
'

&

$

%

VISUAL SENSOR FOR SMART PARKING

Luis Caro Campos, Gregary B. Prince

12/15/2011

Boston University

Department of Electrical and Computer Engineering

Technical Report No. ECE-2011-02

BOSTON

UNIVERSITY

VISUAL SENSOR FOR SMART PARKING

Luis Caro Campos, Gregary B. Prince

Boston University

Department of Electrical and Computer Engineering

8 Saint Mary’s Street

Boston, MA 02215

www.bu.edu/ece

12/15/2011

Technical Report No. ECE-2011-02

Summary

This report describes results of our investigation of an image processing algorithm
for the detection of on-street parking vacancies completed within a fall 2011 graduate
course “Digital Image Processing and Communication” (EC520). Our project fits in
a broader activity on smart parking currently conducted at Boston University. The
system we investigated starts by acquiring images from a rooftop camera facing oc-
cupied and vacant parking spots along Commonwealth Avenue on BU campus. After
acquiring the images, a k-NN classification algorithm is applied to region covariance
matrices of features in order to classify potential vacant and occupied parking spaces.
The system model is based on a feature vector containing spatial coordinates, color
chromas, and spatial change of illumination for each region of interest. A GUI was de-
veloped to facilitate system training and validation. Two methods of validation were
applied. One involved a leave-part-out cross-validation (LPOCV) approach which
was repeated ten times (10-fold cross-validation), the results of which were between
90% and 97% successful classification rate. The other validation was performed in
real time on newly-acquired images with results ranging between 85.5-85.75% for
pre-sunrise conditions and 88.0-89.5% for post-sunrise conditions. In conclusion, the
proposed system performs fairly well but may be able to be improved by incorporat-
ing different features into the system model or applying a more mature classification
method like a support vector machine or neural network.

i

Contents

1 Introduction 1

2 Related work 1

2.1 Vacant Ground Color Model using PCA 1
2.2 Color Histogram Method using Corner Detection 2

3 Proposed approach 2

3.1 Camera setup and training data acquisition 2
3.2 Feature extraction . 3
3.3 Training . 6
3.4 Classification . 7
3.5 Validation . 9

4 Results and conclusions 10

5 Appendix: MATLAB Code 11

ii

List of Figures

1 Camera 1 Aimed at Location 1 on Commonwealth Avenue 3
2 Camera 2 Aimed at Location 2 on Commonwealth Avenue 4
3 Camera 2 Aimed at Location 3 on Commonwealth Avenue 4
4 System GUI which Facilitates Training and Feature Extraction 6
5 Simple Illustration of the k-NN Classifier Concept 8
6 Smart Parking System Algorithm . 8
7 System GUI for Real Time Validation 10

iii

List of Tables

1 Classification Results . 11

iv

SMART PARKING 1

1 Introduction

In certain circumstances, finding a vacant parking space becomes a time consuming
task for drivers that can often arise in traffic congestion. This situation can become
problematic in well-traveled areas, especially at peak traffic intervals. For this reason,
it is useful to be able to inform drivers of availability of vacant parking spaces in real
time, or as close to real time as possible. In some scenarios such as indoor parking lots,
human operators have to monitor several cameras at the same time to perform this
task, which can become expensive and laborious. An unsupervised parking system
should be able to provide the number and location of vacant parking spaces, by
monitoring changes in occupancy [WuX06].

In recent years, researches have proposed different solutions to the problem. Ac-
cording to the authors in [ITR09] we can classify smart parking systems into two cat-
egories, depending on the nature of the sensors: intrusive and non-intrusive. Intrusive
sensors typically require invasive installation procedures on each parking space. In
some cases to reduce costs, sensors are installed at the entry and exit ways of parking
lots, which does not enable locating vacant spots, yet provides a simple counter rela-
tive to total parking spots available. In the second category, we can include systems
that analyze the video signal from a camera pointed at several parking spaces.

A visual surveillance solution to the problem requires real-time interpretation of
the image sequence captured by the camera in order to detect vacant parking spaces.
This poses several challenges, as the camera cannot be mounted perpendicularly to
the parking slots. Illumination changes, shadows and occlusions have to be taken into
account to perform an accurate detection.

2 Related work

In this section, we briefly describe some of the prior approaches to the classification
of vacant parking spaces problem.

2.1 Vacant Ground Color Model using PCA

In the system proposed by [WuX06], a Gaussian model of the ground (vacant space)
color is employed. For each analyzed region, the probability of every pixel of belonging
to the model is computed. Principal component analysis (PCA) is then employed to
reduce the dimensionality of the obtained vector. In order to provide the system with
robustness against occlusions, shadows, and illumination changes, each parking row
is projected onto a ground plane and regions of 3 contiguous parking spaces (patches)
are analyzed at the same time. SVM classification is used to classify each vector into
8 possible occupation states. A Markov random field framework is described to solve
classification discrepancies.

SMART PARKING 2

2.2 Color Histogram Method using Corner Detection

In [Tru07], two different kinds of features are extracted. In an initial step, parking
spaces are manually labeled, and the color space is converted to L ∗ a ∗ b, as it
is invariant to chances in lighting conditions. Color histograms are extracted in
each labeled region, and classified using k-NN or SVM algorithms. Additionally,
the author proposes detection by extracting car features inside the analyzed parking
space. For this purpose, Harris corner detection is employed to extract feature points.
A feature dictionary is created from images centered at each feature points. For new
images under analysis, extracted features are compared against the training set using
Normalized Cross-correlation. As future work, the author proposes a combination of
the two approaches to further reduce the misclassification rates.

3 Proposed approach

3.1 Camera setup and training data acquisition

For our project, we will collect image snapshots from a PTZ (pan-tilt-zoom) camera
pointed at Commonwealth Avenue. There are PTZ cameras mounted on the roof of
PHO; these cameras are operated by the ISS lab. There are many cameras available
(ptz1, ptz2, vsn1, vsn2, vsn3, vsn4, vsn5, and vsn6) to be used to obtain the training
set and the query images to be classified. After investigating the quality of images
acquired, it was determined that ptz1 and ptz2 were the only two useful cameras
for the acquisition of images to be analyzed. At times (depending on the angle and
outdoor lighting conditions), both cameras appear overexposed, as a result of the
automatic exposure control. Cameras are also subject to vibration noise, caused by
the HVAC on the roof. This is particularly noticeable at close zoom levels.

In an initial step, still images are acquired from the camera pointing at different
locations. In order to cover a wider array of situations, different angles, distances and
zoom levels will be covered which result in different amount of occlusions, at different
times of day to account for changes in lighting conditions. The parking spaces will be
manually identified for each camera preset, and the spaces will be labeled as vacant
or occupied in each snapshot.

To gather snapshot information, we query the current video frame from the cam-
eras at a specified rate. The camera server provides a URL to obtain the most recent
frame in compressed form. The following bash script is used to gather the desired
data:

#!/bin/bash

URL=http://ptz1-iss.bu.edu/axis-cgi/jpg/image.cgi #image URL

CAM=1 #camera number

LOC=4 #camera preset (location)

SMART PARKING 3

i=1 #start number

while sleep 60; do

printf -v FNAME "cam%02d_loc%02d_%03d.jpg" $CAM $LOC $i

curl $URL -o $FNAME

let "i+=1"

echo $FNAME

done

The same operation could be performed by using a Matlab central function to
handle video streams(mmread.m), but it proved inefficient in terms of CPU resources.

This operation provides the capability to acquire all the images required for train-
ing and testing. Acquiring images at different time of the day (over different days)
and at different viewing angles at a rate of a frame every minute provides diversity
in the training set for feature extraction and classification.

Figure 1: Camera 1 Aimed at Location 1 on Commonwealth Avenue

3.2 Feature extraction

In [TPM06], the use of covariance matrices as region descriptors is proposed. The
covariance matrix provides a way of fusing multiple features that might be correlated.
For each pixel inside a rectangular image region R, the kth sample feature of the jth

training set is given by the length M vector ξj,k. We can represent the region R with
the M ×M covariance matrix of feature points for the jth training set as Cj, with its
associated mean vector µξj :

Cj =
1

n − 1

n
∑

k=1

(ξj,k − µξj)(ξj,k − µξj)
T

SMART PARKING 4

Figure 2: Camera 2 Aimed at Location 2 on Commonwealth Avenue

Figure 3: Camera 2 Aimed at Location 3 on Commonwealth Avenue

µj =
1

n

n
∑

k=1

ξj,k

The covariance matrix of feature points can incorporate many features of images,
such as various color representations, position, luminance, etc. The chief idea is that
given the features of interest over a certain region of the image can be compactly
represented and the covariance of the region of interest can be compared to another
region’s covariance. The similarity of the two, in loose terms, can be heuristically
thought of as a match between the two sub-images. Therefore, if each sub-image
has similar covariance matrices, one may conclude that a parking spot is vacant
or occupied. One of the main issues with this approach, however, is the fact that
covariance matrices are, by definition, positive semi-definite quantities; this property
hinders the ability to define a metric between any two covariance matrices. This
metric is required if we hope to determine the similarity between two region covariance
matrices.

A metric d is valid if and only if it meets the 3 (three) properties of all distance

SMART PARKING 5

metrics:

• d(Ci,Cj) ≥ 0 ∀ i, j ∈ R, and d(Ci,Cj) = 0 only if (Ci = Cj)

• d(Ci,Cj) = d(Cj,Ci) ∀ i, j ∈ R

• d(Ci,Cj) + d(Ci,Ck) ≥ d(Cj,Ck) ∀ i, j, k ∈ R

In [FoM99], the following metric, which exploits the concept of generalized eigen-
values and eigenvectors, for covariance matrices is proposed:

d(Ci,Cj) =

√

√

√

√

n
∑

m=1

ln2 λm(Ci,Cj)

where Ci and Cj are two covariance matrices to be compared, in our context from
the ith acquired image and jth trained image. From an information theoretic point of
view, the information of a Gaussian random variable scales with the natural logarithm
of the variance ln σ2. In [FoM99], their assumption is that for non-Gaussian sources,
d2 =

∑

m ln2 λm. The λm(Ci,Cj) are the mth sets’ generalized eigenvalues computed
between the covariance matrices, which are found by solving the following eigenvalue
problem, with eigenvectors xi:

λmCixm = Cjxm

Lastly, to obtain d, the
√

(.) operator is applied to the squared metric. One idea is
to define the feature vector as follows:

ξ =

(

x, y, Cb(x, y), Cr(x, y),
∂L(x, y)

∂x
,
∂L(x, y)

∂y

)T

The feature variables x,y are the coordinates of the pixel within the region, R;
Cb(x, y) and Cr(x, y) are the color values (chromas) in the Y CbCr color space, which
are independent of illumination level; and , ∂Y

∂x
and ∂Y

∂y
are the first order derivatives of

the image luminance intensities with respect to x and y. The motivation behind this
attribute selection is to obtain a covariance matrix that can efficiently discriminate
a parking space between vacant and occupied. We assume that the color of most
cars differs from that of the pavement, and the Y CbCr color space is used to make
the system more robust against illumination changes. Additionally, the first order
derivatives provide information about the edges in the image. When a car is parked,
we expect car edges to be present, as opposed to smoother, or even the absence of,
edges when the space is vacant.

SMART PARKING 6

Figure 4: System GUI which Facilitates Training and Feature Extraction

3.3 Training

Having implemented the defined feature vector ξ, distance metric based on generalized
eigenvalues, d(Ci, Cj) and modifying a k-nearest neighbor (k − NN) classifier, the
next task is to efficiently gather training and query data to provide the classifier with
enough general knowledge to make it effective.

Our training approach involved acquiring images (at 1 minute intervals) of parking
spaces along Commonwealth Avenue at 7 different PTZ configurations; mainly within
the 3 pm-5 pm time of day (over multiple days), where the lighting variations are
maximum. Furthermore, acquiring images at different angles and zoom levels provides
the classifier with many different perspectives of what a car looks like in its feature
space. It should be noted that many acquired images were discarded due to the
compound effect of full parking spaces being occluded at more extreme angles and
camera vibration levels were too extreme to efficiently extract useful parking space
features.

In total, 436 snapshots were retrieved from both cameras, with the total number of
parking spaces in each view varying from 4 (close zoom) to 10 (distant zoom), resulting
in 2198 labeled parking spaces (a pair of covariance matrix and label). For this
purpose, we developed graphical user interface (GUI) to facilitate this process. This
interface allows one to load a particular camera/view combination. Upon successful
loading all the snapshots acquired from a given camera/view combination the user has
the choice to dictate the number of parking spaces of interest, n. The user can then
outline by creating rectangular boxes overlaid on the loaded acquired image. Once
the user has identified and drawn out all n parking spaces, the GUI proceeds to the
training phase. In this phase all mn parking spaces are identified and the user labels

SMART PARKING 7

each space as occupied or vacant. For each of these mn parking space images, its
covariance matrix is computed and stored along with its label. The training dataset
to be used by the classifier consists of over two thousand 2198 computed covariance
matrices with associated binary labels.

Herein some of the concerns regarding the information used to train the classifier
are documented, along with the rationale to proceed with including them.

• Firstly, for most camera views, the parking situation does not exhibit significant
changes in many different frames in the dataset. The consequence being that we
may be adding the same car or vacant space to the dataset and accumulating
some sort of bias in the classifier. It was chosen to include all of these repetitions
in the dataset to account for common frame-to-frame variations: camera sensor
noise, motion blur (induced by vibration), and lighting.

• Secondly, approximately a quarter of all acquired images are, in fact, of vacant
spaces. In most cases, the parking spaces are occupied. Again, the dataset was
chosen to train the classifier due to the variations in the acquisition process,
which allow the two sets to be sufficiently coherent but simultaneously different
from each other.

3.4 Classification

Once the training phase is complete, the algorithm proceeds to attempt to classify
new features against the training set. The task of classification involves comparing a
collection of training datasets (with stored features and labels) to a newly encountered
dataset (with its own features) and assign the new dataset a classification label. In
this context, as mentioned previously, the labels are binary (e.g. occupied or vacant).
The algorithm chosen to perform the classification in this investigation is the k Nearest
Neighbors (k-NN) algorithm,. k is a user specified constant which determines how
many training samples (k) are required to be closest, in terms of a defined metric, to
the new feature for querying. Often times metrics such as Hamming and Euclidean

are applied to feature vectors, but for this investigation the aforementioned covariance
metric is employed to determine the k nearest neighbors. One problem that often
occurs is when the training phase is biased towards one decision, a simple fix to this
issue is to apply weights the metric obtained. Furthermore it is common practice to
have k be an odd integer, as this avoids ties, simplifying the problem to a simple
majority vote among thek closest samples. In our experiments, we set k = 3.

A simple example of a k-NN classifier output is depicted in Figure 5, where k = 10.
This example is trying to minimize the metric (Euclidean in this case) between the
point of interest(the origin) with the observations within the space. As one may
see, the 10 closest points to the origin are returned (interior of red curve) and the
remaining data points are discarded (exterior of red curve).

This classification task is performed on each new dataset in the covariance ma-
trix feature space with the appropriate modifications implemented. Nonetheless, the

SMART PARKING 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

outlier data
classifier objective point
K=10 closest neighbors to objective
Boundary

Figure 5: Simple Illustration of the k-NN Classifier Concept

simple idea of selecting the k closest neighbors, in terms of the defined metric, to the
dataset of interest still holds.

Figure 6 illustrates the summary flow of the algorithm in both the training and
classification phases.

Figure 6: Smart Parking System Algorithm

SMART PARKING 9

3.5 Validation

To validate the proposed method, the classification will be tested on new (unseen)
snapshots of the same parking spaces used for the training phase, and the perfor-
mance of the classifier will be assessed in terms of predictive accuracy (percentage
of correctly classified samples). There are two (2) validation approaches performed
in this investigation, one in which cross validation is performed using leave-part-out-
cross-validation (LPOCV) and one involving real-time querying with entirely new
(unseen) data.

For cross-validation, LPOCV is repeated exactly 10 times as recommended in
[RTL09] using the entire training dataset since it is sufficiently large. Each time, the
dataset is broken into two groups: 90% for training, and 10% for querying. This is
done randomly (native Matlab function crossvalind provides the random partitions),
thereby preserving the proportions of occupied/vacant spaces in both of the new
datasets. This provides mean measure of the accuracy. Note that each sample from
the original dataset is used both for training and querying, but never at the same
time. Most of these measures fell between 90 and 97% classification success, with a
mean accurace of 94.3%. A set of Matlab commands is provided to illustrate this
LPOCV operation.

[trainset, queryset] = crossvalind(’Resubstitution’, N, [P,Q])

% split dataset into two groups, Train and Query

% can also use, depending on the type of validation,

% ’HoldOut’, ’LeaveMOut’,’Kfold’, etc. Method types

[outputclass] = knnclassify2(trainset, queryset, k)

%provides the output classification between the two datasets

groundtruth = cell2mat(queryset(:,2));

% create ground truth matrix from the queryset

cm = confusionmat(obtainedclasses, groundtruth)

% inspect the results compute the confusion matrix

acc = sum(diag(cm)) / sum(cm(:));

%accuracy is the sum of the diagonal against the total

%number of query elements.

For real time validation it will be more difficult to compute accuracy figures unless
we are able to produce ’ground-truth’ for the processed frames. In a real-time scenario
where several parking spaces have to be taken into account, it may be impracticable to
perform detection in every frame, especially if the k-NN training set is too big. A more
realistic assumption would be to query each location every minute, which, depending
on the number of locations and the size of the training set, may be realizable. In this
scenario, performance metrics are only possible of the ground-truth if each analyzed
region is manually input.

Figure 8 illustrates the live or real time version of the GUI. The real time GUI
performs similarly to the training GUI in so far as it fetches image snapshots (only this

SMART PARKING 10

time in real time, not from a file server) from the specified camera (e.g. ptz1 or ptz2.
Again, the user can draw out what are thought to be valid parking spaces (regions)
up to the amount specified. Once satisfied with the defined regions, the GUI (upon
pressing start) will classify parking spots as occupied (red outlined region) or vacant
(green outlined region). Moreover, the system can continue to fetch new snapshots
from the camera(s) and classify accordingly.

Figure 7: System GUI for Real Time Validation

4 Results and conclusions

The k-NN classification algorithm operating on region covariance matrices yields very
good performance under the environments tested. As discussed in the validation
section, the performance was gauged using both a LPOCV method and a real-time
method. The real-time system performance was tested in both high illumination (HI)
levels (mid morning) and low illumination (LI) levels (early morning) at different
camera angles.

The LPOCV results yielded repeatable performance in the range of 90-97% correct
classification. This may be due to the heterogeneity of the data acquired. Sometimes,
especially for zoomed-out scenes, the acquired resolution is too low. Furthermore, if
vibration on the roof is active , the images are blurred and the lighting between ptz1

and ptz2 is different; Ptz1 appears overexposed, while Ptz2 provides crisper images.
Lastly, in some image acquisitions, there are double parked cars or trucks in front of
the regions of interest. All of these observations were included in the training dataset,
which may have skewed the LPOCV results.

SMART PARKING 11

The real time performance involves human intervention to observe what the clas-
sifier is deeming as occupied or vacant and comparing those results with the ground-
truth that the human observes in the picture. The results collected for the real time
performance are averaged over a sequence of fifty (50) image snapshots for four (4)
different scenarios : ptz1 at HI, ptz1 at LI, ptz2 at HI, ptz2 at LI. Table 1 summa-
rizes the performance of these experiments. Each scenario measures its average and
standard deviation with respect to the number of parking spaces defined (8 spaces in
this run).

Table 1: Classification Results
Measure PTZ#1 LI PTZ#1 HI PTZ#2 LI PTZ#2 HI

% Success Average 85.50% 88.00% 85.75% 89.50%
% Standard Deviation 10.42% 10.09% 13.45% 9.23%

One may observe that the performance is best in HI environments with ptz2 per-
forming slightly better possibly due to the orientation of camera allowing parking
spaces to match the rectangular region mapping better than the angular (parallelo-
gram) view of ptz1. The same conclusion follows in the LI cases; however both camera
report poorer classification results possibly due to not having as much information
in the feature space in terms of chromas and spatial change of luminance during this
time of day..

Overall, the classification system performed very well, but there are many avenues
one may explore in attempt to improve its performance. The application of a more
robust classification algorithm e.g. Support Vector Machine (SVM) or Neural Net-
work (NN), could improve the success rate of accurately classifying vacant parking
spaces. Moreover, modifying the feature vector to include more descriptive features
relevant to rigid objects or even implementing a corner detection algorithm could
improve upon the results obtained. Moreover, the GUI can be modified to allow for
various polygons (e.g. parallelograms) depending on the perspective of the camera;
A car is not always rectangular from all perspectives.

5 Appendix: MATLAB Code

function varargout = guitest(varargin)

% GUITEST MATLAB code for guitest.fig

% GUITEST, by itself, creates a new GUITEST or raises the existing

% singleton*.

%

% H = GUITEST returns the handle to a new GUITEST or the handle to

% the existing singleton*.

%

% GUITEST(’CALLBACK’,hObject,eventData,handles,...) calls the local

SMART PARKING 12

% function named CALLBACK in GUITEST.M with the given input arguments.

%

% GUITEST(’Property’,’Value’,...) creates a new GUITEST or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before guitest_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to guitest_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help guitest

% Last Modified by GUIDE v2.5 09-Dec-2011 18:25:59

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @guitest_OpeningFcn, ...

’gui_OutputFcn’, @guitest_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before guitest is made visible.

function guitest_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

SMART PARKING 13

% varargin command line arguments to guitest (see VARARGIN)

% Choose default command line output for guitest

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes guitest wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% store window handle on main app

setappdata(0, ’hMainGui’, gcf);

% --- Outputs from this function are returned to the command line.

function varargout = guitest_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

function cam_Callback(hObject, eventdata, handles)

% hObject handle to cam (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of cam as text

% str2double(get(hObject,’String’)) returns contents of

% cam as a double

% --- Executes during object creation, after setting all properties.

function cam_CreateFcn(hObject, eventdata, handles)

% hObject handle to cam (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

%called

SMART PARKING 14

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function loc_Callback(hObject, eventdata, handles)

% hObject handle to loc (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of loc as text

% str2double(get(hObject,’String’)) returns contents of loc as a double

% --- Executes during object creation, after setting all properties.

function loc_CreateFcn(hObject, eventdata, handles)

% hObject handle to loc (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’),...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in load.

function load_Callback(hObject, eventdata, handles)

% hObject handle to load (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%get input numbers

cam=str2double(get(handles.cam,’String’));

loc=str2double(get(handles.loc,’String’));

%filename prefix

SMART PARKING 15

prefix=sprintf(’cam%02d_loc%02d_’,cam,loc);

%get all files

F=dir([prefix ’*.jpg’]);

%store this in appdata

h=getappdata(0, ’hMainGui’);

setappdata(h, ’Files’, F);

setappdata(h, ’currentPic’, 1);

numfiles=size(F,1);

set(handles.message, ’String’, [num2str(numfiles) ’ files found.’]);

if (numfiles > 0)

%load and display first image, save in appdata

im=imread(F(1).name);

h=size(im,1);

w=size(im,2);

%this will display the image in its size but wont resize the window

%pos=get(handles.image, ’Position’);

%npos = [pos(1) pos(2) w h];

%set(handles.image, ’Position’, npos);

h=getappdata(0, ’hMainGui’);

setappdata(h, ’image’, im);

axes(handles.image);

imshow(im, ’InitialMagnification’, 100);

%change message 2

set(handles.message2, ’String’, ’Specify number of parking slots’);

end

SMART PARKING 16

function spacesnr_Callback(hObject, eventdata, handles)

% hObject handle to spacesnr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of spacesnr as text

% str2double(get(hObject,’String’)) returns contents of

% spacesnr as a double

% --- Executes during object creation, after setting all properties.

function spacesnr_CreateFcn(hObject, eventdata, handles)

% hObject handle to spacesnr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’),...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in drawButton.

function drawButton_Callback(hObject, eventdata, handles)

% hObject handle to drawButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

h=getappdata(0, ’hMainGui’);

F=getappdata(h, ’Files’);

numfiles = size(F,1);

if (numfiles == 0)

set(handles.message2, ’String’, ’No files loaded yet’);

return;

end

%check number of parking spaces

ns=str2double(get(handles.spacesnr,’String’));

if (ns < 1)

set(handles.message2, ’String’, ’Specify number of spaces’);

return;

SMART PARKING 17

end

%at this point, an image was loaded and the number of slots is positive

totalslots = ns;

drawnslots = 0;

slotmap = zeros(totalslots, 4);

setappdata(h, ’totalslots’, totalslots);

setappdata(h, ’drawnslots’, drawnslots);

setappdata(h, ’slotmap’, slotmap);

str = sprintf(’(%d/%d)’, drawnslots, totalslots);

set(handles.message2, ’String’, [str ’ drawn.’]);

%draw rectangle

hr=imrect;

%hr.setColor([0 255 0]);

hr.setResizable(false);

slotmap(drawnslots+1, :) = hr.getPosition();

%change button behavior

if (ns > 1)

set(handles.drawButton, ’Enable’, ’off’);

set(handles.drawNextButton, ’Enable’, ’on’);

else

set(handles.drawButton, ’Enable’, ’off’);

set(handles.drawNextButton, ’Enable’, ’on’);

set(handles.drawNextButton, ’String’, ’Finish’);

end

%update text

drawnslots = drawnslots + 1;

str = sprintf(’(%d/%d)’, drawnslots, totalslots);

set(handles.message2, ’String’, [str ’ drawn.’]);

%set current state

setappdata(h, ’drawnslots’, drawnslots);

setappdata(h, ’slotmap’, slotmap);

SMART PARKING 18

% --- Executes on button press in drawNextButton.

function drawNextButton_Callback(hObject, eventdata, handles)

% hObject handle to drawNextButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

h = getappdata(0, ’hMainGui’);

totalslots = getappdata(h, ’totalslots’);

drawnslots = getappdata(h, ’drawnslots’);

slotmap = getappdata(h, ’slotmap’);

if (drawnslots == totalslots)

set(handles.drawNextButton, ’Enable’, ’off’);

set(handles.startButton, ’Enable’, ’on’);

rmappdata(h, ’drawnslots’);

return;

end

hr = imrect;

hr.setResizable(false);

slotmap(drawnslots+1, :) = hr.getPosition();

drawnslots = drawnslots + 1

slotmap

setappdata(h, ’drawnslots’, drawnslots);

setappdata(h, ’slotmap’, slotmap);

str = sprintf(’(%d/%d)’, drawnslots, totalslots);

set(handles.message2, ’String’, [str ’ drawn.’]);

if (drawnslots == totalslots)

set(handles.drawNextButton, ’String’, ’Finish’);

end

% --- Executes on button press in startButton.

function startButton_Callback(hObject, eventdata, handles)

% hObject handle to startButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

SMART PARKING 19

h = getappdata(0, ’hMainGui’);

slotmap = getappdata(h, ’slotmap’);

F = getappdata(h, ’Files’);

setappdata(h, ’processedSlots’, 0);

%get and redraw current image again

im = getappdata(h, ’image’);

axes(handles.image);

imshow(im);

%update displayed message

nfile = getappdata(h, ’currentPic’);

nslot = getappdata(h, ’processedSlots’);

totalfiles = size(F, 1);

totalslots = size(slotmap, 1);

string = sprintf(’File %d/%d. Slot (%d/%d)’,nfile, ..

totalfiles, nslot+1, totalslots);

set(handles.message3, ’String’, string);

%display a rectangle of the first slot

hr=imrect(handles.image, slotmap(1,:));

setappdata(h, ’lastrect’, hr);

hr.setColor(’red’);

hr.setResizable(false);

size(im)

slotmap(1,:)

% display a thumbnail of the first slot

slot = im(slotmap(1,2):slotmap(1,2)+...

slotmap(1,4),slotmap(1,1):slotmap(1,1)+slotmap(1,3),1:3);

%compute the covariance matrix, store it

X = getCovarianceMatrix(slot);

setappdata(h, ’currCM’, X);

%create the cell

dataset = {};

setappdata(h, ’dataset’, dataset);

axes(handles.slotView);

SMART PARKING 20

imshow(slot);

%enable the control buttons

set(handles.annotateOcc, ’Enable’, ’on’);

set(handles.annotateVac, ’Enable’, ’on’);

set(handles.skipSlot, ’Enable’, ’on’);

set(handles.skipFrame, ’Enable’, ’on’);

set(handles.startButton, ’Enable’, ’off’);

% --- Executes on button press in annotateOcc.

function annotateOcc_Callback(hObject, eventdata, handles)

% hObject handle to annotateOcc (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%to do here

% h = getappdata(0, ’hMainGui’);

% X = getappdata(h, ’currCM’);

performAnnotation(1, handles, false, false);

%

function performAnnotation(value, handles, skipSlot, skipFrame)

h = getappdata(0, ’hMainGui’);

X = getappdata(h, ’currCM’);

y = value;

%store the data

if (skipSlot==false || skipFrame==false)

dataset = getappdata(h, ’dataset’);

dataset = [dataset; {X y}];

disp(’que pasa aqui vamosaverrr’);

{X y}

setappdata(h, ’dataset’, dataset);

end

%slots read

SMART PARKING 21

read = getappdata(h, ’processedSlots’);

slotmap = getappdata(h, ’slotmap’);

total = size(slotmap,1);

if (skipFrame == true)

read=total;

else

read=read+1;

end

if (read < total)

%if there are still more slots in this image..

%we need to display the next one, and change the color of the last one

%updated number of processed slots in this frame

setappdata(h, ’processedSlots’, read);

%change the color of last rectangle

hr = getappdata(h, ’lastrect’);

hr.setColor(’green’);

hr.setResizable(false);

%load the (current) image

im = getappdata(h, ’image’);

else

read=0;

setappdata(h, ’processedSlots’, read);

%we need to load the new image...

F = getappdata(h, ’Files’);

i = getappdata(h,’currentPic’);

im = imread(F(i+1).name);

axes(handles.image);

imshow(im)

setappdata(h, ’image’, im);

setappdata(h, ’currentPic’, i+1);

SMART PARKING 22

end

%display new rectangle

hr=imrect(handles.image, slotmap(read+1,:));

setappdata(h, ’lastrect’, hr);

hr.setColor(’red’);

hr.setResizable(false);

%update displayed message

F = getappdata(h, ’Files’);

nfile = getappdata(h, ’currentPic’);

nslot = getappdata(h, ’processedSlots’);

totalfiles = size(F, 1);

totalslots = size(slotmap, 1);

string = sprintf(’File %d/%d. Slot (%d/%d)’,nfile, ...

totalfiles, nslot+1, totalslots);

set(handles.message3, ’String’, string);

%extract slot, compute and store covariance matrix

i=read+1;

slot = im(slotmap(i,2):slotmap(i,2)+...

slotmap(i,4),slotmap(i,1):slotmap(i,1)+slotmap(i,3),1:3);

axes(handles.slotView);

imshow(slot);

X = getCovarianceMatrix(slot);

setappdata(h, ’currCM’, X);

% --- Executes on button press in annotateVac.

function annotateVac_Callback(hObject, eventdata, handles)

% hObject handle to annotateVac (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

performAnnotation(0, handles, false, false);

SMART PARKING 23

% --- Executes on button press in skipSlot.

function skipSlot_Callback(hObject, eventdata, handles)

% hObject handle to skipSlot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

performAnnotation(0, handles, true, false);

% --- Executes on button press in skipFrame.

function skipFrame_Callback(hObject, eventdata, handles)

% hObject handle to skipFrame (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

performAnnotation(0, handles, false, true);

% --- Executes on button press in saveButton.

function saveButton_Callback(hObject, eventdata, handles)

% hObject handle to saveButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

function [covMat] = getCovarianceMatrix(img)

w=size(img,2);

h=size(img,1);

n=w*h;

%YCbCr space

Y=img(:,:,1);

Cb=img(:,:,2);

Cr=img(:,:,3);

%first order derivatives

[FX, FY] = gradient(double(Y));

%x, y coordinates variables

[x,y] = meshgrid(1:size(img,2), 1:size(img,1));

SMART PARKING 24

F=zeros(6,n);

k=1;

for i=1:h

for j=1:w

F(:,k)=[x(i,j) y(i,j) Cb(i,j) Cr(i,j) FX(i,j) FY(i,j)]’;

k=k+1;

end

end

%mean vector mu

mu = sum(F,2)/n;

%compute the covariance matrix

p = zeros(6,6);

for i=1:n

x=(F(:,i)-mu)*(F(:,i)-mu)’;

p=p+x;

end

C=p.*(1/(n-1)); %the covariance matrix

covMat = C;

function [outputclass] = knnclassify2(trainset, queryset, k)

neighborIds = kNN(trainset, queryset, k);

n = size(neighborIds,1);

outputclass = zeros(n, 1);

for i=1:n

classes = zeros(1,k);

for j=1:k

classes(j) = trainset{neighborIds(i,j),2};

end

outputclass(i) = mode(classes);

classes

end

SMART PARKING 25

function [dist] = covMatDistance(A,B)

dist = sqrt(sum(log(eig(A,B)).^2));

function [neighborIds] = kNN(trainset, queryset, k)

%for each element in the query set,

%k columns with the k nearest neighbor IDs from the training set

neighborIds = zeros(size(queryset,1),k);

neighborDistances = neighborIds;

%trainset is a cell, remember that.

numDataVectors = size(trainset,1);

numQueryVectors = size(queryset,1);

for i=1:numQueryVectors,

vec = queryset{i};

%dist = distances from the current vector to every vector in the

%trianing set

dist = zeros(numDataVectors,1);

for j=1:numDataVectors

dist(j) = covMatDistance(vec, trainset{j,1});

end

%dist = sum((repmat(queryMatrix(i,:),numDataVectors,1)...

%-dataMatrix).^2,2);

[sortval sortpos] = sort(dist,’ascend’);

neighborIds(i,:) = sortpos(1:k);

neighborDistances(i,:) = sortval(1:k);

end

SMART PARKING 26

References

[1] [FoM99] Foerstner, W., Moonen, B., A Metric for Covariance Matrices, 1999.

[2] [ITR09] Idris, M. Y. I., Tamil, E.M., Razak, Z., Noor, N.M., Kin, L.W, Smart

Parking System using Image Processing Techniques in Wireless Sensor Network

Environment, Information Technology Journal, 2009.

[3] [RTL09] Refaeilzadeh,P. Tang,L., and Liu,L. Cross Validation. In Encyclopedia of
Database Systems, Editors: M. Tamer zsu and Ling Liu. Springer, 2009.

[4] [Tru07] True, Nicholas, Vacant Parking Space Detection in Static Images,
University of California, San Diego Technical Report, 2007.

[5] [TPM06] Tuzel, O., Porikli, F., Meer, P., Region Covariance: A Fast Descriptor

for Detection and Classification, ECCV, 2006.

[6] [WuX06] Wu, Q., Zhang, Y., Parking Lots Space Detection,Machine Learning
10-701 Carnegie-Mellon University Project Report, 2006.

