

Streaming Video Condensation
by Ribbon Carving

Wei Liu

Dec 20, 2008
Boston University

Department of Electrical and Computer Engineering
Technical report No. ECE-2008-07

BOSTON
UNIVERSITY

Streaming Video Condensation
by Ribbon Carving

Wei Liu

Boston University
Department of Electrical and Computer Engineering

8 Saint Mary’s Street
Boston, MA 02215
www.bu.edu/ece

Dec 20, 2008

Technical Report No. ECE-2008-07

This report describes research carried out as a partial requirement for the degree of Master

of Science at the Department of Electrical and Computer Engineering, Boston University

under the supervision of Profs. Janusz Konrad and Prakash Ishwar

Summary

The goal of this project is to develop a method to summarize streaming video based on

ribbon carving recently developed at Boston University. Standard scaling of video in time,

by means of regular or irregular sub-sampling, is not sufficient since it is oblivious to video

content. Recently, seam carving has been demonstrated to change image size by gracefully

removing or inserting pixels in different parts of the image. The idea of ribbon carving is

an extension of seam carving to the case of video resizing in the temporal direction. The

original implementation of video condensation was somewhat complex computationally

and was not geared towards a real-time implementation at video frame rates. In this

project, we reduce the computational complexity of ribbon carving by replacing the

relatively complex non-parametric kernel model in background subtraction with a

sliding-window temporal median filter. We also implement a dual-buffer (intensity and

labels) sliding-window processing to handle streaming (endless) video sequence. Our

implementation affords faster processing and is more efficient in terms of memory

allocation than the original implementation.

Contents

1. Introduction...1

2. Background Material..2

3. Computationally-efficient ribbon carving of streaming video..............9

4. Experimental Results..19

5. Conclusions..23

6. References..24

7. Appendix..25

List of Figures

Fig. 1 Illustration of seam carving 3

Fig. 2 Illustration of seam shape for different values of flex parameter s 4

Fig. 3 Cost displayed as brightness value (bright = high cost) for

 the image from Fig. 1 5

Fig. 4 A vertical ribbon and a horizontal ribbon 7

Fig. 5 Original frame and label frame as cost based on activity 8

Fig. 6 Finding the least-cost vertical ribbon by converting to 2D case 8

Fig. 7 Sliding-median filter to compute background 10

Fig. 8 Maximum extension of a ribbon with flex parameter s=1 12

Fig. 9 Procedure of sliding-window algorithm for processing endless video 13

Fig. 10 Flowchart of the sliding-window algorithm 19

Fig. 11 Condensed inner-building video 20

Fig. 12 Object tunnels 21

Fig. 13 Condensed pedestrian traffic video 21

Fig. 14 Discontinuity due to brightness change 24

List of Tables

Table 1 Original video sequence specifications 20

Table 2 Comparison of condensation ratios attained 22

1 Author1, Author2

1 Introduction

 In surveillance video of bank or parking, there is no event or activity of interest in

most of the frames. It’s a waste of time to entirely browse such a long video sequence,

and a more efficient technique is needed. Video summarization aims at extracting only

interesting segments from surveillance video. It’s especially effective for videos with

long periods of inactivity.

Different from frame skipping, video condensation [2] is novel in the way information is

removed from the original video, and is conceptually simple and relatively easy to

implement. Video condensation method is based on content-aware resizing: seam carving

and ribbon carving. Seam carving [1,3] has been developed for image resizing by means

of gracefully removing or inserting pixels in different parts of the image.

The idea of ribbon carving, recently proposed in the literature [2], is an extension of seam

carving to the case of video resizing in the direction of time. The content-aware resizing

method has better performance in video summarization by improving the condensation

rate without losing temporal order.

Video condensation by ribbon carving was developed at Boston University, but the

original implementation has two limitations:

• it cannot handle streaming (endless) video, e.g., coming from a surveillance

camera,

• is computationally complex due to the use of non-parametric background model

used in detection of activities.

In this project, the research goal is to develop a more efficient video condensation

algorithm for streaming video. We apply a sliding-window concept to process endless

video by repeatedly reading original video frames into a buffer, condensing all frames in

the buffer, writing out a block of video frames of the streaming video, and again reading

2 Wei Liu

new frames. In order to reduce computational complexity of motion detection we

implement a sliding termporal-median filter as a background model for background

subtraction.

2 Background Material

 The traditional way to reduce the size of an image includes down-sampling,

cropping, etc. However, these methods are all content oblivious.

Seam carving is a novel technique to resize image by reducing the horizontal/vertical

dimension by one column/row at a time. Seams are associated with cost function which

can reflect the content of the image, larger cost indicating more important content which

is less desired to be removed. Desired resize ratio can be achieved by recursively

removing least-cost seams from the original image. The recursive procedure together

with the cost function tries to minimize the amount of content degradation caused by the

deletion of seams.

Seam carving gives inspiration to ribbon carving in video, an extension to 3D case. In

video condensation, the spatial size of the video frames is kept and only the temporal

dimension of the video is shrunk, while events and their relative timings are preserved.

2.1 Seam Carving

 Assume the size of original image is H*W, where H is height and W is width. A

seam can be vertical or horizontal. In the following, vertical seam will be discussed in

detail; horizontal seam has similar definition and properties.

2.1.1 Definition of vertical seam in an image

 A vertical seam consists of H pixels that

3 Wei Liu

1. extend from the top to the bottom of the image,

2. have different vertical coordinates, and

3. are path-connected as defined by flex parameter s.

i.e., a seam consists of one pixel in each row, but those pixels are not necessarily in a

straight column, (i.e., they don’t have, in genaral, the same horizontal coordinates). Pixels

in a vertical seam form a vertically-oriented curve, with a flex parameter to decide how

curved the seam can be. A vertical seam can be formally defined as a set of pixels (x(y),

y), y = 1, . . . ,H, where x(y) is a function with range 1, . . . ,W, and the property that | x(y

+ 1) − x(y) | < s for all y = 1, . . . , (H − 1). Thus, x(y) describes the graph of a

vertically-oriented curve which defines a vertical seam as shown in Fig. 1(a). The width

an image is reduced by 1 when a vertical seam is removed from the original image.

 (a) (b) (c)

Fig. 1 Illustration of seam carving: (a) original image a least-cost seam, (b) original

image with seams-to-be-removed superimposed; (c) image after removal of seams.

In the figure below, vertical seams with flex parameter s=0, s=1, s=2, respectively,

are shown, for a small 5x7 image.

4 Wei Liu

 (a) s=0 (b) s=1 (c) s=2

Fig. 2 Illustration of seam shape for different values of flex parameter s

A seam with s = 0 is a column and its removal is simply removal of a column from an

image, either by cropping or by horizontal sub-sampling. A larger flex parameter s

permits more flexible seams and thus suggests an ability to handle more complex image

structures, and potentially greater re-sizing factors.

Since seam carving removes unimportant pixels from the original image, the resized

image will contain a strict subset of pixels from the original image, but rearranged in

some way.

2.1.2 Content-aware cost function

 Seam carving associates content-aware costs with seams, which is the key idea of

this novel method. When reducing image size, objects should be maintained as much as

possible. To accomplish this, a seam should not carve through objects. In the cost image,

the least-cost seam is selected to be removed and then the cost image is updated. Typical

content-aware costs are based on weighted intensity gradients, which can be computed

using standard 2D FIR filters. For example, this kind of cost function is suitable for an

image in which objects have some texture while background is mainly smooth. As a

result, the cost image will have large value where there is an object in the original image

and small value otherwise. The least-cost seam will hardly carve any object.

5 Wei Liu

(a) cost = length of gradient (using both horizontal and vertical gradients)

 (b) cost = only horizontal gradient (c) cost = only vertical gradient

Fig. 3 Cost displayed as brightness value (bright = high cost) for the image from Fig. 1

It can be seen in Fig. 3 that horizontal gradient cost function detects mainly vertical edges

but tends to miss horizontal ones, while vertical gradient cost function has the contrary

result. Clearly, if looking for vertical seams in a cost image one needs to compute

horizontal gradient, but then it is possible that the selected “optimal” vertical seam will

carve horizontal edges in the original image. Similarly, horizontal seams might carve

vertical edges if using vertical gradient as the cost function. Therefore, vertical seams

should be found and carved in the cost image computed from vertical gradients, and

horizontal seams - from horizontal gradients.

2.1.3 Finding least-cost seam using dynamic programming

 An additive cost function together with the structure of a seam make it possible to

formulate the search for a least-cost seam in terms of a dynamic programming which is

guaranteed to find a least-cost seam and has a reasonable computational complexity.

6 Wei Liu

After removing a seam, the cost image needs to be updated. For the reason that cost

image is calculated by 2D filtering of the original image, re-calculating the cost image

can be performed only along a narrow band around the removed seam, instead of the

entire image. This can reduce the computational complexity, especially when

implemented in C (less computational savings in Matlab).

2.1.4 Stopping criterion

 There are two ways to stop the recursive procedure of carving out seams:

1. Pre-define the number of seams which need to be removed from the original

image. In this case, the resize ratio is fixed and there might be some distortion in

the resulting image, depending on how large the ratio is. In other words, it is a

“lossy” carving, i.e., the removed seams might carve objects.

2. Pre-define a threshold such that only seams with lower costs than a threshold are

removed. As a result, the resize ratio is not fixed but depends on the threshold.

This is a “lossless” carving, since all the removed seams have costs lower than the

threshold.

2.2 Ribbon Carving

 Ribbon carving is an extension of 2D seam carving to 3D case. Depending on the

orientation of ribbons, a video can be condensed in spatial dimension (vertically or

horizontally) [3] or in time dimension. In this project, we focus on reducing the temporal

length of the original video without changing the spatial size of video frames.

Therefore, a seam becomes a connected surface in 3D, which partitions the video into

“past” and “future” regions. No two pixels in the surface have the same spatial

7 Wei Liu

coordinates. This property ensures that deleting the pixels belonging to this surface

reduces the temporal dimension of the video block by exactly one.

Assume the size of video frame is H*W, where H is height and W is width. The buffer

length is K, i.e., a block of K frames can be loaded into the buffer and get condensed. A

ribbon can be vertical or horizontal. In the following, vertical ribbon will be discussed in

detail; horizontal ribbons have similar definition and properties.

2.2.1 Definition of a vertical ribbon in space-time video volume

 Consider a video sequence to be a space-time video volume with size: H*W*K. If the

plane “y-t” is viewed as an image, a vertical seam of this “image” can be defined. A

vertical ribbon consists of such vertical seams in all the planes “y-t” with different

coordinates only in x axis. Formally, a vertical ribbon is a set of pixels (x, y, t(y)), x = 1, .

. . ,W, y = 1, . . . ,H, where t(y) is a function of only y with range 1, . . . ,K, and the

property that | t(y +1) − t(y)| < s for all y = 1, . . . , (H − 1).

Fig. 4 A vertical ribbon and a horizontal ribbon

Similarly, a ribbon also has a flex parameter s to define how curved the ribbon can be in

time dimension.

2.2.2 Cost function

 When condensing video in time, usually maintaining events or moving objects is

desirable while empty frames should be dropped. An activity-based or motion-based cost

8 Wei Liu

function should be used in this case to preserve moving object. Thus, we apply

background subtraction to the original video to obtain a sequence of binary labels (0 – no

activity, e.g., background, 1 – detected activity, e.g., movement). For example:

Fig. 5 Original frame and label frame as cost based on activity

Since a ribbon consists of several seams at different coordinates x, the cost of a ribbon

can be computed as a sum of all the costs of the seams in this ribbon. With these

observations, finding a least-cost vertical ribbon is equivalent to finding a least-cost

vertical seam in the plane “y-t”. As shown in Fig. 6, first a summation needs to be

performed along x axis to get a “y-t” plane “image”. Thus, the value of each pixel at

position (y,t) in this “image” is the sum of binary values of all the pixels (x,y,t), where x

= 1, . . . ,W. Secondly, a search for the least-cost vertical seam in this “image” needs to be

performed, exactly the same procedure as in 2D case. When such a seam is found, one

needs to repeat it in each “y-t” image with different x coordinates to form the least-cost

vertical ribbon.

Fig. 6 Finding the least-cost vertical ribbon by converting to 2D case

9 Wei Liu

2.2.3 Stopping criterion

 Thus, one needs to find and remove the least-cost ribbon (which can be a vertical or

horizontal ribbon) in the label sequence to reduce the length of video by 1 frame and,

simultaneously, remove the corresponding ribbon from the original video. One needs to

recursively carve out the least-cost ribbon until some stopping criterion is reached, i.e.,

no more ribbons can be removed from this block of video without violating the stopping

criterion. The stopping criterion for ribbon carving is similar to that for seam carving.

2.2.4 Multi-level condensation using different flex parameter s

 For a block of video frames, ribbon carving can be done in multi-level fashion, i.e.,

first take s = 0 and perform ribbon carving until the stopping criterion is met. Then, take s

= 1 and apply ribbon carving to the resulting video, and so on, until the desired

condensation ratio is reached.

3 Computationally-efficient ribbon carving of

streaming video

3.1 Background subtraction via median filtering

3.1.1 Temporal median filter

 Usually, during m consecutive frames, a pixel is occupied by background during most

of the time, and by foreground only when the objects of interest move across. Thus, the

background can be crudely estimated by median of the intensity values of the pixels in

previous m frames. The value of background image at position (x,y) is then given by:

10 Wei Liu

1 1 2(, ; ,) { (, ,), (, ,),..., (, ,)}m mB x y t t median f x y t f x y t f x y t=

where (, ,)f x y t is the value in the original video at position (, ,)x y t , i.e., in the t -th

frame.

An activity frame is computed by thresholding the absolute value of difference between

the estimated background and a new video frame.

1

1

1 (, ,) (, ; ,)
(, ,)

0 (, ,) (, ; ,)
m

m

f x y t B x y t t
L x y t

f x y t B x y t t
θ
θ

 − ≥=  − <
 ()mt t≥

where (, ,)L x y t is the binary label frame and θ is a user-defined threshold.

3.1.2 Sliding median filter

 To account for brightness changes in natural video due to illumination and camera

gain variations, we update the background every m/2 frames. In consequence,

consecutive background images are computed from m/2 shared frames and m/2 new

frames, as shown in formula and figure below:

0 0

0 0

1 (, ,) (, ; 1, 1)
(, ,)

0 (, ,) (, ; 1, 1)
f x y t B x y t m t

L x y t
f x y t B x y t m t

θ
θ

 − − − − ≥=  − − − − <
 0 0[, / 2]t t t m∈ +

Fig. 7 Sliding-median filter to compute background

11 Wei Liu

3.1.3 Morphological operation

 After background subtraction, we apply morphological operators to the labeled video

in order to depress false positives and retrieve missing foreground. We erode a binary

image, to get more background pixels and fewer foreground pixels, by sliding a disk,

radius of which is defined by the user, over all background pixels and setting all pixels in

the disk area to 0 (background). We dilate a binary image, a converse operation, to

enlarge the area of foreground. In Matlab, first we use the function imerode to supress

noise in the background, but this might cause more missing pixels in objects. Thus, we

then use the function imdilate to retrieve those foreground pixels removed in the first step

and perhaps further fill-in the holes in objects. In fact, the holes inside of objects are not

of much concern since a ribbon won’t carve them (an thus the object) as long as the holes

are fully inside the objects. That’s also the reason why first erode and then dilate.

3.2 Sliding-window processing of streaming video

 Since the streaming video is basically endless while the amount of memory available

for our program is relatively small, a technique for processing endless video is needed.

3.2.1 Important observation: the maximum extension of a ribbon in time

 Due to the connection of pixels in a ribbon, it has a limited extension along time axis,

which depends on the flex parameter s. A vertical ribbon can cover s * (H – 1) + 1 = s *

H – s + 1 frames at most, and a horizontal ribbon can cover s * (W – 1) + 1 = s * W – s

+ 1 frames at most. The case of s = 1 is shown in the Fig. 8 below.

12 Wei Liu

(a) vertical (b) horizontal

Fig. 8 Maximum extension of a ribbon with flex parameter s=1

With this observation, we know that the number of frames affected by a ribbon passing

through a specific frame is limited. Therefore, as long as the condensed video block is

longer than the maximum extension of a ribbon, there will be some frames unaffected by

any ribbon, even if new frames are put together with the condensed ones. This allows us

to write the unaffected frames out to a file, and it permits us to repeatedly read in,

condense and write out, without buffer overflow.

3.2.2 Sliding-window processing of streaming video

 It is the limited extension of a ribbon that makes the sliding-window algorithm

possible to process streaming video. The basic idea is: load a block of frames from the

original video into the buffer and condense the buffer until the stopping criterion is met,

which will free some space in the buffer. As discussed above, because ribbons have

limited extension along time axis, it is possible that there are some frames in the

condensed video which won’t be affected by any new ribbons. Therefore, these frames

can be written out to a file and then some space in the buffer is freed up. Read new

frames from the original video into the buffer until it is full. Repeat the procedure to

condense a long video as desired.

13 Wei Liu

 Crucial steps are:

1. Initialize original video buffer and activity buffer.

2. Remove the lowest-cost ribbons from both the video and activity buffer

3. Write those video frames that won’t be affected by new ribbons to an output file;

drop the same activity frames.

4. Push all the remaining frames to the front of each buffer.

5. Read new video and activity frames into respective buffers until they are full.

6. Go back to step 1.

These steps are illustrated in Fig. 9 with the following notation:

• N = number of condensed frames;

• K - N = number of ribbons removed;

• P = N - (s * max{h , w} - s + 1) = number of frames written to a file;

• K - (N - P) = number of empty frames after writing;

Fig. 9 Procedure of sliding-window algorithm for processing streaming video

14 Wei Liu

3.2.3 Matlab functions

Below are listed Matlab functions developed.

[E,Vseamindex,minE]=getVseamS(s,E,remainedvN)

1) Function: to find the least-cost vertical seam

2) Input parameters:

s: flex parameter, s = 1,2,…, but s < W/2; when s = 0, column deleting

but not seam carving

E: cost image (will be updated in the function)

remainedvN: the number of columns left in the image after removing

some seams

3) Output variables:

E: cost image (updated in the function)

Vseamindex: vector with length = H, to store the horizontal

coordinates of pixels in the vertical seam

minE: the cost of the least-cost vertical seam, i.e., the summation

of the cost of all the pixels in the vertical seam

4) Program structure:

initialize: cost = E, which is to compute accumulative cost

for i = top to bottom

 for j = left to right

 decide search arrange [front, rear] which is depending on j (at left

boundary, middle, or right boundary);

 find minimum cost(i - 1,k);

 record k;

 update cost(i, j) = cost(i, j) + minimum cost(i - 1,k);

 end

end

[newI,tranI]=RemoveAndStackVseam(newI,tranI,Vseamindex,remainedvN)

1) Function: to remove the least-cost vertical seam from image to get

newI, and stack in order the removed seam in tranI

15 Wei Liu

2) Input parameters:

newI: “original” image ready to be remove a vertical seam (will be

updated in the function)

tranI: “image” consists of seams already removed (will be updated

in the function)

Vseamindex: (the same as above)

remainedvN: (the same as above)

3) Output variables:

newI: resized image (updated in the function)

tranI: image” consists of seams already removed (updated in the

function)

E=getVcost (newI,filt1,filt2,E,remainedvN)

1) Function: to re-compute cost only along the seam just removed and

then get new cost image

2) Input parameters:

newI: resized image

filt1: horizontal filter

filt2: vertical filter

E: cost image (will be updated in the function)

remainedvN: (the same as above)

3) Output variables:

E: cost image (updated in the function)

Functions: getHseamS, RemoveAndStackHseam, and getHcost are similar to those

functions above, with the only difference being the horizontal orientation.

Seam carving for image

1) Input parameters:

I: original image

s: (the same as above)

Dx, Dy: horizontal and vertical filter

VN, HN: user-defined number of vertical or horizontal seams to be

removed

16 Wei Liu

2) Output variables:

newI: resized image

tranI: image” consists of seams already removed

labelI: label the removed seams in the original image

3) Program structure:

Initialize: newI = I;

E = cost of entire I;

for p = 1 to (VN - 1)

 [E,Vseamindex,notre]=getVseamS(s,E,W-p+1);

 [newI,tranI]=RemoveAndStackVseam (newI,tranI,Vseamindex,W-p+1);

 E=getVcost (newI,Dx,Dy,E,W-p+1);

end

p=VN;

[E,Vseamindex,notre]=getVseamS(s,E,W-p+1);

[newI,tranI]=RemoveAndStackVseam(newI,tranI,Vseamindex,W-p+1);

generate labelI;

Ribbon carving for streaming video

1) Input parameters:

ovname: file name of the original avi file

s: flex parameter, s = 1,2,…, but s < W/2; when s = 0, frame dropping

but not ribbon carving

tnforbg: the user-defined number of frames for temporal median filter

for background subtraction

thre: the user-defined threshold for background subtraction

thre0: the user-defined threshold for s=0 ribbon carving, i.e., frame

dropping

thre1: the user-defined threshold for s=1 ribbon carving

se1, se2: the user-defined disk size for morphological operation

2) Output:

labelV2.avi: a binary video with the same length of the original video,

in which 0 denotes background and 1 denotes foreground; it’s the result

17 Wei Liu

of background subtraction and morphological operation

condenseV.avi: the final result video after condensation of the

original video

condenselabelV.avi: the corresponding result video after

condensation of the labeled video

2condenseV: combine the condenseV.avi and condenselabelV.avi

together, in order to see the condensed original video and condensed

labeled video at the same time

3) Program structure:

load tnforbg frames of original video into buffer 0 (buffer for computing

background);

compute median of buffer0 to get background image: bg;

load K frames ([tnforbg + 1 ~ tnforbg + 1 + K]) of original video into

buffer 1 (buffer for original video);

maximum extension of ribbon: adps = s * max(H,W) - s + 1;

initialize: pointer of frame in original video: p = tnforbg + 1;

 number of frames in buffer 1: ninbuf =0;

 number of frames haven’t been read in: ninvideo = total frame number;

while (ninvideo > 0)

 while (ninbuf < K)

 number of frames will be read in: nread = (K - ninbuf);

 read nread frames of original video in;

 ninvideo=ninvideo-nread;

 t = 1; k = ninbuf + 1; q = 0;

 while (t < nread)

 if (mod(p - 1, tnforbg / 2) == 0)

 update bg;

 end

 background subtraction and morphological operation, to get

labeled frame;

 write to labeledV.avi;

 if (above thre0)

 load this frame into buffer2 (buffer for labeled video);

 k++;

 else

18 Wei Liu

 delete the corresponding frame from buffer1;

 q++;

 end

 t++; p++;

 end

 ninbuf = ninbuf + nread - q;

 end

 remainedtN = K;

 summation along x axis to get “y-t” image;

 summation along y axis to get “x-t” image;

 [vrImage,vrIndex,miniVcost]=getVseamS(s,vrImage,remainedtN);

 [hrImage,hrIndex,miniHcost]=getHseamS(s,hrImage,remainedtN);

 while ((miniVcost <= thre1) || (miniHcost <= thre1))

 if (miniVcost <= miniHcost)

 remove the vertical ribbon in buffer1 and buffer2;

 remainedtN - - ;

 summation along y axis to get “x-t” image;

 else

 remove the horizontal ribbon in buffer1 and buffer2;

 remainedtN - - ;

 summation along x axis to get “y-t” image;

 end

 [vrImage,vrIndex,miniVcost]=getVseamS(s,vrImage,remainedtN);

 [hrImage,hrIndex,miniHcost]=getHseamS(s,hrImage,remainedtN);

 end

 number of frames to be written out: nwrite = remainedtN - adps;

 if (nwrite > 0)

 write nwrite frames in buffer1 and buffer2 out to file;

 push the remaining frames in buffer1 and buffer2 to the front;

 end

 ninbuf = minimum of {adps, remainedtN};

end

write all the remaining frames in buffer1 and buffer2 to file;

19 Wei Liu

3.2.4 Sliding-window algorithm

Fig. 10 Flowchart of the sliding-window algorithm

4 Experimental Results

 The sliding-window video condensation algorithm developed in this project has

been tested on two video sequences with parameters listed in Table 1 and sample frames

shown in Figs. 11 and 13.

20 Wei Liu

Table 1 Original video sequence specifications

Video Spatial resolution Time duration Total number of frames

Indoor traffic 240*320 5’10’’ 9000

Outdoor traffic 208*240 4’25’’ 7991

4.1 Condensation performance

Two frames from the original Indoor traffic video and one condensed frame are shown in

Fig. 11 below.

Fig. 11 Condensed Indoor traffic video: two original frames (top) and one condensed

frame (bottom)

In the condensed video, objects from different frames appear at the same frame. That’s

because the volume between the two object moving tunnels is carved out, as shown in Fig.

12 below.

21 Wei Liu

(a) before condensation (b) after condensation

Fig. 12 Object tunnels

It can be easily seen that before condensation each frame only intersects with one object

tunnel; in every frame only one person appears. When watching the original video, we’ll

see that the first person walked in, and then after he left the scene, the second person

walked in. However, in the condensed video, there are several frames which intersect

with both of the object tunnels. Thus, the two persons will appear in the same frame.

The same effect is seen in the Outdoor traffic video in Fig. 13. Four pedestrians observed

in separate frames in the original video, occur in one frame in the condensed video.

Fig. 13 Condensed Outdoor traffic video: four original frames (top) and one condensed

frame (bottom)

22 Wei Liu

4.2 Condensation ratio

 Condensation ratio is defined as the ratio of the length of the original video to the

length of condensed video. It depends on several factors, such as how frequently events

happen in the original video, the thresholds of background subtraction and ribbon carving,

and the flex parameter of ribbons. Parameters used in Table 1 are defined as follows:

• m = number of frames to compute the background

• θ = acceptable cost threshold for generating labeled video

• 0θ = acceptable cost threshold for ribbon carving with s=0

• 1θ = acceptable cost threshold for ribbon carving with s=1

Table 2 Comparison of condensation ratios attained

Video M θ 0θ 1θ
Condensation

ratio

Inner-building 200 30 100 3 1.94

Inner-building 200 30 100 100 2.00

Pedestrian

traffic
100 30 100 3 2.82

Condensation ratios attained are about 2~3 and are dependent on the original video. If

there are frequent events, the condensation ratio is not high.

Smaller m is used for pedestrian traffic video, because there is more severe brightness

change, which requires more frequent updating of the background. Increasing 0θ and

1θ encourages higher condensation ratios. However, as a trade-off, objects might get

partially or fully carved out or in the worst case, there will be visible time distortion.

23 Wei Liu

4.3 Processing rate

 In Matlab, processing rate is about 1 frame per second. A further speed-up would be

possible through an implementation in C. We have tested this on seam carving (2-D case).

For example, to remove 500 vertical seams from a 480*720 image:

- Matlab implementation requires 597 sec,

- C implementation requires 10.5 sec,

which is a significant improvement.

5 Conclusions

5.1 Performance

 From these result, we can see that ribbon carving is effective and efficient on indoor

and outdoor pedestrian traffic videos. With first s=0 and then s=1 ribbon carving, original

video can be condensed by the factor of about 2~3. The condensation preserves all the

important events and their relative timings with little degradation of the quality of the

perceived video. By using the sliding-window algorithm, the up to date implementation

of ribbon carving can handle streaming video. The computational complexity is further

reduced by the means of sliding-median filter for background subtraction.

5.2 Encountered Problems

 A problem with the current implementation is a visible moving line in the condensed

video caused by brightness change in the original video over time, as shown in Fig. 14.

24 Wei Liu

Fig. 14 Discontinuity due to brightness change

It is quite common that brightness of a scene changes gradually and is captured by video.

Thus, when frames without events are dropped and far-apart frames are pushed together,

there will be a difference of brightness. As the condensed video is playing, the visible

line is moving forward as objects move. The problem might be solved by temporal filter

only on background but not on foreground objects.

5.3 Future work
 To improve the algorithm of ribbon carving for streaming video, the future work

should focus on the following points:

1) an effective way to deal with brightness change which causes visible line between

objects pairs;

2) real-time implementation of video condensation in C/C++;

use of threading on multi-core architecture.

References

[1] S. Avidan and A. Shamir. Seam carving for content-aware image resizing. ACM
Trans. Graph. 26, 3 (Jul. 2007), 10
.
[2] Zhuang Li, Prakash Ishwar, and Janusz Konrad. Video Condensation by Ribbon
Carving. IEEE Trans. Image Process., Oct. 2008 (submitted).

[3] M. Rubinstein, A. Shamir, and S. Avidan. Improved seam carving for
video retargetting. ACM Trans. Graph., vol. 27, no. 3, 2008.

25 Wei Liu

Appendix

Below is listed Matlab source code developed for this project.

1. Matlab Functions:

function [E,Vseamindex,minE]=getVseamS(s,E,remainedvN)
[m,n]=size(E);% m & n should be global variance in C++
cost=E(:,1:remainedvN);
flag=zeros(m,remainedvN);

for i=2:m
 for j=1:remainedvN
 if(j<=s)
 front=1;rear=j+s;
 end
 if((j>s)&&((j+s)<=remainedvN))
 front=j-s;rear=j+s;
 end
 if((j+s)>remainedvN)
 front=j-s;rear=remainedvN;
 end
 minvalue=cost(i-1,front);location=front;
 for k=front:j
 if(cost(i-1,k)<=minvalue)
 minvalue=cost(i-1,k);
 location=k;
 end
 end
 for k=(j+1):rear
 if(cost(i-1,k)<minvalue)
 minvalue=cost(i-1,k);
 location=k;
 end
 if((cost(i-1,k)==minvalue)&&(abs(k-j)<abs(location-j)))
 minvalue=cost(i-1,k);
 location=k;
 end
 end
 flag(i,j)=location;% record path
 cost(i,j)=cost(i,j)+minvalue;% update
 end
end

[minE IND]=min(cost(m,1:remainedvN));
Vseamindex=zeros(m,1);
Vseamindex(m)=IND;
for i=m-1:-1:1
 Vseamindex(i)=flag(i+1,Vseamindex(i+1));
end

% update E
for i=1:m

26 Wei Liu

 for j=Vseamindex(i):(remainedvN-1)
 E(i,j)=E(i,j+1);
 end
 E(i,remainedvN)=Vseamindex(i);
end

function [E,Hseamindex,minE]=getHseamS(s,E,remainedhN)
[m,n]=size(E);% m & n should be global variance in C++
cost=E(1:remainedhN,:);
flag=zeros(remainedhN,n);

for j=2:n
 for i=1:remainedhN
 if(i<=s)
 front=1;rear=i+s;
 end
 if((i>s)&&((i+s)<=remainedhN))
 front=i-s;rear=i+s;
 end
 if((i+s)>remainedhN)
 front=i-s;rear=remainedhN;
 end
 minvalue=cost(front,j-1);location=front;
 for k=front:i
 if(cost(k,j-1)<=minvalue)
 minvalue=cost(k,j-1);
 location=k;
 end
 end
 for k=(i+1):rear
 if(cost(k,j-1)<minvalue)
 minvalue=cost(k,j-1);
 location=k;
 end
 if((cost(k,j-1)==minvalue)&&(abs(k-i)<abs(location-i)))
 minvalue=cost(k,j-1);
 location=k;
 end
 end
 flag(i,j)=location;% record path
 cost(i,j)=cost(i,j)+minvalue;% update
 end
end

[minE IND]=min(cost(1:remainedhN,n));
Hseamindex=zeros(1,n);
Hseamindex(n)=IND;
for j=n-1:-1:1
 Hseamindex(j)=flag(Hseamindex(j+1),j+1);
end

% update E
for j=1:n
 for i=Hseamindex(j):(remainedhN-1)

27 Wei Liu

 E(i,j)=E(i+1,j);
 end
 E(remainedhN,j)=Hseamindex(j);
end

function [newI,tranI]=RemoveAndListVseam2(newI,tranI,index,remainedvN)
[m,n]=size(newI);% m & n should be global variance in C++
k=n-remainedvN+1;
for i=1:m
 tranI(i,k)=newI(i,index(i));
 for j=index(i)+1:remainedvN
 newI(i,j-1)=newI(i,j);
 end
end

function [newI,tranI]=RemoveAndListHseam2(newI,tranI,index,remainedhN)
[m,n]=size(newI);% m & n should be global variance in C++
k=m-remainedhN+1;
for j=1:n
 tranI(k,j)=newI(index(j),j);
 for i=index(j)+1:remainedhN
 newI(i-1,j)=newI(i,j);
 end
end

function Cost=getcost33(newI,filt1,filt2,Cost,remainedvN)
 [m,n]=size(Cost);% m & n should be global variance in C++
 k=n-remainedvN+1;
 Vseamindex=Cost(:,remainedvN);
 costarray1=Vseamcost(newI,Vseamindex-2,filt1,filt2,k);
 costarray2=Vseamcost(newI,Vseamindex-1,filt1,filt2,k);
 costarray3=Vseamcost(newI,Vseamindex+1-1,filt1,filt2,k);
 costarray4=Vseamcost(newI,Vseamindex+2-1,filt1,filt2,k);

 for i=1:m
 if(((Vseamindex(i)-2)>0)&&((Vseamindex(i)-2)<remainedvN))
 Cost(i,Vseamindex(i)-2)=costarray1(i);
 end
 if(((Vseamindex(i)-1)>0)&&((Vseamindex(i)-1)<remainedvN))
 Cost(i,Vseamindex(i)-1)=costarray2(i);
 end
 if(((Vseamindex(i)+1-1)>0)&&((Vseamindex(i)+1-1)<remainedvN))
 Cost(i,Vseamindex(i)+1-1)=costarray3(i);
 end
 if(((Vseamindex(i)+2-1)>0)&&((Vseamindex(i)+2-1)<remainedvN))
 Cost(i,Vseamindex(i)+2-1)=costarray4(i);
 end
 end

function Cost=getcost99(newI,filt1,filt2,Cost,remainedhN)
 [m,n]=size(Cost);% m & n should be global variance in C++

28 Wei Liu

 k=m-remainedhN+1;
 Hseamindex=Cost(remainedhN,:);
 costarray1=Hseamcost(newI,Hseamindex-2,filt1,filt2,k);
 costarray2=Hseamcost(newI,Hseamindex-1,filt1,filt2,k);
 costarray3=Hseamcost(newI,Hseamindex+1-1,filt1,filt2,k);
 costarray4=Hseamcost(newI,Hseamindex+2-1,filt1,filt2,k);

 for j=1:n
 if((Hseamindex(j)-2)>0)&&((Hseamindex(j)-2)<remainedhN)
 Cost(Hseamindex(j)-2,j)=costarray1(j);
 end
 if((Hseamindex(j)-1)>0)&&((Hseamindex(j)-1)<remainedhN)
 Cost(Hseamindex(j)-1,j)=costarray2(j);
 end
 if((Hseamindex(j)+1-1)>0)&&((Hseamindex(j)+1-1)<remainedhN)
 Cost(Hseamindex(j)+1-1,j)=costarray3(j);
 end
 if((Hseamindex(j)+2-1)>0)&&((Hseamindex(j)+2-1)<remainedhN)
 Cost(Hseamindex(j)+2-1,j)=costarray4(j);
 end

 end

function costarray=Vseamcost2(I,Vseamindex,filt0,time)
[mI,nI]=size(I);
[mf,nf]=size(filt0);
k=nI-time;
xf=floor(nf/2);yf=floor(mf/2);
mIex=mI+2*yf;
nIex=k+2*xf;

Iex=padarray(I(:,1:k),[yf,xf]);% zeros--what "conv2" does with boudaries

costarray=zeros(mI,1);

for k=1:mI
 for i=-yf:1:yf
 for j=-xf:1:xf
 if((Vseamindex(k)+j+yf)>0)&&((Vseamindex(k)+j+yf)<nIex+1)

costarray(k)=costarray(k)+filt0(i+ceil(mf/2),j+ceil(nf/2))*Iex(k+i+xf,V
seamindex(k)+j+yf);
 end
 end
 end
 costarray(k)=abs(costarray(k));
end

function costarray=Hseamcost2(I,Hseamindex,filt0,time)
[mI,nI]=size(I);
[mf,nf]=size(filt0);
k=mI-time;

29 Wei Liu

xf=floor(nf/2);yf=floor(mf/2);
mIex=k+2*yf;
nIex=nI+2*xf;

Iex=padarray(I(1:k,:),[yf,xf]);% zeros--what "conv2" does with boudaries

costarray=zeros(1,nI);

for k=1:nI
 for i=-yf:1:yf
 for j=-xf:1:xf
 if((Hseamindex(k)+i+xf)>0)&&((Hseamindex(k)+i+xf)<mIex+1)

costarray(k)=costarray(k)+filt0(i+ceil(mf/2),j+ceil(nf/2))*Iex(Hseamind
ex(k)+i+xf,k+j+yf);
 end
 end
 end
 costarray(k)=abs(costarray(k));
end

2. Seam carving for image

clear;close all;clc;
tic;

I=double(rgb2gray(imread('crab.tif')));
figure;imshow(I,[0 255]);title('Image 1: Original image');% original image

Dx=[-1 0 1;-2 0 2;-1 0 1];
Dy=[1 2 1;0 0 0;-1 -2 -1];
s=1;

 [m,n]=size(I);
newI=I; % newI: smaller image with Vseamindex

Gx=conv2(I,Dx,'same');
Gy=conv2(I,Dy,'same');
E=sqrt(Gx.^2+Gy.^2);
% % remove VN columns
VN=50;
tranI=zeros(m,VN);
for p=1:VN-1
 [E,Vseamindex,notre]=getVseamS(s,E,n-p+1);
 [newI,tranI]=RemoveAndListVseam2(newI,tranI,Vseamindex,n-p+1);
 E=getcost33(newI,Dx,Dy,E,n-p+1);
end
p=VN;
 [E,Vseamindex,notre]=getVseamS(s,E,n-p+1);
 [newI,tranI]=RemoveAndListVseam2(newI,tranI,Vseamindex,n-p+1);

figure;imshow(newI(:,1:(n-VN)),[0 255]);title(['Image 2: ',int2str(VN),'
Vseams removed from Image 1']);% the new, smaller image

30 Wei Liu

maskI=[ones(m,n-VN) zeros(m,VN)];
for p=1:VN
 k=n-VN+p-1;
 for i=1:m
 q=E(i,k+1);
 for j=k:-1:q
 maskI(i,j+1)=maskI(i,j);
 end
 maskI(i,q)=(n-k)/(VN+1);
 end
end
% maskI
labelI=floor(maskI.*I);
figure;imshow(maskI);title('Mask for Image 1');% mask as an image
figure;imshow(labelI,[0 255]);title('Labeled Image 1');% original image
with removed Vseams labeled
figure;imshow(tranI,[0 255]);title(['List ',int2str(VN),' Vseams from
Image 1']);

clear I;
I=newI(:,1:(n-VN));
figure;imshow(I,[0 255]);title('Image 2, again');

%
%
 [m,n]=size(I);
newI=I;
Gx=conv2(I,Dx,'same');
Gy=conv2(I,Dy,'same');
E=sqrt(Gx.^2+Gy.^2);

% remove HN rows
%
HN=30;
tranI=zeros(HN,n);
for p=1:HN-1
 [E,Hseamindex,notre]=getHseamS(s,E,m-p+1);
 [newI,tranI]=RemoveAndListHseam2(newI,tranI,Hseamindex,m-p+1);
 E=getcost99(newI,Dx,Dy,E,m-p+1);
end
p=HN;
 [E,Hseamindex,notre]=getHseamS(s,E,m-p+1);
[newI,tranI]=RemoveAndListHseam2(newI,tranI,Hseamindex,m-p+1);

figure;imshow(newI(1:(m-HN),:),[0 255]);title(['Image 3: ',int2str(HN),'
Hseams removed from Image 2']);% the new, smaller image

maskI=[ones(m-HN,n);zeros(HN,n)];
for p=1:HN
 k=m-HN+p-1;
 for j=1:n
 q=E(k+1,j);
 for i=k:-1:q
 maskI(i+1,j)=maskI(i,j);
 end

31 Wei Liu

 maskI(q,j)=(m-k)/(HN+1);
 end
end
labelI=floor(maskI.*I);
figure;imshow(maskI);title('Mask for Image 2');% mask as an image
figure;imshow(labelI,[0 255]);title('Labeled Image 2');% original image
with removed Hseams labeled
figure;imshow(tranI,[0 255]);title(['List ',int2str(HN),' Hseams from
Image 2']);

t=toc

3. Ribbon carving for streaming video:

clc;clear;tic;
% % Part 1: Read in original video
mov1 = avifile('labelV.avi','compression','none','fps',30);
mov1_do = avifile('labelV2.avi','compression','none','fps',30);
mov2 = avifile('2condenseV.avi','compression','none','fps',30);
mov3 = avifile('condenseV.avi','compression','none','fps',30);
mov4 = avifile('condenselabelV.avi','compression','none','fps',30);

tnforbg=100; % # of frames used to compute background

% get infomation from the original video
start_time_b=0;
end_time_b=1/30;
video=mmread('group_original.avi',[],[start_time_b end_time_b]);
tmp=video.frames;
[M,N,color]=size(tmp.cdata); % color==3;

% initialization
s=1;adps=s*max(M,N);% adaptive parameter
K=2*adps; % how many frames should be read in and processed at one time
 % length of buffer

bg=zeros(M,N);
temp2=zeros(M,N,3);
temp3=zeros(M,2*N,3);
bgVideo=uint8(zeros(M,N,tnforbg));
originalVideo=uint8(zeros(M,N,K));
originalVideoR=uint8(zeros(M,N,K));
originalVideoG=uint8(zeros(M,N,K));
originalVideoB=uint8(zeros(M,N,K));
labelVideo=logical(zeros(M,N,K));% labeled video: white as foreground &
black as background -- should be boolean value

thre1=30;
thre2=100;
se1 = strel('disk',2);
se2 = strel('disk',1);

flag=logical(1);

32 Wei Liu

% initialization of buffer for computing background (half full)
start_time_b=0;
end_time_b=start_time_b+(tnforbg/2)/30;
video=mmread('group_original.avi',[],[start_time_b end_time_b]);
tmp=video.frames;
[st,nbg]=size(tmp); % st==1
for k=1:min(tnforbg/2,nbg)
 bgVideo(:,:,k)=rgb2gray(tmp(k).cdata);
end

ninbuf=0;
end_time=tnforbg/30;
ninvideo=video.nrFramesTotal; % # of frames which haven't be read in
p=tnforbg+1;

while(ninvideo>0)
 while(ninbuf<K)
 disp('read');
 nread=K-ninbuf;
 start_time=end_time;
 end_time=min(start_time+nread/30,video.totalDuration);
 video=mmread('group_original.avi',[],[start_time end_time]);
 tmp=video.frames;
 [st,nread]=size(tmp);
 ninvideo=ninvideo-nread;
 tem=min(nread,K-ninbuf);
 nread=tem;
 for k=1:nread
 originalVideo(:,:,k+ninbuf)=rgb2gray(tmp(k).cdata);
 originalVideoR(:,:,k+ninbuf)=tmp(k).cdata(:,:,1);
 originalVideoG(:,:,k+ninbuf)=tmp(k).cdata(:,:,2);
 originalVideoB(:,:,k+ninbuf)=tmp(k).cdata(:,:,3);
 end
 q=0;
 k=ninbuf+1;t=1;
 while(t<=nread)
 if(mod(p-1,tnforbg/2)==0)
 % disp('update bg');
 start_time_b=end_time_b;
 end_time_b=start_time_b+(tnforbg/2)/30;
 video=mmread('group_original.avi',[],[start_time_b
end_time_b]);
 tmp=video.frames;
 [st,nbg]=size(tmp); % st==1

 for
bgk=(1+flag*tnforbg/2):(min(tnforbg/2,nbg)+flag*tnforbg/2)

bgVideo(:,:,bgk)=rgb2gray(tmp(bgk-flag*tnforbg/2).cdata);
 end
 flag=~flag;
 % background
 for i=1:M
 for j=1:N
 bg(i,j)=median(double(bgVideo(i,j,:)));

33 Wei Liu

 end
 end
 % figure;imshow(bg,[]);
 end
 temp=(abs(double(originalVideo(:,:,k))-bg))>thre1; % temp is
boolean

 % write temp to file
 temp2(:,:,1)=255*temp;
 temp2(:,:,2)=temp2(:,:,1);
 temp2(:,:,3)=temp2(:,:,1);
 temp2=uint8(temp2);
 mov1=addframe(mov1,temp2);

 temp_d=imerode(temp, se1);
 temp_do=imdilate(temp_d, se2);

 temp2(:,:,1)=255*temp_do;
 temp2(:,:,2)=temp2(:,:,1);
 temp2(:,:,3)=temp2(:,:,1);
 temp2=uint8(temp2);
 mov1_do=addframe(mov1_do,temp2);

 if(sum(sum(temp_do))>thre2)
 labelVideo(:,:,k)=temp_do;
 k=k+1;
 else
 for v=k:(ninbuf+nread-1-q)
 originalVideo(:,:,v)=originalVideo(:,:,v+1);
 originalVideoR(:,:,v)=originalVideoR(:,:,v+1);
 originalVideoG(:,:,v)=originalVideoG(:,:,v+1);
 originalVideoB(:,:,v)=originalVideoB(:,:,v+1);
 end
 q=q+1;
 end
 t=t+1;
 p=p+1;
 end
 ninbuf=ninbuf+nread-q;
 end

 remainedtN=K;

 % % Part 3: Ribbon carving
 s=1;
 vrImage=zeros(M,remainedtN);
 hrImage=zeros(remainedtN,N);
 % get vrImage
 for k=1:remainedtN
 for i=1:M
 vrImage(i,k)=sum(labelVideo(i,:,k));
 end
 end

 % get hrImage

34 Wei Liu

 for k=1:remainedtN
 for j=1:N
 hrImage(k,j)=sum(labelVideo(:,j,k));
 end
 end

 [vrImage,vrIndex,miniVcost]=getVseamS(s,vrImage,remainedtN);
 [hrImage,hrIndex,miniHcost]=getHseamS(s,hrImage,remainedtN);

 while((miniVcost<=3)||(miniHcost<=3))
 if(miniVcost<=miniHcost) % Vertical
 disp('vertical');
 for i=1:M
 for k=vrIndex(i)+1:remainedtN
 originalVideo(i,:,k-1)=originalVideo(i,:,k); %
 labelVideo(i,:,k-1)=labelVideo(i,:,k); %
removeVribbon
 originalVideoR(i,:,k-1)=originalVideoR(i,:,k);
 originalVideoG(i,:,k-1)=originalVideoG(i,:,k);
 originalVideoB(i,:,k-1)=originalVideoB(i,:,k);
 end
 end
 remainedtN=remainedtN-1;
 % get hrImage
 for k=1:remainedtN
 for j=1:N
 hrImage(k,j)=sum(labelVideo(:,j,k));
 end
 end

 else % Horizontal
 disp('horizontal');
 for j=1:N
 for k=hrIndex(j)+1:remainedtN
 originalVideo(:,j,k-1)=originalVideo(:,j,k); %
 labelVideo(:,j,k-1)=labelVideo(:,j,k); %
removeHribbon
 originalVideoR(:,j,k-1)=originalVideoR(:,j,k);
 originalVideoG(:,j,k-1)=originalVideoG(:,j,k);
 originalVideoB(:,j,k-1)=originalVideoB(:,j,k);
 end
 end
 remainedtN=remainedtN-1;
 % get vrImage
 for k=1:remainedtN
 for i=1:M
 vrImage(i,k)=sum(labelVideo(i,:,k));
 end
 end

 end % of: if else
 [vrImage,vrIndex,miniVcost]=getVseamS(s,vrImage,remainedtN);
 [hrImage,hrIndex,miniHcost]=getHseamS(s,hrImage,remainedtN);
 end % of: while

35 Wei Liu

 % write some processed frames to file
 nwrite=remainedtN-adps;
 if(nwrite>0)
 disp('write');
 % write out originalVideo(:,:,1:nwrite) and
labelVideo(:,:,1:nwrite)
 for k=1:nwrite
 temp3(:,1:N,1)=originalVideoR(:,:,k);
 temp3(:,1:N,2)=originalVideoG(:,:,k);
 temp3(:,1:N,3)=originalVideoB(:,:,k);

 temp2=255*labelVideo(:,:,k);
 temp3(:,(N+1):(2*N),1)=temp2;
 temp3(:,(N+1):(2*N),2)=temp2;
 temp3(:,(N+1):(2*N),3)=temp2;
 temp3=uint8(temp3);
 mov2=addframe(mov2,temp3);
 mov3=addframe(mov3,temp3(:,1:N,:));
 mov4=addframe(mov4,temp3(:,(N+1):(2*N),:));
 end
 for k=1:adps
 originalVideo(:,:,k)=originalVideo(:,:,k+nwrite);
 labelVideo(:,:,k)=labelVideo(:,:,k+nwrite);
 originalVideoR(:,:,k)=originalVideoR(:,:,k+nwrite);
 originalVideoG(:,:,k)=originalVideoG(:,:,k+nwrite);
 originalVideoB(:,:,k)=originalVideoB(:,:,k+nwrite);
 end
 end
 ninbuf=min(adps,remainedtN);
end % of while

disp('finally write');
for k=1:ninbuf
 temp3(:,1:N,1)=originalVideoR(:,:,k);
 temp3(:,1:N,2)=originalVideoG(:,:,k);
 temp3(:,1:N,3)=originalVideoB(:,:,k);

 temp2=255*labelVideo(:,:,k);
 temp3(:,(N+1):(2*N),1)=temp2;
 temp3(:,(N+1):(2*N),2)=temp2;
 temp3(:,(N+1):(2*N),3)=temp2;
 temp3=uint8(temp3);
 mov2=addframe(mov2,temp3);
 mov3=addframe(mov3,temp3(:,1:N,:));
 mov4=addframe(mov4,temp3(:,(N+1):(2*N),:));
end

mov1=close(mov1);
mov1_do=close(mov1_do);
mov2=close(mov2);
mov3=close(mov3);
mov4=close(mov4);
% fclose(fid);
t=toc

