lowerByte; 

                _coloredDepthBuffer[4*i+2] = 255; 

                break; 

            case 5: 

                _coloredDepthBuffer[4*i+0] = 0; 

                _coloredDepthBuffer[4*i+1] = 0; 
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                _coloredDepthBuffer[4*i+2] = 255-lowerByte; 

                break; 

            default: 

                _coloredDepthBuffer[4*i+0] = 0; 

                _coloredDepthBuffer[4*i+1] = 0; 

                _coloredDepthBuffer[4*i+2] = 0; 

                break; 

        } ” 

 

In order to obtain distance (depth) from the RGB images provided by Structure Sensor, we 

need to reverse the above operation. Figure 8 below shows the result of this reverse 

operation. 

 

However, there are some drawbacks to the use of the Structure Sensor at the current stage: 

the depth information provided is not fully complete. We can see from the lower part of 

Figure 7 that there are some invalid black dots in the RGB image encoding depth, which is 

caused by the absorption of infrared light by the environment. Also, the depth map is not 

exactly linear compared to the true distance. This non-linearity might cause inaccuracies 

in plane orientation estimation which will be introduced soon. 
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(a) (b) 

Figure 8   Depth (distance) map of a room obtained from RGB image that encodes depth produced by Structure Sensor: 

(a) as grayscale (the brighter the pixel, the larger the distance/depth); (b) the same depth shown as a surface plot from 

MATLAB.  
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4.2 Approach 

 

Usually, the depth surface in a cluttered area has an irregular shape. On the other 

hand, this surface in a non-cluttered area is expected to exhibit regular shape (e.g., 

planar). For example, the depth matrix of a wall area is either steadily increasing in 

horizontal direction or in vertical direction. We can use this characteristic to try to 

eliminate some of the false alarms caused by the previous method of thresholding the 

magnitude of luminance gradient. 

 

We first extract depth information from the Structure Sensor by converting the 640 by 

480 by RGB image from the sensor into a 2-D 640 by 480 depth matrix D. This matrix 

contains the relative depth of the scene. We divide the depth matrix into 20 by 20 blocks 

n as before. Inside each block, we compute horizontal and vertical derivative of the 

block element and take the absolute value as follows: 

 

      ),1(),(),( jijijid nn

H

n    and   )1,(),(),(  jijijid nn

V

n . 

 

We reshape the horizontal and vertical matrices of these derivatives into vectors of size of 

1 by 400: 

 

           )(),( kdjid H

n

r e s h a p eH

n     and   )(),( kdjid V

n

reshapeV

n    

 

For each vector, we compute the variance as follows: 

 

        
4 0 0

))((

v a r

2 

 k
d

H

n

H

n

H
n

kd 

  and  
400

))((

var

2 

 k
d

V

n

V

n

V
n

kd 

 

 

where  denotes the corresponding mean. 

 

As a result, we obtain a 32 by 24 matrix of variances of magnitudes of depth derivatives. 
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We then set up a threshold value 2 for these variance matrices. If the variance of a 

block is lower than the threshold, then the corresponding frame is considered to depict a 

smooth surface area, which is either object of type I or type II (see Section 2). 

Similarly as in the 2-D method, we make the binary decision as follows: 

                                varor  var V

n

H

n2








  

and finally obtain a label matrix 2 . Since we are using this method to eliminate 

potential false alarms, we should keep all non-clutter areas detected by the 2-D method 

unchanged. Therefore, we combine the results of the two methods by simply performing 

a dot-matrix dot multiplication of 1  and 2 (AND operator). 

 

4.3 Implementation 

 

Below are detailed steps of our implementation: 

 

1. Convert the RGB depth image into depth map D 

2. Divide depth map into 20 by 20 blocks n  

3. In each block compute the horizontal and vertical derivatives and take the absolute 

value: ),1(),(),( jijijid nn

H

n    and   )1,(),(),(  jijijid nn

V

n . 

4. In each block compute the variance of the absolute derivatives: 

 

400

))((

var

2 

 k
d

H

n

H

n

H
n

kd 

  and  
400

))((

var

2 

 k
d

V

n

V

n

V
n

kd 

 

 

5. Set up a threshold value 2 for the variance. If the variance of the frame is below 

the threshold 2 , the frame is determined to be a non-clutter area: 
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                          varor  var V

n

H

n2








  

After thresholding, the resulting label matrix 2 has a binary value of 1 for clutter 

or 0 for non-clutter.  

6. Combine the 2-D (luminance-based) and the 3-D (depth-based) methods, by dot-

matrix multiplication. 

 

4.4 Results 
 

The above method is expected to help eliminate false alarms when combined with 

the 2-D method. Figure 9 shows the results for 2-D method that uses luminance only 

(Figure 9.b), 3-D method that uses depth only (Figure 9.d), and a fused result by means of 

“AND” operation (Figure 9.f). As can be seen, many false positives produced by the 2-D 

method around the window frame, on bed cover and on the wall to the left of the clothing 

hanging on a rack have been eliminated. This was to be expected since these areas are 

void of clutter. However, some of the false positives remain (e.g., two red crosses on the 

horizontal section of the window frame, a number of them at the edge of the bed cover as 

well as on the wall next to the clothes rack). These errors are partially due to the fact that 

room surfaces absorb infrared light which then results in invalid depth measurements 

(black dots in the depth map shown in Figure 9.c – seemingly the clothes rack supports 

are covered by material that absorbs infrared light). Since few measurements are 

available in the blocks that overlap these areas, the depth variance calculations are less 

reliable and lead to some of the errors. As for the horizontal window frame and the edge 

of bed cover, the false positives occur at discontinuities in the depth surface (window 

parapet against the wall beneath and the end of bed cover against the floor below). These 

discontinuities result in an increased depth variance in the corresponding block and 

indicate a non-smooth surface (which is correct). Although one could increase threshold 

2 , this would help in these particular cases but would lead to more misses of clutter (for 

clutter whose depth structure has only mildly irregular surface). 
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2D segmentation

using only local variance

using local variance

(a) (b) 

(c) (d) 

(e) (f) 

Figure 9  (a) View of a room with low clutter; (b) clutter decisions using the 2-D luminance-based method; (c) depth map 

from Structure Sensor; (d) clutter decisions using the 3-D depth-based method; (e) depth maps shown as a surface; (f) 

clutter decisions after fusing results from 2-D and 3-D methods using “AND” operation. 
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5 Plane fitting to the depth map 
 

As can be seen from the results in the previous section, even the fusion of decisions 

made by the 2-D luminance-based method and the 3-D depth-variance-based method is 

not able to eliminate all false positives due to objects of type II (highly-textured planar 

surface). Since objects of type II are typically paintings, wallpaper, bed covers, etc. one 

would expect their surfaces to be planar. In the previous method (Section 4), the 

discovery of object’s planarity was attempted by computing local depth variance over a 

small block (20 by 20 pixels), but this method proved to be erroneous at times. Since of 

concern are larger planar areas like walls, ceiling, floor, we propose to fit up to 3 planar 

surface to the depth map with an expectation that a planar fit to a larger area will be more 

robust than a depth variance measurement within a small depth block. Since type III 

objects can be easily detected using the 2-D method, the only remaining objects are of 

type I, some of which may be considered to be clutter (e.g., large boxes), but we leave 

this to future work. 

 

We perform plane fitting (estimation of plane orientation) as follows. First, we find the 

area in the depth map corresponding to the intersection of two side walls (corner of a 

room) that is assumed visible in the field of view of the Structure Sensor. We start by 

finding the largest and smallest values in the depth map, maxd and mind , respectively. 

Then, we find all depth values that are larger than 90% of the depth range (room’s corner 

is assumed to be the farthest room area from the sensor): 

  

IAdk   if )(*1.0 minmaxmax ddddk  , 

 

where IA denotes the intersection area. We then use median filtering to eliminate any 

isolated depth values in the set IA; the remaining points are assumed to be the intersection 

area of two side walls. 

In the second step, we randomly pick a depth value from the wall intersection area:

IAdi  , and find 48 neighboring depth values in a 7 by 7 neighborhood of id . We use 
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id and its 48 neighbors, denoted as iniD , as the starting point for a local RANSAC algorithm 

to find the first planar fit (blue-colored points in Figure 10.b denoted as iniP ). This fit is 

obtained by minimizing the sum of distances from the depth points to the plane (Euclidean 

distance along the direction orthogonal to the plane). After detecting the first plane, we 

remove all the points belonging to the first plane and apply the same steps to the remaining 

points under a constraint that the angle between the already-detected plane and the new 

plane is as close to 90 degrees as possible. We repeat this procedure for the third plane. 

After fitting three planes (blue, green, and magenta in Figure 10), we declare the remaining 

points, which do not belong to any of these planes, as outliers (red colored points). These 

are likely clutter areas since they do not fit any of the planar surfaces. The knowledge of 

planar surfaces is expected to help with the elimination of false positives due to type II 

objects.  

 

5.1 Implementation 
 

Below are detailed steps of our implementation: 

1. Find the intersection area of two side walls by identifying all locations in the depth map 

whose depth exceeds 90% of the depth range: )(*1.0 minmaxmax ddddk  .  

2. Refine the found locations by eliminating isolated points via 3-by-3 median filtering. 

   

  

Figure 10   (a) View of a room from Structure Sensor; (b) The result of plane fitting to the depth map obtained by 

Structure Sensor in room depicted in (a). The blue, green, and magenta correspond to pixels belonging to a plane 

(wall or floor) whereas the red corresponds to outlying pixels that did not fit any plane. 

(a) (b) 
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3. Pick a random point in the intersection area and then pick another point 20 pixels away 

horizontally from the first point, and use the latter point as the starting point. Find 48 

nearest neighbors of the starting point in a 7-by-7 neighborhood. 

4. Estimate the location of the plane using the starting point and its 48 neighbors (49 points 

in total): the plane passes through the centroid of these 49 points. 

5. Estimate the orientation of the plane by minimizing the sum of orthogonal distances of 

these 49 points to the plane. This step is carried out by constructing a 3 by 3 covariance 

matrix of these 49 points and performing eigendecomposition of this matrix. 

6. Set up a threshold value t (e.g., t = 9): any point whose orthogonal distance to the plane 

is smaller than t is considered to be the point belonging to this plane: 
inij Pd   if  

tPddist inij ),(  

7. Set up a threshold value N (e.g., N = 1800) : plane iniP  is considered as a potential plane 

if there are at least N points belonging to the plane (after thresholding is step 6). If the 

number of points belonging to iniP  is less than N, repeat starting from step 3 until the 

number of points exceeds N. 

8. Refit a new plane newP using all points that are within the distance t from iniP using the 

method from step 5. 

9. Repeat steps 6-8 ten times. The best-fitting plane is the one with the smallest average 

orthogonal distance from depth points to the plane. Denote the set of these points by 1  

10. Repeat steps 3-9 ten times to obtain ten sets of points: 1 , …, 10 , and compute their 

union: 1021 ...  tot . 

11. Compute the average orthogonal distance from points in tot to the ten planes 

calculated in step 10. The best plane is the plane with the smallest average orthogonal 

distance: 

                  
 t o tjd

jPopt PddistorthogonalP


),(_minarg:  

12. Remove all the points that fit the first plane, and fit the second plane using the 

remaining points. Repeat for the third plane. An extra constraint is added to the second 

and third plane: the second plane is limited to be as close as possible to being 

perpendicular to the first plane. Similarly, the third plane is constrained to be as 

perpendicular as possible to the first and second plane. 
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5.2 Results 
 

Figures on the following pages show the results of the plane fitting method, from the 

simplest scenario to more challenging ones. The points associated with blue, green, and 

magenta are the points belonging to three planes. The points associated with red are the 

outliers that do not belong to any plane. 

 

As can be seen in Figure 11 the plane fitting approach works quite well. The walls and 

ceiling in the empty room are accurately estimated. Similarly, the two walls in the furnished 

room are quite well estimated while the floor (green) is not as accurate due to the presence 

of the bed and a cube-shaped table in the corner. In both cases, as expected, very little 

clutter is detected (the lamp in Figure 1Figure 11.d, otherwise false positives). In the case 

of slightly-cluttered room (Figure 11.f), the walls are accurately estimated however the fit 

to the floor surface is very poor. This should not be surprising since there are several 

horizontal planar surfaces (bed, table, floor) so the algorithm has difficulty with making a 

decision. 

 

Figure 12 and Figure 13 show two different runs of the plane fitting algorithm on the same 

depth maps. While the results in Figure 12 are quite successful, those in Figure 13 are not. 

Figure 12.b, shows clutter labels obtained by the 2-D method (thresholding of the 

luminance gradient magnitude). Clearly, there are many false positives on the bed cover, 

some on window frame and some on the wall around the clothes rack. Figure 12.d shows 

results for the plane fitting method which produces no false positives on the bed. As can 

be seen in Figure 12.e, the intersection of the two results (fusion by means of “AND” 

operator) results in clutter detections in the correct area (bundle of clothing on the bed) and 

a few detections at the boundaries of clothes rack and the clothing. The latter detections 

can be considered as false positives if one considers the clothing rack as non-clutter. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 11  (a) Empty room scenario and (b) corresponding plane estimates; (c) furnished room scenario and (d) 

corresponding plane estimates; (e) slightly cluttered room scenario and (f) corresponding plane estimates.  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 12  (a) Depth map from Structure Sensor as a surface plot; (b) clutter labels from the 2-D method 

(thresholding of luminance gradient magnitude; (c) three fitted planes as a surface plot; (d) clutter labels from the 

plane fitting method (outliers are considered to constitute clutter); (e) plane detection results; (f) fusion of results from 

(b) and (d) by means of “AND” operator. 
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(a) (b) 

(d) (c) 

(e) (f) 
Figure 13  (a) Depth map from Structure Sensor as a surface plot; (b) clutter labels from the 2-D method 

(thresholding of luminance gradient magnitude; (c) three fitted planes as a surface plot; (d) clutter labels from the 

plane fitting method (outliers are considered to constitute clutter); (e) plane detection results; (f) fusion of results from 

(b) and (d) by means of “AND” operator. 
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As for the results in Figure 13, they are not successful. The planes of the walls and the bed 

were not correctly detected, and therefore most of the bed surface is deemed as clutter in 

Figure 13.d and consequently some of these false positives remain in the fused label field 

in Figure 13.f. Similarly, the wall with the window was not detected and thus the false 

positives around the window frame remain in the fused result in Figure 13.f. The failure of 

the plane fitting method in this case is due to the random initialization. 

 

6 Conclusions 
 

In this project, we attempted to detect areas of clutter in a room based on a captured 

luminance image and depth map. We assumed that clutter corresponds to a high incidence 

of luminance edges and we proposed a 2-D method that thresholds the average magnitude 

of luminance gradient in 20-by-20 blocks. The method performed reasonably well but 

resulted in excessively many outliers, especially in textured but planar areas (e.g., 

wallpaper). In order to deal with such outliers one needs to distinguish areas with dense 

edges but underlying planar 3-D surface (e.g., wallpaper) versus similarly detailed areas 

that have a complex underlying 3-D structure (clutter). To this end we have employed 

Structure Sensor that captures depth map in its field of view, and developed one local 

(block-based) and one global planarity detection method. The local method that simply 

thresholds the variance of the magnitude of horizontal and vertical depth derivatives within 

20-by-20 blocks, when combined with the 2-D method, improves the accuracy of clutter 

detection but is not very robust as it uses data within a small block only. The global method 

that fits 3 mutually orthogonal planes to the captured depth maps in order to establish 

planarity of the walls and floor/ceiling, when combined with the 2-D method, works better 

than the local method. However, it is prone to catastrophic failures due to random 

initialization of the plane fitting algorithm. For higher-complexity room images (more 

clutter and furniture), the plane fitting algorithm is likely to fail when detecting planes thus 

very likely severely affecting final results. Clearly, a different approach is needed to assure 

robust performance in such a scenario. 
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